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ABSTRACT

Interferometric scattering microscopy (iISCAT) is a label-free optical microscopy technique
that enables imaging of individual nano-objects such as nanoparticles, viruses, and proteins.
Essential to this technique is the suppression of background scattering and identification of signals
from nano-objects. In the presence of substrates with high roughness, scattering heterogeneities in
the background, when coupled with tiny stage movements, cause features in the background to
manifest in background-suppressed iSCAT images. Traditional computer vision algorithms detect
these background features as particles, limiting the accuracy of object detection in iISCAT
experiments. Here, we present a pathway to improve particle detection in such situations using
supervised machine learning via a mask region based convolutional neural network (mask R-
CNN). Using a model iSCAT experiment of 19.2 nm gold nanoparticles adsorbing to a rough layer-
by-layer polyelectrolyte film, we develop a method to generate labeled datasets using experimental
background images and simulated particle signals, and train mask R-CNN using limited
computational resources via transfer learning. We then compare the performance of mask R-CNN
trained with and without inclusion of experimental backgrounds in the dataset against a traditional
computer vision object detection algorithm, Haar-like feature detection, by analyzing data from
the model experiment. Results demonstrate that including representative backgrounds in training
datasets improved mask R-CNN in differentiating between background and particle signals, and
elevated performance by markedly reducing false positives. The methodology for creating a
labeled dataset with representative experimental backgrounds and simulated signals facilitates the
application of machine learning in iSCAT experiments with strong background scattering, and thus

provides a useful workflow for future researchers to improve their image processing capabilities.



INTRODUCTION

1

In the past two decades,’ interferometric scattering (iISCAT) microscopy has enabled

> viruses,® and individual

imaging and tracking of nano-objects such as gold nanoparticles,’"
proteins’ for dynamic studies on cell membranes,’ molecular motors, ' and quantitative mass/size
measurements.''"* As a scattering-based technique, imaging of nano-objects in iSCAT
experiments does not require fluorescent labeling.'* This advantage mitigates challenges inherent
to fluorescence-based techniques such as photobleaching and photoblinking.'* Fluorescent labels
on the surfaces of nano-objects also alter their surface chemistry, rendering iSCAT advantageous
in studies where surface chemistry dominates (e.g., adsorption experiments, interactions within a
cell, diffusion along surfaces). Given these advantages, the contributions of iSCAT to the
biological and physical science community are continually growing.

The label-free capabilities of iSCAT also represent its greatest limitation.!> All materials
with a different refractive index than the surrounding medium will scatter light and convolute
signals of interest with the background. Consequently, extracting meaningful information from
iISCAT images is a two-step process: (1) identifying and suppressing the background and (2)
detecting objects of interest in background-suppressed images. While numerous background

extraction and suppression techniques have been developed though optical enhancements'>!%17

and software algorithms,!>!418

stage movements, on the order of tens nanometers (comparable to
the pixel size in many iSCAT configurations), are difficult to eliminate and cause background
features to appear even in background-suppressed images.!®> This problem is especially evident
when the background contains regions of high roughness or refractive index heterogeneity, and

limits the ability of iSCAT to detect scatterers in complex environments. Here, background features

that produce signals due to stage drift or vibrations appear as objects with similar intensity and



morphology as objects of interest in background-suppressed images. Experimenters are typically
required to perform time-consuming, intricate filtering of detections with similar characteristics.
The method could therefore benefit from improvements in step two of the analysis process through
improved computer vison strategies to detect particles in complex iISCAT images where less effort
has been focused to date.

Convolutional neural networks (CNN) in the field of supervised machine learning
computer vision have emerged as a powerful means to improve performance in the problem of
object detection in scientific images relative to traditional edge and thresholding computer vision
algorithms.'*2° Still, employing supervised machine learning in object detection currently requires
a labeled dataset (i.e., known truths of object locations) that is representative of experimental
images to use in training a CNN.??? In a recent publication, Newby?® et. al circumvented this
limitation by generating a dataset consisting of synthetic fluorescent microscopy images by
mathematically modeling both background and particle signals. However, in background-
suppressed 1SCAT images, the background is comparatively more complex and difficult to
simulate. This makes creating simulated datasets to use in training a CNN for object identification
in iISCAT images challenging. Compounding the problem, training CNNs from randomly
initialized weights requires large datasets and great amounts of computing power.?’ To facilitate
the use of machine learning in iISCAT object detection, both these obstacles are addressed in this
work.

We demonstrate a machine learning workflow to improve object detection in complex
background-suppressed iSCAT images. To accomplish this, we establish a procedure for creating
labeled datasets containing synthetic particle signals with and without real experimental

background-suppressed images from a model iSCAT experiment of 19.2 nm gold nanoparticles



adsorbing to a rough layer-by-layer polyelectrolyte film. We then train a mask region-based
convolutional neural network (mask R-CNN)?*? in under one hour using transfer learning?* with
readily accessible computational resources using the labeled datasets. By analyzing the model
iISCAT experiment, we test the performance of mask R-CNN (trained with and without
experimental backgrounds in the dataset) in object detection and classification against a Haar-like
feature image segmentation algorithm, an edge detection-thresholding algorithm previously used
to detect objects in iSCAT images.!!*> Results highlight the improved performance in object
detection via a reduction of false positive detections [precision improved from 80.2% (Haar) to
96.5% (mask-RCNN)] and the importance of including representative experimental backgrounds
in datasets. The result is not an automated, catch-all machine learning network to use in iISCAT
image processing, but rather it shows how to create datasets and optimize a CNN via transfer
learning to improve object detection in experimental data. The improved analysis technique should
expand capability of iISCAT to detect scattering objects in situations where background scattering
is complex.

iSCAT Principles: Stage Movements Hinder Background Suppression

The theory behind iSCAT imaging has been reviewed extensively.!>?*?” We provide a
summary of iISCAT operating principles below to highlight the benefit of enhanced object detection
methods in expanding the application of iSCAT to substrates with strong scattering background
features due to roughness and/or areas of varying refractive index.

The contrast in an iISCAT experiment is the result of interference between light scattered
from nano-objects (e.g., nanoparticles, proteins, viruses) and light from a reference source,
commonly light reflected back at the substrate-solution interface from a normally incident coherent
light source. The intensity of the signal detected is determined by the superposition of the scattered

and reflected light



Iiscar & |Ep + Eg|* = Ef[1? + s* + 2r|s| cos(¢)] (1)
where iscar is the intensity at the detector, E,, Es, and E; are the reflected, scattered, and incident
electric fields, respectively, 7 is the fraction of E; reflected, s is the fraction of E; scattered, and ¢
is the phase difference between the reflected and scattered light due to a difference in optical path
length. According to Mie scattering theory (applicable when the wavelength of light is of the order
of the nanoparticle size), the magnitude of s scales linearly with the volume of the particle (dyp),
1328 and in the limit of small scattering objects, reflected light dominates the detected signal making
the pure scattering contribution negligible (» > s5).2® Equation 1 then reduces to
liscar = EE[7% + 2r|s|cos(¢)]  (2)

