

Performance of hydrophobic physical solvents for pre-combustion CO₂ capture at a pilot scale coal gasification facility

Kathryn H. Smith ^a, Husain E. Ashkanani ^d, Robert L. Thompson ^a, Jeffrey T. Culp ^a, Lei Hong ^a, Mike Swanson ^b, Joshua Stanislowski ^b, Wei Shi ^a, Badie I. Morsi ^{a,c}, Kevin Resnik ^a, David P. Hopkinson ^a, Nicholas S. Siefert ^{a,*}

^a U.S. Department of Energy, National Energy Technology Laboratory, P.O. Box 10940, Pittsburgh, PA 15236, USA

^b Energy & Environmental Research Center, University of North Dakota, Grand Forks, ND, USA

^c Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA

^d Chemical Engineering Department, Kuwait University, P.O. Box 5969, 13060, Kuwait

* Corresponding Author: Nicholas.Siefert@netl.doe.gov

Abstract

21 Here, we present the first pilot plant data for hydrophobic physical solvents for CO₂ and H₂S
22 removal from coal-derived H₂-rich syngas. Four physical solvents were tested under pre-
23 combustion CO₂ capture conditions at bench scale and pilot plant scale: one baseline hydrophilic
24 solvent and three hydrophobic solvents. The solvents were: (1) polyethylene-glycol-dimethyl ether
25 (PEGDME), a hydrophilic solvent analog for the commercial process Selexol, (2) tributyl-
26 phosphate (TBP), a commercially available hydrophobic solvent, (3) polyethylene glycol-
27 poly(dimethylsiloxane) (PEG-PDMS-3), and (4) diethyl sebacate (CASSH-1), a novel,
28 computationally screened hydrophobic solvent developed by the National Energy Technology
29 Laboratory (NETL). All solvents were studied under pure gas (CO₂/N₂/H₂/CH₄) equilibrium
30 conditions at NETL followed by pilot plant testing with syngas at the University of North Dakota
31 Energy & Environmental Research Center (UND EERC). Long term performance of CASSH-1

32 and PEDGME was then assessed with results compared to process simulation predictions. Within
33 experimental uncertainties, all solvents showed comparable CO₂ absorption performance at above
34 room temperature operation while the hydrophobic solvents had limited water uptake and low
35 vapor pressure, which alleviates concerns related to corrosion, water absorption, and solvent loss
36 to evaporation. These results indicate low viscosity, low vapor pressure hydrophobic solvents are
37 a promising option for lower cost CO₂ capture from high pressure syngas applications.

38

39 **Keywords:** pre-combustion, CO₂ capture, carbon dioxide, CO₂, hydrogen, H₂, pilot plant, gas
40 absorption, physical solvent, hydrophobic solvent, vapor liquid equilibrium, process simulation

41

42 1 Introduction

43 Pre-combustion CO₂ capture processes are becoming increasingly important for the rapidly
44 developing clean or blue hydrogen industry and have potential to significantly reduce greenhouse
45 gas emissions in power generation, transportation, and industrial sectors (Global CCS Institute,
46 2021). Clean or ‘blue hydrogen’ refers to hydrogen produced from fossil fuels, including steam
47 methane reforming (SMR) from natural gas or gasification from a solid fuel like coal, with CO₂
48 capture and storage (Global CCS Institute, 2021; Lau et al., 2021). Due to the high partial pressure
49 of carbon dioxide (CO₂) in these applications, pre-combustion CO₂ capture can be achieved
50 through inexpensive physical solvents where acid gases (CO₂ and H₂S) dissolve into the solvent
51 while the desired fuel product (H₂) and potential corrosion enabler (H₂O) can be kept out of the
52 solvent by choosing optimal solvent functional groups. An example of where pre-combustion CO₂
53 capture could be applied is at an integrated gasification combined cycle (IGCC) power plant which
54 utilizes heat, steam and/or oxygen under pressure in a gasifier to convert solid fuels like coal into
55 a synthetic gas (syngas) that can be used to generate power. The syngas exiting the gasifier is at
56 high pressure and contains mainly carbon monoxide (CO) and hydrogen (H₂) along with other
57 components like CO₂ and methane (CH₄). For IGCC with pre-combustion CO₂ capture, a water
58 gas shift (WGS) reactor is typically used to convert CO in the syngas into CO₂ and more H₂ through
59 reaction with H₂O. The syngas exiting the WGS reactor now has a high partial pressure of CO₂
60 which makes physical solvent absorption an ideal option for CO₂ capture from the H₂ rich syngas.

61 Solvent absorption processes have been used for many years to separate acid gases like
62 H₂S and CO₂ from high pressure fuel gas streams (Kohl and Nielsen, 1997). Some of these

63 processes operate with chemical solvents like MDEA (Moioli et al., 2014) or potassium carbonate
64 (Smith et al., 2012), but in general, non-reacting physical solvents are thought to be the most
65 economical option for bulk acid gas removal from high pressure syngas streams (Mumford et al.,
66 2015; Smith et al., 2022), particularly if the goal is to desorb the acid gases at high pressure rather
67 than vent to the atmosphere. A number of commercial physical solvent gas absorption processes
68 are available including the Selexol (Honeywell UOP) and Rectisol (Air Liquide) processes which
69 can both remove H₂S and CO₂ (Kohl and Nielsen, 1997). The Rectisol process uses methanol as
70 its solvent and operates at an extremely low absorption temperature (around -50°C) which requires
71 an energy intensive refrigeration system. The main advantage of the Rectisol process is that it can
72 remove all undesirable components including H₂S, COS and CO₂ in the same process, and in
73 particular, it can remove H₂S to very low levels (Koytsoumpa et al., 2015). The Selexol process
74 uses a solvent containing a mixture of dimethyl ethers of polyethylene glycol and has several
75 benefits including high CO₂/H₂ selectivity, low solvent cost, and low vapor pressure compared
76 with methanol. However, due to their operation below room temperature, both the Selexol and the
77 Rectisol processes have the disadvantages of significant cooling duties and the inability to
78 efficiently make use of waste heat for operation above room temperature. If solvent regeneration
79 were to occur at higher pressure using a temperature swing process (rather than traditional pressure
80 swing), then waste heat from the plant could be used to efficiently regenerate the solvent while
81 also producing a higher-pressure CO₂ product stream suitable for transportation in CO₂ pipelines.

82 Most commercial physical solvent absorption processes, like Selexol and Rectisol, use
83 hydrophilic solvents that were originally developed for the treatment of natural gas streams at
84 ambient temperatures where acid gases (like CO₂ and H₂S) and water vapor both need to be
85 removed prior to injection into a natural gas pipeline. For acid gas removal (AGR) at room
86 temperature or below room temperature prior to entry into a pipeline, hydrophilic solvents can be
87 used to meet natural gas pipeline specifications while minimizing absorption of fuel into the
88 solvent. However, in most cases, the absorbed gases are flared and vented. Before greenhouse gas
89 (GHG) credits/taxes, there was no incentive to regenerate CO₂ at high pressure. Now with GHG
90 credits/taxes through the global market, new solvents and solvent processes are needed to capture
91 CO₂ and efficiently regenerate the CO₂ at high partial pressure to minimize compression costs.

92 For pre-combustion CO₂ capture at an IGCC plant, syngas enters the absorption process at
93 a much higher temperature compared to AGR from natural gas processing, resulting in the need

94 for significant syngas cooling if traditional hydrophilic physical solvent processes are to be used
95 for CO₂ removal. If the pre-combustion CO₂ capture solvent absorption process could be operated
96 at higher temperature and pressure, the overall thermal efficiency of the power plant would be
97 improved. In addition to issues with solvent water miscibility, other challenges associated with
98 commercially available hydrophilic physical solvents for pre-combustion CO₂ capture include
99 high vapor pressure, high viscosity after absorbing water from the gas stream, high corrosion
100 potential and the need for solvent regeneration by pressure reduction resulting in a low pressure
101 CO₂ product stream that will require further costly compression before geological storage or use
102 in other applications like enhanced oil recovery (EOR). In addition, water vapor must be separated
103 from the CO₂ gas stream after solvent regeneration, which leads to an additional cost for CO₂
104 capture. If the solvent regeneration process were to occur at higher pressures using waste or low-
105 grade heat, further energy and cost advantages would be realized (Li et al., 2015; Siefert and
106 Hopkinson, 2018; Siefert et al., 2016a; Siefert et al., 2016b).

107 It was with these challenges that hydrophobic physical solvents were proposed for CO₂
108 capture from high pressure syngas streams (Enick et al., 2013; Shi et al., 2016; Shi et al., 2015;
109 Siefert et al., 2016b; Smith et al., 2022; Thompson et al., 2019). Ideal properties of a hydrophobic
110 physical solvent include high thermal stability, low corrosion, low cost, high CO₂ absorption
111 capacity, low H₂ uptake, low vapor pressure, low viscosity, non-foaming and non-toxic. A number
112 of hydrophobic physical solvents have been investigated at bench scale for CO₂ absorption. Some
113 of these solvents, e.g. polydimethylsiloxane (PDMS), have advantages such as non-absorption of
114 water but showed low CO₂/H₂ selectivity (Enick et al., 2013; Shi et al., 2016). Other solvents were
115 found to have properties that would limit industrial application, such as poly(propylene glycol) di-
116 methyl ether (PPGDME) which formed a gel in the presence of water and polyethylene glycol
117 (PEG)-siloxane solvent (PEG-PDMS-1) which suffered from foaming (Thompson et al., 2019).
118 Further R&D on the PEG-siloxane based solvents led to the development of polyethylene glycol-
119 poly(dimethylsiloxane) (PEG-PDMS-3) which avoided foaming issues while still providing high
120 CO₂/H₂ selectivity at above room temperature conditions at bench scale (CO₂/H₂ selectivity of ~70
121 at 25°C and ~60 at 40°C) (Siefert and Hopkinson, 2018). Subsequently, a computational screening
122 study by NETL showed that the hydrophobic solvent diethyl sebacate, termed CASSH-1
123 (Computationally Assisted Screened Solvent Hydrophobic-1,) had absorption capacity and
124 selectivity comparable to Selexol and PEG-PDMS-3, but with no foaming issues and very low

125 vapor pressure (Shi et al., 2018; Shi et al., 2021). Although these computational screening and
126 bench scale experimental studies using hydrophobic physical solvents have shown promising CO₂
127 absorption performance, none of these solvents have been tested under process conditions with
128 real syngas to fully assess their potential for CO₂ capture at industrial scale.

129 To date in the engineering literature, there has been some, but limited, pilot plant testing
130 of pre-combustion CO₂ capture from real syngas using solvent absorption processes. The
131 Estasolvan process, which uses the solvent tributyl phosphate (TBP), has not been applied
132 commercially but has shown potential as a physical solvent under pilot plant conditions for H₂S
133 absorption (Bucklin and Schendel, 1984; Franckwiak and Nitschke, 1970; Newman, 1985). Pre-
134 combustion CO₂ capture from a research scale coal-based gasification process has been
135 demonstrated in Australia using a pilot plant with the chemical solvent potassium carbonate, which
136 showed that minor syngas components can impact solvent physical properties and subsequently
137 absorption column performance (Smith et al., 2009; Smith et al., 2012). The United States
138 Department of Energy (US DOE) established the National Carbon Capture Center (NCCC) to test
139 emerging CO₂ capture technologies including pre-combustion capture using a coal based IGCC
140 process (Morton et al., 2013). Gasification and pre-combustion capture processes were tested from
141 2011 until 2017 after which the facility exclusively tested under post-combustion conditions using
142 both coal and natural gas boilers. During the pre-combustion testing period, well-known chemical
143 and physical solvents such as ammonia, potassium carbonate, potassium proline, alkylimidazoles
144 and dimethyl ether of polyethylene glycol (PEGDME) were tested for CO₂ absorption
145 characteristics, co-absorption of H₂S, regeneration characteristics and performance in the presence
146 of water (Nagar et al., 2017; Wu, 2022). A pre-combustion CO₂ capture pilot plant at the
147 Buggenum IGCC in The Netherlands has also been used to test the performance of the hydrophilic
148 physical solvent PEGDME (Damen et al., 2011; Trapp et al., 2015a; Trapp et al., 2015b). To date,
149 there have not been any known industrial demonstrations or pilot plant trials using hydrophobic
150 physical solvents for pre-combustion CO₂ capture from coal derived syngas.

