

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-JRNL-840584

A Multi-Modal Event Catalog and Waveform Data Set that Supports Explosion Monitoring from Nevada, USA

R. L. Rodd, R. A. Brogan, J. D. Carmichael, A. C. Price, C. J. Young

September 30, 2022

Bulletin of Seismological Society of America

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

1 LLNL-JRNL-840584
2

3 **A Multi-Modal Event Catalog and Waveform Data Set that Supports
4 Explosion Monitoring from Nevada, USA**

5
6 Rebecca L. Rodd¹, Ronald A. Brogan², Josh D. Carmichael³, Amanda C. Price¹, Chris J. Young⁴
7

8 ¹Corresponding Author:
9

10 Rebecca L. Rodd
11

12 Lawrence Livermore National Laboratory
13

14 700 East Ave
15

16 Livermore, CA 94550
17

18 rodd2@llnl.gov
19

20 ²ENSCO, Inc
21

22 ³Los Alamos National Laboratory
23

24 ⁴Sandia National Laboratories
25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

22 **Declaration of Competing Interests**

23 The authors acknowledge there are no conflicts of interest recorded.

47

48 **Abstract**

49 Multi-modal, curated data sets and nuisance event catalogs remain rare in the explosion
50 monitoring community relative to curated seismic datasets. The source of this relative absence is
51 the difficultly in deploying multi-modal receivers that sense the seismic, acoustic, and other
52 modalities from multi-physics sources. We provide such a dataset in this study that delivers
53 seismic, infrasound, and electromagnetic (magnetometer) sensor records collected over a two-
54 week period, within 255km of a 10t buried chemical explosion called DAG-4 that was located at
55 37.1146°, -116.0693° on 22-June-2019 21:06:19.88 UTC. This catalog includes 485 seismic,
56 seismo-acoustic, and infrasound-only events that an expert analyst manually built by reviewing
57 waveforms from 29 seismic and infrasound sensors. Our data release includes waveforms from
58 these 29 seismic, infrasound, and seismo-acoustic stations, two magnetometer stations, and their
59 station metadata. We deliver these waveforms in NNSA KB Core CSS .w format (i4) with a
60 corresponding wfdisc table that provides the header information. We expect that this dataset will
61 provide a valuable, benchmark resource to develop signal processing algorithms and explosion
62 monitoring methods against manual, human observations.

63

64

65

66

67

68

69

70 **Introduction and Motivation**

71 On July 16, 1945, the United States detonated the first nuclear weapon at the Trinity Site in
72 southern New Mexico. By 1949, the Soviet Union had detonated their first device and the field
73 of nuclear explosion monitoring was born. In the intervening decades, tremendous progress in
74 explosion monitoring research has enabled scientists the ability to characterize nuclear
75 explosions all over the world, and at a level that would have seemed unimaginable at the advent
76 of monitoring. Great challenges remain, however. With improved monitoring capability,
77 technical ambitions have grown, and the monitoring community is now focused on developing
78 the capability needed to monitor the proposed Comprehensive Nuclear Test Ban Treaty (CTBT)
79 that requires detection of nuclear explosions of any size, anywhere in the world (e.g., Koper
80 2020). Successfully monitoring the CTBT will require that detection operations exploit
81 combinations of physical sensing modalities, which can lower monitoring thresholds over those
82 achieved by single modalities (Carmichael et al., 2020). Unfortunately, most researchers cannot
83 advance multi-modal monitoring techniques against ground-truth sources, largely because so few
84 multi-modal data sets are available.

85

86 The objective of this project was to generate a multi-modal dataset to test new data processing
87 algorithms that are being developed by the U.S. National Laboratories for improving nuclear
88 explosion monitoring capability. It is now well-established that the far-regional/teleseismic
89 distance verification regime implemented by the Provisional Technical Secretariat (PTS) of the
90 Comprehensive Nuclear Test Ban Treaty Organization (CTBTO) Preparatory Committee
91 (PrepCom) is capable of detecting fully coupled explosions of about 1 kt anywhere in the world
92 utilizing seismic, infrasound, hydroacoustic, and radionuclide sensors (National Research

93 Council, 2012, Marty, 2019). The U.S. National Laboratories efforts are now focused on
94 developing new algorithms suitable for detection and characterization of lower yield explosions
95 recorded at local and near-regional distances (i.e. within approximately 350 km). It is our hope
96 that by making a benchmark, multi-modal reference dataset available to the broader explosion-
97 monitoring research community, we can involve them in the development and refinement of new
98 data processing algorithms. We required that this dataset includes raw sensor data recorded for
99 one ground truth explosive event, as well as a variety of background nuisance events, from local
100 to near-regional distances. We further imposed that many sensors had legacy deployments to
101 record historical explosions, and that we recorded such explosions and background events in a
102 variety of sensor configurations. This particular requirement means that researchers will be able
103 to perform data processing parametric sensitivity tests with sensor sub-networks that include
104 capabilities unavailable to more limited single modality sensors in uniform configurations.

105
106 To meet these requirements, we collected waveform data from seismic, infrasonic, and
107 electromagnetic sensors deployed on and around the Nevada National Security Site (NNSS) for a
108 fifteen-day interval (June 15 to 29, 2019) centered on the June 22, 2019 DAG-4 shot, which was
109 part of Source Physics Experiment (SPE) Phase II: Dry Alluvium Geology (DAG) (Larotonda et
110 al., 2021). To provide information about the events that our waveform data recorded, we
111 included an expert analyst in our data preparation. This analyst thereby manually built a
112 comprehensive, composite catalog of seismic, infrasonic, and seismo-acoustic events during the
113 two-week collection interval. Our analyst leveraged the available event catalogs for the region,
114 manually revised any events that may have been mis-associated and added missing events. This

115 paper provides a detailed summary of the content of our data set, discusses our quality control
116 procedures and illustrates examples of multi-modal waveform records.

117 **DAG-4 Event**

118 There have been several explosions sourced within the NNSS over the previous 10 years that
119 provide candidate events for multi-modality data collection against a permanent and semi-
120 permanent network of seismic, infrasound, and electromagnetic sensors. Five such explosions
121 were conducted through Phase I of the SPE (Snelson et al., 2013), and another four explosions
122 were conducted through Phase II of the same series, (the DAG shots). These explosions were
123 buried between 31m to 385m below ground surface and ranged in yield between 89 kg to 51000
124 kg TNT equivalent, but not all shots produced clear infrasound or electromagnetic signals. Table
125 1 of Blom et al. (2020) summarizes peak over-pressure records of the infrasound data. The
126 largest and second deepest shot (DAG-2) showed no infrasound signal. The second largest shot
127 (DAG-4) was comparatively shallow and produced visible infrasound signals that models predict
128 are excited when the ground shock strikes ground surface and perturbs the local pressure field
129 above the burial point (Ford et al., 2014). The chemical explosive also generated an ionizing air
130 shock and plasma underground (Carmichael et al., 2020), which generated electromagnetic
131 signals that appeared at multiple sensors at the expected (speed of light) arrival time. Moreover,
132 logistical complexities associated with sensor deployment and telemetry that were present for the
133 earlier SPE shots had been solved during recording of the DAG-4 shot (Catherine Snelson,
134 personal communication). We therefore selected this multi-modal source for our study.