Equation 2 illustrates the power of iISCAT and highlights its limitations. In comparison to
pure scattering based contrast techniques (i.e. dark field microscopy) where the scattering term for
small objects decreases with the volume of the particle squared,?® the scattering term in an iSCAT
signal decreases linearly with the particle volume. This is what lowers the detection threshold for
label-free imaging of nanoparticles, viruses, and individual proteins.”!! However, because all
interfaces with a difference in refractive index scatter light, backgrounds in iISCAT experiments
often scatter light at stronger intensities than the nanoparticles or proteins of interest. To generate
sufficient contrast, Ciscar, for analysis, strongly varying background features are typically
suppressed by dividing or subtracting a reference background image from experimental images.
This background suppression, the mechanisms of which are discussed in the Methods section, is

described mathematically as
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where 14 represents the fraction of E; reflected by the optics and substrate that forms the

background reference from an earlier frame capture, and 7j;qg4. represents the fraction of Ej
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reflected that forms the image currently being analyzed. If the imaging stage and optical
components are stable, g = Timage, and all background reference features would be suppressed
by division resulting in the solution to equation 3 at the right. However, in practice, drift or
vibrations on the order of tens of nanometers (i.e., comparable to the pixel dimension) are typical
for optical microscopes.!>? These stage movements cause Tpkg to differ from 7ipqge, and
scattering from the substrate contributes significant features to background-suppressed images.
These substrate features may have morphologies resembling scattering features from nano-objects,
and the essential step of detecting objects of interest in background-suppressed iISCAT images
becomes more difficult as background complexity increases. The challenges presented by the
presence of particle-like background features in background-suppressed iSCAT images motivates
our application of machine learning to aid in particle detection in iSCAT experiments with complex
backgrounds.
METHODS
Experimental Details

150 um thick glass coverslips were coated with a layer-by-layer (LbL) film (dry thickness
= 60 nm, wet thickness = 85 nm) composed of 11 alternating polycation [poly (allylamine
hydrochloride)] and polyanion [poly(acrylic acid)] layers. The LbL film was capped by the
polycation leaving a positive zeta potential of +14.7 mV on the substrate when exposed to 1 mM
sodium phosphate buffer at a pH of 7.0. (See section S1 for material information and section S2
for substrate preparation and characterization). LbL films were characterized using atomic force
microscopy (AFM, figure S3 and S4), and shown to increase the roughness of the substrate by a
factor of 4 when compared to uncoated glass coverslips used in other iSCAT experiments (Ryms, 131

= 3.2 nm, Rymsgiass = 0.8 nm, Area =10 pm x 10 pum).



Using a flow cell (figure S5), a 200 pM solution of monodisperse gold nanoparticles
(AuNPs, see section S4 for solution preparation and characterization) with a mean diameter of
19.2 nm in 1 mM sodium phosphate buffer, pH of 7.0, was exposed to the LbL film on an inverted
1SCAT microscope (see section S5 for iISCAT instrumentation and imaging details). At this pH, the
AuNPs had a negative zeta potential of -58 mV because of their carboxy-terminated ligands and
electrostatic interactions drove irreversible adsorption of the AuNPs to the positively charged LbL
coated glass coverslip over the course of a 4 hour experiment. At 30 minute intervals, iSCAT
images were collected for ~1 minute at a frame rate of 184 fps (~5.44 ms between frames). The
pixel size of the iISCAT setup was measured using a stage micrometer to be 50 nm/pixel, giving
the 256 x 256 pixel images a field of view of 12.8 pm x 12.8 um. This resulted in an experimental
dataset consisting of 108 videos of 1000 frames each for a total of 108,000 iSCAT images.

Image Flattening

Raw iSCAT videos were processed in two operations: flattening followed by ratiometric
processing. The flattening techniques described here were detailed previously?® and implemented
using custom python scripts. In the first flattening step, a static background image was collected
by laterally translating the sample stage during data collection in a Lissajous pattern using
piezoelectric motors and calculated as the pixelwise median of 100 images collected during that
movement. Each raw iISCAT image was divided by its corresponding static background image to
remove spurious features inherent to the optical configuration. Next, a median filtered image
containing only features larger than the scattering features of the nanoparticles was calculated by
convoluting the image from the first flattening step with a kernel of 21 pixels and calculating the
median of pixels in that kernel. The resulting image from the first flattening step was then divided

by the median filtered image yielding flattened images with a mean background value of 1. All



subsequent ratiometric processing was done on these flattened images. An example of the
conversion of a raw iISCAT image to a flattened image is shown in figure S7.
Ratiometric Processing

After flattening, we employed ratiometric processing!? to suppress the background. By
balancing images that follow a nanoparticle adsorption event with those that precede the event,
ratiometric processing capitalizes on time-dependent variations in scattering signals during the
collection of iSCAT videos to isolate adsorption events in background suppressed images. In doing
so, it enables the measurement of the scattering contrast and the binding times of analytes, and has
been previously used to detect nanoparticles'? and proteins.'!

To apply ratiometric processing to detect nanoparticle adsorption events, we began by
defining a time-binning window of Nyuio = 5 frames. Nyaio effectively defined the minimum
residence time for a particle to be considered adsorbed as a particle that remained attached to the
surface for at least 2N,uio frames. In our experiments, Nywioc = 5 frames defined the minimum
residence to be 2Nyaio X frame interval, or 54.3 ms. Faster frame intervals would have allowed for
the analysis of shorter residence times, but in our experiments, we did not see any desorption
events, indicating that this minimum residence time was sufficient.

We calculated ratiometric images as follows. For a given frame i, two batches of sequential
images were averaged to produce two images /1(i) and Ix(i), where /i(i) corresponded to the
pixelwise average of images i to Nyurio and I2(7) to images i + I + Nyatio t0 2Nyaiio. After normalizing
D(i) and 11(i) by dividing each average image by its mean, we then divide I, (i)/[;(i) to obtain
ratiometric images, Irtio(7). Frames were then incremented across each video one frame at a time,
creating a new movie consisting of ratiometric images. As frames are incremented forward in time,

the scattering contrast of adsorbing particles increases in magnitude reaching a maximum when



the adsorption event is located between the two frame batches, and decreases back to the
background value of 1 thereafter. Adsorption events in in our configuration destructively interfere
with the reflected light and manifest in dark spots on a grey background. The reverse process,
desorption, if present, would present as bright spots on a grey background. In this way, by finding
the point of maximum scattering contrast magnitude, the scattering contrast and occurrence time
for adsorption and desorption events can be precisely quantified. An illustration of ratiometric
processing is illustrated in figure S8 (a)-(c).
Particle Detection Using the Haar Method

Following ratiometric processing, particle signals or point spread functions (PSFs) were
detected using traditional and machine learning object detection algorithms. The Haar-like feature
algorithm was implemented in python following details described in ref. 11 and 30. First,

ratiometric images were convoluted with a 2D-Gaussian in equation 4

2 o2
Ipsp(x,y) = Aexp <— ((x Z)” 4 Do) )) +B (4

20 20

where 4 is the contrast amplitude, x, and y, are the center position, B is the background, and ois
the standard deviation. The parameters of the 2D-Gaussian used for the convolution were
determined empirically by fitting a particle PSF in a ratiometric image. Next, Haar feature scores
were calculated for each pixel with higher scores corresponding to vertical edges, horizontal edges,
and circular features using three kernels each 9 x 9 pixels in size. The pixelwise Haar scores were
averaged between these three features and weakly thresholded to remove pixels with Haar feature
scores lower than 0.20. From the weakly thresholded images, only thresholded pixels with 4
neighbors were kept as candidate pixels that belong to a particle signal. The probability a pixel
belongs to particle was then calculated as the fraction of pixels that satisfied all threshold and

neighbor candidacy requirements within a 7 x 7 kernel of neighboring pixels. If this probability
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was greater than 0.3, the pixel was classified as belonging to a particle, resulting in a segmented
binary image that was then labeled in object detection. Although the Haar-like feature algorithm
was used as a control in this study, it would be valuable in future studies to test other state-of-the-
art object detection methods, such as the circular Hough transform used by Melo'® et. al., to see
how performance compares to Mask R-CNN when the background scattering is high.

