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ABSTRACT 

Interferometric scattering microscopy (iSCAT) is a label-free optical microscopy technique 

that enables imaging of individual nano-objects such as nanoparticles, viruses, and proteins. 

Essential to this technique is the suppression of background scattering and identification of signals 

from nano-objects. In the presence of substrates with high roughness, scattering heterogeneities in 

the background, when coupled with tiny stage movements, cause features in the background to 

manifest in background-suppressed iSCAT images. Traditional computer vision algorithms detect 

these background features as particles, limiting the accuracy of object detection in iSCAT 

experiments. Here, we present a pathway to improve particle detection in such situations using 

supervised machine learning via a mask region based convolutional neural network (mask R-

CNN). Using a model iSCAT experiment of 19.2 nm gold nanoparticles adsorbing to a rough layer-

by-layer polyelectrolyte film, we develop a method to generate labeled datasets using experimental 

background images and simulated particle signals, and train mask R-CNN using limited 

computational resources via transfer learning. We then compare the performance of mask R-CNN 

trained with and without inclusion of experimental backgrounds in the dataset against a traditional 

computer vision object detection algorithm, Haar-like feature detection, by analyzing data from 

the model experiment. Results demonstrate that including representative backgrounds in training 

datasets improved mask R-CNN in differentiating between background and particle signals, and 

elevated performance by markedly reducing false positives. The methodology for creating a 

labeled dataset with representative experimental backgrounds and simulated signals facilitates the 

application of machine learning in iSCAT experiments with strong background scattering, and thus 

provides a useful workflow for future researchers to improve their image processing capabilities. 
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INTRODUCTION 

In the past two decades,1 interferometric scattering (iSCAT) microscopy has enabled 

imaging and tracking of nano-objects such as gold nanoparticles,2–5 viruses,6 and individual 

proteins7–9 for dynamic studies on cell membranes,5 molecular motors,10 and quantitative mass/size 

measurements.11–13 As a scattering-based technique, imaging of nano-objects in iSCAT 

experiments does not require fluorescent labeling.14 This advantage mitigates challenges inherent 

to fluorescence-based techniques such as photobleaching and photoblinking.14 Fluorescent labels 

on the surfaces of nano-objects also alter their surface chemistry, rendering iSCAT advantageous 

in studies where surface chemistry dominates (e.g., adsorption experiments, interactions within a 

cell, diffusion along surfaces). Given these advantages, the contributions of iSCAT to the 

biological and physical science community are continually growing.  

The label-free capabilities of iSCAT also represent its greatest limitation.15 All materials 

with a different refractive index than the surrounding medium will scatter light and convolute 

signals of interest with the background. Consequently, extracting meaningful information from 

iSCAT images is a two-step process: (1) identifying and suppressing the background and (2) 

detecting objects of interest in background-suppressed images. While numerous background 

extraction and suppression techniques have been developed though optical enhancements12,16,17 

and software algorithms,8,12,14,18 stage movements, on the order of tens nanometers (comparable to 

the pixel size in many iSCAT configurations), are difficult to eliminate and cause background 

features to appear even in background-suppressed images.15 This problem is especially evident 

when the background contains regions of high roughness or refractive index heterogeneity, and 

limits the ability of iSCAT to detect scatterers in complex environments. Here, background features 

that produce signals due to stage drift or vibrations appear as objects with similar intensity and 
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morphology as objects of interest in background-suppressed images. Experimenters are typically 

required to perform time-consuming, intricate filtering of detections with similar characteristics. 

The method could therefore benefit from improvements in step two of the analysis process through 

improved computer vison strategies to detect particles in complex iSCAT images where less effort 

has been focused to date. 

Convolutional neural networks (CNN) in the field of supervised machine learning 

computer vision have emerged as a powerful means to improve performance in the problem of 

object detection in scientific images relative to traditional edge and thresholding computer vision 

algorithms.19,20 Still, employing supervised machine learning in object detection currently requires 

a labeled dataset (i.e., known truths of object locations) that is representative of experimental 

images to use in training a CNN.21,22 In a recent publication, Newby23 et. al circumvented this 

limitation by generating a dataset consisting of synthetic fluorescent microscopy images by 

mathematically modeling both background and particle signals. However, in background-

suppressed iSCAT images, the background is comparatively more complex and difficult to 

simulate. This makes creating simulated datasets to use in training a CNN for object identification 

in iSCAT images challenging. Compounding the problem, training CNNs from randomly 

initialized weights requires large datasets and great amounts of computing power.20 To facilitate 

the use of machine learning in iSCAT object detection, both these obstacles are addressed in this 

work. 

We demonstrate a machine learning workflow to improve object detection in complex 

background-suppressed iSCAT images. To accomplish this, we establish a procedure for creating 

labeled datasets containing synthetic particle signals with and without real experimental 

background-suppressed images from a model iSCAT experiment of 19.2 nm gold nanoparticles 
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adsorbing to a rough layer-by-layer polyelectrolyte film. We then train a mask region-based 

convolutional neural network (mask R-CNN)20,23 in under one hour using transfer learning24 with 

readily accessible computational resources using the labeled datasets. By analyzing the model 

iSCAT experiment, we test the performance of mask R-CNN (trained with and without 

experimental backgrounds in the dataset) in object detection and classification against a Haar-like 

feature image segmentation algorithm, an edge detection-thresholding algorithm previously used 

to detect objects in iSCAT images.11,25 Results highlight the improved performance in object 

detection via a reduction of false positive detections [precision improved from 80.2% (Haar) to 

96.5% (mask-RCNN)] and the importance of including representative experimental backgrounds 

in datasets. The result is not an automated, catch-all machine learning network to use in iSCAT 

image processing, but rather it shows how to create datasets and optimize a CNN via transfer 

learning to improve object detection in experimental data. The improved analysis technique should 

expand capability of iSCAT to detect scattering objects in situations where background scattering 

is complex.  

iSCAT Principles: Stage Movements Hinder Background Suppression 

The theory behind iSCAT imaging has been reviewed extensively.15,26,27 We provide a 

summary of iSCAT operating principles below to highlight the benefit of enhanced object detection 

methods in expanding the application of iSCAT to substrates with strong scattering background 

features due to roughness and/or areas of varying refractive index.  

The contrast in an iSCAT experiment is the result of interference between light scattered 

from nano-objects (e.g., nanoparticles, proteins, viruses) and light from a reference source, 

commonly light reflected back at the substrate-solution interface from a normally incident coherent 

light source. The intensity of the signal detected is determined by the superposition of the scattered 

and reflected light 
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𝐼𝑖𝑆𝐶𝐴𝑇 ∝ |𝐸𝑟 + 𝐸𝑠|2 = 𝐸𝑖
2[ 𝑟2 + 𝑠2 + 2𝑟|𝑠| cos(𝜙)]       (1) 

where IiSCAT is the intensity at the detector, Er, ES, and Ei are the reflected, scattered, and incident 

electric fields, respectively, r is the fraction of Ei reflected, s is the fraction of Ei scattered, and ϕ 

is the phase difference between the reflected and scattered light due to a difference in optical path 

length. According to Mie scattering theory (applicable when the wavelength of light is of the order 

of the nanoparticle size), the magnitude of s scales linearly with the volume of the particle (𝑑𝑁𝑃
3 ), 

13,28 and in the limit of small scattering objects, reflected light dominates the detected signal making 

the pure scattering contribution negligible (r ≫ s).28 Equation 1 then reduces to 

𝐼𝑖𝑆𝐶𝐴𝑇 =  𝐸𝑖
2[ 𝑟2 +  2𝑟|𝑠| cos(𝜙)]       (2) 

Equation 2 illustrates the power of iSCAT and highlights its limitations. In comparison to 

pure scattering based contrast techniques (i.e. dark field microscopy) where the scattering term for 

small objects decreases with the volume of the particle squared,28 the scattering term in an iSCAT 

signal decreases linearly with the particle volume. This is what lowers the detection threshold for 

label-free imaging of nanoparticles, viruses, and individual proteins.9,11 However, because all 

interfaces with a difference in refractive index scatter light, backgrounds in iSCAT experiments 

often scatter light at stronger intensities than the nanoparticles or proteins of interest. To generate 

sufficient contrast, CiSCAT, for analysis, strongly varying background features are typically 

suppressed by dividing or subtracting a reference background image from experimental images. 