135

136 In detail, the DAG-4 source was a 10t chemical (nitromethane) explosion buried 51m below
137 local ground level at 37.1146°, -116.0693° at NNSS with source origin time June 22, 2019

138 21:06:19.88 UTC. The event radiated multiple signature types that an extensive, dense set of
139 multi-modal instruments recorded from near source (< 10m) to regional distances (> 250km).
140 These included near-field (< 200 m) and far-field (>200 m) accelerometers, geophones,
141 seismometers, acoustic sensors, magnetometers, and distributed acoustic sensors (DAS). The
142 shot was also recorded with sensors from nearby seismic networks operated by the University of
143 Nevada at Reno (UNR) (networks NN and SN) (UNR, 1971; UNR, 1992), the University of
144 Utah (network UU), the United States Geological Survey (network US) (ASL 1990), Sandia
145 National Laboratories (the Leo Brady Network, network LB), the Plate Boundary Observatory
146 (network PB), and the CTBTO PrepCom's International Monitoring System (IMS) (network IM,
147 station NVAR). These ground-truth explosive source data were used in several studies, including
148 research on explosive source model characterization, research on P/S discriminants, and analysis
149 for improvements to yield and depth estimates (e.g., Berg et al., 2022; Blom et al., 2020; Pyle
150 and Walter, 2021).

151
152 Among these sensors was a sparser subset of 31 multimodal stations within ~250km of the
153 source epicenter that were selected for building our special catalog. Our criteria for selecting
154 these stations were that they located within a 2.33 degrees distance from the DAG-4 source
155 epicenter, had an uptime spanning 2019-06-15 00:00:00 until 2019-06-29 23:59:59, provided no
156 significant azimuthal gap (\leq 60 degrees), no significant distance gap (\leq 40 km), included reliable
157 telemetry, and sampled both mechanical and electromagnetic waveforms (as stated above). We
158 summarize the resulting set of candidate stations that met these requirements in Table 1, which
159 lists the station locations and their sensing modalities which include seismic, infrasonic, and
160 magnetometer sensors. Sensors include broadband stations (band-instrument code BH), high

161 frequency broad band stations (HH), short period stations (SH), extremely short period (EH), and
162 higher sample rate instruments with band-instrument codes CH (seismic) and CD (infrasound).
163 One of our magnetometers (EM060) includes a D band label on the vertical channel and C band
164 labels on the horizontal channels within the same sensor.
165
166 We selected this sub-network specifically to include multiple collocated, multi-modal sensors
167 (four collocated seismic and acoustic sensors). These configurations include isolated infrasound
168 stations deployed within a few km of seismic network stations, standalone three-component (3C)
169 seismic sensors, a station from an IMS seismic array (NVAR), deep borehole seismic sensors
170 that collocate with tensor strain-meters, and two magnetometers (Table 2). Depending on
171 instrument type, location, and emplacement characteristics, these stations show varying degrees
172 of efficacy for recording buried explosions and their background emissions (non-explosion
173 signal sources). For example, the deep borehole stations (depths of 175km and 190km) enabled
174 sensing of the explosion-sourced body waves without significant contamination of high
175 frequency surface waves at far-local distances, whereas the dense seismo-acoustic network that
176 includes collocated seismic and infrasound sensors that were deployed within 10s of km of the
177 DAG-4 source provides sensing capability to identify ground-coupled air waves (fourth row of
178 Table 2). Particularly unique to our data set are the magnetometer data, that provide speed-of-
179 light sensing of the electromagnetic signal produced by the dipole source formed during the
180 combustion process of the chemical explosion (Harlin and Nemzek, 2009; Carmichael et al.,
181 2020). These data thereby provide a better estimate of source origin time than given by speed-of-
182 sound seismic or acoustic waveform signals. Such data may also allow researchers to better use
183 electromagnetic and mechanical energy partitioning as a monitoring discriminant. We excluded

184 dense, near-source seismic sensor deployments as discussed elsewhere (Larotonda et al., 2021)
185 since we designed our experiment to develop signal processing methods for explosion-activity
186 monitoring, rather than to study source physics or containment mechanisms (e.g., Ford and
187 Walter, 2013; Steedman et al., 2016).

188

189 As participants in the DAG-4 experiment, all authors of this work retained access to waveform
190 data, but we note that some DAG-4 seismic and infrasonic waveform data were published in late
191 2021 to the publicly accessible Incorporated Research Institutions for Seismology (IRIS)
192 Assembled Datasets repository, along with a data release report (Larotonda et al., 2021). An
193 additional subset of stations are available via IRIS, including some stations in the NN, SN, UU,
194 US, PB, LB, and IM networks. However, in both Larotonda et al., 2021 and some of the IRIS
195 available stations, only records from the day of the DAG-4 shot and the following week (June
196 22-29) are available. The complete 15-day period for all stations used in this study were only
197 available to DAG-4 participants. Thus, the complete waveform dataset will be included with this
198 release.

199

200 We reviewed both waveform and station information for metadata quality control. This review
201 found only that the four-element infrasound array station, RVIS, had two notable issues. First,
202 RVIS channel metadata showed discrepancies in the element naming that appeared to change
203 with time. Second, only two of the four components were operational (south and north
204 directions) during the two-week window of this dataset. To accommodate the station in our
205 processing, we separated the station into two distinct sites of RVIS and RVIN. Despite the
206 metadata discrepancies, the waveforms were consistently of high quality and the two array units

207 provided good azimuthal coverage to the network configuration, so RVIS and RVIN were
208 included in our pipeline processing.

209
210 Once we completed our quality control review, we loaded station metadata and waveform header
211 information into the National Nuclear Security Administration (NNSA) Knowledge Base Core
212 Table schema (KbCore) tables (site, sitechan, sensor, instrument, wfdisc, affiliation) using the
213 Python Pisces (MacCarthy, 2020) and Obspy (Beyreuther, 2010) packages. The NNSA KbCore
214 is a modification of the CSS3.0 Database Schema (Anderson et. al., 1990) developed by NNSA
215 to store technical information in support of nuclear explosion monitoring (Carr, 2002 and Carr,
216 2007). We then stored the waveforms and response files in accompanying flat files (miniSEED
217 and KBCore .w for the former, and RESP format for the latter).

218 **Production of Expert Analyst Catalog**

219 We provided the fifteen-day continuous time interval database content and accompanying flat
220 files for the seismic and infrasonic stations described above (Figure 1 and Table 1) to the expert
221 analyst to manually build an event catalog for the period. Our goal was that the catalog would
222 include all events that: 1) are within 340km of the DAG-4 shot and 2) triggered waveforms that
223 could be manually observed above noise by at least three stations (seismic, infrasound, or a
224 combination of at seismic and infrasound).

225
226 The analyst used the Analyst Review Station (ARS) with LocSAT locator and XfkDisplay (Xfk)
227 software for phase picking and event location (tools described in Bache et. al. 1990). To
228 construct a comprehensive event catalog, our analyst first reviewed existing events in the
229 Advanced National Seismic System (ANSS) (see Data and Resources section) catalog that met

230 the defined criteria as a starting point. Only the event times and locations were used from the
231 ANSS catalog, no arrival times or associations from the ANSS catalog were used. The analyst
232 selected each event, aligned waveforms that were visually apparent (i.e. approximately 5 signal-
233 to-noise ratio) on each station by the Pg phase arrival, and then sorted these stations by distance
234 to identify additional arrivals. The analyst reviewed these waveforms in multiple filter bands as
235 necessary. An example of filter bands used for the DAG-4 event is shown in Table S1. If the
236 analyst could manually identify arrivals recorded by at least three spatially separated (i.e. not
237 collocated) stations, the analyst estimated phase arrival times and computed a hypocentral
238 solution for the waveform source using the AK135 velocity model (Kenneth et al., 1995). The
239 AK135 model was selected for two reasons: 1) to mimic an actual monitoring scenario where
240 specific regional models may be unavailable and 2) ease of compatibility with the LocSAT
241 software used by analyst. Location including depth, source time, and errors are calculated as part
242 of the software output and are impacted by network geometry and density. Magnitudes were not
243 calculated for any events in this catalog.