Particle Detection using Mask R-CNN

Mask R-CNN, described in detail by He? et al., detects objects in images in four main
stages. First, features are detected and mapped to pixels using a CNN. From these feature maps,
bounding boxes around regions of interest (ROIs) are proposed. Then, simultaneously, bounding
boxes around ROIs are refined, regions are classified, and instance-level segmentation masks
within the refined bounding boxes are generated as the final outputs. In our implementation, we
capitalized on the inference output of bounding boxes and classifications to perform Gaussian
fitting and particle tracking in subsequent steps.

To implement mask R-CNN for object detection in iSCAT images, Matterport’s
implementation?® of mask R-CNN in TensorFlow and Keras was used with minor hyperparameter
modifications. Namely, a ResNet50 backbone was used, and image dimensions were constrained
to the size of our iSCAT images, 256 x 256 pixels. For training, all ROIs with a detection
confidence below 0.7 were rejected. In inference, all ROIs with a detection confidence below 0.9
were rejected. We normalized all input images by rescaling their intensity to a minimum of 0 and
maximum of 1, and converted the normalized greyscale images to 8-bit RGB images. While not
an exhaustive optimization, only these minor changes were required to obtain good performance

in both training and inference. Additionally, maintaining most hyperparameters at their default
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values made transfer learning from ImageNet weights easier, reducing the amount of data required
for training and shortening the training time on limited computational resources.
Creating Datasets to Train Mask R-CNN

An essential contribution of this work is the methodology for creating labeled image
datasets with realistic experimental backgrounds to use in training a neural network for object
detection. A custom python script was used to generate 500 synthetic dataset images. First, a
particle image was generated using a PSF approximation in the form of a 2D-Gaussian (equation
4) to generate synthetic nanoparticle signals approximating those measured in iSCAT on an image
with a background of 0. In experiments with less background roughness, secondary interference
fringes beyond the central lobe maybe visible, and Bessel functions, which more accurately
approximate the interference of a plane wave with a spherical wave, may serve as better PSF
models for simulated particle signals. PSF parameters (listed in table 1) were empirically
determined by fitting 10 particles from ratiometric images. Notably, an amplitude (A) at the high
end of the measured scattering contrast from our experiments was selected to increase the contrast
between synthetic particle signals and background features. We found this contrast vital to ensure
good performance during inference. Dark particles were assigned a negative amplitude, while
bright particles were assigned a positive amplitude in the 2D-Gaussian. Particles were randomly
positioned within an image of the same size as the iSCAT ratiometric images with the minimum
spacing between other particles and the border limited, and positions and particle class types were
logged. Instance-level masks with corresponding class labels were then generated using particle

positions and a circular mask of defined size to serve as the ground truth in training.

12



Table 1. Parameters used to create synthetic particle images for our dataset.

Parameter Value
A(a.u.) 0.06
o (pixels) 2.00
Particles per image 10-15
Minimum spacing between particles (pixels) 40
Minimum particle centroid distance to border (pixels) 5
Mask diameter (pixels) 21
Particle classes Dark, Bright
Oshot noise (a.U.) 0.001 - 0.004
Training Image Number 350
Test Image Number 150

To add variance to the dataset and make it more realistic, a shot noise image of Gaussian
noise with a mean of zero and a given standard deviation, Oyior noise, Was created. Next, a real
background from the ratiometric experimental images was sampled as follows. One image from
every third video (1,4,7,...,106) in the experiment was randomly selected to capture
representations of the background over the course of the iISCAT experiment. To ensure background
images contain no particles, images were visually inspected and resampled until no particle PSFs
were present in any background images resulting in a set of 36 particle-free ratiometric background
images. When the dataset was generated, one image from this set was randomly selected to serve
as the background for that image. Figure 1 shows how the particle image, shot noise, and randomly
sampled background (top row) were summed to create the dataset image (bottom, left) and

corresponding labels for each class (bottom, middle and right).
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Simulated Particle Image  Simulated Shot Noise Experimental Background
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Dataset Image Dark Mask Bright Mask

Figure .A visual representation of the process of creating labeled datasets for training
mask R-CNN via transfer learning. The dataset image (bottom, left) was created by summing the
simulated particle image (containing randomly positioned synthetic PSFs), simulated shot noise
image, and a randomly sampled experimental ratiometric background image. Using stored particle
positions from the simulated particle image, instance-level masks (bottom, middle and right) for
dark and bright particle classes served as labels for training and testing. All scale bars are 1 um
but were not included in the dataset images.

Training Mask R-CNN

Training via transfer learning was implemented using configurations detailed by Abdulla®®
with minimal modifications. In brief, network weights were initialized from a mask R-CNN
network trained on the ImageNet dataset. Three new classes (“background”, “bright”, and “dark™)
were defined for the generated dataset images and corresponding masks. Images in the dataset

were augmented during training through vertical and horizonal flips, Gaussian blurring, and
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scaling to limit overfitting and improve generalization. Head weights were fine tuned for the first
20 epochs of training at a learning rate of 0.001 followed by fine tuning of all network weights at
a learning rate of 0.0001 for a total of 200 training epochs. Trained model weights were saved after
each epoch. The loss function decayed and average precision increased (figure S9) in both training
and validation, indicating mask R-CNN learned iSCAT particle signals and showed no signs of
overfitting. Visual inspection of the performance of mask R-CNN (figure S10) indicated mask R-
CNN learned particle signals successfully. On a standard desktop computer (8§ GB 2070 NVIDIA
RTX GPU, AMD Ryzen 5 2600X 6 Core CPU, 64 MB RAM)), training on the 500-image synthetic
dataset was completed in ~40 minutes. Inference predictions of particle detection by mask R-CNN
on experimental iISCAT data were inspected visually using weights from the 100" and 200" epoch.
The 200" epoch showed the best performance despite a plateau in precision during training and
validation after ~50 epochs. We hypothesize this extended training beyond average precision
saturation allowed for enhanced learning of the background, and thus justified the use of weights
from the 200" epoch in all subsequent analyses.
Single Particle Tracking

From PSFs detected in ratiometric images, the magnitude of the scattering contrast and
event time for an adsorbing or desorbing particle was quantified using single particle tracking
techniques. First, PSFs from adsorption events were detected using the Haar or mask R-CNN
methods. For detections using the Haar method, bounding boxes of 15 pixels around the centroids
of the proposed particle detections were generated. For detections using mask-RCNN, bounding
boxes from inference were directly used. Any candidate particle with a bounding box center within
5 pixels of the image border was discarded. The PSFs of candidate particles were fit to a 2D-