151 Therefore, the objectives of this study were to: (1) measure the physical properties and vapor
152 liquid equilibrium (VLE) data of selected hydrophobic physical solvents using bench scale
153 equipment with pure gas; (2) extend testing of these hydrophobic physical solvents to short and
154 long term pilot plant testing using coal derived syngas, (3) to compare hydrophobic solvent
155 performance against a baseline hydrophilic physical solvent, and finally (4) regress bench-scale

156 pure gas VLE data into process simulations to predict the pilot plant performance. The pure gas
157 VLE conditions for the selected physical solvents were measured with CO₂, H₂, N₂ and CH₄. Pilot
158 plant testing was then performed with the commercially-available hydrophilic physical solvent
159 PEGDME (Selexol surrogate) to establish a mixed-gas process performance baseline which was
160 followed by testing of three hydrophobic physical solvents: CASSH-1, PEG-PDMS-3 and TBP.
161 All four solvents were initially tested over a range of operating conditions (varying temperature
162 and solvent flow rates) using coal derived syngas produced from the pilot scale IGCC power plant
163 at University of North Dakota Energy & Environmental Research Center (UND EERC). This was
164 followed by an assessment of longer-term absorption performance in the pilot plant using the
165 solvents CASSH-1 and PEGDME at constant operating conditions. Finally, the performance data
166 obtained from the longer-term pilot plant operation were used with VLE data for development and
167 validation of a process simulation.

168 **2 Materials & Methods**

169 **2.1 Physical solvents – PEGDME, CASSH-1, PEG-PDMS-3, TBP.**

170 Four physical solvents have been tested for CO₂ removal from syngas operated under pre-
171 combustion CO₂ capture conditions. A surrogate to the commercially available hydrophilic solvent
172 used in the Selexol process, called PEGDME, was used to develop a performance baseline
173 followed by testing of the hydrophobic solvents: CASSH-1, PEG-PDMS-3 and TBP (Shi et al.,
174 2018; Thompson et al., 2019). PEGDME was obtained from Coastal Chemical Co.; PEG-PDMS-
175 3 was manufactured by Gelest Inc.; TBP was purchased from ThermoFisher Scientific; and
176 CASSH-1 was purchased from Sigma Aldrich.

177 The first pilot plant trial (Trial #1) was conducted to screen the absorption performance of
178 the four solvents listed in Table 1. Following this screening study, PEGDME and CASSH-1 were
179 tested continuously for 5 days each to assess longer term solvent performance (Trial #2).

180
181
182
183
184
185

186 **Table 1. Physical properties of solvents tested in the pilot plant trials in this study (Shi et al.,**
 187 **2019; Shi et al., 2021; Smith et al., 2022)**

Solvent	PEGDME	CASSH-1	PEG-PDMS-3	TBP
Molecular Weight (g mol⁻¹)	280	258	620	266
Viscosity @ 25 °C (cP)	5.8	5.1	12.2	2.9
Density @ 25 °C (kg m⁻³)	1030	960	987	979
Vapor pressure @ 25°C (Pa)	0.1	0.07	<0.1	0.15

188

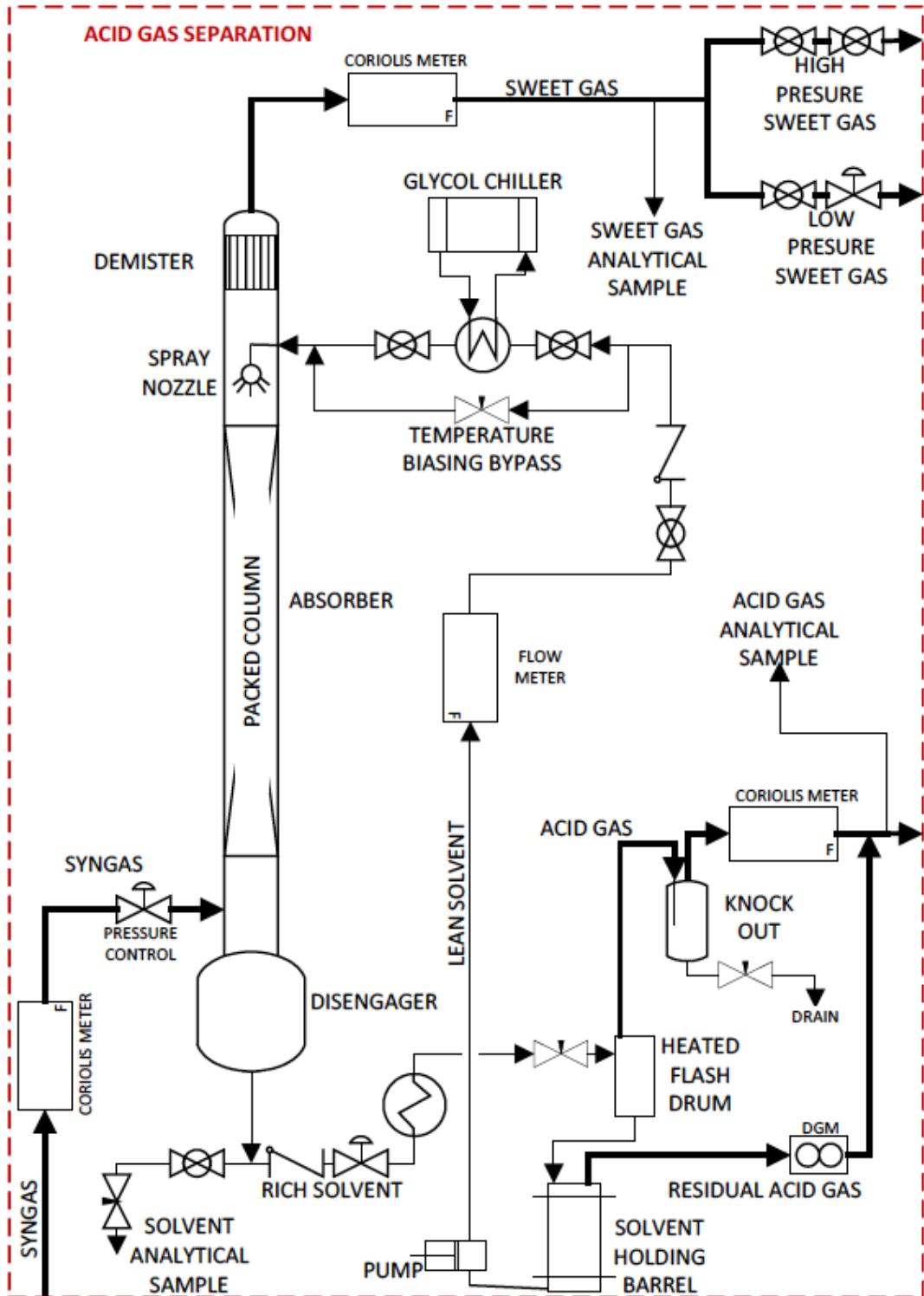
189 **2.2 Bench Scale VLE Measurements**

190 Two gravimetric gas adsorption systems (Hiden IGA (Intelligent Gravimetric Analysis) and TA
 191 Instruments Isosorp) and a continuous stirred tank reactor (CSTR; Autoclave Engineering) were
 192 used to measure the VLE data for a range of gases using the four dry physical solvents listed in
 193 Table 1. Solvents were dried by heat and vacuum before adding gases to the apparatus. The gases
 194 were purchased from Butler Gas Products Company and the purities of CO₂, H₂, N₂ and CH₄ were
 195 all 99.99%. There was no further treatment of the gases or the solvents before use. The VLE data
 196 were measured at multiple pressures up to 3 MPa and at temperatures including 10, 25, 40 and
 197 55°C. Further detail on the specifications and operating procedures for the CSTR has been
 198 described by Siefert et al. (2016b) and further information on the IGA system has been provided
 199 by Thompson et al. (2019). The operating procedures for the gravimetric TA Instruments Isosorp
 200 gas absorption system are similar to those used for the gravimetric Hiden IGA system as both
 201 require buoyancy compensations to account for the effect of gas density on the sample weight. The
 202 Isosorp system calculates the gas density in real time using an internal calibrated weight. The
 203 sample weight is then corrected for buoyancy forces using the experimental gas density determined
 204 from the calibrated weight readings at each pressure step of the isotherm. Additional buoyancy
 205 corrections for balance components were determined using the volumes supplied by the instrument
 206 vendor. The sample densities were measured independently using a Rudolph Research Analytical

207 DDM 2911 automated density meter. For CO₂ absorption calculations on both the IGA and Isosorp
208 VLE systems, an additional buoyancy correction was applied to account for an estimated volume
209 expansion of 0.0433 cm³/mmol CO₂ absorbed in the solvent. The sample size used in the Isosorp
210 system ranges from 0.5 – 1.5g whereas the samples sizes used for the IGA tests were in the range
211 of 0.04-0.1g. The larger sample size and higher pressure range for the Isosorp tests provided a
212 more significant weight change for weakly absorbing gases such as H₂, N₂, and CH₄ and was the
213 gravimetric instrument of choice for these measurements. Absorption measurements on the IGA
214 apparatus were limited to a pressure of 1.8 MPa. The Isosorp measurements were conducted to
215 pressures up to 5 MPa. Experimental absorption isotherms were smoothed using either linear or
216 exponential fits as appropriate. Absorbed amounts of gas were then calculated at regular pressure
217 intervals for tabulation and comparison between solvents. The amount of gas absorbed into the
218 solvent from each VLE apparatus was used to determine the gas solubility and selectivity, at
219 specific temperature and gas partial pressure, as shown in Equations (1) and (2) below.

$$\text{Gas solubility}(\text{mol} \cdot \text{L}^{-1}) = \frac{\text{gas absorbed into solvent (mol)}}{\text{Lean solvent volume (L)}} \quad (1)$$

$$\text{Selectivity A/B} = \frac{\text{Gas solubility}_{\text{gas A}}(\text{mol} \cdot \text{L}^{-1})}{\text{Gas solubility}_{\text{gas B}}(\text{mol} \cdot \text{L}^{-1})} \quad (2)$$


220 2.3 Pilot Plant Specifications and Operating Conditions

221 Two pilot plant trials were conducted at the UND EERC. A fluidized bed gasifier was operated in
222 oxygen-blown mode at a pressure close to 5 MPa using a well characterized lignite from the Center
223 Mine, North Dakota. The coal contained 1 wt% sulfur which provided an H₂S concentration
224 relevant for assessing H₂S absorption performance in addition to CO₂ absorption performance. A
225 sour shift catalyst (TDA Research, Wheat Ridge, CO) was used in the WGS reactor to convert CO
226 to CO₂ and H₂. The two stages of water gas shift were operated at approximately 4.96 MPa (720
227 psia) with average operating temperatures of 312°C and 249°C with a standard gas hourly space
228 velocity (SGHSV) of approximately 7600 hr⁻¹ (at standard conditions of 15.5°C and 14.7 psia).
229 Table 2 is a summary of the average gasifier operating conditions and average syngas composition
230 for the two pilot plant trials. Note that this syngas had a relatively high N₂ content due to the need
231 to positively purge the electronics inside of the pressurized fuel feeder with an inert gas, in this
232 case N₂.

233 **Table 2. Average shifted syngas conditions and composition entering absorber column for**
 234 **each pilot plant trial. (Shifted syngas reported on a dry basis due to analytical equipment**
 235 **requirements). The statistical error is reported as the standard deviation from multiple**
 236 **measurements.**

Parameter	Trial 1	Trial 2
Syngas total pressure, MPa	4.88 ± 0.02	4.86 ± 0.01
Syngas temperature, °C	37.5 ± 0.8	37.6 ± 0.9
Syngas flow rate, std. $\text{m}^3 \cdot \text{h}^{-1}$	3.8 ± 0.2	3.5 ± 0.1
Syngas composition, dry, avg (mol%)		
CO ₂	52.0 ± 1.8	55.4 ± 1.5
H ₂	13.1 ± 2.9	15.7 ± 1.3
N ₂	32.7 ± 3.7	25.4 ± 2.1
CH ₄	1.6 ± 0.7	2.1 ± 0.3
CO	0.2 ± 0.05	1.1 ± 0.4
H ₂ S	0.5 ± 0.05	0.4 ± 0.05

237

238

239 *Figure 1. Process flow diagram of CO₂ capture pilot plant at UND EERC*

240

241 Figure 1 is a process flow diagram of the CO₂ capture pilot plant. The compressed syngas
242 enters the absorption column at a gas flow rate of approximately 3.8 std. m³·h⁻¹ (or 0.047 mol·s⁻¹)
243 and at an absolute pressure of approximately 4.9 MPa. The gas was saturated with water vapor at
244 the syngas inlet temperature of approximately 38°C (~6.6 kPa, or 0.1% vol); however, it should be
245 noted that experimental gas compositions reported throughout this manuscript are reported on a
246 dry basis. The lean solvent entered the top of the absorption column at a controlled temperature
247 between 10 and 55°C, depending on the controlled test conditions. Solvent flowrates varied
248 between 28 and 45 L·h⁻¹, depending on the controlled test conditions, with the goal of varying the
249 percentage of CO₂ removal. The absorption column had a diameter of 76.2 mm ID and was filled
250 with 5/8" IMTP15 metal random packing (Koch-Glitsch) with a packed height of 3.2 m. The CO₂
251 loaded solvent exited the bottom of the absorber and flowed through a level control valve, heat
252 exchanger and flow constrictor (metering valve) and finally to the solvent regeneration in the flash
253 drum. The lean solvent was returned to the absorber via a holding tank, pump, flow meter and heat
254 exchanger. The absorber sweet gas passes through a demister to drop entrained solvent before the
255 gas exits the top of the absorption column.