This background suppression, the mechanisms of which are discussed in the Methods section, is 

described mathematically as 

𝐶𝑖𝑆𝐶𝐴𝑇 =
𝐼𝑖𝑆𝐶𝐴𝑇

𝐼𝑏𝑘𝑔
=

𝐸𝑖
2[ 𝑟𝑖𝑚𝑎𝑔𝑒

2 + 2𝑟𝑖𝑚𝑎𝑔𝑒|𝑠| cos(𝜙)]

𝐸𝑖
2𝑟𝑏𝑘𝑔

2  ≈ 1 −
2|𝑠| cos(𝜙)

𝑟
       (3) 

where 𝑟𝑏𝑘𝑔 represents the fraction of 𝐸𝑖 reflected by the optics and substrate that forms the 

background reference from an earlier frame capture, and 𝑟𝑖𝑚𝑎𝑔𝑒 represents the fraction of 𝐸𝑖 
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reflected that forms the image currently being analyzed. If the imaging stage and optical 

components are stable, 𝑟𝑏𝑘𝑔 =  𝑟𝑖𝑚𝑎𝑔𝑒, and all background reference features would be suppressed 

by division resulting in the solution to equation 3 at the right. However, in practice, drift or 

vibrations on the order of tens of nanometers (i.e., comparable to the pixel dimension) are typical 

for optical microscopes.15,29 These stage movements cause 𝑟𝑏𝑘𝑔 to differ from 𝑟𝑖𝑚𝑎𝑔𝑒, and 

scattering from the substrate contributes significant features to background-suppressed images. 

These substrate features may have morphologies resembling scattering features from nano-objects, 

and the essential step of detecting objects of interest in background-suppressed iSCAT images 

becomes more difficult as background complexity increases. The challenges presented by the 

presence of particle-like background features in background-suppressed iSCAT images motivates 

our application of machine learning to aid in particle detection in iSCAT experiments with complex 

backgrounds. 

METHODS 

Experimental Details 

150 µm thick glass coverslips were coated with a layer-by-layer (LbL) film (dry thickness 

= 60 nm, wet thickness = 85 nm) composed of 11 alternating polycation [poly (allylamine 

hydrochloride)] and polyanion [poly(acrylic acid)] layers. The LbL film was capped by the 

polycation leaving a positive zeta potential of +14.7 mV on the substrate when exposed to 1 mM 

sodium phosphate buffer at a pH of 7.0. (See section S1 for material information and section S2 

for substrate preparation and characterization). LbL films were characterized using atomic force 

microscopy (AFM, figure S3 and S4), and shown to increase the roughness of the substrate by a 

factor of 4 when compared to uncoated glass coverslips used in other iSCAT experiments (Rrms,LBL 

= 3.2 nm, Rrms,glass = 0.8 nm, Area = 10 m x 10 m).   
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Using a flow cell (figure S5), a 200 pM solution of monodisperse gold nanoparticles 

(AuNPs, see section S4 for solution preparation and characterization) with a mean diameter of 

19.2 nm in 1 mM sodium phosphate buffer, pH of 7.0, was exposed to the LbL film on an inverted 

iSCAT microscope (see section S5 for iSCAT instrumentation and imaging details). At this pH, the 

AuNPs had a negative zeta potential of -58 mV because of their carboxy-terminated ligands and 

electrostatic interactions drove irreversible adsorption of the AuNPs to the positively charged LbL 

coated glass coverslip over the course of a 4 hour experiment. At 30 minute intervals, iSCAT 

images were collected for ~1 minute at a frame rate of 184 fps (~5.44 ms between frames). The 

pixel size of the iSCAT setup was measured using a stage micrometer to be 50 nm/pixel, giving 

the 256 x 256 pixel images a field of view of 12.8 m x 12.8 µm. This resulted in an experimental 

dataset consisting of 108 videos of 1000 frames each for a total of 108,000 iSCAT images. 

Image Flattening  

Raw iSCAT videos were processed in two operations: flattening followed by ratiometric 

processing. The flattening techniques described here were detailed previously28 and implemented 

using custom python scripts. In the first flattening step, a static background image was collected 

by laterally translating the sample stage during data collection in a Lissajous pattern using 

piezoelectric motors and calculated as the pixelwise median of 100 images collected during that 

movement. Each raw iSCAT image was divided by its corresponding static background image to 

remove spurious features inherent to the optical configuration. Next, a median filtered image 

containing only features larger than the scattering features of the nanoparticles was calculated by 

convoluting the image from the first flattening step with a kernel of 21 pixels and calculating the 

median of pixels in that kernel. The resulting image from the first flattening step was then divided 

by the median filtered image yielding flattened images with a mean background value of 1. All 
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subsequent ratiometric processing was done on these flattened images. An example of the 

conversion of a raw iSCAT image to a flattened image is shown in figure S7.  

Ratiometric Processing 

After flattening, we employed ratiometric processing12 to suppress the background. By 

balancing images that follow a nanoparticle adsorption event with those that precede the event, 

ratiometric processing capitalizes on time-dependent variations in scattering signals during the 

collection of iSCAT videos to isolate adsorption events in background suppressed images. In doing 

so, it enables the measurement of the scattering contrast and the binding times of analytes, and has 

been previously used to detect nanoparticles13 and proteins.11  

To apply ratiometric processing to detect nanoparticle adsorption events, we began by 

defining a time-binning window of Nratio = 5 frames. Nratio effectively defined the minimum 

residence time for a particle to be considered adsorbed as a particle that remained attached to the 

surface for at least 2Nratio frames. In our experiments, Nratio = 5 frames defined the minimum 

residence to be 2Nratio x frame interval, or 54.3 ms. Faster frame intervals would have allowed for 

the analysis of shorter residence times, but in our experiments, we did not see any desorption 

events, indicating that this minimum residence time was sufficient.  

We calculated ratiometric images as follows. For a given frame i, two batches of sequential 

images were averaged to produce two images I1(i) and I2(i), where I1(i) corresponded to the 

pixelwise average of images i to Nratio and I2(i) to images i + 1 + Nratio to 2Nratio. After normalizing 

I2(i) and I1(i) by dividing each average image by its mean, we then divide 𝐼2 (i)/𝐼1(𝑖) to obtain 

ratiometric images, Iratio(i). Frames were then incremented across each video one frame at a time, 

creating a new movie consisting of ratiometric images. As frames are incremented forward in time, 

the scattering contrast of adsorbing particles increases in magnitude reaching a maximum when 
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the adsorption event is located between the two frame batches, and decreases back to the 

background value of 1 thereafter. Adsorption events in in our configuration destructively interfere 

with the reflected light and manifest in dark spots on a grey background. The reverse process, 

desorption, if present, would present as bright spots on a grey background. In this way, by finding 

the point of maximum scattering contrast magnitude, the scattering contrast and occurrence time 

for adsorption and desorption events can be precisely quantified. An illustration of ratiometric 

processing is illustrated in figure S8 (a)-(c). 