244

245 The analyst also identified events that were absent from the ANSS catalog. To identify such
246 events, the analyst reviewed waveforms within eight-minute running windows, in multiple filter
247 bands. The analyst then visually detected and phase-labeled arrivals. Infrasound phase arrivals,
248 labeled 'I', were picked on microbarometer records and on seismic records of air-to-ground
249 coupled arrivals. These infrasound phases were manually picked at the onset, not using peak-to-
250 peak amplitude. Association was done manually for all event types. For infrasound signals, the
251 'I' phase travel-time table utilized by the International Data Center (IDC) was used to determine
252 expected travel-times. The IDC used 270 ground-truth mine blasts and chemical explosions

253 recorded by the IMS network to empirically establish travel times at different ranges (Brachet et.
254 al., 2010); 330 m/s celerity for short-range tropospheric infrasound (< 1.2 degrees) and 295 m/s
255 for intermediate range (1.2 to 20 degrees) . In the absence of array processing, the analyst judged
256 whether an infrasound arrival was associated to an event based on the expected travel time using
257 the travel-time tables described above and relative arrival order. Additionally, event depth was a
258 consideration when associating infrasound arrivals to seismic events (i.e. physical mechanism for
259 infrasound signal generation by the seismic event with a given depth). The hypocentral solutions
260 were calculated by the same method described above for the events with an initial ANSS origin.

261

262 The analyst assigned event types by comparing event locations to known regions associated with
263 explosion sources (i.e. mines and ordinance disposal). No discrimination software was used to
264 differentiate between earthquake and explosion sources. If an event had multiple characteristics
265 of an explosions, including larger Rg phases, located at a known explosion source, located at
266 shallow depths, and all events of similar locations occurred during daytime hours, the event was
267 identified as an explosion event type. Seismic events that could not be associated with such
268 known regions, and that had none of the aforementioned characteristics consistent with an
269 explosion, were left as ‘-’ (i.e. unassigned), but are probable earthquakes. The events labeled ‘eq’
270 correlate to events assigned as earthquakes identified in the initial ANSS catalog. The
271 earthquakes have either seismic-only arrivals or seismic and infrasound arrivals. The analyst
272 assigned a special label, ‘infrasound-only’, to events that produced only infrasound arrivals, and
273 otherwise included no obvious, known source. Additionally, there were 7 events with infrasound
274 and seismic signals that could not be associated with any known mining blast locations or known
275 munition disposal activities. Thus, these were assigned a label of ‘seismoacoustic-unknown’.

276 **Catalog Content**

277 The meticulous analyst review of the two-week continuous waveform dataset resulted in a
278 catalog of 485 events. The initial ANSS catalog contained 313 which fit our criteria; thus an
279 additional 172 events were identified by the analyst. The catalog contains multiple event types,
280 including the DAG-4 shot, earthquakes, explosions, infrasound-only, and seismoacoustic-
281 unknown events (Figure 2). Of the 485 events, 295 were identified as earthquakes, 104 probable
282 earthquakes, 25 as explosions, 7 as seismoacoustic-unknown, and 54 as infrasound-only. Most of
283 the events are located within the network coverage and have median location errors of 7.86 km
284 (semi-major axis) and 3.47 km (semi-minor axis). Those events located outside the network
285 coverage have overall higher location errors with median of 11.98 km (semi-major axis) and 6.35
286 km (semi-minor axis). Specific event type origin location errors are shown in Table S2 and all
287 origin error information is stored in the origerr table. Refer to Carr (2002) for a definitions of the
288 origerr values.

289 The earthquakes in this dataset are located within the Great Basin in both Nevada and California,
290 predominantly within the Walker Lane and in particular the southern portion known as the
291 Eastern California Shear Zone (ECSZ). There are several smaller fault zones near NNSS, some
292 within the Walker Lane and others further east, including the Rock Valley (RV) fault zone and
293 Yucca-Frenchman (YF) shear zone (Oleary et al. 2000) likely responsible for earthquakes in this
294 dataset. An in-depth relocation study would be needed to identify the events to the specific
295 faulting within the region.

296 The DAG-4 event was in both in the ANSS catalog and in our catalog. The ground-truth location
297 is 37.1146° , -116.0693° , with source origin time 21:06:19.88 UTC, while the analyst located the

298 explosion at 37.11922° , -116.06573° with source origin time of 21:06:20.72 UTC. ANSS
299 located DAG-4 at 37.112° , -116.066° with source origin time 21:06:20 UTC. Origin time and
300 location including ground-truth for the DAG-4 shot events are included in Table S3. The ANSS
301 solution is ~ 0.2 km closer to ground-truth location. Differences in location and timing between
302 the ANSS catalog solution and our solution for DAG-4 could be attributed to several differences
303 in processing including but not limited to 1) station selection and number of stations (i.e. we used
304 a down-selected sub-network), 2) velocity model (regional vs global) 3) analyst subjectivity in
305 phase picking and 4) location algorithms. Waveforms and phase arrivals for the DAG-4 shot are
306 shown in Figure 3.

307 The DAG-4 event was the only known explosion with an observed infrasound phase. Records at
308 some stations also showed pressure signals that were sourced by the passage of seismic waves
309 that shook the infrasound sensor, before the arrival of the infrasound phase, which was excited
310 by ground motion directly above the DAG-4 source driving a pressure pulse in the air (e.g.,
311 I20M0, Figure 3). We suspect that other events that produced observed infrasound phases and
312 that located near mines and munition sites were explosions and were labeled as such, but ground-
313 truth for these events is unavailable. In addition, there were seven events that were labeled
314 seismoacoustic-unknown that occurred on June 19th that could have been explosions that had
315 infrasound and seismic arrivals but could not be associated with any known source. The source
316 of these events is unknown, but we speculate these could be from artillery testing. Waveforms
317 for one of the seismoacoustic-unknown events are shown in the Figure S1 and origins are
318 included in Table S4. Walker et. al. (2014) and Park et al. (2014) identified similar hot spots of
319 potential infrasonic emissions associated with military regions in the area.

320 Ten of the 54 infrasound-only events likely came from the Army Ammunition Plant (AAP) site
321 near the town of Hawthorne, Nevada (the “New Bomb” facility discussed in Negru & Golden,
322 2017). There are 215 arrivals that are associated with these events. Because the analyst only had
323 access to a simple distance dependent infrasonic travel-time table to locate these events, and
324 because of the high likelihood that these events were from the AAP, the locations of these events
325 were constrained to the published coordinates for AAP, 38.24479° and -118.64697°. Figure S2
326 illustrates waveforms with multiple arrivals from one of the AAP infrasound-only events. Table
327 S5 lists origin time and location for these events.

328 **Dataset Release Content**

329 The dataset in this release includes the waveforms from the selected 29 seismo-acoustic stations,
330 two magnetometer stations (Tables 1 and 2), and the station metadata. Waveforms are provided
331 in NNSA KB Core .w format (i4) with a corresponding wfdisc table providing the header
332 information. Station metadata sourced from IRIS and UNR are in the NNSA KB Core site,
333 sitechan, affiliation, sensor, and instrument tables. Instrument responses are provided in RESP
334 format.

335
336 The expert analyst catalog of 485 events, including all associated signal detections, is provided
337 as NNSA KB format event, origin, origerr, arrival, and assoc tables. The ‘etype’ field in the
338 origin table is used to describe the event type when known. For explosions and infrasound-only
339 events, etype is set to ‘ex’ and ‘infra’, respectively. The etype was set to ‘sa-unk’
340 (seismoacoustic-unknown) for the seven unknown events sourced on June 19th that we described
341 above. Additional unused fields in the arrival table were used to capture the picking filters for

342 DAG-4 shot. Table S6 is a key for these arrival table columns. This was only done for the DAG-
343 4.

344

345 In addition to ASCII flatfiles for each of the tables, for those that want to load the tables into a
346 database, we also provide a single Oracle dumpfile (.dmp) with all of the tables.