256 For the first pilot plant trial (Trial #1, solvent screening), the syngas flow rate was kept
257 constant at approximately 3.8 std. m³·h⁻¹ (0.047 mol·s⁻¹) and solvent flow rates varied between
258 approximately 28 and 45 L·h⁻¹ for a range of solvent inlet temperatures including 10, 25, 40 and
259 55°C (PEGDME was not tested at 55 °C since the Selexol absorption process is typically operated
260 at no more than 38 °C (100 °F) (Cowan et al., 2011)). Changes in operating parameters (i.e.,
261 temperature or flow rate) were maintained for at least 2 hours to achieve steady-state conditions.
262 The solvents were regenerated in a single stage flash drum operated at approximately 43°C. The
263 solvent was not cooled before entering the flash drum so regeneration temperature may have been
264 higher than 43°C when the solvent was operated at 55°C in the absorber.

265 For the second pilot plant trial (Trial #2, long term solvent performance testing, 10 days),
266 the operating conditions remained constant with a syngas flow rate of approximately 3.5 std. m³·h⁻¹
267 (0.043 mol·s⁻¹) at approximately 38 °C, solvent inlet temperature of 25 °C and solvent flow rate
268 of approximately 32 L·h⁻¹. The solvents were regenerated in a single stage flash drum at a
269 temperature of 66 °C, which was approximately 23 °C higher than the first solvent screening trial.
270 During Trial #2, a dry gas meter and a gas analyzer were added to the solvent storage tank to

271 determine if any gasses were being released from the solvent tank in addition to the flash tank.

272 During operation of the pilot plant, the gas composition and gas flow rate were measured
273 simultaneously via online analyzers for the syngas (absorber feed), sweet gas (top of absorber) and
274 acid gas (flash tank gas). Two gas analyzers were present on each gas stream to measure dry gas
275 composition including a Laser Gas Analyzer (LGA, Aerodyne Research, Inc.), which is a high-
276 speed gas spectrometer that measures concentrations of eight or more gases simultaneously and a
277 gas chromatography (GC) analyzer by Varian or Yokogawa for measuring H₂, CO, CO₂, N₂, O₂,
278 H₂S, CH₄ and other hydrocarbons. Analyzer measurement errors were minimized by averaging the
279 gas composition data from the two different gas analyzers present on each gas stream. Statistical
280 error for gas composition data was calculated as the standard deviation (confidence interval, CI =
281 68%). Dräger tubes were also occasionally used to detect the presence of gas components that
282 cannot be detected by the online analyzers, including HCN, NH₃, HCl, benzene, toluene and
283 xylene.

284 The absorption performance of the solvent was assessed by calculating gas removal
285 efficiency (e.g. CO₂ removal efficiency as represented by equation (3)) and gas uptake into the
286 solvent (as represented by equation (4)). The amount of CO₂ absorbed into the solvent (or other
287 gas component like H₂S, H₂, etc.) was determined as an average of two methods: (1) the difference
288 between CO₂ entering and exiting the absorber and (2) the amount of CO₂ removed from the
289 solvent flash/regeneration process. For pilot plant data, both statistical (random fluctuations) and
290 systemic errors (uncertainty from pilot plant equipment calibration, etc.) were calculated for gas
291 uptake into the solvent. Statistical error for gas uptake was calculated as the standard deviation (CI
292 = 68%) from data collected from the two gas analyzers per gas stream and the two methods for
293 determining gas absorption into the solvent. Systemic error, due to uncertainties in pilot plant flow
294 meter calibrations, was estimated to be 6% for all solvents through the use of mass and mole
295 balance checks, which provided secondary checks on reported flow rates. Note that the gas uptake
296 calculated using Eq. (4) is different than the VLE gas uptake. When calculating gas uptake using
297 the pilot scale test data (Eq. 4), there is a thermodynamic driving force for gas absorption from the
298 gas stream to the solvent phase. In contrast, for the VLE experiment to obtain gas uptake, the
299 chemical potentials for all gases are equal between the gas and the solvent phases. To further
300 improve data analysis accuracy, pilot plant data were only analyzed if the gas phase mole balance
301 error was less than 20%.

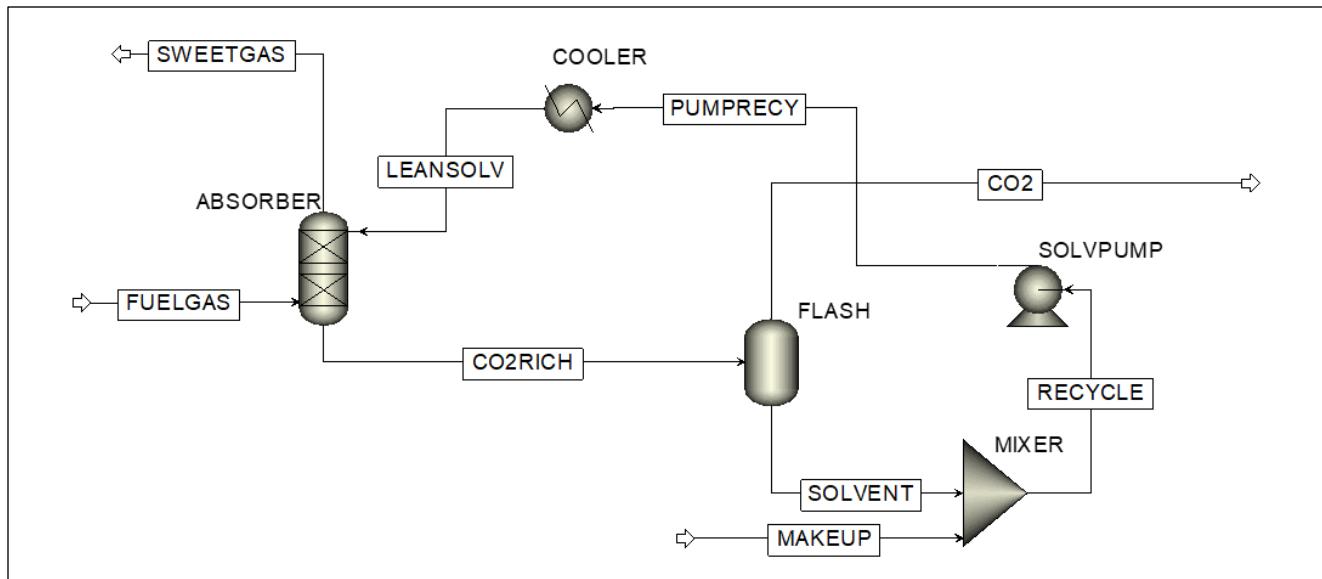
302

$$\text{CO}_2 \text{ Removal Efficiency [\%]} = \frac{\text{CO}_2 \text{ absorbed into solvent (mol} \cdot \text{hr}^{-1}\text{)}}{\text{CO}_2 \text{ in syngas (mol} \cdot \text{hr}^{-1}\text{)}} \times 100 \quad (3)$$

$$\text{Gas Uptake into solvent [mol} \cdot \text{L}^{-1}\text{]} = \frac{\text{CO}_2 \text{ absorbed in solvent (mol} \cdot \text{hr}^{-1}\text{)}}{\text{Solvent flow rate (L} \cdot \text{hr}^{-1}\text{)}} \quad (4)$$

303

304


2.4 Process Simulation Development

305 Aspen Plus version 11 was used to develop process simulations for the pilot plant operation
306 during trial #2 with PEGDME and CASSH-1. The simulation flowsheet is shown in Figure 2 and
307 a summary of the input conditions, which were kept constant in the simulations, can be found in

308 Table 3. The process flow sheet consisted of one absorption tower, one flash tank, one solvent
309 pump, and one heat exchanger. Laboratory measured VLE data were used to validate the
310 thermodynamic properties predicted within Aspen Plus via the Perturbed-Chain Statistical
311 Association Fluid Theory (PC-SAFT) Equation of State (EOS) method. The binary interaction
312 parameters for CO₂, H₂, N₂ and CH₄ were regressed from the experimental VLE data to predict
313 the non-ideal system. Information on the PC-SAFT binary interaction parameters used to predict
314 gas solubility in the solvents can be found in the supplemental information Table S8 and previous
315 studies (Ashkanani et al., 2020). H₂O and H₂S were included in the simulations but experimental
316 VLE data were not used to regress the binary interaction parameters for these components. The
317 physical properties of gas species and solvents were predicted via built-in models within Aspen
318 Plus and validated using experimental data. The gas phase mass transfer resistance was assumed
319 to be negligible, and the absorption rate was assumed to be controlled by mass transfer resistance
320 in the liquid-film. The liquid-phase mass transfer coefficient and effective gas-liquid interfacial
321 area were predicted by Onda's correlations (Onda et al., 1968) which are applicable for the packing
322 materials and physical properties relevant to the current study. Both the rate-based and equilibrium
323 models were used to predict absorber performance via the Aspen RadFrac block without a reboiler.
324 The liquid holdup was predicted using the Billet and Schultes (1993) correlation and absorber
325 flooding and pressure drop (Piché et al., 2001) were predicted by the modified generalized pressure
326 drop correlation by Leva (1992). The shifted syngas entered at the bottom of the absorber and
327 exited at the top while the lean-solvent entered the absorber from the top of the column. The
328 number of stages in the absorber was set to 10 equilibrium stages and 100 stages for the rate-based
329 model. The CO₂-rich solvent leaves the absorber to be regenerated in the flash tank which was
330 modelled as an adiabatic equilibrium SEPARATOR block. A solvent cooler is used to cool the
331 solvent to 25 °C. A summary of the input conditions for the process simulations developed for trial
332 2 is given in

333 Table 3.

334

335

336 **Figure 2. Process flow sheet of the solvent absorption pilot plant simulation**