Particle Detection Using the Haar Method 

Following ratiometric processing, particle signals or point spread functions (PSFs) were 

detected using traditional and machine learning object detection algorithms. The Haar-like feature 

algorithm was implemented in python following details described in ref. 11 and 30. First, 

ratiometric images were convoluted with a 2D-Gaussian in equation 4 

𝐼𝑃𝑆𝐹(𝑥, 𝑦) = 𝐴 exp (− (
(𝑥−𝑥0)

2𝜎 

2

+  
(𝑦−𝑦0)

2𝜎

2

)) + 𝐵       (4) 

where A is the contrast amplitude, 𝑥0 𝑎𝑛𝑑 𝑦0 are the center position, B is the background, and  is 

the standard deviation. The parameters of the 2D-Gaussian used for the convolution were 

determined empirically by fitting a particle PSF in a ratiometric image. Next, Haar feature scores 

were calculated for each pixel with higher scores corresponding to vertical edges, horizontal edges, 

and circular features using three kernels each 9 x 9 pixels in size. The pixelwise Haar scores were 

averaged between these three features and weakly thresholded to remove pixels with Haar feature 

scores lower than 0.20. From the weakly thresholded images, only thresholded pixels with 4 

neighbors were kept as candidate pixels that belong to a particle signal. The probability a pixel 

belongs to particle was then calculated as the fraction of pixels that satisfied all threshold and 

neighbor candidacy requirements within a 7 x 7 kernel of neighboring pixels. If this probability 
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was greater than 0.3, the pixel was classified as belonging to a particle, resulting in a segmented 

binary image that was then labeled in object detection. Although the Haar-like feature algorithm 

was used as a control in this study, it would be valuable in future studies to test other state-of-the-

art object detection methods, such as the circular Hough transform used by Melo13 et. al., to see 

how performance compares to Mask R-CNN when the background scattering is high. 

Particle Detection using Mask R-CNN 

Mask R-CNN, described in detail by He20 et al., detects objects in images in four main 

stages. First, features are detected and mapped to pixels using a CNN. From these feature maps, 

bounding boxes around regions of interest (ROIs) are proposed. Then, simultaneously, bounding 

boxes around ROIs are refined, regions are classified, and instance-level segmentation masks 

within the refined bounding boxes are generated as the final outputs. In our implementation, we 

capitalized on the inference output of bounding boxes and classifications to perform Gaussian 

fitting and particle tracking in subsequent steps.  

To implement mask R-CNN for object detection in iSCAT images, Matterport’s 

implementation23 of mask R-CNN in TensorFlow and Keras was used with minor hyperparameter 

modifications. Namely, a ResNet50 backbone was used, and image dimensions were constrained 

to the size of our iSCAT images, 256 x 256 pixels. For training, all ROIs with a detection 

confidence below 0.7 were rejected. In inference, all ROIs with a detection confidence below 0.9 

were rejected. We normalized all input images by rescaling their intensity to a minimum of 0 and 

maximum of 1, and converted the normalized greyscale images to 8-bit RGB images. While not 

an exhaustive optimization, only these minor changes were required to obtain good performance 

in both training and inference. Additionally, maintaining most hyperparameters at their default 
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values made transfer learning from ImageNet weights easier, reducing the amount of data required 

for training  and shortening the training time on limited computational resources. 

Creating Datasets to Train Mask R-CNN 

An essential contribution of this work is the methodology for creating labeled image 

datasets with realistic experimental backgrounds to use in training a neural network for object 

detection. A custom python script was used to generate 500 synthetic dataset images. First, a 

particle image was generated using a PSF approximation in the form of a 2D-Gaussian (equation 

4) to generate synthetic nanoparticle signals approximating those measured in iSCAT on an image 

with a background of 0. In experiments with less background roughness, secondary interference 

fringes beyond the central lobe maybe visible, and Bessel functions, which more accurately 

approximate the interference of a plane wave with a spherical wave, may serve as better PSF 

models for simulated particle signals. PSF parameters (listed in table 1) were empirically 

determined by fitting 10 particles from ratiometric images. Notably, an amplitude (A) at the high 

end of the measured scattering contrast from our experiments was selected to increase the contrast 

between synthetic particle signals and background features. We found this contrast vital to ensure 

good performance during inference. Dark particles were assigned a negative amplitude, while 

bright particles were assigned a positive amplitude in the 2D-Gaussian. Particles were randomly 

positioned within an image of the same size as the iSCAT ratiometric images with the minimum 

spacing between other particles and the border limited, and positions and particle class types were 

logged. Instance-level masks with corresponding class labels were then generated using particle 

positions and a circular mask of defined size to serve as the ground truth in training. 
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Table 1. Parameters used to create synthetic particle images for our dataset. 

Parameter Value 

A (a.u.) 0.06 

 (pixels) 2.00 

Particles per image 10-15 

Minimum spacing between particles (pixels) 40 

Minimum particle centroid distance to border (pixels) 5 

Mask diameter (pixels) 21 

Particle classes Dark, Bright 

shot noise (a.u.) 0.001 - 0.004 

Training Image Number 350 

Test Image Number 150 
 

To add variance to the dataset and make it more realistic, a shot noise image of Gaussian 

noise with a mean of zero and a given standard deviation, shot noise, was created. Next, a real 

background from the ratiometric experimental images was sampled as follows. One image from 

every third video (1,4,7,…,106) in the experiment was randomly selected to capture 

representations of the background over the course of the iSCAT experiment. To ensure background 

images contain no particles, images were visually inspected and resampled until no particle PSFs 

were present in any background images resulting in a set of 36 particle-free ratiometric background 

images. When the dataset was generated, one image from this set was randomly selected to serve 

as the background for that image. Figure 1 shows how the particle image, shot noise, and randomly 

sampled background (top row) were summed to create the dataset image (bottom, left) and 

corresponding labels for each class (bottom, middle and right).  
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Figure 1. A visual representation of the process of creating labeled datasets for training 

mask R-CNN via transfer learning. The dataset image (bottom, left) was created by summing the 

simulated particle image (containing randomly positioned synthetic PSFs), simulated shot noise 

image, and a randomly sampled experimental ratiometric background image. Using stored particle 

positions from the simulated particle image, instance-level masks (bottom, middle and right) for 

dark and bright particle classes served as labels for training and testing. All scale bars are 1 µm 

but were not included in the dataset images. 

Training Mask R-CNN 

Training via transfer learning was implemented using configurations detailed by Abdulla23 

with minimal modifications. In brief, network weights were initialized from a mask R-CNN 

network trained on the ImageNet dataset. Three new classes (“background”, “bright”, and “dark”) 

were defined for the generated dataset images and corresponding masks. Images in the dataset 

were augmented during training through vertical and horizonal flips, Gaussian blurring, and 
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scaling to limit overfitting and improve generalization. Head weights were fine tuned for the first 

20 epochs of training at a learning rate of 0.001 followed by fine tuning of all network weights at 

a learning rate of 0.0001 for a total of 200 training epochs. Trained model weights were saved after 

each epoch. The loss function decayed and average precision increased (figure S9) in both training 

and validation, indicating mask R-CNN learned iSCAT particle signals and showed no signs of 

overfitting. Visual inspection of the performance of mask R-CNN (figure S10) indicated mask R-

CNN learned particle signals successfully. On a standard desktop computer (8 GB 2070 NVIDIA 

RTX GPU, AMD Ryzen 5 2600X 6 Core CPU, 64 MB RAM), training on the 500-image synthetic 

dataset was completed in ~40 minutes. Inference predictions of particle detection by mask R-CNN 

on experimental iSCAT data were inspected visually using weights from the 100th and 200th epoch. 

The 200th epoch showed the best performance despite a plateau in precision during training and 

validation after ~50 epochs. We hypothesize this extended training beyond average precision 

saturation allowed for enhanced learning of the background, and thus justified the use of weights 

from the 200th epoch in all subsequent analyses. 