347 **Conclusions**

348 A goal of the geophysical explosion monitoring community is to provide the technical means to
349 monitor the proposed CTBT for nuclear explosions of any yield, at any location on Earth. This
350 requires developing methods that can monitor multiple geophysical signatures output by
351 explosions to very low thresholds. Following the lead of other scientific fields that have defined
352 standard reference models or data sets that researchers can process to define a baseline for
353 algorithm comparison (e.g., the Utah Teapot (Dunietz, 2016), the AK135 velocity model
354 (Kennett et al., 1995), the US Standard Atmosphere (1962)), we similarly offer a rare dataset of
355 low yield, low magnitude events that provides a baseline reference for such algorithm
356 comparison. Our waveform data includes records collected from seismic, acoustic, and
357 electromagnetic stations deployed in multiple sub-networks, and our expert-analyst-built catalog
358 includes all seismic, seismo-acoustic, and acoustic-only events that produced visible signals on
359 three or more stations over a two-week period centered around the DAG-4 controlled explosion.
360 This catalog includes events that locate near known tectonic regions, mining sites, and munitions
361 disposal facilities. It also includes events that produced only infrasound signals that we speculate
362 are sourced by artillery testing activity. We suggest that this continuous waveform dataset with
363 comprehensively picked and labeled events and associated arrivals, is particularly useful for
364 developing algorithms that extend the traditional, regional and teleseismic monitoring paradigm

365 to identify smaller events using multiple modalities, recorded at near-source to near-regional
366 distances. The data set should also prove useful for network parameter sensitivity studies that
367 will help researchers better quantify the impact of network configurations on explosion
368 monitoring capability.

369

370 **Data and Resources**

371 Mechanical and electromagnetic waveforms (e.g., seismograms, magnetometer signals) used in
372 this study were collected as part of the Source Physics Experiment Phase II: Dry Alluvium
373 Geology. Data was telemetered and stored at the non-public repository at University of Nevada,
374 Reno during and after the experiment for two-years. Waveform and other data were released to
375 IRIS Data Management Center under Assembled Datasets (Larotonda, 2021). This release
376 included the day of the shot and one week of data following each chemical shot, in this case
377 DAG-4. The ANSS catalog used as an initial reference for catalog generation can be found here:
378 <https://earthquake.usgs.gov/earthquakes/search/>. The complete data set discussed in this paper
379 (waveforms, station metadata, event catalog) titled "Multi-Modal DAG-4 Dataset" is available at
380 IRIS Assembled Datasets here: <https://ds.iris.edu/mda/23-001/>. Additional figures of waveforms
381 of the infrasound-only and seismoacoustic-unknown events and tables describing filters and
382 origin information are included in the Supplemental Materials and referenced as Table S# and
383 Figure S# within the main text.

384

385 **Acknowledgements**

386 The authors thank the SPE DAG-4 data providers for generating a well-characterized multi-
387 phenomenology explosion dataset and releasing data to a public repository. The Source Physics

388 Experiments (SPE) would not have been possible without the support of many people from
389 several organizations. The authors wish to express their gratitude to the National Nuclear
390 Security Administration, Defense Nuclear Nonproliferation Research and Development, and
391 the SPE working group, a multi-institutional and interdisciplinary group of scientists and
392 engineers.

393

394 We also thank the developer of Pisces python package, Jonathan MacCarthy, at Los Alamos
395 National Laboratory, for providing Obspy-compatible database software that is open-source.
396 This research was funded by the National Nuclear Security Administration, Defense Nuclear
397 Nonproliferation Research and Development (NNSA DNN R&D). The authors acknowledge
398 important interdisciplinary collaboration with scientists and engineers from LANL, LLNL,
399 MSTS, PNNL, and SNL. Portions of the work done by Lawrence Livermore National Laboratory
400 were funded under contract by Lawrence Livermore National Security, LLC, for the U.S.
401 Department of Energy, National Nuclear Security Administration under Contract DE-AC52-
402 07NA27344. Portions of work done by Los Alamos National Laboratory were funded under
403 contract by Triad National Security, LLC (LANS), operator of the Los Alamos National
404 Laboratory under Contract No. 89233218CNA000001 with the NNSA, U.S. Department of
405 Energy. Sandia National Laboratories is a multi-mission laboratory managed and operated by
406 National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of
407 Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security
408 Administration under Contract Number DE-NA0003525.

409 **References**

410 Anderson, J., W. E. Farrell, K. Garcia, J. Given, H. Swanger (1990). Center for Seismic Studies
411 Version 3 Database Schema Reference Manual, Technical Report C90-01, SAIC-90/1235, 64pp,
412 Science Applications International Corporation.

413

414 Albuquerque Seismological Laboratory (ASL)/USGS. (1990). *United States National Seismic*
415 *Network*. International Federation of Digital Seismograph Networks.
416 <https://doi.org/10.7914/SN/US>

417

418 Bache, T. C., S. R. Bratt, J. Wang, R. M. Fung, C. Kobryn, and J. W. Given (1990). The
419 Intelligent Monitoring System, *Bull. of the Seism. Soc. of Am.*, 80pp, 1833-1851.

420

421 Berg, E. M., and C. Poppeliers (2022). Inversion of Infrasound Time Series for Seismoacoustic
422 Source Parameters Produced by a Buried Chemical Explosion at the Source Physics Experiment
423 Phase II: Dry Alluvium Geology. *Bull. of the Seism. Soc. of Am.*, 2216–2230.

424

425 Beyreuther, M., R. Barsch, L. Krischer, T. Megies, Y. Behr, and J. Wassermann (2010). ObsPy:
426 A Python Toolbox for Seismology, *Seismol. Res. Lett.*, 81(3), 530-533,
427 doi:10.1785/gssrl.81.3.530

428

429 Blom, P., A. Iezzi, and G. Euler (2020). Seismoacoustic analysis of underground explosions
430 using the Rayleigh integral, *Geophys. J. Int.*, 223, 1069-1085, [doi: 10.1093/gji/ggaa363](https://doi:10.1093/gji/ggaa363)

431

432 Brachet, N., D. Brown, R. Le Bras, Y. Cansi, P. Mialle, and J. Coyne (2010). Monitoring the
433 Earth's atmosphere with the global IMS infrasound network, *Infrasound Monitoring for*
434 *Atmospheric Studies*, A. L. Pichon, E. Blanc, and A. Hauchecorne (Editors), chap. 3, pp. 77–118,
435 Springer, Netherlands.

436

437 Carmichael, J., R. Nemzek, N. Symons, and M. Begnaud (2020). A method to fuse
438 Multiphysics waveforms and improve predictive explosion detection: theory, experiment and
439 performance. *Geophys. J. Int.* , 222(2), 1195-1212.

440

441 Carr, D. B. (2002). *National Nuclear Security Administration Knowledge Base Core Table*
442 *Schema Document* (No. SAND2002-3055). Sandia National Laboratories, Albuquerque, NM.

443

444 Carr, D. B., J. E. Lewis, S. Ballard, E. M. Martinez, B. J. Merchant, R. Stead, M. Crown, J.
445 Roman-Nieves, and J. Dwyer (2007). Advances in the Integration of Large Data Sets for
446 Seismic Monitoring of Nuclear Explosions (No. SAND2007-4484C). Sandia National
447 Laboratories, Albuquerque, NM.

448

449 Dunietz, J. (2016). The Most Important Object in Computer Graphics History Is This Teapot.
450 *Nautilus*.

451

452 Ford, S. R., and W. R. Walter (2013). An explosion model comparison with insights from the
453 Source Physics Experiments. *Bull. of the Seism. Soc. of Am.*, 103(5), 2937-2945.