337

338

339

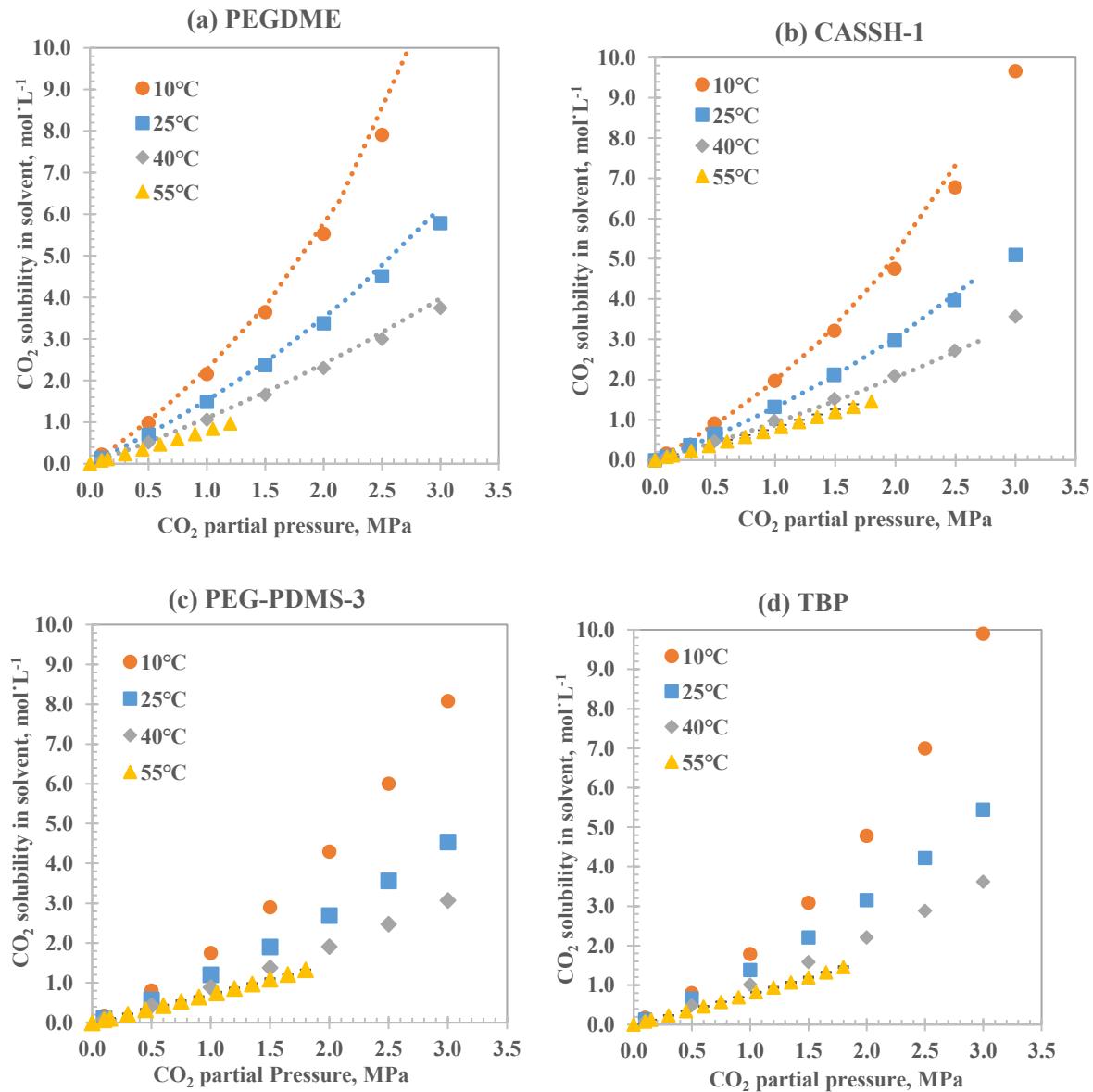
Table 3. Summary of fixed conditions for trial #2 and input for process simulations.

Parameter	PEGDME	CASSH-1
Solvent temperature, °C	25	25
Solvent flow rate, L·h ⁻¹	32.0	32.4
Absorber column pressure, MPa	4.86	4.86
Syngas flow rate, mol·h ⁻¹	145.3	149.6
Syngas temperature, °C	37.8	37.3
L/G (Mass ratio inlet liq/gas)	6.9	6.5
Syngas composition (dry), mol%		
H ₂	15.3	16.64
N ₂	27.0	25.93
CO	1.06	0.71
CO ₂	54.5	54.9
CH ₄	1.77	1.41
H ₂ S	0.34	0.41
Flash temperature, °C	66	66
Flash pressure, MPa	0.1	0.1
Packed bed height, m	3.2	3.2
Absorber diameter, m	0.0762	0.0762
Absorber packing material	5/8 " IMTP15	5/8 " IMTP15

340

341 3 Results

342 3.1 Bench-Scale VLE Results

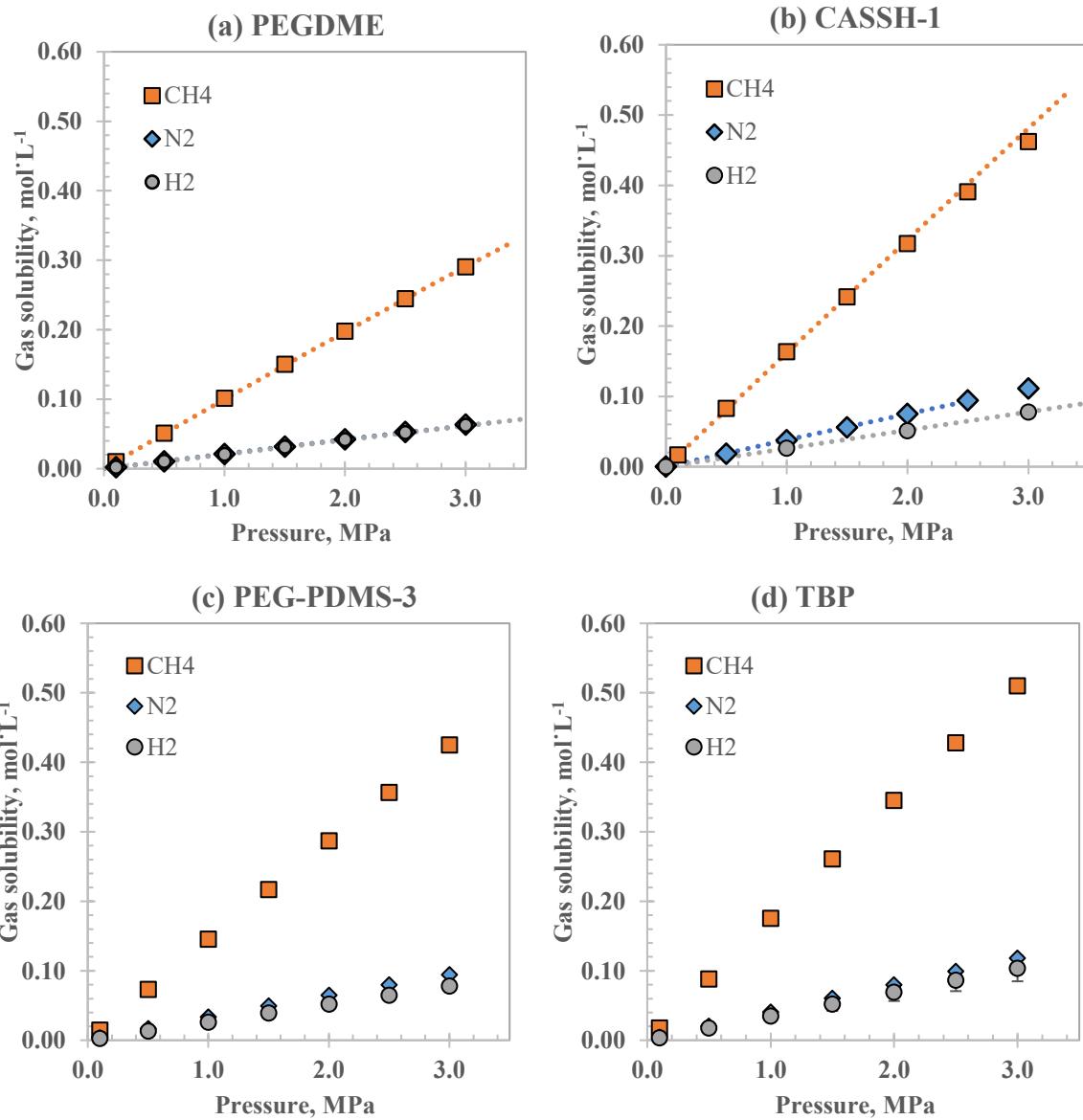

343 Measurement of VLE data of multicomponent systems is important for understanding and
 344 modeling the performance of physical solvent absorption processes. For the physical solvents
 345 tested in this study (PEGDME, CASSH-1, PEG-PDMS-3 and TBP) the solubility of CO₂ in the
 346 dry solvents increased with increasing pressure but decreased with increasing temperature, as
 347 shown in Figure 3. These trends are consistent with CO₂ solubility measured in other physical
 348 solvents. Dry PEGDME showed relatively higher CO₂ solubility compared to the hydrophobic
 349 solvents. To summarize and aid comparison of the solvents' performance, the solubility of CO₂ in
 350 each solvent at four temperatures and a CO₂ partial pressure of 1 MPa is shown in Table 4.

351 PEGDME shows slightly higher CO₂ solubility at 10 and 25°C, however, as the solvent
352 temperature increases, the CO₂ solubility in PEGDME decreases at a faster rate than the
353 hydrophobic solvents.

354 The solubility of other syngas components in the tested solvents showed that, at the same partial
355 pressure, CH₄ was less soluble than CO₂ but more soluble than N₂ and H₂, as shown in Figure 4.
356 For the hydrophobic solvents, the least soluble gases were H₂ followed by N₂, and the absorption
357 performance of these gas components was less impacted by temperature compared to CO₂.
358 Temperature dependent VLE data for N₂, H₂ and CH₄ can be found in the supplemental
359 information. Experimental gas solubility for H₂, N₂ and CH₄ at 25°C and 1 MPa are shown in
360 Table 5. The measured solubilities from the current study agree remarkably well with the
361 computational predictions for CASSH-1 by Shi et al. (2021) who reported at 25°C and 0.1 MPa
362 partial pressure a CO₂ solubility of 1.46 mol·L⁻¹·MPa⁻¹, H₂ solubility of 0.0220 mol·L⁻¹·MPa⁻¹, N₂
363 solubility of 0.0389 mol·L⁻¹·MPa⁻¹ and CH₄ solubility of 0.210 mol·L⁻¹·MPa⁻¹. As shown in Table
364 6, the highest gas pair selectivity for all solvents was CO₂/H₂, when compared to N₂ and CH₄,
365 while CO₂/H₂ selectivity was highest for PEGDME followed by CASSH-1, PEG-PDMS-3 and
366 then TBP.. Furthermore, the experimental solubility selectivity values agreed reasonably well with
367 the computational predictions for CASSH-1 from Shi et al. (2021) who at 25°C reported CO₂/H₂
368 selectivity of 66.4, CO₂/N₂ selectivity of 37.6 and CO₂/CH₄ selectivity of 6.96.

369

370


371

372 *Figure 3: Experimental equilibrium CO_2 solubility as a function of its partial pressure at*
373 *different temperatures in dry physical solvents (a) PEGDME, (b) CASSH-1, (c) PEG-PDMS-3,*
374 *(d) TBP. These data were measured using the bench scale Isorsorp VLE apparatus for 10, 25*
375 *and 40°C. Data at 55°C was measured using the bench scale Hiden IGA VLE apparatus.*
376 *Statistical error is represented by error bars (standard deviation, CI=68%) from 4 repeated*
377 *measurements and the error is within the data point labels in most cases. Raw data can be found*
378 *in the Supplemental Information. PC-SAFT EOS predictions have been included for PEGDME*
379 *and CASSH-1 at 10, 25 and 40°C (shown as dashed lines).*

380 **Table 4. Experimental equilibrium CO₂ solubility as a function of temperature in dry PEGDME,**
 381 **CASSH-1, PEG-PDMS-3 and TBP. These data were measured using the bench-scale IGA VLE**
 382 **apparatus. Results are presented for a CO₂ partial pressure of 1 MPa. The statistical error is**
 383 **calculated as the standard deviation from 4 repeated measurements.**

Temperature	CO ₂ solubility at 1 MPa (mol×L ⁻¹)			
	PEGDME	CASSH-1	PEG-PDMS-3	TBP
10°C	2.26 ± 0.02	1.88 ± 0.019	1.82 ± 0.007	1.97 ± 0.010
25°C	1.50 ± 0.01	1.34 ± 0.009	1.25 ± 0.004	1.37 ± 0.007
40°C	1.10 ± 0.01	1.01 ± 0.003	0.906 ± 0.002	1.03 ± 0.002
55°C	0.80 ± 0.01	0.78 ± 0.002	0.718 ± 0.002	0.78 ± 0.001

384

388 *Figure 4. Equilibrium pure gas solubility at 25°C for CH₄, N₂ and H₂ as a function of pressure*
389 *in dry physical solvents (a) PEGDME, (b) CASSH-1, (c) PEG-PDMS-3 (d) TBP. These data*
390 *were measured using the Isosorp VLE apparatus. Statistical error is represented by error bars*
391 *(standard deviation, CI=68%) from repeated measurements and the error is within the data*
392 *point labels in most cases. Raw data can be found in the Supplemental Information. PC-SAFT*
393 *EOS predictions have been included for PEGDME and CASSH-1 (shown as dashed lines).*

396 **Table 5. Equilibrium gas solubility in dry PEGDME, CASSH-1, PEG-PDMS-3 and TBP at gas**
 397 **partial pressure of 1 MPa and temperature of 25 °C. CO₂ solubility was measured using the IGA**
 398 **VLE apparatus and H₂, N₂ and CH₄ solubilities were measured using the Isosorp VLE**
 399 **apparatus. The statistical error for gas solubility is represented as the standard deviation from**
 400 **4 repeated measurements.**

Gas	Gas solubility at 25 °C & 1 MPa (mol·L ⁻¹)			
	PEGDME	CASSH-1	PEG-PDMS-3	TBP
H ₂	0.021 ± 0.001	0.026 ± 0.002	0.026 ± 0.002	0.035 ± 0.003
N ₂	0.021 ± 0.0003	0.037 ± 0.002	0.033 ± 0.003	0.04 ± 0.0008
CH ₄	0.10 ± 0.001	0.16 ± 0.004	0.15 ± 0.005	0.18 ± 0.003
CO ₂	1.50 ± 0.019	1.34 ± 0.020	1.25 ± 0.007	1.37 ± 0.013

401
 402
 403 **Table 6. Equilibrium pure gas selectivity of CO₂ over H₂, N₂ and CH₄ at 25°C and 1 MPa gas**
 404 **partial pressure in dry PEGDME, CASSH-1, PEG-PDMS-3 and TBP. CO₂ solubility was**
 405 **measured using the IGA VLE apparatus and H₂, N₂ and CH₄ was measured using the Isosorp**
 406 **VLE apparatus.**

Solvent	PEGDME	CASSH-1	PEG-PDMS-3	TBP
CO ₂ /H ₂ Selectivity	71 ± 4	52 ± 4	48 ± 4	39 ± 3
CO ₂ /N ₂ Selectivity	71 ± 1	36 ± 2	38 ± 3	34 ± 1
CO ₂ /CH ₄ Selectivity	15 ± 0.2	8 ± 0.2	8 ± 0.3	8 ± 0.1

407
 408
 409 Given the favorable physical properties of these hydrophobic physical solvents (e.g. low viscosity,
 410 low vapor pressure, low water absorption, etc.) and comparable gas solubility results compared to
 411 the hydrophilic solvent (PEGDME) baseline, it was decided to further screen all four solvents in
 412 trial #1 of pre-combustion pilot plant testing.