Single Particle Tracking 

From PSFs detected in ratiometric images, the magnitude of the scattering contrast and 

event time for an adsorbing or desorbing particle was quantified using single particle tracking 

techniques. First, PSFs from adsorption events were detected using the Haar or mask R-CNN 

methods. For detections using the Haar method, bounding boxes of 15 pixels around the centroids 

of the proposed particle detections were generated. For detections using mask-RCNN, bounding 

boxes from inference were directly used. Any candidate particle with a bounding box center within 

5 pixels of the image border was discarded. The PSFs of candidate particles were fit to a 2D-

Gaussian31 using a least-squares regression algorithm from the LMFIT32 python package using 
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equation 4 where contrast amplitude, A, and center position (𝑥0, 𝑦0) of the Gaussian were allowed 

to vary, while the background, B, and standard deviation, , were fixed at 1.0 contrast units and 

2.0 pixels (~100 nm), respectively. Fixed values were determined by empirical fits to PSFs 

manually sampled from ratiometric images. In Haar detections, the signal to noise ratio, SNR, for 

each proposed detection was calculated as the ratio of |A| to the background standard deviation 

and all detections with an SNR less than 3 were discarded. The A, frame, time, and position for all 

PSFs were logged. After PSF detection and fitting, PSFs with center positions within 2 pixels of 

each other in subsequent ratiometric images for a minimum of 6 frames were linked into 

trajectories using the Trackpy python package.33 Within each trajectory, the average of the two 

highest magnitude amplitude (|A|) points was used to separate the data for a given particle 

trajectory into regions of opposite slope. Two lines were fit to A as a function of time in each 

region, and the position of intersection of these lines was defined as the relative scattering contrast, 

|Aevent|, and event time at sub-frame interval temporal resolution. We note that for convenience 

|Aevent| will be referred to as scattering contrast for the remainder of this work. An example of the 

single particle tracking techniques used to quantify the scattering contrasts and event times of an 

adsorption event is illustrated in figure S8 (d) and (e). 

RESULTS 

Stage Vibrations Lead to False Positives 

The LbL films used in the model experiment analyzed here exhibited higher roughness 

compared to minimally functionalized glass coverslips used in other iSCAT experiments (AFM 

images in figures S3 and S4, Rrms,LbL = 3.2 nm, Rrms,glass = 0.8 nm, Area = 10 m x 10 m). Figure 

2 shows that when the LbL film roughness was coupled with stage movements, strong scattering 

features (red arrows, left) manifested as particle like features in ratiometric images (red arrows, 
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right). These background features had contrasts and morphologies similar to the AuNP scattering 

signals (blue arrows, right). The Haar method used to detect particles frequently identified these 

features as particles leading to false positive identifications. In this way, figure 2 highlights the 

limitations of using edge and threshold-based image analysis algorithms, such as the Haar method, 

to detect particles. 

 

Figure 2. (left) A flattened image from an iSCAT experiment of 19.2 nm AuNPs adsorbing 

to LbL films with 3.2 nm roughness. Increased substrate roughness created regions of high 

scattering contrast, indicated by the red arrows. Scattering the background dominated the image 

and particle signatures were indistinguishable from the background. (right) A ratiometric image 

from the same experiment. Stage movements caused strongly scattering roughness features to 

show up the background of the ratiometric images as indicated by the red arrows. These 

background features have similar contrast and morphologies to the scattering features from AuNPs 

as indicated by the blue arrows. All scale bars are 1 µm. 

Reducing False Positive Detections with Mask R-CNN 

CNNs have been shown to be successful in object detection and to be less sensitive to 

algorithm parameters that normally must be tuned for object detection in every experiment.21,22 To 

see if these benefits translate to iSCAT image processing, a hybrid dataset containing background 
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images from an iSCAT experiment and simulated particle PSFs was generated as described in the 

Methods section. This dataset was used to fine tune mask R-CNN network weights via transfer 

learning, giving a CNN adept at identifying and classifying common place objects (e.g., animals, 

balls) the ability to identify and classify nanoparticle PSFs in ratiometric iSCAT images. In figure 

3, we compare the performance of particle detection using mask R-CNN with the Haar method by 

analyzing the data from the same AuNP-LbL adsorption experiment using both methods.  

 

Figure 3. Histograms of scattering contrast for particles detected using the Haar method 

(pink) and mask R-CNN (blue). Scattering Contrast (|Aevent|) represents the peak contrast 

amplitude for each particle as determined by the single particle tracking algorithm.  

Figure 3 shows the distribution of scattering contrasts measured using ratiometric image 

processing and detected using the Haar method (pink) and mask R-CNN (blue). In the Mask R-

CNN histogram, the distribution is monomodal with a peak at ~0.040. The Haar histogram is 

bimodal, with a dominant peak at ~0.04 and a second lower peak at ~0.02. (Peak position and 

count were determined by eye). The bimodal nature of scattering contrasts detected by the Haar 

method demonstrates the main improvement in performance of mask R-CNN over the Haar 
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method. Despite our particles being monodisperse in size (SEM image in figure S6), the Haar 

method detects multiple peaks in ratiometric scattering contrast. The low contrast peak near 0.02 

in the Haar histogram, indicative of false positives during particle detection, is not present in the 

mask R-CNN histogram. Moreover, the breadth of the low scattering intensity peak near 0.02 in 

the Haar histogram overlaps significantly with the breadth of the central peak in the Haar histogram 

at 0.04. Because of this overlap, post-processing to remove false positive detections without 

excluding true positive detections was not feasible. In addition, Mask R-CNN’s detection 

capabilities are invariant to parameter settings such as minimum SNR (figure S11) while the Haar 

algorithm is very sensitive to the minimum SNR value, leading to improved trajectory linking 

during particle tracking. This invariance also emphasizes the ability of mask R-CNN to identity 

particles in complex backgrounds at low SNR values. And though beyond the scope this work, the 

ability to detect objects at a low SNRs would extend the capability of iSCAT experiments to detect 

weaker scattering objects such as proteins or small, low dielectric nanoparticles in complex, 

heterogenous backgrounds as has been recently shown by Dahmardeh34 et al. in a publication 

currently under review. 

Learning the Background Improves Performance with Mask R-CNN 

The ability of CNNs to detect objects has been attributed to the ability of the network to 

learn features related to the objects of interest.22,35 However, CNNs also inherently learn to classify 

features as belonging to the background. The overlap of the dominant peaks at 0.04 in both 

histograms in figure 3 suggests that detecting particles is not the main challenge, but rather the 

problem lies in discerning particles from the background - the inverse problem in object detection. 

And because there is no bimodal behavior in the mask R-CNN histogram due to false positive 

detections at low scattering contrasts, the improved performance of mask R-CNN may not stem 
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from an ability to learn a better representation of the particle signals, but instead its ability to learn 

a better representation of the background in iSCAT ratiometric images. Therefore, the inclusion of 

representative background images that capture real experimental backgrounds in datasets for 

training may be important. 

To test the hypothesis that including experimentally representative backgrounds in the 

dataset improves mask R-CNN’s performance relative to edge and threshold based methods like 

the Haar-method, an analogous dataset was generated without the inclusion of representative 

background images from ratiometric images. Figure 4 presents histograms of the scattering 

contrast detected by mask R-CNN networks trained with (blue) and without (gray) experimental 

backgrounds in the dataset images. 