454
455 Harlin, J., and R. Nemzek (2009). Physical properties of conventional explosives deduced from
456 radio frequency emissions. *Propellants, Explosives, Pyrotechnics: An International Journal*
457 *Dealing with Scientific and Technological Aspects of Energetic Materials*, 34(6), 544-550.
458
459 Kennett, B. L. N., E. R. Engdahl, and R. Buland (1995). Constraints on seismic velocities in
460 the earth from travel times. *Geophys. J. Int.* 122:108-124.
461
462 Koper, K. D. (2020). The importance of regional seismic networks in monitoring Nuclear Test
463 Ban Treaties. *Seismol. Res. Lett.*, 91(2A), 573-580.
464
465 Larotonda, J. M., and M. J. Townsend (2021). Data Release Report for Source Physics
466 Experiment Phase II: Dry Alluvium Geology Experiments (DAG-1 through DAG-4), Nevada
467 National Security Site. *Technical Report DOE/NV/03624—1220*, 85 pages. Las Vegas, NV.
468
469 MacCarthy, J. M. (2021). Pisces: A practical seismological database library in Python.
470 <https://pypi.org/project/pisces/>.
471
472 Marty, J. (2019). The IMS infrasound network: Current status and technological developments,
473 in Infrasound Monitoring for Atmospheric Studies (Challenges in Middle Atmosphere Dynamics
474 and Societal Benefits), Second Ed., A. L. Pichon, E. Blanc, and A. Hauchecorne (Editors),
475 *Springer Nature*, Switzerland, p. 3-62.
476
477 NASA JPL (2013). *NASA Shuttle Radar Topography Mission Global 3 arc second* [Data set].
478 NASA EOSDIS Land Processes DAAC. Accessed 2023-01-20 from
479 <https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL3.003>
480
481 National Research Council. (2012). The comprehensive nuclear test ban treaty: Technical issues
482 for the United States.
483
484 Negru, P., and P. Golden (2017). Seasonal variations of infrasonic arrivals from long-term
485 ground truth observations in Nevada and implication for event location. *Geophys. J. Int.*, 209(1), 373-386.
487
488 O'leary, D.W. (2000). Tectonic Significance of the Rock Valley Fault Zone , Nevada Test Site.
489
490 Park, J., S. J. Arrowsmith, C. Hayward, B. W. Stump, and P. Blom (2014). Automatic
491 infrasound detection and location of sources in the western United States. *J. Geophys.*
492 *Res.*, 119(13), 7773–7798. <https://doi.org/10.1002/2013JD021084>.
493
494 Pyle, M. L., and W. R. Walter (2021). Exploring the Effects of Emplacement Conditions on
495 Explosion P/S Ratios Across Local to Regional Distances, *Seismol. Res. Lett.*, <https://doi:10.1785/0220210270>.
496
497 Snelson, C. M., R. E. Abbott, S. T. Broome, R. J. Mellors, H. J. Patton, A. J. Sussman, ... and
498 W. R. Walter (2013). Chemical explosion experiments to improve nuclear test monitoring. *Eos*,
499

500 *Transactions American Geophysical Union*, 94(27), 237-239.
501
502
503 Steedman, D. W., Bradley, C. R., Rougier, E., and Coblenz, D. D. (2016). Phenomenology and
504 modeling of explosion-generated shear energy for the Source Physics Experiments. *Bull. of the*
505 *Seism. Soc. of Am.*, 106(1), 42-53.
506
507 University of Nevada, Reno. (1971). *Nevada Seismic Network*. International Federation of
508 Digital Seismograph Networks. <https://doi.org/10.7914/SN/NN>
509
510 University of Nevada, Reno. (1992). *Southern Great Basin Network*. International Federation of
511 Digital Seismograph Networks. <https://doi.org/10.7914/SN/SN>
512
513 U.S. Standard Atmosphere. (1962). U.S. Government Printing Office, Washington, D.C.,
514 1962, [https://www.ngdc.noaa.gov/stp/space-weather/online-publications/miscellaneous/us-](https://www.ngdc.noaa.gov/stp/space-weather/online-publications/miscellaneous/us-standard-atmosphere-1976/us-standard-atmosphere_st76-1562_noaa.pdf)
515 [standard-atmosphere-1976/us-standard-atmosphere_st76-1562_noaa.pdf](https://www.ngdc.noaa.gov/stp/space-weather/online-publications/miscellaneous/us-standard-atmosphere-1976/us-standard-atmosphere_st76-1562_noaa.pdf)
516
517 Walker, K. T., R. Shelby, M. A. H. Hedlin, C. de Groot-Hedlin, and F. Vernon (2011). Western
518 U.S. Infrasonic Catalog: Illuminating infrasonic hot spots with the USArray. *J. Geophys.*
519 *Res.*, 116(B12). <https://doi.org/10.1029/2011JB008579>.
520

521 **Mailing Addresses**

522 Rebecca Rodd
523 Lawrence Livermore National Laboratory
524 700 East Ave
525 Livermore, CA 94550
526 rodd2@llnl.gov
527
528 Ronald Brogan
529 ENSCO, Inc.
530 4849 N. Wickham Road
531 Melbourne, FL 32940
532 brogan.ronald@ensco.com
533
534 Joshua D Carmichael
535 Los Alamos National Laboratory
536 Bikini Atoll Rd., SM 30
537 Los Alamos, NM 87545
538 joshuac@lanl.gov
539
540 Amanda C Price
541 Lawrence Livermore National Laboratory
542 700 East Ave
543 Livermore, CA 94550
544 price54@llnl.gov
545
546 Christopher Young
547 Sandia National Laboratories
548 1515 Eubank SE
549 Albuquerque, NM 87123
550 cjyoung@sandia.gov
551
552

553 **Tables**

554 Table 1. The thirty-one stations centered at the DAG-4 shot location, within our search region.
 555 Each station is assigned a modality of seismic (S), seismo-acoustic (SA), infrasound array (I),
 556 or electro-magnetic (EM) based on type of recording instruments at the station. SA (seismo-
 557 acoustic) is assigned for stations with both seismometers and acoustic sensors. Stations
 558 highlighted in yellow are historical legacy stations deployed for previous multi-physics
 559 experiments at NTS, including SPE and earlier DAG shots. Stations highlighted in green are
 560 purposed specifically for explosion monitoring.

561
562

Network	Station	Latitude	Longitude	Elevation	Distance (km)	Azimuth (degrees)	Modality
IM	NV31	38.432800	-118.155403	1509.0	234.9031	127.8797	S
LB	TPH	38.075001	-117.222504	1883.0	147.4230	135.9525	S
NN	GMN	37.300300	-117.260700	2168.0	107.7482	100.6663	S
NN	GWY	36.186001	-116.669800	1538.0	116.1974	27.3440	S
NN	PRN	37.406500	-115.051200	1464.0	95.9465	250.5754	S
NN	Q09A	38.834000	-117.181602	1703.5	214.4096	152.5397	S
NN	Q12A	39.040001	-114.829903	1625.0	239.7842	207.3526	S
NN	S11A	37.644402	-115.747200	1456.0	65.3547	205.9788	S
NN	STHB	36.645401	-116.338799	1052.0	57.3453	24.6890	S
NN	V12A	35.726601	-114.851097	1098.0	188.8304	325.0110	S
PB	B916	36.192501	-117.668503	1859.9	175.8279	53.9366	S
PB	B918	35.935699	-117.601700	1042.6	189.6001	45.9189	S
SN	AF001	37.216000	-116.161102	1637.1	13.8969	144.0469	S
SN	AF004	37.180099	-115.983398	1437.0	10.5394	226.4191	S
SN	AF005	37.189400	-116.020401	1337.2	9.3692	207.6368	S
SN	EASTD	37.115746	-115.951951	1525.1	10.4304	269.3368	SA
SN	I20M0	37.131890	-116.075617	1305.4	1.9993	163.6907	SA
SN	I20M6	37.097421	-116.062659	1269.7	1.9958	342.7982	SA
SN	L5026	37.231899	-116.115601	1808.0	13.6519	162.4563	S
SN	RV196	36.940567	-116.082591	1522.5	19.3500	3.5000	S
SN	RV339	36.810414	-116.091825	1180.3	33.8172	3.3939	S
SN	RVFF	36.728500	-115.985397	1079.0	43.4952	350.1280	S
SN	RVIS	36.705898	-115.962898	1157.8	46.3367	348.2237	I
SN	SOUF	36.798291	-115.943151	0937.9	36.8571	342.2900	S
SN	SW353	36.850486	-116.310341	1317.3	36.3271	36.1380	S
SN	SW522	37.073714	-116.109144	1312.7	5.7564	37.9654	SA
US	TPNV	36.948800	-116.249500	1600.0	24.4056	41.0135	S
UU	PSUT	38.533700	-113.854700	1999.0	250.6361	231.7507	S
UU	VRUT	37.461800	-113.856900	1874.0	199.9269	259.5593	S
SN	EM060	37.114150	-116.069079	1285.5	0.0537	338.5300	EM
SN	EM030	37.114403	-116.069174	1285.3	0.0246	332.8777	EM