413
 414

415 **3.2 Pilot Plant Trial 1 – Solvent Screening Results**

416 The goal of the pilot plant trial #1 was to develop a performance baseline for the commonly studied
417 physical solvent PEGDME (Selexol surrogate) and then compare its performance to the three
418 hydrophobic physical solvents using the same pilot plant at comparable operating conditions. All
419 four solvents (PEGDME, CASSH-1, PEG-PDMS-3 and TBP) were operated successfully in the
420 pilot plant at similar operating conditions, with CO₂ absorption performance shown in

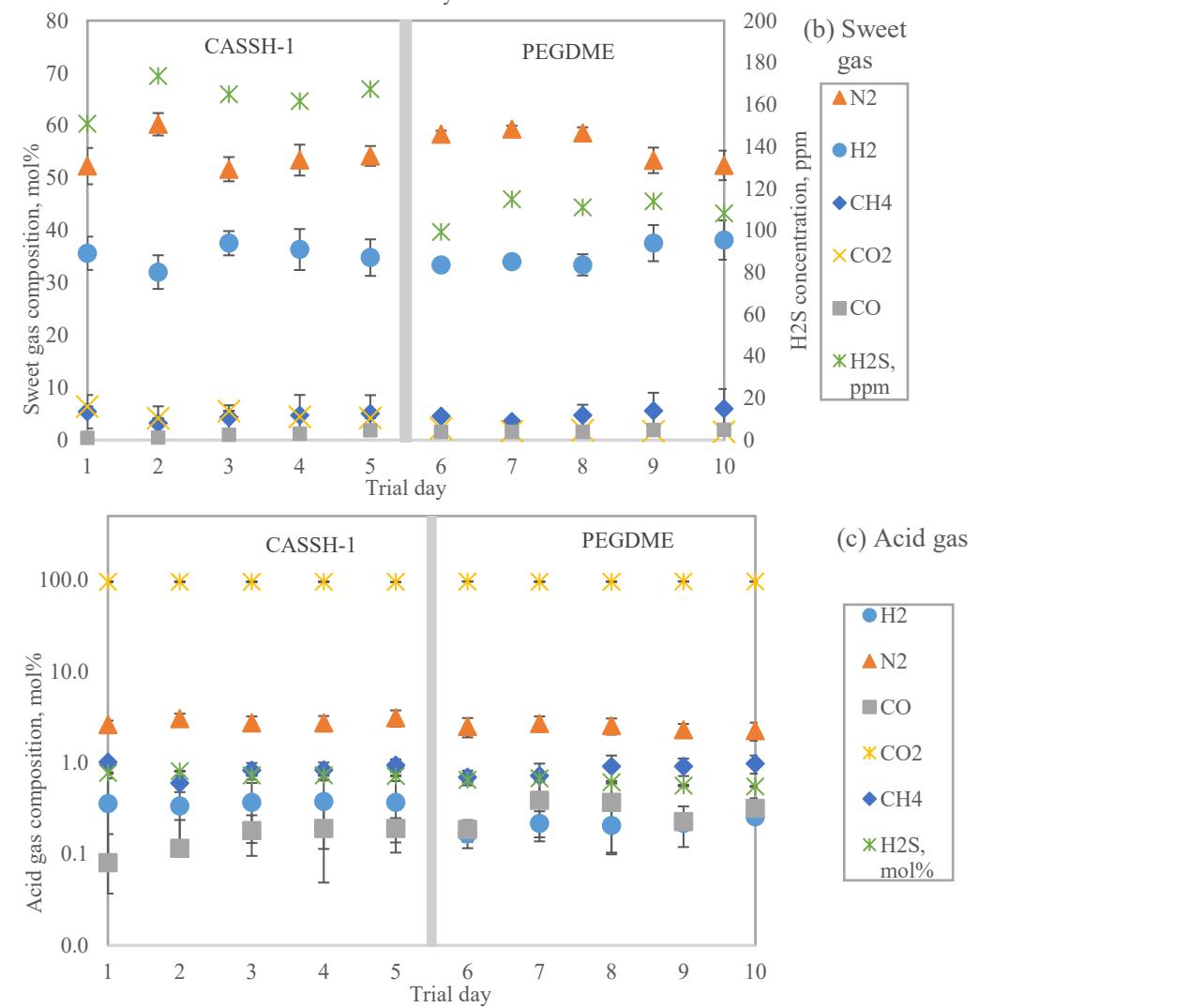
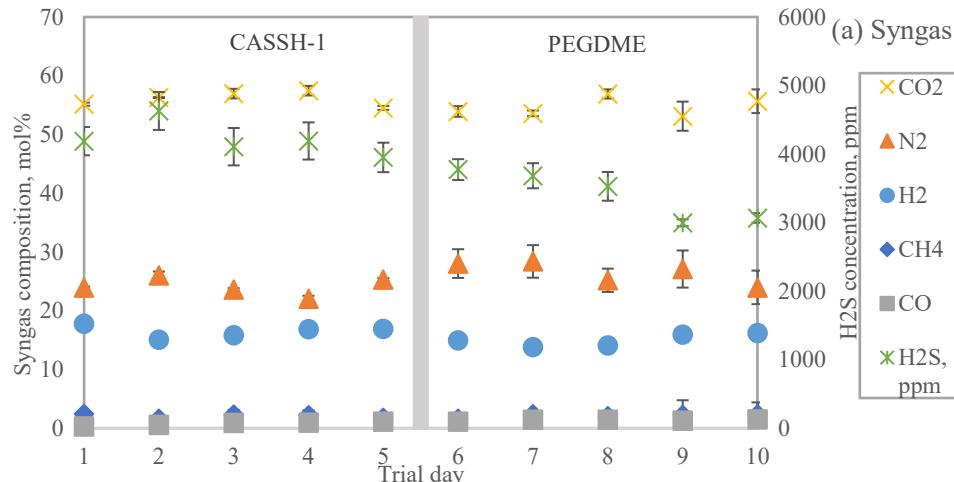
421 Table 7 which were obtained using syngas with properties shown in Table 2 and at solvent flow
422 rates of between 37 and 45 L·h⁻¹. When operating with an L/G ratio of ~8, all four solvents
423 achieved greater than 97% CO₂ removal and 96% H₂S removal. Compared to the performance of
424 PEGDME at the recommended Selexol process operating temperature of 10°C, the hydrophobic
425 solvents CASSH-1, PEG-PDMS-3 and TBP all showed comparable or higher CO₂ and H₂S
426 absorption performance, including at elevated solvent inlet temperatures of up to 40°C. PEGDME
427 was not tested at 55 °C since the Selexol absorption process is typically operated at no more than
428 ~38 °C (100 °F) (Cowan et al., 2011).

429

430

431 **Table 7. Pilot plant trial #1 solvent absorption performance results in PEGDME, CASSH-1,**
 432 **PEG-PDMS-3 and TBP at solvent flow rates of ~37-45 L/hr. CO₂ partial pressure in the syngas**
 433 **was ~2.6 MPa and H₂S partial pressure in the syngas was ~0.023 MPa. For gas uptake, the first**
 434 **listed error is the statistical error from repeated measurements represented as the standard**
 435 **deviation (CI=68%), and the second error is the systematic error from calibration uncertainty**
 436 **in gas/liquid flow meters.**

Solvent Temperature*	Performance parameter	PEGDME	CASSH-1	PEG-PDMS-3	TBP
10°C	Solvent temperature inlet / outlet, °C	10.1 / 13.8	10.4 / 28.5	9.5 / 20.5	10.7 / 13.9
	CO ₂ gas uptake, mol×L ⁻¹	1.64 ± 0.10 ± 0.10	2.27 ± 0.03 ± 0.14	1.72 ± 0.10 ± 0.10	1.50 ± 0.06 ± 0.09
	H ₂ S gas uptake, mol×L ⁻¹	0.014 ± 0.001 ± 0.001	0.021 ± 0.001 ± 0.001	0.014 ± 0.001 ± 0.001	0.015 ± 0.001 ± 0.001
25°C	Solvent temperature inlet / outlet, °C	25.0 / 27.0	25.6 / 32.6	25.3 / 33.6	25.1 / 26.8
	CO ₂ gas uptake, mol×L ⁻¹	1.46 ± 0.14 ± 0.09	1.66 ± 0.04 ± 0.10	1.63 ± 0.02 ± 0.10	1.65 ± 0.04 ± 0.10
	H ₂ S gas uptake, mol×L ⁻¹	0.011 ± 0.001 ± 0.001	0.015 ± 0.001 ± 0.001	0.012 ± 0.001 ± 0.001	0.016 ± 0.001 ± 0.001
40°C	Solvent temperature inlet / outlet, °C	**	40.6 / 48.0	40.0 / 46.6	39.8 / 41.4
	CO ₂ gas uptake, mol×L ⁻¹	**	1.91 ± 0.05 ± 0.11	1.64 ± 0.07 ± 0.10	1.90 ± 0.01 ± 0.11
	H ₂ S gas uptake, mol×L ⁻¹	**	0.018 ± 0.001 ± 0.001	0.014 ± 0.001 ± 0.001	0.018 ± 0.001 ± 0.001
55°C	Solvent temperature inlet / outlet, °C	**	55.4 / 57.4	54.3 / 63.7	55.5 / 58.5
	CO ₂ gas uptake, mol×L ⁻¹	**	1.67 ± 0.05 ± 0.10	1.55 ± 0.10 ± 0.09	1.92 ± 0.01 ± 0.12
	H ₂ S gas uptake, mol×L ⁻¹	**	0.016 ± 0.001 ± 0.001	0.014 ± 0.001 ± 0.001	0.018 ± 0.001 ± 0.001
Water content of solvent at end of trial, ppm		4000**	550	1550	1670



437 * An absorber temperature range is provided for each nominal solvent temperature. The lower temperature is the
 438 absorber inlet solvent temperature (solvent enters at the top of the absorption column), and the higher temperature is
 439 the solvent temperature at the bottom of the absorption column. As the syngas enters at approximately 38°C and the
 440 absorption process is exothermic, there is a temperature gradient from the top to bottom of the column.

441 **PEGDME solvent testing was not conducted at the highest solvent inlet temperature of 55°C and data were not
 442 included if mass balance errors were greater than 20% (which was the case for data collected with PEGDME at 40°C).