 

Figure 4. Histograms of scattering contrast comparing the performance of mask R-CNN 

models trained on datasets that included (blue) and did not include (gray) experimental 

backgrounds. Scattering Contrast (|Aevent|) represents the peak contrast amplitude for each particle 

as determined by the single particle tracking algorithm. 
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Figure 4 demonstrates the impact of including representative experimental backgrounds in 

the training dataset. An increased density of false positive detections appears at scattering contrast 

values centered around 0.01 when particle detection was executed with the mask R-CNN network 

trained on a dataset that did not include information about the background. The central scattering 

peak at 0.04 was also slightly decreased in particle count when data was processed using mask R-

CNN trained on the dataset that did not contain experimental backgrounds. (Peak position and 

count were again determined by eye). This indicates that, in addition to reducing false positives, 

insufficient learning of background features may result in missed detections. Consequently, the 

improved performance of mask R-CNN is not solely a product of learning of the background 

features. Rather, it is a combination of the ability of mask R-CNN to learn the background and to 

better detect particle features in that background when the mask R-CNN is exposed to 

experimental backgrounds during training. 

DISCUSSION 

Visual Inspection of 100 Randomly Selected Images 

To quantify the performance of the Haar method against both mask R-CNN models (trained 

using datasets with and without background), 100 random images were selected from the 

experimental ratiometric images. For each image, the three object detection methods described in 

the Results section were used to detect particles in the same sampled image, and the results were 

inspected visually to assess performance by counting the number of true positive (TP), false 

positive (FP), and false negative (FN) detections. Examples of true and false positive detections 

are shown in figure 2. False negatives are particle signals that have not been detected by the 

algorithm as potential PSFs. From this, precision and recall were calculated, and the results are 

tabulated in table 2. We note that true negative detections cannot be quantified in object detection 
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tasks as there are an infinite number pixel groupings that form background features that should not 

be detected.36 Due to the low concentration of particles in solution, landing events occurred 

infrequently during our experiment, resulting in ratiometric images that contained 0-2 particles on 

average. 

Table 2. Summary of results of particle detection in 100 randomly selected iSCAT images 

analyzed by visual inspection across the three methods tested. aPrecision is defined as TP/(TP + 

FP) and bRecall is defined as TP/(TP + FN). 

 
Haar 

Mask R-CNN  

(no background) 

Mask R-CNN  

(with background) 

Total Particles (Ground Truth) 81 81 81 

True Positive Count (TP) 77 68 79 

False Positive Count (FP) 19 21 3 

False Negative Count (FN) 4 13 2 

Precisiona 80.2% 76.4% 96.3% 

Recallb 95.1% 84.0% 97.5% 
 

Table 2 summarizes the results of the visual inspection of 100 random images. The biggest 

difference in performance across the three methods is seen in the FP count where the Haar, Mask 

R-CNN (no background), and Mask R-CNN methods incorrectly identified 19, 21, and 3 

background features as particle PSFs. In general, the numbers in table 2 agree with the distributions 

of scattering contrast shown in figures 3 and 4 and support the observation that the secondary, low 

scattering contrast peaks at 0.010 represent false positives and have the biggest impact on the 

quality of PSF detection in these iSCAT images.  

In table 2, we also quantified performance using precision and recall metrics. Recall 

quantifies the ability of each method to capture all possible PSF-like features without missing 

features that represent true particle PSFs. Precision quantifies the accuracy of those detections, and 

thus quantifies the impact of FPs on the analysis. An optimal particle detection algorithm would 



23 

 

detect all features that represent particle PSFs (high recall) without incorrectly identifying 

background features as particle PSFs (high precision). The Haar method recall is 95.1% indicating 

that the Haar method detects particles well, but precision is 80.2% as many background features 

are identified as particle signals. In the mask R-CNN (no background) method, both recall (76.4 

%) and precision (84.0%) are lower than the Haar Method indicating that, without the background 

in the training datasets, the neural network suffers from falsely detecting background features as 

particle signals and from missing real particle signals when they are convoluted with the 

background. We see the best performance in Mask R-CNN (with background) where high recall 

(97.5%) and precision (96.3%) show that Mask R-CNN, when trained using a dataset that includes 

experimental backgrounds, correctly identifies particle PSFs while also correctly avoiding 

classifying background features particles. Evidently, neural networks demonstrate the potential to 

learn experimental backgrounds, and this translates to improved performance in particle detection 

in iSCAT experiments. 

False Positive Detections Negatively Impact Single Particle Tracking 

The analysis described in the Methods section utilized single particle tracking algorithms 

to link PSFs detected into trajectories based on the proximity of the PSF centroid locations in 

subsequent ratiometric images. We then used these trajectories to fit lines to the PSF amplitude 

versus time. When a feature representing an adsorbing particle in a ratiometric video was correctly 

identified, the trend of scattering contrast with time within a trajectory followed a linear decrease 

to the time of the adsorption event followed by a linear increase after the adsorption event as shown 

in the example in figure S8 (e). However, when false positive detections of the background features 

are present, particle tracking algorithms may link a true particle detection with a false positive if 

the false position is close to the true positive position from the previous image. When this happens, 
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the trends in A with time for a given trajectory can deviate from the expected decreasing-increasing 

pattern and this causes the linear fit algorithm to either fail or report an incorrect scattering contrast 

and adsorption event time. In general particle tracking experiments, such as those that measure 

diffusion, incorrect linking can skew the detected velocity.37 Thus, the improvements in particle 

detection demonstrated here could benefit all particle tracking studies, and our dataset 

creation/training methodology provides a single particle tracking strategy with improved 

reliability. 

Utility Beyond iSCAT 

The main contribution here is the methodology behind including real experimental 

background images in datasets for training CNNs via supervised machine learning. Including real 

background images in the training datasets, leads to an improvement in particle detection and, 

more importantly, a reduction in false positives when iSCAT images were analyzed with Mask R-

CNN. However, the process developed here is not limited to iSCAT experiments. If 

experimentalists can accurately capture the background in their collected images and model signals 

(e.g., PSFs) they wish to detect, they can create labeled datasets for many types of experimental 

images (e.g., atomic force microscopy, transmission and scanning electron microscopy, other 

optical microcopy methods) to aid in the development of accurate, high-throughput processing of 

their data using machine learning without the need for expensive, high-performance computing 

resources. 

A particular challenge for further expansion of the methods for creating labeled datasets 

that include experimental backgrounds described here is that it requires a researcher to have access 

to background images lacking the target objects of interest. Dataset creation in this work was 

enabled by the low (200 pM) concentration nanoparticle solutions used in our adsorption 
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experiment. The low concentration of nanoparticles slowed the adsorption process relative to the 

frame rate of iSCAT (184 fps) to the point that only 0-2 events were detected per frame, and 

resulted in multiple ratiometric images that contained no particle signatures. Furthermore, for 

characterization tools compatible with solutions such as iSCAT, a blank solution could also have 

been imaged without particles. This situation, though, is inefficient from a data versus information 

standpoint and is uncommon in other characterization methods. To implement the dataset creation 

method in experiments where all images contain objects of interest, users would need to remove 

the objects from their images to create signal free background images, which requires detecting 

them, rendering the workflow obsolete. A promising approach to extend the method of creating 

datasets with real experimental backgrounds may exist in the computer vision machine learning 

field in the form of neural style transfer.38 In neural style transfer, a neural network takes two 

images as inputs, a content image and a style reference, and blends the two together such that the 

output image contains important features in the content image “painted” in the style of the 

reference image. In our workflow, the content image would be the particle image in figure 1 and 

the reference would be sets of images from an experiment with or without particles (i.e., the 

experimental ratiometric background image in figure 1). In theory, the output from this network 

could result in a dataset containing synthetic particles in an image atop a realistic background with 

labels from the particle image serving as ground truth labels for training. 