Gaussian®! using a least-squares regression algorithm from the LMFIT?? python package using
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equation 4 where contrast amplitude, 4, and center position (X, y,) of the Gaussian were allowed
to vary, while the background, B, and standard deviation, o, were fixed at 1.0 contrast units and
2.0 pixels (~100 nm), respectively. Fixed values were determined by empirical fits to PSFs
manually sampled from ratiometric images. In Haar detections, the signal to noise ratio, SNR, for
each proposed detection was calculated as the ratio of |4] to the background standard deviation
and all detections with an SNR less than 3 were discarded. The A4, frame, time, and position for all
PSFs were logged. After PSF detection and fitting, PSFs with center positions within 2 pixels of
each other in subsequent ratiometric images for a minimum of 6 frames were linked into
trajectories using the Trackpy python package.>® Within each trajectory, the average of the two
highest magnitude amplitude (]4|) points was used to separate the data for a given particle
trajectory into regions of opposite slope. Two lines were fit to 4 as a function of time in each
region, and the position of intersection of these lines was defined as the relative scattering contrast,
|Aevend, and event time at sub-frame interval temporal resolution. We note that for convenience
|Aevend Will be referred to as scattering contrast for the remainder of this work. An example of the
single particle tracking techniques used to quantify the scattering contrasts and event times of an

adsorption event is illustrated in figure S8 (d) and (e).

RESULTS
Stage Vibrations Lead to False Positives

The LbL films used in the model experiment analyzed here exhibited higher roughness
compared to minimally functionalized glass coverslips used in other iSCAT experiments (AFM
images in figures S3 and S4, Ryms,or = 3.2 nm, Ryms giass = 0.8 nm, Area = 10 pm x 10 um). Figure
2 shows that when the LbL film roughness was coupled with stage movements, strong scattering

features (red arrows, left) manifested as particle like features in ratiometric images (red arrows,
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right). These background features had contrasts and morphologies similar to the AuNP scattering
signals (blue arrows, right). The Haar method used to detect particles frequently identified these
features as particles leading to false positive identifications. In this way, figure 2 highlights the
limitations of using edge and threshold-based image analysis algorithms, such as the Haar method,

to detect particles.
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Figure 2. (left) A flattened image from an iSCAT experiment of 19.2 nm AuNPs adsorbing
to LbL films with 3.2 nm roughness. Increased substrate roughness created regions of high
scattering contrast, indicated by the red arrows. Scattering the background dominated the image
and particle signatures were indistinguishable from the background. (right) A ratiometric image
from the same experiment. Stage movements caused strongly scattering roughness features to
show up the background of the ratiometric images as indicated by the red arrows. These
background features have similar contrast and morphologies to the scattering features from AuNPs
as indicated by the blue arrows. All scale bars are 1 pm.

Reducing False Positive Detections with Mask R-CNN

CNNs have been shown to be successful in object detection and to be less sensitive to

algorithm parameters that normally must be tuned for object detection in every experiment.?!*? To

see if these benefits translate to iISCAT image processing, a hybrid dataset containing background
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images from an iSCAT experiment and simulated particle PSFs was generated as described in the
Methods section. This dataset was used to fine tune mask R-CNN network weights via transfer
learning, giving a CNN adept at identifying and classifying common place objects (e.g., animals,
balls) the ability to identify and classify nanoparticle PSFs in ratiometric iSCAT images. In figure
3, we compare the performance of particle detection using mask R-CNN with the Haar method by

analyzing the data from the same AuNP-LbL adsorption experiment using both methods.
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Figure 3. Histograms of scattering contrast for particles detected using the Haar method
(pink) and mask R-CNN (blue). Scattering Contrast (|4evens|) represents the peak contrast
amplitude for each particle as determined by the single particle tracking algorithm.

Figure 3 shows the distribution of scattering contrasts measured using ratiometric image
processing and detected using the Haar method (pink) and mask R-CNN (blue). In the Mask R-
CNN histogram, the distribution is monomodal with a peak at ~0.040. The Haar histogram is
bimodal, with a dominant peak at ~0.04 and a second lower peak at ~0.02. (Peak position and
count were determined by eye). The bimodal nature of scattering contrasts detected by the Haar

method demonstrates the main improvement in performance of mask R-CNN over the Haar
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method. Despite our particles being monodisperse in size (SEM image in figure S6), the Haar
method detects multiple peaks in ratiometric scattering contrast. The low contrast peak near 0.02
in the Haar histogram, indicative of false positives during particle detection, is not present in the
mask R-CNN histogram. Moreover, the breadth of the low scattering intensity peak near 0.02 in
the Haar histogram overlaps significantly with the breadth of the central peak in the Haar histogram
at 0.04. Because of this overlap, post-processing to remove false positive detections without
excluding true positive detections was not feasible. In addition, Mask R-CNN’s detection
capabilities are invariant to parameter settings such as minimum SNR (figure S11) while the Haar
algorithm is very sensitive to the minimum SNR value, leading to improved trajectory linking
during particle tracking. This invariance also emphasizes the ability of mask R-CNN to identity
particles in complex backgrounds at low SNR values. And though beyond the scope this work, the
ability to detect objects at a low SNRs would extend the capability of iISCAT experiments to detect
weaker scattering objects such as proteins or small, low dielectric nanoparticles in complex,
heterogenous backgrounds as has been recently shown by Dahmardeh® et al. in a publication
currently under review.
Learning the Background Improves Performance with Mask R-CNN

The ability of CNNs to detect objects has been attributed to the ability of the network to
learn features related to the objects of interest.?>*> However, CNNs also inherently learn to classify
features as belonging to the background. The overlap of the dominant peaks at 0.04 in both
histograms in figure 3 suggests that detecting particles is not the main challenge, but rather the
problem lies in discerning particles from the background - the inverse problem in object detection.
And because there is no bimodal behavior in the mask R-CNN histogram due to false positive

detections at low scattering contrasts, the improved performance of mask R-CNN may not stem
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from an ability to learn a better representation of the particle signals, but instead its ability to learn
a better representation of the background in iSCAT ratiometric images. Therefore, the inclusion of
representative background images that capture real experimental backgrounds in datasets for
training may be important.

To test the hypothesis that including experimentally representative backgrounds in the
dataset improves mask R-CNN'’s performance relative to edge and threshold based methods like
the Haar-method, an analogous dataset was generated without the inclusion of representative
background images from ratiometric images. Figure 4 presents histograms of the scattering
contrast detected by mask R-CNN networks trained with (blue) and without (gray) experimental

backgrounds in the dataset images.

40 1 mam mask R-CNN No BKG

mask R-CNN

Particle Count

0.00 0.05 0.10 0.15
Scattering Contrast

Figure 4. Histograms of scattering contrast comparing the performance of mask R-CNN
models trained on datasets that included (blue) and did not include (gray) experimental
backgrounds. Scattering Contrast (|4evens|) represents the peak contrast amplitude for each particle

as determined by the single particle tracking algorithm.
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Figure 4 demonstrates the impact of including representative experimental backgrounds in
the training dataset. An increased density of false positive detections appears at scattering contrast
values centered around 0.01 when particle detection was executed with the mask R-CNN network
trained on a dataset that did not include information about the background. The central scattering
peak at 0.04 was also slightly decreased in particle count when data was processed using mask R-
CNN trained on the dataset that did not contain experimental backgrounds. (Peak position and
count were again determined by eye). This indicates that, in addition to reducing false positives,
insufficient learning of background features may result in missed detections. Consequently, the
improved performance of mask R-CNN is not solely a product of learning of the background
features. Rather, it is a combination of the ability of mask R-CNN to learn the background and to
better detect particle features in that background when the mask R-CNN is exposed to
experimental backgrounds during training.