443 The performance results obtained from this screening study provided confidence in using
444 hydrophobic physical solvents as an alternative to traditional hydrophilic physical solvents like
445 Selexol for pre-combustion CO₂ capture, particularly when comparing absorption performance at
446 higher temperatures. The most promising hydrophobic solvent performance was provided by
447 CASSH-1 as indicated by high CO₂ solubility and the lowest water miscibility at ambient
448 temperatures. CASSH-1 has been reported in previous laboratory and simulation-based studies to
449 be a low-cost hydrophobic physical solvent for CO₂ absorption while maintaining low viscosity,
450 low vapor pressure, low corrosion potential, and low foaming tendency (Shi et al., 2021; Siefert
451 and Hopkinson, 2018). These characteristics along with the results from this pilot plant solvent
452 screening study led to the selection of CASSH-1 and PEGDME (for baseline performance
453 comparison) for longer term pilot plant testing using syngas from the coal based IGCC pilot plant.
454

455 **3.3 Pilot Plant Trial 2 – Long Term Solvent Performance Results (PEGDME and 456 CASSH-1)**

457 The goal of pilot plant trial #2 was to assess both PEGDME (baseline hydrophilic solvent, i.e.,
458 Selexol surrogate) and CASSH-1 (NETL's hydrophobic solvent) for any changes in plant
459 performance or solvent properties over a longer period of time while using coal-derived syngas.
460 The collected data were also used to compare pilot plant performance against process simulations
461 developed using equilibrium VLE data for pure gas components (CO₂, CH₄, N₂, H₂). Syngas can
462 contain a range of trace components, including mercury, hydrogen selenide, arsine, carbonyls, and
463 organic tars, that over time could accumulate in the process and could impact the solvent properties
464 and overall absorption performance. During Trial 2 the syngas had relatively constant levels of H₂,
465 CO, N₂ CO₂ and CH₄, although there was a slight but steady decrease in H₂S concentration when
466 PEGDME was used. The gas composition trends for the 10 days of pilot plant operation (Days 1-
467 5 for CASSH-1 and Days 6-10 for PEGDME) for the syngas, sweet gas, and acid gas are shown
468 in Figure 5.
469

475 *values represent averages from the two gas analyzers on each gas stream and error bars are*
476 *represented by the standard deviation (CI=68%, statistical error only).*

477 Both solvents were operated with a solvent flow rate of approximately $32 \text{ L}\cdot\text{h}^{-1}$ ($32.0 \pm 0.4 \text{ L}\cdot\text{h}^{-1}$
478 for PEGDME and $32.4 \pm 0.4 \text{ L}\cdot\text{h}^{-1}$ for CASSH-1), solvent inlet temperature of approximately 25°C
479 (25.0°C for PEGDME and 24.5°C for CASSH-1) and gas inlet temperature of approximately 37°C
480 (37.8°C for PEGDME and 37.3°C for CASSH-1). The dry gas composition data were used to
481 compare the absorption performance of each solvent using equation (4) for normalized gas uptake.
482 Error bars were calculated based on the standard deviation provided from 5 days of operation plus
483 spot checks for each solvent using gas composition data from two different gas analyzers. Two
484 methods for determining gas uptake into the solvent were also averaged for these calculations - (1)
485 the difference between CO_2 entering and exiting the absorber and (2) the amount of CO_2 removed
486 from the solvent flash/regeneration process. At an L/G ratio of ~ 7 , both solvents achieved greater
487 than 97% CO_2 removal and 98% H_2S removal. Water absorption into the solvents was measured
488 at the end of each 5-day testing period. CASSH-1 contained 358 ppm water, which was less than
489 half that of PEGDME which still contained 837 ppm water after the flash process. Although the
490 hydrophobic solvent CASSH-1 contained less water than the hydrophilic solvent PEGDME, it
491 should be highlighted that this was measured after the solvent flash process which would have
492 removed most of the absorbed water with the CO_2 . PEGDME, a hydrophilic solvent, will absorb
493 large amounts of water from feed gas streams which will then impair CO_2 loading capacity
494 (Samipour et al., 2020). The absorption performance results in terms of gas uptake for PEGDME
495 and CASSH-1 after 5 continuous days of operation for each solvent are shown in Table 8.
496

497 **Table 8. Inlet syngas partial pressure (MPa) and gas uptake ($\text{mol}\cdot\text{L}^{-1}$) into PEGDME and**
498 **CASSH-1 over 5 days of continuous plant operation in Trial 2. Solvent inlet temperature: 25°C ,**
499 **Solvent outlet temperature: 36°C (PEGDME) & 40°C (CASSH-1). PEGDME: Inlet solvent**
500 **flow rate: $32.0 \pm 1.9 \text{ L}\cdot\text{h}^{-1}$, Inlet syngas temperature: 37.8°C , Syngas flow rate: $145 \pm 1 \text{ mol}\cdot\text{hr}^{-1}$.**
501 **CASSH-1: Inlet solvent flow rate: $32.4 \pm 1.9 \text{ L}\cdot\text{h}^{-1}$, Inlet syngas temperature: 37.3°C , Syngas**
502 **flow rate: $150 \pm 4 \text{ mol}\cdot\text{hr}^{-1}$. For partial pressure, the “ \pm ” value is the statistical standard**
503 **deviation (CI=68%) from the inlet gas composition measurements. For the gas uptake, the first**
504 **standard deviation (CI=68%) is statistical from gas analyzers, and the second standard**

505 *deviation (CI=68%) is systematic from calibration uncertainty in gas/liquid flow meters, which*
 506 *would cancel out in estimates of ratios, such as the ratio of CO₂ to H₂ uptake, which is not listed*
 507 *below due to the different inlet syngas partial pressures and due to non-equilibrium conditions*
 508 *in the absorber.*

Gas component	Syngas partial pressure, MPa		Gas uptake, mol·L ⁻¹	
	PEGDME	CASSH-1	PEGDME	CASSH-1
CO ₂	2.65 ± 0.07	2.67 ± 0.05	2.49 ± 0.06 ± 0.15	2.40 ± 0.13 ± 0.14
N ₂	1.31 ± 0.10	1.26 ± 0.05	0.070 ± 0.005 ± 0.004	0.073 ± 0.008 ± 0.004
H ₂	0.74 ± 0.02	0.81 ± 0.01	0.0070 ± 0.0005 ± 0.0004	0.011 ± 0.004 ± 0.001
CH ₄	0.09 ± 0.02	0.07 ± 0.01	0.020 ± 0.005 ± 0.001	0.020 ± 0.005 ± 0.001
CO	0.05 ± 0.02	0.034 ± 0.005	0.0070 ± 0.0007 ± 0.0004	0.0040 ± 0.0007 ± 0.0003
H ₂ S	0.017 ± 0.001	0.020 ± 0.001	0.0156 ± 0.0004 ± 0.0010	0.0186 ± 0.0003 ± 0.0011

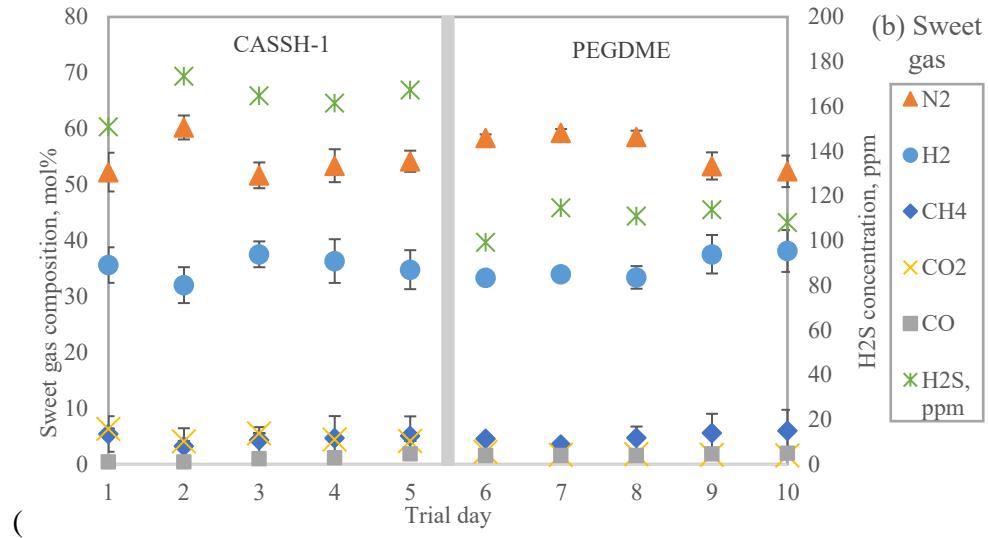
509
510

511 3.4 Process Simulation Results and Comparison to Pilot Plant Data

512 Process simulations were developed for Trial 2 of the UND EERC pilot plant operation with the
 513 solvents PEGDME and CASSH-1. Binary interaction parameters, that were regressed from the
 514 experimentally measured VLE data presented in section 3.1, were used with the PC-SAFT EOS
 515 property model to predict absorption performance. Details on the binary interaction parameters
 516 can be found in the Supplemental Information Table S8. Rate-based and equilibrium models were
 517 applied. The equilibrium model assumes the vapor and liquid phases leaving each stage are in
 518 thermodynamic equilibrium while the rate-based model assumes that mechanical, chemical and
 519 thermodynamic equilibrium occur at the gas-liquid interface and mass transfer is described by the
 520 two-film theory (Afkhamipour and Mofarahi, 2013; Borhani et al., 2015; Ma et al., 2018). The

521 rate-based model incorporates the mass transfer rate via correlations for mass transfer coefficients,
522 gas-liquid interfacial area and diffusion coefficients which consider solvent physical properties
523 such as density, viscosity, and surface tension. Results from the simulations are compared to the
524 measured pilot plant data in Table 9 which shows both the rate based model and the equilibrium
525 model were able to predict the performance of the pilot plant with reasonable accuracy given
526 inherent errors associated with pilot plant operation and measurement of gas composition. The
527 rate-based model provided slightly better predictions than the equilibrium model for CASSH-1
528 while both the rate-based and equilibrium models were similar for PEGDME which is likely due
529 to the system operating close to equilibrium conditions as a result of high solvent flow rates. To
530 assess the impact of solvent flow rate, the rate-based simulation was operated with solvent flow
531 rates ± 1 standard deviation of the average flow rate with results provided in Table S9 of the
532 Supplemental Information. Increasing the solvent flow rate resulted in higher CO₂ removal
533 efficiency while decreasing solvent flow rate reduced CO₂ removal efficiency and both models
534 were able to predict plant performance within expected error. The prediction of temperature profile
535 was generally within experimental error with lower solvent flow rate resulting in higher predictions
536 for temperature profile in the absorber. It should be noted that the temperature measured in the
537 pilot plant was likely impacted by heat losses to the surroundings which were not accounted for in
538 the simulation.

539

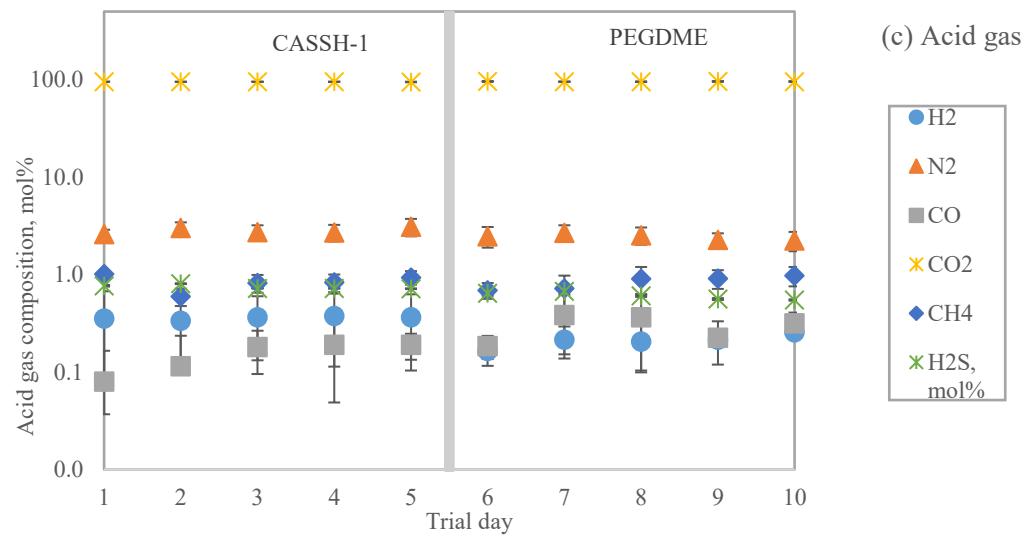

540 **Table 9. Pilot plant output data from trial #2 for PEGDME and CASSH-1 compared to Aspen Plus process simulation predictions.**
541 **The input operating conditions for the simulation can be found in Table 3 and the process flow sheet can be found in Figure 2.**