CONCLUSIONS 

The methods presented here demonstrate a workflow for creating labeled datasets with 

representative experimental backgrounds containing simulated particle signals on background 

suppressed interferometric scattering (iSCAT) microscopy images to use in training a mask region 

based convolutional neural network (mask R-CNN) using transfer learning without extensive 
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computational resources. Results showed that the high performance of mask R-CNN in detecting 

nanoparticles adsorbing to a rough, high scattering layer-by-layer film in an iSCAT experiment 

stemmed from the ability of mask R-CNN to learn background features, thereby reducing the 

number of false positive detections. The improved analysis technique expands capability of iSCAT 

to detect scattering objects in situations where background scattering is complex. 
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Section S1: Materials 

Poly(allylamine) hydrochloride (PAH, average Mw = 50 kg/mol, 283223-5G), 35% w./w. 

solution of poly(acrylic acid) in H2O (PAA, average Mw = 250 kg/mol, 416002), sodium phosphate 

dibasic heptahydrate (Na2PO4H, S9390), Trizma hydrochloride (TRIS,  T5941), sodium hydroxide 

(NaOH, 221465), 37% w./w. hydrochloric acid (HCl, 258148), sodium dodecyl sulfate (SDS, 

436143) were purchased from Sigma Aldrich and used for buffer preparation, layer-by-layer (LbL) 

film deposition, and QCM-D flow cell cleaning. Sulfuric acid (H2SO4, 98%, A300SI-212) and 

hydrogen peroxide (H2O2, H325-500) were purchased from Fisher Scientific for piranha etching. 

All chemicals were used as purchased and all solutions were prepared using Milli-Q deionized 

water. Custom 20 nm gold nanoparticles with carboxyl polyethylene glycol (lipoic acid-NH-

PEG12-COOH) ligands in deionized water (cstock = 16.25 nM) were purchased from 

nanoComposix, diluted to 200 pM in buffer solution for experiments, and filtered to remove dust 

and contaminants from the solutions using 0.2 µm PTFE syringe filters (Sigma Aldrich, 

SLFG025NS) prior to experiments. 

Section S2: Substrate Preparation 

Layer-by-Layer Film Deposition 

No. 1.5 (22 mm x 40 mm x 150 µm, 12-544-B, Fisher Scientific) glass coverslips and 

silicon wafers were immersed in piranha etching solution (45 mL 98% H2SO4:15 mL 30% H2O2) 

at 80°C for 30 minutes. Substrates were rinsed 3 times and stored in water overnight. Immediately 

before LbL deposition, substrates were dried under streaming N2 gas. After drying, substrates were 

exposed to UV-ozone (ProCleaner Plus, BioForce NanoSciences) for 10 minutes. SiO2 coated 

quartz QCM-D crystals were purchased from Nanoscience (BL-QSX 303). Sensors were 

immersed in piranha etching solution (15 mL 98% H2SO4:5 mL 30% H2O2) at room temperature 
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for 10 seconds. Sensors were rinsed 3 times with water and dried under streaming N2 gas. 

Immediately before LbL deposition, sensors were exposed to UV-ozone for 10 minutes. 

LbL films were prepared following procedures detailed by Yoo1 et al. Poly(allylamine 

hydrochloride) (PAH) with a  molecular weight of 50 kg/mol and poly(acrylic acid) (PAA) of 

molecular weight 250 kg/mol from Sigma Aldrich served as the polycation and polyanion 

respectively. PAH was purchase in salt form and diluted in acidic water (pH = 3.0) to obtain a 0.01 

M monomer concentration solution. PAA was purchased in a 35 wt.% solution in water and diluted 

with DI water to a final monomer concentration of 0.01 M, giving a 1:1 ratio of cation to anion 

groups. After ample mixing, the pH of the PAA solution was reduced to 3.5 with a 1 M HCl 

solution, and the pH of the PAH solution was increased to 5.6 using 1 M NaOH. Multilayer films 

were assembled on cleaned silicon wafer, coverslips, and QCM-D sensors by using an automatic 

dipping method with a MICROM DS 50 slide stainer in batches of six. For one bilayer, the dipping 

procedure comprised four sequential steps of PAH deposition for 15 min, and three rinsing steps 

with water of 2 min, 2 min, and 1 min, respectively, followed by four identical steps for PAA 

deposition. In total 5.5 bilayers were assembled resulting in positively charged films with a PAH 

cap. After coating, the films were rinsed in DI water. Deposition uniformity and quality were 

confirmed by visual inspection. 
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Figure S1. (left) LbL film structure after deposition. Layers are drawn as discrete entities based 

on the alternating dip coating process described above, though it has been reported that layers 

interpenetrate and boundaries are diffuse in these systems.1 (right) Chemical structures of the 

polycation (PAH) and polyanion (PAA) used in LbL deposition. 

Layer-by-Layer Film Characterization 

The results of LbL film characterization are listed in table S1 Methods for determining values 

listed are detailed below. 

Table S1. Summary of LbL film properties. 

Bilayers Layers Cap tLbL,dry tLbL,wet ζLbL WCA RQ,LbL RQ,glass 

5.5 11 PAH 60 nm 85 nm +14.7 mV 16.4° 3.2 nm 0.8 nm 

 

Thickness (tLbL,dry and tLbL,wet) Measured via Ellipsometry 

All ellipsometry measurements were carried out using an Alpha-SE Ellipsometer from J.A. 

Woolam. Dry thickness (tLbL,dry) measurements of LbL films were fit to a Cauchy model where the 
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refractive index was allowed to vary between 1.5 and 1.6, with an ambient refractive index of 1 

representing air.  

 

Figure S2. (a) Liquid cell for wet ellipsometry. (b) and (c) Snapshots showing configuration of 

liquid cell during measurements. 

For wet ellipsometry thickness (tLbL,wet) measurements, a homemade, 3D-printed liquid cell 

(figure S2)  was used where the incidence angle of light on the cell was designed to match the 70° 

incidence angle of the device. Dry thickness was measured in the liquid cell, followed by filling 

of the cell with 1 mM Na2PO4H buffer at a pH of 7.0. Wet thickness was measured as a function 

of swelling time, reaching equilibrium after 1-2 minutes of buffer exposure. Raw data was fit to a 

Cauchy model where thickness and refractive index was allowed to vary between 1.4 and 1.5, with 

an ambient refractive index for water of 1.33. Results reported represent an average of three 

measurements after 10 minutes of buffer exposure. 

Zeta Potential (ζLbL) 

Following procedures detailed in literature,2 the zeta potential of flat surface samples was 

measured with a DelsaNano-C (Beckmann Coulter) instrument using the flat surface cell. The 

electrophoretic mobility of 300 nm SiO2 probe particles (NanoComposix, SISN300-25M) between 

the sample and cell surfaces was measured using electrophoretic light scattering. The zeta potential 

in volts (ζ) was calculated using the Smoluchowski Eqaution (equation S1): 

𝜁𝐿𝑏𝐿 =
𝑘𝜋𝜂𝑈

𝜀
       (S1) 
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where k is the Smoluchowski coefficient, η is the viscosity of the solution at 25°C, ε is the dielectric 

constant of the solution at 25°C, and U is the electrophoretic mobility of probe particles. Each 

measurement was the average of 70 individual measurements performed at various positions (10 

measurements each at 7 positions). All measurements were done in at least triplicate. Solution pH 

was measured with a dual pH/conductivity meter (Hanna Edge Dedicated pH/ORP meter). 

Solutions of 1 mM TRIS solutions with probe particles (140 μL, base frequency ∼120 Hz) were 

prepared. Solution pH was regulated by titration with 1 M NaOH and 1 M HCl. 

Water Contact Angle 

Sessile drop water contact angles were measured using a home built static contact angle 

apparatus. To minimize swelling during measurements and capture wetting properties of films in 

experimental conditions, films were immersed in buffer solution (1 mM Na2PO4H buffer at a pH 

of 7.0) for 10 minutes and then dried under a stream of N2 immediately prior to measurements. 

Contact angle profiles were measured using the LB-ADSA plugin in ImageJ.3 Water contact angle 

(WCA) results represent the average of at least 3 independent measurements at different regions 

on the same sample. 