DISCUSSION
Visual Inspection of 100 Randomly Selected Images

To quantify the performance of the Haar method against both mask R-CNN models (trained
using datasets with and without background), 100 random images were selected from the
experimental ratiometric images. For each image, the three object detection methods described in
the Results section were used to detect particles in the same sampled image, and the results were
inspected visually to assess performance by counting the number of true positive (TP), false
positive (FP), and false negative (FN) detections. Examples of true and false positive detections
are shown in figure 2. False negatives are particle signals that have not been detected by the
algorithm as potential PSFs. From this, precision and recall were calculated, and the results are

tabulated in table 2. We note that true negative detections cannot be quantified in object detection
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tasks as there are an infinite number pixel groupings that form background features that should not
be detected.® Due to the low concentration of particles in solution, landing events occurred
infrequently during our experiment, resulting in ratiometric images that contained 0-2 particles on
average.

Table 2. Summary of results of particle detection in 100 randomly selected iISCAT images

analyzed by visual inspection across the three methods tested. *Precision is defined as TP/(TP +

FP) and "Recall is defined as TP/(TP + FN).

Haar Mask R-CNN Mask R-CNN
(no background) (with background)

Total Particles (Ground Truth) 81 81 81
True Positive Count (TP) 77 68 79
False Positive Count (FP) 19 21 3
False Negative Count (FN) 4 13 2

Precision? 80.2% 76.4% 96.3%

Recall” 95.1% 84.0% 97.5%

Table 2 summarizes the results of the visual inspection of 100 random images. The biggest
difference in performance across the three methods is seen in the FP count where the Haar, Mask
R-CNN (no background), and Mask R-CNN methods incorrectly identified 19, 21, and 3
background features as particle PSFs. In general, the numbers in table 2 agree with the distributions
of scattering contrast shown in figures 3 and 4 and support the observation that the secondary, low
scattering contrast peaks at 0.010 represent false positives and have the biggest impact on the
quality of PSF detection in these iISCAT images.

In table 2, we also quantified performance using precision and recall metrics. Recall
quantifies the ability of each method to capture all possible PSF-like features without missing
features that represent true particle PSFs. Precision quantifies the accuracy of those detections, and

thus quantifies the impact of FPs on the analysis. An optimal particle detection algorithm would
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detect all features that represent particle PSFs (high recall) without incorrectly identifying
background features as particle PSFs (high precision). The Haar method recall is 95.1% indicating
that the Haar method detects particles well, but precision is 80.2% as many background features
are identified as particle signals. In the mask R-CNN (no background) method, both recall (76.4
%) and precision (84.0%) are lower than the Haar Method indicating that, without the background
in the training datasets, the neural network suffers from falsely detecting background features as
particle signals and from missing real particle signals when they are convoluted with the
background. We see the best performance in Mask R-CNN (with background) where high recall
(97.5%) and precision (96.3%) show that Mask R-CNN, when trained using a dataset that includes
experimental backgrounds, correctly identifies particle PSFs while also correctly avoiding
classifying background features particles. Evidently, neural networks demonstrate the potential to
learn experimental backgrounds, and this translates to improved performance in particle detection
in iSCAT experiments.
False Positive Detections Negatively Impact Single Particle Tracking

The analysis described in the Methods section utilized single particle tracking algorithms
to link PSFs detected into trajectories based on the proximity of the PSF centroid locations in
subsequent ratiometric images. We then used these trajectories to fit lines to the PSF amplitude
versus time. When a feature representing an adsorbing particle in a ratiometric video was correctly
identified, the trend of scattering contrast with time within a trajectory followed a linear decrease
to the time of the adsorption event followed by a linear increase after the adsorption event as shown
in the example in figure S8 (e). However, when false positive detections of the background features
are present, particle tracking algorithms may link a true particle detection with a false positive if

the false position is close to the true positive position from the previous image. When this happens,
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the trends in 4 with time for a given trajectory can deviate from the expected decreasing-increasing
pattern and this causes the linear fit algorithm to either fail or report an incorrect scattering contrast
and adsorption event time. In general particle tracking experiments, such as those that measure
diffusion, incorrect linking can skew the detected velocity.>” Thus, the improvements in particle
detection demonstrated here could benefit all particle tracking studies, and our dataset
creation/training methodology provides a single particle tracking strategy with improved
reliability.
Utility Beyond iSCAT

The main contribution here is the methodology behind including real experimental
background images in datasets for training CNNs via supervised machine learning. Including real
background images in the training datasets, leads to an improvement in particle detection and,
more importantly, a reduction in false positives when iISCAT images were analyzed with Mask R-
CNN. However, the process developed here is not limited to iSCAT experiments. If
experimentalists can accurately capture the background in their collected images and model signals
(e.g., PSFs) they wish to detect, they can create labeled datasets for many types of experimental
images (e.g., atomic force microscopy, transmission and scanning electron microscopy, other
optical microcopy methods) to aid in the development of accurate, high-throughput processing of
their data using machine learning without the need for expensive, high-performance computing
resources.

A particular challenge for further expansion of the methods for creating labeled datasets
that include experimental backgrounds described here is that it requires a researcher to have access
to background images lacking the target objects of interest. Dataset creation in this work was

enabled by the low (200 pM) concentration nanoparticle solutions used in our adsorption
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experiment. The low concentration of nanoparticles slowed the adsorption process relative to the
frame rate of iISCAT (184 fps) to the point that only 0-2 events were detected per frame, and
resulted in multiple ratiometric images that contained no particle signatures. Furthermore, for
characterization tools compatible with solutions such as iSCAT, a blank solution could also have
been imaged without particles. This situation, though, is inefficient from a data versus information
standpoint and is uncommon in other characterization methods. To implement the dataset creation
method in experiments where all images contain objects of interest, users would need to remove
the objects from their images to create signal free background images, which requires detecting
them, rendering the workflow obsolete. A promising approach to extend the method of creating
datasets with real experimental backgrounds may exist in the computer vision machine learning
field in the form of neural style transfer.®® In neural style transfer, a neural network takes two
images as inputs, a content image and a style reference, and blends the two together such that the
output image contains important features in the content image “painted” in the style of the
reference image. In our workflow, the content image would be the particle image in figure 1 and
the reference would be sets of images from an experiment with or without particles (i.e., the
experimental ratiometric background image in figure 1). In theory, the output from this network
could result in a dataset containing synthetic particles in an image atop a realistic background with
labels from the particle image serving as ground truth labels for training.
CONCLUSIONS

The methods presented here demonstrate a workflow for creating labeled datasets with
representative experimental backgrounds containing simulated particle signals on background
suppressed interferometric scattering (iISCAT) microscopy images to use in training a mask region

based convolutional neural network (mask R-CNN) using transfer learning without extensive
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computational resources. Results showed that the high performance of mask R-CNN in detecting
nanoparticles adsorbing to a rough, high scattering layer-by-layer film in an iSCAT experiment
stemmed from the ability of mask R-CNN to learn background features, thereby reducing the
number of false positive detections. The improved analysis technique expands capability of iSCAT
to detect scattering objects in situations where background scattering is complex.
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Section S1: Materials