Solvent:	PEGDME			CASSH-1		
Property	Pilot plant	Equilibrium model	Rate-based model	Pilot plant	Equilibrium model	Rate-based model
		Prediction	Prediction	Prediction	Prediction	Prediction
Absorber temperature profile						
Top of column	24.9 ± 0.3	24.8	25.4	28.7 ± 1.3	24.4	24.9
Upper	25.5 ± 0.7	24.8	26.5	34.0 ± 1.5	24.8	26.1
Mid	26.7 ± 1.6	25.3	28.3	37.7 ± 1.1	26.5	28.0
Lower	30.1 ± 2.8	28.1	31.1	39.6 ± 0.7	31.0	30.9
Bottom of column	36.4 ± 2.0	35.3	35.0	40.0 ± 0.6	35.8	34.3
Sweet gas flow rate, mol/h	59.3 ± 1.0	62.9	68.1	67.1 ± 5.2	63.4	68.2
Sweet gas, mol%						
H ₂	36.5 ± 1.0	33.8	31.3	35.0 ± 2.1	37.4	34.7
N ₂	55.4 ± 1.0	59.4	55.0	54.6 ± 1.5	57.1	52.9
CO	1.73 ± 0.04	2.1	1.9	1.1 ± 0.1	1.6	1.4
CO ₂	1.6 ± 0.2	1.2	8.6	5.1 ± 0.3	1.4	8.6
CH ₄	4.9 ± 0.1	3.4	3.2	4.2 ± 0.3	2.6	2.4
H ₂ S	0.012 ± 0.001	0.006	0.006	0.017 ± 0.001	0.009	0.009
Acid gas flow rate, mol/h	85.0 ± 1.0	82.4	77.2	81.3 ± 3.3	86.2	81.4
Acid gas, mol%						
H ₂	0.21 ± 0.04	1.2	1.2	0.45 ± 0.15	1.4	1.5
N ₂	2.6 ± 0.2	2.1	2.2	3.2 ± 0.40	3.0	3.3
CO	0.25 ± 0.05	0.3	0.3	0.14 ± 0.10	0.08	0.09
CO ₂	95.6 ± 0.2	95.3	95.1	94.6 ± 0.30	94.3	93.8
CH ₄	0.78 ± 0.10	0.52	0.54	0.82 ± 0.08	0.56	0.62
H ₂ S	0.60 ± 0.05	0.60	0.64	0.74 ± 0.01	0.71	0.75
CO ₂ recovery, %	99.0 ± 0.5	99	93	95 ± 5	99	93
CO ₂ uptake, mol·L ⁻¹	2.49±0.06±0.15	2.46	2.30	2.40±0.13±0.14	2.52	2.37
Calculations for experimental mole balance check						
Inlet gas flow rate, mol/h	145±1			150±4		
Molar ratio of outlets to inlet	99.5%±1.2%			99%±5%		

543 **4 Discussion**

544 During Trial #1, all four solvents achieved >97% CO₂ removal and >96% H₂S removal. It should
545 be noted that the solvent regeneration process at UND EERC was not intended to reflect optimal
546 regeneration performance. Typically, solvent regeneration is conducted using at least three stages
547 of regeneration, the first of which includes recycle back to the syngas to minimize H₂ loss in the
548 acid gas. Also, higher solvent regeneration temperatures using low grade waste heat from the
549 power plant could be used to increase recovery rates and decrease the energy requirements of acid
550 gas capture. This would result in lower operating costs for solvent regeneration and produce a CO₂
551 gas stream at higher pressure which minimizes compression costs that would be required for
552 sequestration. During Trial #2, at a constant solvent flow rate, the flash tank solvent temperature
553 was increased from 43°C to 66°C. This increase in solvent regeneration temperature appears to
554 have improved H₂ recovery for both PEGDME and CASSH-1, and increased the CO₂ uptake for
555 both solvents by 20-30% when operated at a solvent temperature of 25°C. However, although the
556 higher regeneration temperature appeared to improve the absorption performance for PEGDME,
557 it also resulted in significant losses of PEGDME solvent as a result of the higher vapor pressure of
558 PEGDME. This was observed experimentally via the knockout pot on the CO₂ stream exiting the
559 flash drum which contained approximately twice as much PEGDME solvent compared to CASSH-
560 1 solvent. The costs of reclaiming this PEGDME solvent would need to be balanced with the
561 benefit of higher CO₂ uptake at these elevated temperatures. During Trial #2, the CO₂ absorption
562 performance of CASSH-1 may have been impacted by competing H₂S absorption due to the
563 slightly higher H₂S concentration in the syngas during the first 5 days of operation with CASSH-

564 1



565

566 **Figure 5. Gas composition (dry) measured for (a) syngas, (b) sweet gas and (c) acid gas for each**
 567 **day of Trial # 2 (Days 1-5: CASSH-1; Days 6-10: PEGDME). These normalized gas composition**
 568 **values represent averages from the two gas analyzers on each gas stream and error bars are**
 569 **represented by the standard deviation (CI=68%, statistical error only).**

570). Both PEGDME and CASSH-1 solvents will absorb CO₂ as well as H₂S and both solvents showed
 571 comparable H₂S removal performance of approximately 98%.

572 Several solvent temperatures were assessed in the first set of pilot plant trials. At the
 573 recommended Selexol process operating temperature of 10 °C, all of the hydrophobic solvents
 574 showed comparable or higher CO₂ and H₂S absorption performance compared to PEGDME, while

575 the hydrophobic solvents continued to have high gas absorption at inlet temperatures of up to 55
576 °C (

577 Table 7). Operation at higher absorption temperatures is expected to reduce the energy and
578 capital costs associated with the costly and energy intensive refrigeration equipment that is
579 required to operate hydrophilic physical solvents, such as methanol and PEGDME, in their
580 currently designed commercial processes. During Trial #2 when both PEGDME and CASSH-1
581 were operated continuously at 25°C with CO₂ partial pressure of ~ 2.7 MPa both solvents showed
582 comparable absorption performance in terms of the CO₂ uptake (2.49 and 2.40 mol·L⁻¹ for
583 PEGDME and CASSH-1, respectively) and uptake of other syngas components (Table 8). These
584 results were lower than that predicted from the pure gas equilibrium measurements reported in this
585 study and in the literature by Shi et al. ((Shi et al., 2019; Shi et al., 2021) but this is to be expected
586 when operating with a multi component syngas in an absorption column setup.

587 Hydrophobic physical solvents are expected to absorb less water, which is ideal in the case
588 of pre-combustion CO₂ capture. Low water solubility is an important property for pre-combustion
589 solvent absorption applications as it keeps the water in the sweet gas with the H₂ which can
590 increase power output from the gas turbine and reduces the need for costly water recovery
591 equipment. Additionally, water in the solvent can lead to equipment corrosion and reduced CO₂
592 absorption capacity due to the reduced mass transfer rates as a result of increased solvent viscosity
593 and competition from the water molecules which could form stronger bonds with the solvent
594 compared to CO₂. Lower residual water solubility (after the flash process) was observed in both
595 pilot plant trials with the hydrophobic solvents. Process simulations also indicated that hydrophilic
596 PEGDME would contain approximately twice as much water as hydrophobic CASSH-1 before the
597 flash process and more than three times as much water after the flash process (Process simulation
598 results can be found in the Supplemental Information). PEGDME contained significantly more
599 water than the three hydrophobic solvents in Trial #1 (Table 7) and although CASSH-1 and
600 PEGDME showed similar CO₂ absorption performance by the end of Trial #2, the hydrophobic
601 solvent CASSH-1 contained less than half (358 ppm) the amount of water than PEGDME (837
602 ppm) which was measured after the solvent regeneration process where most water is flashed out
603 of the solvent with the CO₂. The measured water content in both solvents during the second trial
604 was lower than the first trial which was likely impacted by the higher flash temperature in the
605 second trial. As shown in the VLE measurements presented in Figure 3 and Table 4, CO₂ uptake
606 in dry PEGDME is higher than that in dry CASSH-1, however, in the pilot plant trials both solvents

607 have similar CO₂ absorption performance which is most likely due to reduced CO₂ capacity of the
608 wet hydrophilic PEGDME solvent.

609 Gas absorption selectivity was calculated to assess how the solvent absorbs CO₂ compared
610 to the other gas components present in the syngas. Ideally, the solvent will absorb CO₂ (and
611 potentially H₂S) while rejecting the other syngas components, particularly H₂. CO₂ selectivity over
612 H₂ was high (~60) for all solvents in Trial #1. During Trial #2 the CO₂/H₂ selectivity was 66 ± 6
613 for CASSH-1 and 99 ± 8 for PEGDME. The trends for gas selectivity between CASSH-1 and
614 PEGDME measured using VLE equipment (Table 6) and the pilot plant were similar with CO₂/H₂
615 > CO₂/N₂ > CO₂/CO > CO₂/CH₄ > CO₂/H₂S.

616 Another important outcome from operation of this pilot plant was assessing the solvent
617 interactions with other minor components present in the syngas. In general, the solvents used in
618 this study did not show signs of solvent degradation after operation with coal-derived syngas, as
619 indicated by consistent CO₂ absorption performance over the testing period. During Trial #2,
620 Dräger tubes were used with the solvents to assess the presence of minor syngas components such
621 as HCN, NH₃, HCl, benzene, toluene and xylene. The pilot plant contained a quench pot system
622 upstream of the solvent absorption, which appears to have removed most of the tars and water-
623 soluble contaminants, such as NH₃ and HCl. The main components that were detected in the
624 solvents were HCN and toluene. Semi-quantitative analysis was used to identify absorption of tar
625 compounds and both solvents were found to absorb similar amounts of aromatic compounds, like
626 toluene and benzene. However, CASSH-1 was found to have absorbed more polycyclic tar
627 compounds, like naphthalene compared to PEGDME, although the total amount of tar materials in
628 both solvents was relatively low. The presence of these contaminants did not appear to impact
629 solvent performance, although further testing is recommended to quantify these components and
630 their impact with more accuracy.

631 All four physical solvents were operated close to equilibrium conditions in the pilot plant
632 trials, however ideal operation is not expected due to variations in solvent physical properties (e.g.,
633 change in viscosity due to water absorption), temperature variations and/or due to competitive
634 absorption of other syngas components. The syngas was a mixed gas stream with multiple gas
635 components, including sulfur, tars, and water, which impacted the absorption performance. Both
636 rate-based and equilibrium models were used in process simulations to model the pilot plant. Both
637 models were able to predict plant performance with reasonable accuracy; however, in general the

638 rate-based model is preferred over the equilibrium model due to the inclusion of parameters that
639 better describe column hydrodynamics and mass transfer and therefore is able to better represent
640 the actual absorption column performance. The rate-based model includes rates of multi-
641 component mass and heat transfer directly with the mass transfer described via the two-film theory
642 (Noeres et al., 2003), which incorporates mass transfer coefficient correlations that are dependent
643 on physical properties and hydrodynamics and overall provide better representation of the actual
644 absorption column performance.

645

646 **5 Conclusions**

647 Equilibrium gas solubility data for the syngas components CO₂, H₂, N₂ and CH₄ were measured
648 for the baseline PEGDME hydrophilic solvent and the novel hydrophobic physical solvents
649 (CASSH-1, PEG-PDMS-3 and TBP) over a range of pressures and temperatures relevant to pre-
650 combustion CO₂ capture. The solubility of CO₂ in all solvents increased with increasing pressure
651 but decreased with increasing temperature. The hydrophobic physical solvents, which have more
652 favorable physical properties compared to PEGDME (e.g., lower viscosity, lower vapor pressure,
653 lower water uptake, etc.) also showed comparable gas solubility results compared to the
654 hydrophilic solvent baseline. Therefore, it was decided to further screen the performance of all
655 four solvents in a pre-combustion pilot plant using coal derived syngas.