Roughness (Rrms,LbL and Rrms,glass) Measurements Using AFM 

Surface profile measurements were carried out using an Asylum MFP-3D AFM with 

tapping mode tips (SCOUT 350 RAI, radius of curvature < 10 nm, NuNano). Wet measurements 

were conducted in tapping mode in an open fluid cell after LbL samples were exposed to 1 mM 

Na2PO4H buffer at a pH of 7.0 for 10 minutes to ensure equilibrium swelling conditions were 

reached, as confirmed via wet ellipsometry measurements. All AFM images were processed (plane 

fitting followed by row alignment via median of differences) using Gwyddion software. 

Roughness was also calculated using Gwyddion software. Results are shown in figure S3. 
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Figure S3. (left) A wet AFM topography image of a LbL film in 1 mM Na2PO4H  buffer at a pH 

of 7.0. Scale bar is 1 µm. (right) An isometric 3D projection of the AFM image show to the left 

highlighting the rough nature of LbL films. 

As a baseline, AFM topography measurements of neat coverslips (after piranha etching 

and UVO) were also collect were also collected and are shown in figure S4.  

 

Figure S4. (left) An AFM topography image of a glass coverslip. Scale bar is 1 µm. (right) An 

isometric 3D projection of the AFM image left highlighting the flat nature of the surface relative 

to LbL films. 

Section S3: Interferometric Scattering Microscopy Flow Experiments 

Custom CoverWell perfusion chambers with adhesive added by the manufacturer were 

used as purchased (32 mm x 3 mm x 0.75 mm, Grace Bio Labs, dimensions in figure S5). LbL 

functionalized coverslips were attached to the chambers via the adhesive, forming leak-free, 
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reproducible geometry flow cells for iSCAT experiments. Polyethylene microfluidic tubing 

(BB61395, Scientific Commodities) connected the chambers and a microfluidic pump (Harvard 

PhD 2000) using press fit tubing connectors (460003, Grace Bio Labs) and a 20 mL syringe. To 

Facilitating long experiments (up to 10 hours) and reduce vibrations from fluid flow, the flow rate 

in the chamber was set and maintained at a low value measured to be 10 µL/min. 

Experiments were carried out as follows. First, flow cell chambers were assembled on the 

iSCAT stage as shown in figure S5. 

 

Figure S5. (a) An iSCAT flow cell mounted on the piezoelectric stage. The microfluidic pump 

generated negative pressure in the flow lines, pulling solution from the reservoir (a 50 mL 

centrifuge tube) through the flow cell at a constant rate. (b) A close-up image of the flow cell over 
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the objective lens shows the press fit tubing connectors and tubing at the inlet and outlet. (c) 

Dimensions of the flow cell. All dimensions are mm.  

Next, sodium phosphate buffer solution was pumped from the reservoir across the objective 

and the time of travel of the liquid to the objective (tto obj) was noted. LbL films were allowed to 

reach equilibrium in the flow cell in buffer for 10 minutes (equilibration time was determined by 

wet ellipsometry). 66 seconds of control iSCAT videos were taken of LbL films after swelling in 

buffer solution with no particles. Next, the reservoir solution was switched to a buffer solution 

containing gold nanoparticles at a 200 pM concentration. The pump was started and video capture 

was initiated after a period equal to tto obj,  the time when AuNP solution first reached the objective. 

66 seconds of iSCAT videos were then collected every 30 minutes to analyze adsorption rates at 

varying levels of particle surface coverage. 
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Section S4: Gold Nanoparticles 

The solution and particle properties of gold nanoparticles (AuNPs) with lipoic acid-PEG12-

COOH ligands in 1 mM Na2PO4H buffer at a pH of 7.0 are listed in table S2. Methods for 

determining values listed are detailed below. 

Table S2. Summary of AuNP solution conditions and properties. 

[Na2PO4H] [Au NP] pH dSEM dH,DLS ζNP 𝜿𝒅𝒆𝒃𝒚𝒆
−𝟏  

1 mM 200 pM 7.0 ± 0.1 18.5 ± 2.2 nm 20.1 ± 4.9 nm -58 mV 5.56 nm 
 

Solution Preparation 

To stabilize pH during experiments, 1 mM buffer solutions of Na2PO4H in water were 

prepared. 1 M HCL was added to titrate solutions to a pH of 7.0. pH was verified using a Hanna 

Edge Dedicated pH/ORP meter. 0.256 mL of 16.25 nM AuNP stock solutions were added to 

19.744 mL of buffer solution to yield 20 mL of 200 pM AuNP solutions in 1 mM Na2PO4H at a 

pH of 7.0 ± 0.1. pH was tested after addition of NPs, and no changes to pH were noted. All 

solutions were filtered to remove dust and contaminants from the solutions using 0.2 µm PTFE 

syringe filters prior to experiments. 

Zeta Potential (ζNP) 

Zeta potential was measured by the supplier (NanoComposix) at similar experimental 

conditions. 

Measuring Hard Sphere Diameter (dSEM) with SEM 

AuNPs were deposited on a LbL coated QCM-D sensor during a separate adsorption 

experiment. Sensors were removed from the flow cell and immediately dried under a stream of N2. 

Sensors were then mounted on measurement scaffolds for a FEI Quanta 600 ESEM and imaged at 

a relative humidity of 0.38 bar of water vapor pressure and 30.00 kV acceleration in the secondary 

electron (SE) imaging mode at 0° tilt, providing a magnification of 208,203. Images were 



44 

 

segmented to determine particle size using a watershed transformation via custom python scripts 

available in the skimage package.4 A representative SEM image and histogram describing the size 

of the nanoparticles are shown in figure S6.  

 

 

Figure S6. (a) AuNP particle and ligand chemistry. (b) SEM image of the same AuNPs imaged in 

the iSCAT experiment. Scale bar is 100 nm. (c) Particle size distribution histogram obtained by 

measuring the segmented region properties of particles in the SEM image (b). 

Measuring Hydrodynamic Diameter with DLS (dH,DLS) 

For DLS measurements, 200 pM solutions of AuNPs in 1 mM Na2PO4H  buffer at a pH 

of 7.0 were prepared and filtered. Malvern Zetasizer Nano S was used to measure the 

hydrodynamic diameter of particles. Temperature was maintained at 21.0º C and 5 independent 
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measurements of 70 seconds were collected with 30 second intervals between measurements. 

Number density distributions of particle size were determined using gold properties (n = 0.2, k = 

3.320). Particle hydrodynamic radius was determined to be 20.1 ± 4.9 nm. 

Section S5: Interferometric Scattering Microscopy 

Interferometric Scattering Microscopy Instrumentation 

An inverted iSCAT microscope configuration used for experiments was constructed 

following previously published literature5,6 (See figure 3 in ref. S5 for schematic) and key details 

are described below. The collimated, coherent output of a fiber coupled laser (Coherent, OBIS 

488-120 LS FP) at a wavelength of 488 nm forms the beam used for all imaging. The beam was 

passed through an orthogonal pair of acousto-optical deflectors (AODs, Gooch & Housego) and 

optically steered through a polarizing beam splitter (PBS) and a quarter-wave-plate (QWP) to the 

back focal plane of an oil immersion microscope objective (Nikon Apo TIRF, 1.49 NA, 100x). 