563

564 Table 2. Distinct sub-networks within the complete station network. Some stations appear in
 565 multiple sub-networks. Semi-colons separate distinct sets of sub-networks. Networks are loosely
 566 defined by the physical proximity of sensors, relative to the greatest expected wavelength of a
 567 particular modality.

568

Sub-network description	Network-station codes
Deep seismic borehole stations (167 and 190 m depth)	PB.B916, PB.B918
Seismic array components	IM.NV31
Dense seismic networks	SN.AF001, SN.AF004, SN.AF005, SN.L5026; US.TPNV, SN.RV196, SN.RV339, SN.SOUF, SN.RVFF, SN.SW353
Seismo-acoustic arrays or networks	SN.EASTD, SN.I20M0, SN.I20M6, SN.SW522
Infrasound array components	SN.RVIS, SN.RVIN
Stand-alone three-component seismic stations	LB.TPH, NN.GMN, NN.GWY, NN.PRN, NN.Q09A, NN.Q12A, NN.S11A, NN.STHB, NN.V12A, UU.PSUT, UU.VRUT
Electromagnetic (magnetometer) stations	SN.EM030, SN.EM060
Seismic, seismo-acoustic, and magnetometer networks	SN.AF001, SN.AF004, SN.AF005, SN.EASTD, SN.I20M0, SN.I20M6, SN.L5026, SN.SW522, SN.EM030, SN.EM060

569

570

571 **List of Figure Captions**

572 Figure 1. Network of stations included in the data set. Seismic stations are marked as upward
573 triangles, seismo-acoustic as inverted triangles, acoustic-only as squares, and magnetometer
574 stations near the source are marked as diamonds. Stations are colored by network affiliation (see
575 legend). Probable mine locations are marked as orange hexagons and the known Hawthorne
576 Army Ammunition Plant (AAP) is marked as a black hexagon. The initial catalog from the
577 Advanced National Seismic System (ANSS) events are marked as white circles. The rectangular
578 inset shows a higher resolution map of the station distribution near the DAG-4 (white star) shot,
579 where station density is higher.. The topography model used is SRTM (NASA, 2013).

580

581 Figure 2. Map of the event locations from the generated analyst catalog. Events are marked as
582 circles, colored by event type. Unidentified events (i.e. not categorized) are red, earthquakes are
583 orange, explosions are green, seismoacoustic-unknown are aqua, infrasound-only are blue.
584 Stations from Figure 1 are marked as white triangles. Probable mines and Hawthorne AAP are
585 marked as white hexagons. The rectangular inset shows a higher resolution map of the event and
586 station distribution near the DAG-4 shot (white star), where station density is higher. The
587 topography model used is SRTM (NASA, 2013).

588 .

589

590 Figure 3. Unfiltered waveforms of the DAG-4 shot recorded by three different modalities –
591 infrasound (a), seismic (b, c, d), and electromagnetic (e, f, g, h). Dashed vertical lines indicate
592 manual phase arrival picks, which we label and color by phase (Pg-blue, Rg-red, Lg-green, I-
593 purple). The ground truth time of the DAG-4 event is shown as a red circle. The same time
594 window displays seismic and infrasound waveforms. Early parts of the infrasound signal that are
595 visible above noise on channel CDF are likely sourced by seismic ground motion at the sensor,
596 which is visible on channels CHE, CHN and CHZ, whereas the phase marked I is sourced by the
597 pressure pulse that is produced by ground motion above the buried explosive and that then
598 propagates as an acoustic signal to the sensor. The electromagnetic waveforms (e-h) are zoomed-
599 in to a shorter time-window than the infrasound and seismic (a-d). The gray box on I20M0 in (d)
600 shows the time-window selection for the electromagnetic waveforms shown below (e-h).

601

602

603

604
605 **A Multi-Modal Event Catalog and Waveform Data Set that Supports**
606 **Explosion Monitoring from Nevada, USA**
607
608 Rebecca L. Rodd¹, Ronald A. Brogan², Josh D. Carmichael³, Amanda C. Price¹, Chris J. Young⁴
609
610
611 **Supplemental Materials**
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648