Poly(allylamine) hydrochloride (PAH, average My = 50 kg/mol, 283223-5G), 35% w./w.
solution of poly(acrylic acid) in H.O (PAA, average My = 250 kg/mol, 416002), sodium phosphate
dibasic heptahydrate (Na.PO4H, S9390), Trizma hydrochloride (TRIS, T5941), sodium hydroxide
(NaOH, 221465), 37% w./w. hydrochloric acid (HCI, 258148), sodium dodecyl sulfate (SDS,
436143) were purchased from Sigma Aldrich and used for buffer preparation, layer-by-layer (LbL)
film deposition, and QCM-D flow cell cleaning. Sulfuric acid (H2SOa4, 98%, A300SI-212) and
hydrogen peroxide (H202, H325-500) were purchased from Fisher Scientific for piranha etching.
All chemicals were used as purchased and all solutions were prepared using Milli-Q deionized
water. Custom 20 nm gold nanoparticles with carboxyl polyethylene glycol (lipoic acid-NH-
PEG12-COOH) ligands in deionized water (Cstok = 16.25 nM) were purchased from
nanoComposix, diluted to 200 pM in buffer solution for experiments, and filtered to remove dust
and contaminants from the solutions using 0.2 um PTFE syringe filters (Sigma Aldrich,

SLFGO025NS) prior to experiments.

Section S2: Substrate Preparation
Layer-by-Layer Film Deposition

No. 1.5 (22 mm x 40 mm x 150 um, 12-544-B, Fisher Scientific) glass coverslips and
silicon wafers were immersed in piranha etching solution (45 mL 98% H2S04:15 mL 30% H20>)
at 80°C for 30 minutes. Substrates were rinsed 3 times and stored in water overnight. Immediately
before LbL deposition, substrates were dried under streaming N2 gas. After drying, substrates were
exposed to UV-ozone (ProCleaner Plus, BioForce NanoSciences) for 10 minutes. SiO2 coated
quartz QCM-D crystals were purchased from Nanoscience (BL-QSX 303). Sensors were

immersed in piranha etching solution (15 mL 98% H2S04:5 mL 30% H20.) at room temperature
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for 10 seconds. Sensors were rinsed 3 times with water and dried under streaming N2 gas.
Immediately before LbL deposition, sensors were exposed to UV-ozone for 10 minutes.

LbL films were prepared following procedures detailed by Yoo! et al. Poly(allylamine
hydrochloride) (PAH) with a molecular weight of 50 kg/mol and poly(acrylic acid) (PAA) of
molecular weight 250 kg/mol from Sigma Aldrich served as the polycation and polyanion
respectively. PAH was purchase in salt form and diluted in acidic water (pH = 3.0) to obtain a 0.01
M monomer concentration solution. PAA was purchased in a 35 wt.% solution in water and diluted
with DI water to a final monomer concentration of 0.01 M, giving a 1:1 ratio of cation to anion
groups. After ample mixing, the pH of the PAA solution was reduced to 3.5 with a 1 M HCI
solution, and the pH of the PAH solution was increased to 5.6 using 1 M NaOH. Multilayer films
were assembled on cleaned silicon wafer, coverslips, and QCM-D sensors by using an automatic
dipping method with a MICROM DS 50 slide stainer in batches of six. For one bilayer, the dipping
procedure comprised four sequential steps of PAH deposition for 15 min, and three rinsing steps
with water of 2 min, 2 min, and 1 min, respectively, followed by four identical steps for PAA
deposition. In total 5.5 bilayers were assembled resulting in positively charged films with a PAH
cap. After coating, the films were rinsed in DI water. Deposition uniformity and quality were

confirmed by visual inspection.
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Figure S1. (left) LbL film structure after deposition. Layers are drawn as discrete entities based
on the alternating dip coating process described above, though it has been reported that layers
interpenetrate and boundaries are diffuse in these systems.! (right) Chemical structures of the

polycation (PAH) and polyanion (PAA) used in LbL deposition.

Layer-by-Layer Film Characterization
The results of LbL film characterization are listed in table S1 Methods for determining values
listed are detailed below.

Table S1. Summary of LbL film properties.

Bilayers | Layers | Cap | tibLdry | tibLwet ¢lbL WCA | Rouwbl | Roglass
55 11 PAH | 60nm | 85nm | +14.7mV | 16.4° | 3.2nm | 0.8 nm

Thickness (tuoL,ary and tioL,wet) Measured via Ellipsometry
All ellipsometry measurements were carried out using an Alpha-SE Ellipsometer from J.A.

Woolam. Dry thickness (tioL dry) measurements of LbL films were fit to a Cauchy model where the
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refractive index was allowed to vary between 1.5 and 1.6, with an ambient refractive index of 1

representing air.

a)

liquid cell during measurements.

For wet ellipsometry thickness (tuoLwet) measurements, a homemade, 3D-printed liquid cell
(figure S2) was used where the incidence angle of light on the cell was designed to match the 70°
incidence angle of the device. Dry thickness was measured in the liquid cell, followed by filling
of the cell with 1 mM Na>PO4H buffer at a pH of 7.0. Wet thickness was measured as a function
of swelling time, reaching equilibrium after 1-2 minutes of buffer exposure. Raw data was fit to a
Cauchy model where thickness and refractive index was allowed to vary between 1.4 and 1.5, with
an ambient refractive index for water of 1.33. Results reported represent an average of three
measurements after 10 minutes of buffer exposure.

Zeta Potential ({ibL)

Following procedures detailed in literature,? the zeta potential of flat surface samples was
measured with a DelsaNano-C (Beckmann Coulter) instrument using the flat surface cell. The
electrophoretic mobility of 300 nm SiO> probe particles (NanoComposix, SISN300-25M) between
the sample and cell surfaces was measured using electrophoretic light scattering. The zeta potential

in volts () was calculated using the Smoluchowski Eqaution (equation S1):

kmnU

(S1)

CLpL =
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where k is the Smoluchowski coefficient, # is the viscosity of the solution at 25°C, ¢ is the dielectric
constant of the solution at 25°C, and U is the electrophoretic mobility of probe particles. Each
measurement was the average of 70 individual measurements performed at various positions (10
measurements each at 7 positions). All measurements were done in at least triplicate. Solution pH
was measured with a dual pH/conductivity meter (Hanna Edge Dedicated pH/ORP meter).
Solutions of 1 mM TRIS solutions with probe particles (140 uL, base frequency ~120 Hz) were
prepared. Solution pH was regulated by titration with 1 M NaOH and 1 M HCI.
Water Contact Angle

Sessile drop water contact angles were measured using a home built static contact angle
apparatus. To minimize swelling during measurements and capture wetting properties of films in
experimental conditions, films were immersed in buffer solution (1 mM Na2POsH buffer at a pH
of 7.0) for 10 minutes and then dried under a stream of N2 immediately prior to measurements.
Contact angle profiles were measured using the LB-ADSA plugin in ImageJ.® Water contact angle
(WCA) results represent the average of at least 3 independent measurements at different regions
on the same sample.
Roughness (Rrms LbL and Rrms glass) Measurements Using AFM

Surface profile measurements were carried out using an Asylum MFP-3D AFM with
tapping mode tips (SCOUT 350 RAI, radius of curvature < 10 nm, NuNano). Wet measurements
were conducted in tapping mode in an open fluid cell after LbL samples were exposed to 1 mM
Na:POsH buffer at a pH of 7.0 for 10 minutes to ensure equilibrium swelling conditions were
reached, as confirmed via wet ellipsometry measurements. All AFM images were processed (plane
fitting followed by row alignment via median of differences) using Gwyddion software.