This resulted in a weakly focused 1-2 µm diameter beam rapidly scanning across the sample to 

generate an image. AODs were controlled by custom LabVIEW software developed in the 

Goldman Lab to sweep the set field of view within one exposure for each frame. Reflections from 

the sample-solution interface and backscattered light from the nanoparticles were collected by the 

objective. The reflected and scattered light was separated from the incident light by the PBS and 

QWP. Lenses and mirrors steered the reflected light to a CMOS detector (PhotonFocus AG MV1-

D1024E-160). Images at the detector were collected using custom LabVIEW software provided 

from ref. S5 and modified to store the timestamp of video collection. All optical components sat 

on an active optical table to minimize vibrations. Lastly, the objective focus and stage position 

were controlled in three dimensions coarsely using stepper motors (OptoSigma SGSP-25ACTR-

BO) and finely with a piezoelectric stage (PI USA, P-545.3C7). Stepper motors and the 
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piezoelectric stage were operated by a custom LabVIEW program previously developed by the 

Goldman Lab. The pixel size in our build was measured using a microscope stage micrometer to 

be 50 nm/pixel (~200x magnification). 

Interferometric Scattering Microscopy Imaging 

256 x 256 pixel images were collected resulting in a 12.8 µm x 12.8 µm field of view. The 

exposure time was set to 5.44 ms resulting in a frame rate of 184 fps including readout time. Laser 

intensity was set at the beginning of the experiment to achieve a maximum reflected intensity on 

the detector of 3000 (12-bit camera digitizer, 4096 intensity resolution). The focal plane was set 

using piezoelectric motors to maximize the sharpness (determined by eye during data collection) 

of background features in images. Data was collected in 1000 frame videos. Every 30 minutes, the 

focal plane was reset to account for drift. After the focal plane was reset, a static background image 

was collected by laterally translating the sample in a 2D Lissajous pattern using the piezoelectric 

motors and calculated as the pixelwise median of 100 images collected during that movement.5 12 

videos (~ 66 seconds of experiment time) were collected using custom python scripts. This was 

repeated throughout the course of a 4 hour experiment. The ambient temperature of the room was 

recorded throughout the experiment and remained constant at 21 ± 1°C.  
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Section S6: Image Flattening 

 

Figure S7. Raw and flattened iSCAT images of an AuNPs (19.2 nm) adsorbing onto an 85 nm LbL 

film (Rrms = 3.2 nm). (Left) A raw image of a LbL film on a glass coverslip in buffer solution. 

(Right) A flattened image produced by dividing the raw image by a static background image 

followed division by a median filtered image (kernel = 21). Note that in raw and flattened images, 

no particles can be seen. The rough LbL films scatter with stronger intensity (~0.40 relative to the 

background mean of 1) than the AuNPs (~0.04). All scale bars are 1 µm.  
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Section S7: Ratiometric Processing and Single Particle Tracking to Quantify Adsorption 

Event Time and Scattering Contrast 

 

Figure S8. Ratiometric processing of a 19.2 nm AuNP adsorbing to an 85 nm LbL film 

(Rrms = 3.2 nm). (a) An illustration of ratiometric processing. The black boxes show the time-

binning windows of size of Nratio = 5. Blue vertical lines correspond to flattened frames prior to 
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the adsorption event (indicated by the purple triangle) and red vertical lines correspond to flattened 

frames after the event occurred. The black arrow shows increasing time. (b) Flattened iSCAT 

images before (blue border) and after (red border) the adsorption event. No particles are visible in 

the flattened images. (c) An illustration of the ratiometric processing approach. Above each image, 

the purple triangle marks the adsorption event. Flattened images in each box are averaged in the 

two boxes (left and right), normalized by their means, and the right average is divided by the left. 

As the midpoint between the boxes increases in time, the PSF from the adsorption event increases 

and decreases in contrast (darkness). (d) Corresponding cross-sections along the x direction 

through the y-centroid of the PSF for PSFs numbered in the ratiometric images. (e) Amplitudes 

(A) obtained from the 2D-Gaussian fits detected by the Haar or Mask R-CNN methods are linked 

into a trajectory. Numbers correspond to cross-sections in (d) and the PSF in (c). The dashed black 

line shows the fits of A versus time. The intersection of these lines (purple arrow) determines the 

scattering contrast (|Aevent|) and binding time of the adsorption event. All scale bars are 1 µm. 

Section S8: Mask R-CNN Training 

After each epoch in the training process, weights were saved, the loss was calculated, and 

the mean average precision (AP; equations S2-S4) over all images in the training and validation 

sets was calculated.  

𝐴𝑃 =
1

11
 ∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑟𝑒𝑐𝑎𝑙𝑙)𝑟𝑒𝑐𝑎𝑙𝑙

𝑟𝑒𝑐𝑎𝑙𝑙 ∈ {0,0.1,…,1}        (S2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
       (S3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
       (S4) 

The precision and recall are analyzed at various classification prediction confidence thresholds. In 

iSCAT image analysis, a true positive was a particle detected and classified correctly as a dark or 

bright particle. A false positive was region of pixels pertaining to the background identified 
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incorrectly as being a positive (misclassifications errors, i.e., labeling a dark particle bright or vice 

versa, were not observed). The loss curve for the training process on a dataset containing 

representative backgrounds is shown in figure S9. 

 

Figure S9. (left) Loss during training and validation evaluated using trained weights after each 

epoch. Monotonic decay of the loss function during training and validation indicated the network 

continued learning through the 200th epoch. The overlap of validation and training loss show no 

signs of overfitting. (right) Average precision throughout training and validation calculated after 

each epoch. Saturation occurs after ~50 epochs, but performance does not degrade after continued 

training. 
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The inputs and output of the inference of a trained mask R-CNN network on iSCAT dataset 

images are shown in figure S10. 

 

Figure S10. (a) A dataset image containing a ratiometric iSCAT background with synthetic 

particles. The image has been rescaled so that intensity varies from 0 to 1 and converted to an RGB 

image to match mask R-CNN input formatting. (b) The ground truth mask, bounding boxes, and 

classes for particles in image (a). (c) The output of predictions (mask, bounding box, class) of the 

trained mask R-CNN network when analyzing the image in (a). Numbers right of the predicted 

class indicate the confidence level of the classification. 

Section S9: Effect of SNRmin on Particle Detection During Ratiometric Imaging 

To illustrate the performance of each method in object detection and subsequent particle 

tracking, candidate detections with an 𝑆𝑁𝑅𝑚𝑖𝑛 (defined in equation S5) less than a value of 1, 2, 

or 3 or are discarded prior to trajectory linking in ratiometric analysis. 

𝑆𝑁𝑅 =
|𝐴|

𝜎𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
       (S5) 

A is the amplitude from a 2D-Gaussian PSF fit of a detected particle, and background is the standard 

deviation of all background pixels in the image in which the proposed particle is detected. The 

sensitivity of the Haar and mask R-CNN methods in object detection to the setting of SNRmin is 

highlighted in figure S11. 
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Figure S11. Histograms of ratiometric scattering contrast for varying values of SNRmin. A low 

contrast peak in Haar detections (pink) at all values of SNRmin is indicative of false positives with 

decreasing prominence as SNRmin increases. False positive detections also negatively impact 

linking of particle trajectories, resulting in a reduced number of correctly identified particle 

scattering contrasts in the central peak. Mask R-CNN detections (blue), showing a single peak, are 

invariant to this parameter highlighting its robust performance in particle detection at all SNRmin 

values. 

Figure S11 illustrates two key additional concepts, First, the high density of false positive 

detections present in the Haar histograms have a negative impact on particle tracking linking 

algorithms. Incorrect linking of particles and background features into trajectories leads to failed 

fits during ratiometric analysis and an underestimation of true positives in the final analysis. Errors 

in particle tracking are also evident in more failed linear fits in ratiometric analysis as a function 

of frame or time (Haar = 1642 failed fits, mask R-CNN = 14 failed fits). Second, the Haar 
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histograms indicate the algorithm is very sensitive to the filtering parameter SNRmin while the mask 

R-CNN method is invariant to this parameter. This invariance emphasizes the ability of mask R-

CNN to identity particles in a complex background at low signal to noise ratios. 
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