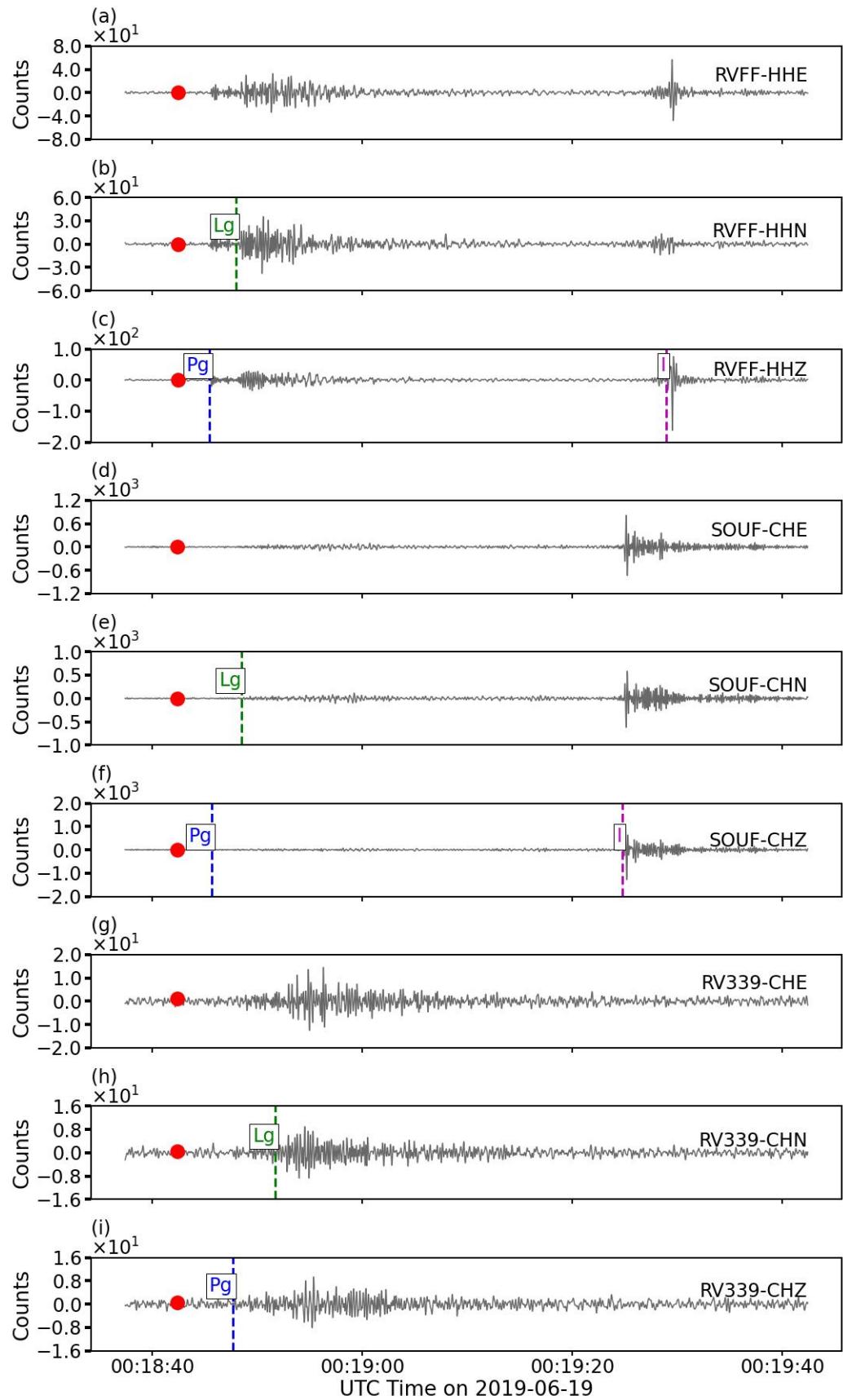
649
650
651
652
653
654

Table S1: Filters used for picking DAG-4. Picking without a filter was always preferred when possible. Filter types used are not filtered, band-pass (BP), and high-pass (HP). Low-pass (LP) filters were not applied. All filter were a 3-pole Butterworth filter.

Station	Phase	Chan	FiltLow	FiltHigh	Causality	FiltType	Event-station distance (km)
I20M0	Pg	CHZ	NA	NA	NA	Not filtered	1.658
I20M0	Lg	CHN	NA	NA	NA	Not filtered	1.658
I20M0	Rg	CHZ	0.4	1.5	1	BP	1.658
I20M0	I	CDF	NA	NA	NA	Not filtered	1.658
I20M6	Pg	CHZ	NA	NA	NA	Not filtered	2.434
I20M6	Lg	CHN	0.8	NA	1	HP	2.434
I20M6	Rg	CHZ	0.4	1.5	1	BP	2.434
I20M6	I	CDF	NA	NA	NA	Not filtered	2.434
SW522	Pg	CHZ	NA	NA	NA	Not filtered	6.356
SW522	Lg	CHN	24.0	48.0	1	BP	6.356
SW522	Rg	CHZ	0.4	1.5	1	BP	6.356
AF005	Pg	CHZ	NA	NA	NA	Not filtered	8.768
AF005	Lg	CHE	3.0	6.0	1	BP	8.768
AF005	Rg	CHZ	0.4	1.5	1	BP	8.768
AF004	Pg	CHZ	NA	NA	NA	Not filtered	9.958
AF004	Lg	CHE	0.8	48.0	1	HP	9.958
AF004	Rg	CHZ	0.4	1.5	1	BP	9.958
EASTD	Pg	CHZ	NA	NA	NA	Not filtered	10.120
EASTD	Lg	CHN	3.0	6.0	1	BP	10.120
EASTD	Rg	CHZ	0.4	1.5	1	BP	10.120
L5026	Pg	CHZ	NA	NA	NA	Not filtered	13.267
L5026	Lg	CHE	2.0	5.0	1	BP	13.267
L5026	Rg	CHZ	0.4	1.5	1	BP	13.267
AF001	Pg	CHZ	NA	NA	NA	Not filtered	13.680
AF001	Rg	CHZ	0.4	1.5	1	BP	13.680
RV196	Pg	CHZ	NA	NA	NA	Not filtered	19.884
RV196	Lg	CHN	1.0	5.0	1	BP	19.884
RV196	Rg	CHZ	0.4	1.5	1	BP	19.884
TPNV	Pg	BHZ	NA	NA	NA	Not filtered	25.002
TPNV	Rg	BHZ	0.4	1.5	1	BP	25.002
RV339	Pg	CHZ	0.8	NA	1	HP	34.351
RV339	Lg	CHN	6.0	12.0	1	BP	34.351
RV339	Rg	CHZ	0.4	1.5	1	BP	34.351
SW353	Pg	CHZ	NA	NA	NA	Not filtered	36.931
SW353	Lg	CHN	NA	NA	NA	Not filtered	36.931
SW353	Rg	CHZ	0.4	1.5	1	BP	36.931
SOUF	Pg	CHZ	0.8	NA	1	HP	37.254
SOUF	Lg	CHN	6.0	12.0	1	BP	37.254
SOUF	Rg	CHZ	0.4	1.5	1	BP	37.254
RVFF	Pg	HHZ	0.8	NA	1	HP	43.950
RVFF	Lg	HHE	NA	NA	NA	Not filtered	43.950
RVFF	Rg	HHZ	0.4	1.5	1	BP	43.950
STHB	Pg	HHZ	4.0	8.0	1	BP	57.948
STHB	Lg	HHE	3.0	6.0	1	BP	57.948
STHB	Rg	HHZ	0.4	1.5	1	BP	57.948

S11A	Pg	HHZ	4.0	8.0	1	BP	64.762
S11A	Lg	HHN	4.0	8.0	1	BP	64.762
S11A	Rg	HHZ	0.5	2.0	1	BP	64.762
PRN	Pg	HHZ	4.0	8.0	1	BP	95.483
PRN	Lg	HHN	1.5	3.0	1	BP	95.483
PRN	Rg	HHZ	0.4	1.5	1	BP	95.483
GMN	Pg	HHZ	1.0	5.0	1	BP	107.970
GMN	Rg	HHN	0.4	1.5	1	BP	107.970
GWY	Pg	HHZ	0.8	NA	1	HP	116.806
GWY	Pn	HHZ	0.8	NA	1	HP	116.806
GWY	Lg	HHE	6.0	12.0	1	BP	116.806
GWY	Sn	HHE	6.0	12.0	1	BP	116.806
GWY	Rg	HHZ	0.4	1.5	1	BP	116.806
TPH	Pg	HHZ	0.8	NA	1	HP	147.286
TPH	Sn	HHN	4.0	8.0	1	BP	147.286
TPH	Rg	HHZ	0.4	1.5	1	BP	147.286
B916	Pg	EHZ	2.0	5.0	1	BP	176.394
B916	Lg	EH1	2.0	5.0	1	BP	176.394
V12A	Pg	HHZ	2.0	5.0	1	BP	189.072
V12A	Lg	HHN	2.0	5.0	1	BP	189.072
B918	Pg	EH2	3.0	6.0	1	BP	190.193
B918	Lg	EH1	0.8	3.0	1	BP	190.193
VRUT	Pg	HHZ	4.0	8.0	1	BP	199.533
VRUT	Lg	HHN	6.0	12.0	1	BP	199.533
NV31	Pn	BHZ	3.0	6.0	1	BP	234.856
NV31	Lg	BHE	2.0	4.0	1	BP	234.856
Q12A	Pg	HHZ	3.0	6.0	1	BP	239.218
Q12A	Lg	HHE	2.0	5.0	1	BP	239.218

655


656

657 Table S2: The median semi-major and semi-minor axis of event location error ellipse grouped by
 658 event type. Earthquakes have the smallest errors, while seismoacoustic-unknown (sa-unk) have
 659 the largest errors because the locations for AAP Hawthorne events were constrained. The
 660 location errors are determined by the LocSAT software and are largely impacted by station
 661 coverage. The location errors are populated in the origerr table in smajax and sminax fields.