Roughness was also calculated using Gwyddion software. Results are shown in figure S3.
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Figure S3. (left) A wet AFM topography image of a LbL film in 1 mM Na,PO4H buffer at a pH
of 7.0. Scale bar is 1 um. (right) An isometric 3D projection of the AFM image show to the left

highlighting the rough nature of LbL films.

As a baseline, AFM topography measurements of neat coverslips (after piranha etching

and UVO) were also collect were also collected and are shown in figure S4.
. i zonm
-20 nm

Figure S4. (left) An AFM topography image of a glass coverslip. Scale bar is 1 um. (right) An

isometric 3D projection of the AFM image left highlighting the flat nature of the surface relative

to LbL films.

Section S3: Interferometric Scattering Microscopy Flow Experiments
Custom CoverWell perfusion chambers with adhesive added by the manufacturer were
used as purchased (32 mm x 3 mm x 0.75 mm, Grace Bio Labs, dimensions in figure S5). LbL

functionalized coverslips were attached to the chambers via the adhesive, forming leak-free,
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reproducible geometry flow cells for iISCAT experiments. Polyethylene microfluidic tubing
(BB61395, Scientific Commodities) connected the chambers and a microfluidic pump (Harvard
PhD 2000) using press fit tubing connectors (460003, Grace Bio Labs) and a 20 mL syringe. To
Facilitating long experiments (up to 10 hours) and reduce vibrations from fluid flow, the flow rate
in the chamber was set and maintained at a low value measured to be 10 pL/min.

Experiments were carried out as follows. First, flow cell chambers were assembled on the

iISCAT stage as shown in figure S5.

0.600

0 0.864

5 D

- - 29.200

R1.825

Figure S5. (a) An iSCAT flow cell mounted on the piezoelectric stage. The microfluidic pump
generated negative pressure in the flow lines, pulling solution from the reservoir (a 50 mL

centrifuge tube) through the flow cell at a constant rate. (b) A close-up image of the flow cell over
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the objective lens shows the press fit tubing connectors and tubing at the inlet and outlet. (c)

Dimensions of the flow cell. All dimensions are mm.

Next, sodium phosphate buffer solution was pumped from the reservoir across the objective
and the time of travel of the liquid to the objective (tw obj) Was noted. LbL films were allowed to
reach equilibrium in the flow cell in buffer for 10 minutes (equilibration time was determined by
wet ellipsometry). 66 seconds of control iISCAT videos were taken of LbL films after swelling in
buffer solution with no particles. Next, the reservoir solution was switched to a buffer solution
containing gold nanoparticles at a 200 pM concentration. The pump was started and video capture
was initiated after a period equal to ti onj, the time when AuNP solution first reached the objective.
66 seconds of iISCAT videos were then collected every 30 minutes to analyze adsorption rates at

varying levels of particle surface coverage.
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Section S4: Gold Nanoparticles

The solution and particle properties of gold nanoparticles (AuNPSs) with lipoic acid-PEG1»-
COOH ligands in 1 mM Na2POsH buffer at a pH of 7.0 are listed in table S2. Methods for
determining values listed are detailed below.

Table S2. Summary of AuNP solution conditions and properties.

[NazPO4H] | [Au NP] pH dsem dH,oLs e | Kgepye
1mMm 200pM | 7.0+0.1 | 185+22nm | 20.1+4.9nm | -58 mV | 5.56 nm

Solution Preparation

To stabilize pH during experiments, 1 mM buffer solutions of Na,POsH in water were
prepared. 1 M HCL was added to titrate solutions to a pH of 7.0. pH was verified using a Hanna
Edge Dedicated pH/ORP meter. 0.256 mL of 16.25 nM AuNP stock solutions were added to
19.744 mL of buffer solution to yield 20 mL of 200 pM AuNP solutions in 1 mM Na;POsH at a
pH of 7.0 £ 0.1. pH was tested after addition of NPs, and no changes to pH were noted. All
solutions were filtered to remove dust and contaminants from the solutions using 0.2 um PTFE
syringe filters prior to experiments.
Zeta Potential ({np)

Zeta potential was measured by the supplier (NanoComposix) at similar experimental
conditions.
Measuring Hard Sphere Diameter (dsem) with SEM

AuNPs were deposited on a LbL coated QCM-D sensor during a separate adsorption
experiment. Sensors were removed from the flow cell and immediately dried under a stream of No>.
Sensors were then mounted on measurement scaffolds for a FEI Quanta 600 ESEM and imaged at
a relative humidity of 0.38 bar of water vapor pressure and 30.00 kV acceleration in the secondary

electron (SE) imaging mode at 0° tilt, providing a magnification of 208,203. Images were
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segmented to determine particle size using a watershed transformation via custom python scripts
available in the skimage package.* A representative SEM image and histogram describing the size

of the nanoparticles are shown in figure S6.
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Figure S6. (a) AuNP particle and ligand chemistry. (b) SEM image of the same AuNPs imaged in
the iISCAT experiment. Scale bar is 100 nm. (c) Particle size distribution histogram obtained by

measuring the segmented region properties of particles in the SEM image (b).

Measuring Hydrodynamic Diameter with DLS (dw,pLs)
For DLS measurements, 200 pM solutions of AuNPs in 1 mM NaPO4H buffer at a pH
of 7.0 were prepared and filtered. Malvern Zetasizer Nano S was used to measure the

hydrodynamic diameter of particles. Temperature was maintained at 21.0° C and 5 independent
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measurements of 70 seconds were collected with 30 second intervals between measurements.
Number density distributions of particle size were determined using gold properties (n = 0.2, k =

3.320). Particle hydrodynamic radius was determined to be 20.1 + 4.9 nm.

Section S5: Interferometric Scattering Microscopy
Interferometric Scattering Microscopy Instrumentation

An inverted iISCAT microscope configuration used for experiments was constructed
following previously published literature®® (See figure 3 in ref. S5 for schematic) and key details
are described below. The collimated, coherent output of a fiber coupled laser (Coherent, OBIS
488-120 LS FP) at a wavelength of 488 nm forms the beam used for all imaging. The beam was
passed through an orthogonal pair of acousto-optical deflectors (AODs, Gooch & Housego) and
optically steered through a polarizing beam splitter (PBS) and a quarter-wave-plate (QWP) to the
back focal plane of an oil immersion microscope objective (Nikon Apo TIRF, 1.49 NA, 100x).
This resulted in a weakly focused 1-2 pum diameter beam rapidly scanning across the sample to
generate an image. AODs were controlled by custom LabVIEW software developed in the
Goldman Lab to sweep the set field of view within one exposure for each frame. Reflections from
the sample-solution interface and backscattered light from the nanoparticles were collected by the
objective. The reflected and scattered light was separated from the incident light by the PBS and
QWP. Lenses and mirrors steered the reflected light to a CMOS detector (PhotonFocus AG MV1-
D1024E-160). Images at the detector were collected using custom LabVIEW software provided
from ref. S5 and modified to store the timestamp of video collection. All optical components sat
on an active optical table to minimize vibrations. Lastly, the objective focus and stage position
were controlled in three dimensions coarsely using stepper motors (OptoSigma SGSP-25ACTR-