662

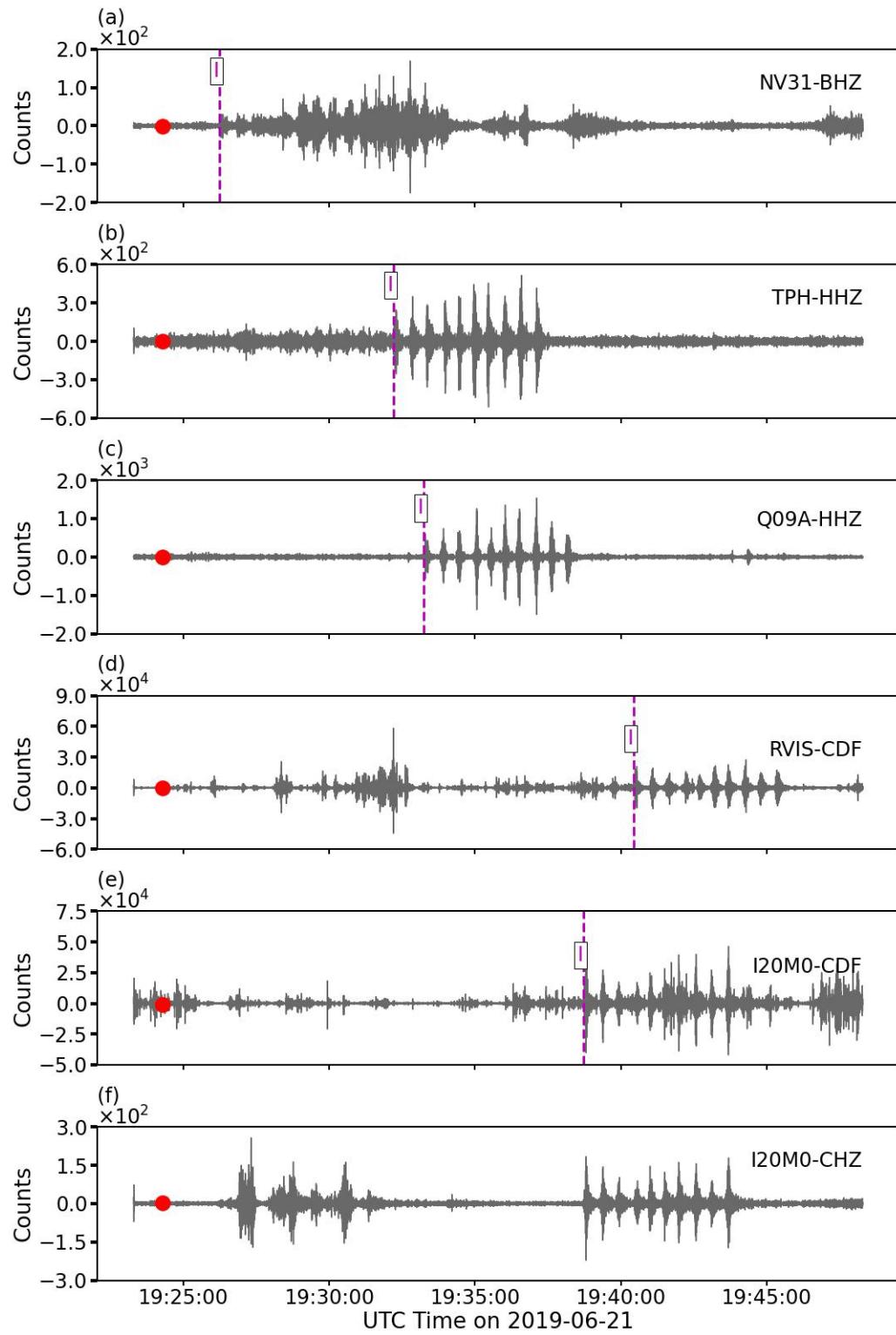
Event Type	Event Type Label	Median Major Axis Error (km)	Median Minor Axis Error (km)
Unidentified	-	9.71	4.05
Earthquake	eq	7.95	4.04
Explosion	ex	7.65	3.76
Seismoacoustic-Unknown	sa-unk	7.34	4.66
Infrasound-Only	infra	825.06	121.43
All Events		8.86	4.29

663

665 Figure S1: Waveforms for a single seismoacoustic-unknown source event (orid 660) recorded on
 666 three components (E, N, Z) at the three nearest seismic stations. The infrasound arrival marks the
 667 arrival of airwave at the seismometer, which couples acoustic energy into the ground to generate
 668 seismic energy. These arrivals are labeled as an I but indicate air to ground coupled waves
 669 because they travel at the same expected speed. Arrival picks are indicated by dashed vertical
 670 lines, labeled by phase, and colored by phase: Pg-blue, Lg-green, I-purple. Phase arrivals only
 671 appear on the waveform that was picked. The origin time of the event is shown as a red circle.
 672 For example, for a three-component seismometer, arrivals were only picked on a single
 673 horizontal component, thus they are shown only on the one component.

674

675 Table S3: Catalog, ground truth, and ANSS origin information for the DAG-4 shot, including the
 676 orid key in origin table.


Origin Time	Latitude	Longitude	Etype	Orid	Source
06/22/2019 21:06:20.72	37.119220	-116.065730	ex	505	Catalog
06/22/2019 21:06:19.88	37.1146	-116.0692	ex	-	GT
06/22/2019 21:06:20.00	37.112	-116.066	ex	-	ANSS

677

678 Table S4: Analyst-determined origin information for the seismoacoustic-unknown source events.

Origin Time	Latitude	Longitude	Etype	Orid
06/19/2019 00:18:42	36.677486	-115.762980	sa-unk	660
06/19/2019 00:19:59	36.658874	-115.755400	sa-unk	661
06/19/2019 01:08:22	36.767532	-115.758500	sa-unk	662
06/19/2019 01:11:08	36.783598	-115.769830	sa-unk	663
06/19/2019 01:01:10	36.699484	-115.673680	sa-unk	812
06/19/2019 00:59:32	36.782645	-116.225290	sa-unk	813
06/19/2019 00:59:51	36.776072	-116.279630	sa-unk	814

679

681 Figure S2: Waveforms for the Hawthorne AAP events recorded on vertical component sensors
 682 at the three nearest seismic stations and pressure sensors at the infrasound stations RVIS and
 683 I20M0. The I20M0 pressure sensor is co-located with a seismometer and the vertical waveform
 684 is included in (g) to display co-located multi-sensor types. The infrasound record in (e) measures
 685 changes in air pressure that result from the arrival of the airwave, whereas the vertical channel of
 686 seismic motion displayed (f) show local coupling of this acoustic energy into the ground, at the
 687 seismometer location. These arrivals are labeled also labeled as an I but indicate air-to-ground
 688 coupled waves because they travel at the same expected speed. The infrasound arrival picks for
 689 the first of the events (orid 572) are shown and indicated by dashed vertical purple lines and are
 690 labeled as “I”. The origin time of the event is shown as a red circle.

691

692 Table S5: Origin information for the Hawthorne AAP events with source location fixed to the
 693 location of AAP site.

Origin Time	Latitude	Longitude	Etype	Orid
06/21/2019 19:23:32	38.244790	-118.645970	infra	581
06/21/2019 19:24:18	38.244790	-118.645970	infra	572
06/21/2019 19:24:52	38.244790	-118.645970	infra	584
06/21/2019 19:25:26	38.244790	-118.645970	infra	585
06/21/2019 19:26:08	38.244790	-118.645970	infra	580
06/21/2019 19:26:38	38.244790	-118.645970	infra	579
06/21/2019 19:27:07	38.244790	-118.645970	infra	577
06/21/2019 19:27:36	38.244790	-118.645970	infra	578
06/21/2019 19:28:43	38.244790	-118.645970	infra	582
06/21/2019 19:29:15	38.244790	-118.645970	infra	583

694

695 Table S6: Key for altered arrival table columns in DAG-4 where each column represents a
 696 different filter parameter.

Arrival Table Column	Attribute
ema	Filter low-cut Hz
rect	Filter high-cut Hz
clip	Filter causality (0=unfiltered, 1=causal,2=non-causal)
fm	Filter type (Bandpass, Highpass, Lowpass, Unfiltered)

697

698