BO) and finely with a piezoelectric stage (Pl USA, P-545.3C7). Stepper motors and the

45



piezoelectric stage were operated by a custom LabVIEW program previously developed by the
Goldman Lab. The pixel size in our build was measured using a microscope stage micrometer to
be 50 nm/pixel (~200x magnification).
Interferometric Scattering Microscopy Imaging

256 x 256 pixel images were collected resulting in a 12.8 um x 12.8 um field of view. The
exposure time was set to 5.44 ms resulting in a frame rate of 184 fps including readout time. Laser
intensity was set at the beginning of the experiment to achieve a maximum reflected intensity on
the detector of 3000 (12-bit camera digitizer, 4096 intensity resolution). The focal plane was set
using piezoelectric motors to maximize the sharpness (determined by eye during data collection)
of background features in images. Data was collected in 1000 frame videos. Every 30 minutes, the
focal plane was reset to account for drift. After the focal plane was reset, a static background image
was collected by laterally translating the sample in a 2D Lissajous pattern using the piezoelectric
motors and calculated as the pixelwise median of 100 images collected during that movement.® 12
videos (~ 66 seconds of experiment time) were collected using custom python scripts. This was
repeated throughout the course of a 4 hour experiment. The ambient temperature of the room was

recorded throughout the experiment and remained constant at 21 + 1°C.
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Section S6: Image Flattening

o Raw Flattened
1000 . 0.60
~ 3000 : —1.10

Figure S7. Raw and flattened iSCAT images of an AuNPs (19.2 nm) adsorbing onto an 85 nm LbL.
film (Ryms = 3.2 nm). (Left) A raw image of a LbL film on a glass coverslip in buffer solution.
(Right) A flattened image produced by dividing the raw image by a static background image
followed division by a median filtered image (kernel = 21). Note that in raw and flattened images,
no particles can be seen. The rough LbL films scatter with stronger intensity (~0.40 relative to the

background mean of 1) than the AuNPs (~0.04). All scale bars are 1 um.
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Section S7: Ratiometric Processing and Single Particle Tracking to Quantify Adsorption

Event Time and Scattering Contrast
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Figure S8. Ratiometric processing of a 19.2 nm AuNP adsorbing to an 85 nm LbL film

(Rrms = 3.2 nm). (a) An illustration of ratiometric processing. The black boxes show the time-

binning windows of size of N..io = 5. Blue vertical lines correspond to flattened frames prior to
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the adsorption event (indicated by the purple triangle) and red vertical lines correspond to flattened
frames after the event occurred. The black arrow shows increasing time. (b) Flattened iISCAT
images before (blue border) and after (red border) the adsorption event. No particles are visible in
the flattened images. (c) An illustration of the ratiometric processing approach. Above each image,
the purple triangle marks the adsorption event. Flattened images in each box are averaged in the
two boxes (left and right), normalized by their means, and the right average is divided by the left.
As the midpoint between the boxes increases in time, the PSF from the adsorption event increases
and decreases in contrast (darkness). (d) Corresponding cross-sections along the x direction
through the y-centroid of the PSF for PSFs numbered in the ratiometric images. (¢) Amplitudes
(4) obtained from the 2D-Gaussian fits detected by the Haar or Mask R-CNN methods are linked
into a trajectory. Numbers correspond to cross-sections in (d) and the PSF in (¢). The dashed black
line shows the fits of 4 versus time. The intersection of these lines (purple arrow) determines the
scattering contrast (|[4even]) and binding time of the adsorption event. All scale bars are 1 pm.
Section S8: Mask R-CNN Training

After each epoch in the training process, weights were saved, the loss was calculated, and
the mean average precision (AP; equations S2-S4) over all images in the training and validation

sets was calculated.

AP = ﬁ recall e (0,04,.,1) Precision(recall)  (S2)

.. True Positives
Precision = — — (S3)
True Positives+False Positives

True Positives

Recall = (S4)

True Positives+False Negatives

The precision and recall are analyzed at various classification prediction confidence thresholds. In
iISCAT image analysis, a true positive was a particle detected and classified correctly as a dark or
bright particle. A false positive was region of pixels pertaining to the background identified
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incorrectly as being a positive (misclassifications errors, i.e., labeling a dark particle bright or vice
versa, were not observed). The loss curve for the training process on a dataset containing

representative backgrounds is shown in figure S9.
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Figure S9. (left) Loss during training and validation evaluated using trained weights after each
epoch. Monotonic decay of the loss function during training and validation indicated the network
continued learning through the 200" epoch. The overlap of validation and training loss show no
signs of overfitting. (right) Average precision throughout training and validation calculated after
each epoch. Saturation occurs after ~50 epochs, but performance does not degrade after continued

training.
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The inputs and output of the inference of a trained mask R-CNN network on iSCAT dataset

images are shown in figure S10.

a)

Figure S10. (a) A dataset image containing a ratiometric ISCAT background with synthetic
particles. The image has been rescaled so that intensity varies from 0 to 1 and converted to an RGB
image to match mask R-CNN input formatting. (b) The ground truth mask, bounding boxes, and
classes for particles in image (a). (c) The output of predictions (mask, bounding box, class) of the
trained mask R-CNN network when analyzing the image in (a). Numbers right of the predicted

class indicate the confidence level of the classification.

Section S9: Effect of SNRmin on Particle Detection During Ratiometric Imaging
To illustrate the performance of each method in object detection and subsequent particle
tracking, candidate detections with an SNR,,,;,, (defined in equation S5) less than a value of 1, 2,

or 3 or are discarded prior to trajectory linking in ratiometric analysis.

4|

SNR = (S5)

Obackground

A is the amplitude from a 2D-Gaussian PSF fit of a detected particle, and obackground iS the standard
deviation of all background pixels in the image in which the proposed particle is detected. The
sensitivity of the Haar and mask R-CNN methods in object detection to the setting of SNRmin is

highlighted in figure S11.
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Figure S11. Histograms of ratiometric scattering contrast for varying values of SNRmin. A low
contrast peak in Haar detections (pink) at all values of SNRmin is indicative of false positives with
decreasing prominence as SNRmin increases. False positive detections also negatively impact
linking of particle trajectories, resulting in a reduced number of correctly identified particle
scattering contrasts in the central peak. Mask R-CNN detections (blue), showing a single peak, are
invariant to this parameter highlighting its robust performance in particle detection at all SNRmin

values.

Figure S11 illustrates two key additional concepts, First, the high density of false positive
detections present in the Haar histograms have a negative impact on particle tracking linking
algorithms. Incorrect linking of particles and background features into trajectories leads to failed
fits during ratiometric analysis and an underestimation of true positives in the final analysis. Errors
in particle tracking are also evident in more failed linear fits in ratiometric analysis as a function

of frame or time (Haar = 1642 failed fits, mask R-CNN = 14 failed fits). Second, the Haar
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histograms indicate the algorithm is very sensitive to the filtering parameter SNRmin While the mask

R-CNN method is invariant to this parameter. This invariance emphasizes the ability of mask R-

CNN to identity particles in a complex background at low signal to noise ratios.
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