656 Operating experience and operational data were obtained for benchmarking the three
657 hydrophobic solvents including CASSH-1, PEG-PDMS-3 and TBP, against the commercial
658 hydrophilic solvent PEGDME. All four solvents were operated successfully in the pilot plant at
659 similar operating conditions and showed comparable CO₂ absorption performance. However,
660 compared to the performance of PEGDME at the recommended Selexol process operating
661 temperature of 10°C, the hydrophobic solvents all showed comparable or higher CO₂ uptake
662 performance at elevated temperatures of up to 55°C. Additionally, the hydrophobic solvents
663 absorbed less water from the syngas, particularly CASSH-1, compared to PEGDME. Longer term
664 solvent testing was subsequently completed for the hydrophilic solvent PEGDME and the
665 hydrophobic solvent CASSH-1. The results showed that both solvents absorbed CO₂ without any
666 significant degradation over the testing period, and both showed comparable absorption
667 performance as indicated by similar CO₂ uptake and similar gas selectivity. However, despite some
668 minor absorption of syngas contaminants, the hydrophobic solvent CASSH-1 absorbed less water

669 and was capable of operation at higher absorption temperatures (up to 55°C) which makes it a
670 promising option for use as a physical solvent for CO₂ removal from future gasification
671 applications. Absorption of less water into the solvent will reduce solvent dehydration processing
672 costs, reduce the loss of water from the syngas, and enable operation at higher temperatures to
673 reduce the need for energy intensive cooling of the solvent. Further work is required to optimize
674 and test solvent regeneration using a multi-stage flash process operated at higher temperatures and
675 pressures which could decrease the need for costly re-compression of the CO₂ gas stream before
676 sequestration.

677 Results from this study, including equilibrium data, pilot plant testing results and process
678 simulations, will build confidence in the use of novel hydrophobic solvents for CO₂ capture from
679 high pressure syngas. Operation of the pilot plant provided valuable operating data for validation
680 of process simulations which is an important step for the design and scale-up of novel processes
681 and will help encourage deployment of larger industrial applications. And finally, although the
682 experimental program covered in this work is aimed at CO₂ capture from IGCC power generation,
683 the hydrophobic physical solvents tested in this study are also applicable to other high pressure
684 synthetic gas applications including adjustment of CO/H₂ ratio for coal-to-liquids and biomass-to-
685 liquids, production of H₂ from reformed natural gas and removal of CO₂ from syngas used in other
686 applications such as blue hydrogen or ammonia production.

687 **6 Acknowledgements**

688 This technical effort was performed in support of the US Department of Energy's Office of Fossil
689 Energy & Carbon Management (FECM) Carbon Capture program. The research was executed
690 through the NETL Research and Innovation Center's 2021 Transformational Carbon Capture field
691 work proposal (FWP) and 2022 Point Source Capture FWP.

692

693 **7 Disclaimer**

694 This work was funded by the Department of Energy, National Energy Technology Laboratory, an
695 agency of the United States Government, through a support contract with Leidos Research Support
696 Team (LRST). Neither the United States Government nor any agency thereof, nor any of their
697 employees, nor LRST, nor any of their employees, makes any warranty, expressed or implied, or
698 assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
699 information, apparatus, product, or process disclosed, or represents that its use would not infringe

700 privately owned rights. Reference herein to any specific commercial product, process, or service
701 by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
702 endorsement, recommendation, or favoring by the United States Government or any agency
703 thereof. The views and opinions of authors expressed herein do not necessarily state or reflect
704 those of the United States Government or any agency thereof.

705 **8 References**

706 Afkhamipour, M., Mofarahi, M., 2013. Comparison of rate-based and equilibrium-stage models
707 of a packed column for post-combustion CO₂ capture using 2-amino-2-methyl-1-propanol
708 (AMP) solution. International Journal of Greenhouse Gas Control 15, 186-199.

709 Ashkanani, H.E., Wang, R., Shi, W., Siefert, N.S., Thompson, R.L., Smith, K., Steckel, J.A.,
710 Gamwo, I.K., Hopkinson, D., Resnik, K., Morsi, B.I., 2020. Levelized Cost of CO₂ Captured
711 Using Five Physical Solvents in Pre-combustion Applications. International Journal of
712 Greenhouse Gas Control 101, 103135.

713 Billet, R., Schultes, M., 1993. A physical model for the prediction of liquid hold-up in two-phase
714 countercurrent columns. Chemical Engineering & Technology 16, 370-375.

715 Borhani, T.N.G., Akbari, V., Afkhamipour, M., Hamid, M.K.A., Manan, Z.A., 2015.
716 Comparison of equilibrium and non-equilibrium models of a tray column for post-combustion
717 CO₂ capture using DEA-promoted potassium carbonate solution. Chemical Engineering Science
718 122, 291-298.

719 Bucklin, R.W., Schendel, R.L., 1984. Comparison of Fluor solvent and Selexol processes.
720 Energy progress 4, 137-142.

721 Cowan, R.M., Jensen, M.D., Pei, P., Steadman, E.N., Harju, J.A., 2011. Current status of CO₂
722 capture technology development and application. Energy & Environmental Research Center,
723 University of North Dakota, Grand Forks, ND.

724 Damen, K., Gnutek, R., Kaptein, J., Ryan Nannan, N., Oyarzun, B., Trapp, C., Colonna, P., van
725 Dijk, E., Gross, J., Bardow, A., 2011. Developments in the pre-combustion CO₂ capture pilot
726 plant at the Buggenum IGCC. Energy Procedia 4, 1214-1221.

727 Enick, R.M., Koronaios, P., Stevenson, C., Warman, S., Morsi, B., Nulwala, H., Luebke, D.,
728 2013. Hydrophobic Polymeric Solvents for the Selective Absorption of CO₂ from Warm Gas
729 Streams that also Contain H₂ and H₂O. Energy & Fuels 27, 6913-6920.

730 Franckwiak, S., Nitschke, E., 1970. Estasolva: new gas treating process. Hydrocarbon Process.;
731 (United States), 145-148.

732 Global CCS Institute, 2021. Blue Hydrogen.

733 Kohl, A.L., Nielsen, R.B., 1997. Chapter 14 - Physical Solvents for Acid Gas Removal, in: Kohl,
734 A.L., Nielsen, R.B. (Eds.), *Gas Purification* (Fifth Edition). Gulf Professional Publishing,
735 Houston, pp. 1187-1237.

736 Koitsoumpa, E.I., Atsonios, K., Panopoulos, K.D., Karellas, S., Kakaras, E., Karl, J., 2015.
737 Modelling and assessment of acid gas removal processes in coal-derived SNG production.
738 *Applied Thermal Engineering* 74, 128-135.

739 Lau, H.C., Ramakrishna, S., Zhang, K., Radhamani, A.V., 2021. The role of carbon capture and
740 storage in the energy transition. *Energy and Fuels* 35, 7364-7386.

741 Leva, M., 1992. Reconsider packed-tower pressure-drop correlations. *Chemical Engineering
742 Progress* 88, 65-72.

743 Li, S., Jin, H., Mumford, K.A., Smith, K., Stevens, G., 2015. IGCC Precombustion CO₂ Capture
744 Using K₂CO₃ Solvent and Utilizing the Intercooling Heat Recovered From CO₂ Compressors
745 for CO₂ Regeneration. *Journal of Energy Resources Technology* 137, 042002-042002.

746 Ma, C., Liu, C., Lu, X., Ji, X., 2018. Techno-economic analysis and performance comparison of
747 aqueous deep eutectic solvent and other physical absorbents for biogas upgrading. *Applied
748 Energy* 225, 437-447.

749 Moioli, S., Giuffrida, A., Gamba, S., Romano, M.C., Pellegrini, L., Lozza, G., 2014. Pre-
750 combustion CO₂ capture by MDEA process in IGCC based on air-blown gasification. *Energy
751 Procedia* 63, 2045-2053.

752 Morton, F., Laird, R., Northington, J., 2013. The National Carbon Capture Center: Cost-effective
753 test bed for carbon capture R&D. *Energy Procedia* 37, 525-539.

754 Mumford, K.A., Wu, Y., Smith, K.H., Stevens, G.W., 2015. Review of solvent based carbon-
755 dioxide capture technologies. *Frontiers of Chemical Science and Engineering* 9, 125-141.

756 Nagar, A., McLaughlin, E., Hornbostel, M., Krishnan, G., Jayaweera, I., 2017. CO₂ capture from
757 IGCC gas streams using the AC-ABC process, United States, p. Medium: ED; Size: 133 p.

758 Newman, S.H., 1985. Acid and Sour Gas Treating Processes. Gulf Publishing Co., Houston, TX.

759 Noeres, C., Kenig, E.Y., Góral, A., 2003. Modelling of reactive separation processes: reactive
760 absorption and reactive distillation. *Chemical Engineering and Processing: Process
761 Intensification* 42, 157-178.

762 Onda, K., Takeuchi, H., Okumoto, Y., 1968. Mass transfer coefficients between gas and liquid
763 phases in packed columns. *Journal of Chemical Engineering of Japan* 1, 56-62.

764 Piché, S., Larachi, F., Grandjean, B.P.A., 2001. Flooding Capacity in Packed Towers: Database,
765 Correlations, and Analysis. *Industrial & Engineering Chemistry Research* 40, 476-487.

766 Samipour, S., Manshadi, M.D., Setoodeh, P., 2020. Chapter 20 - CO₂ removal from biogas and
767 syngas, in: Rahimpour, M.R., Farsi, M., Makarem, M.A. (Eds.), *Advances in Carbon Capture*.
768 Woodhead Publishing, pp. 455-477.

769 Shi, W., Hopkinson, D.P., Steckel, J.A., Resnik, K., Macala, M.K., Thompson, R.L., Tiwari, S.,
770 2018. A Data Mining Method for the Identification of New Physical Solvents, 2018 NETL CO₂
771 Capture Technology Project Review Meeting, Pittsburgh, USA.

772 Shi, W., Siefert, N.S., Baled, H.O., Steckel, J.A., Hopkinson, D.P., 2016. Molecular Simulations
773 of the Thermophysical Properties of Polyethylene Glycol Siloxane (PEGS) Solvent for
774 Precombustion CO₂ Capture. *The Journal of Physical Chemistry C* 120, 20158-20169.

775 Shi, W., Siefert, N.S., Morreale, B.D., 2015. Molecular Simulations of CO₂, H₂, H₂O, and H₂S
776 Gas Absorption into Hydrophobic Poly(dimethylsiloxane) (PDMS) Solvent: Solubility and
777 Surface Tension. *The Journal of Physical Chemistry C* 119, 19253-19265.

778 Shi, W., Thompson, R.L., Macala, M.K., Resnik, K., Steckel, J.A., Siefert, N.S., Hopkinson,
779 D.P., 2019. Molecular Simulations of CO₂ and H₂ Solubility, CO₂ Diffusivity, and Solvent
780 Viscosity at 298 K for 27 Commercially Available Physical Solvents. *Journal of Chemical &*
781 *Engineering Data* 64, 3682-3692.

782 Shi, W., Tiwari, S.P., Thompson, R.L., Culp, J.T., Hong, L., Hopkinson, D.P., Smith, K., Resnik,
783 K., Steckel, J.A., Siefert, N.S., 2021. Computational Screening of Physical Solvents for CO₂
784 Pre-combustion Capture. *The Journal of Physical Chemistry B* 125, 13467-13481.

785 Siefert, N., Hopkinson, D., 2018. A High Performance Physical Solvent for Pre-Combustion
786 CO₂ Capture, 2018 NETL CO₂ Capture Technology Project Review Meeting, Pittsburgh, USA.

787 Siefert, N., Narburgh, S., Chen, Y., 2016a. Comprehensive Exergy Analysis of Three IGCC
788 Power Plant Configurations with CO₂ Capture. *Energies* 9, 669.

789 Siefert, N.S., Agarwal, S., Shi, F., Shi, W., Roth, E.A., Hopkinson, D., Kusuma, V.A.,
790 Thompson, R.L., Luebke, D.R., Nulwala, H.B., 2016b. Hydrophobic physical solvents for pre-
791 combustion CO₂ capture: Experiments, computational simulations, and techno-economic
792 analysis. *International Journal of Greenhouse Gas Control* 49, 364-371.

793 Smith, K., Ghosh, U., Khan, A., Simioni, M., Endo, K., Zhao, X., Kentish, S., Qader, A.,
794 Hooper, B., Stevens, G., 2009. Recent developments in solvent absorption technologies at the
795 CO₂CRC in Australia. *Energy Procedia* 1, 1549-1555.

796 Smith, K.H., Anderson, C.J., Tao, W., Endo, K., Mumford, K.A., Kentish, S.E., Qader, A.,
797 Hooper, B., Stevens, G.W., 2012. Pre-combustion capture of CO₂—Results from solvent
798 absorption pilot plant trials using 30wt% potassium carbonate and boric acid promoted
799 potassium carbonate solvent. *International Journal of Greenhouse Gas Control* 10, 64-73.

800 Smith, K.H., Ashkanani, H.E., Morsi, B.I., Siefert, N.S., 2022. Physical solvents and techno-
801 economic analysis for pre-combustion CO₂ capture: A review. *International Journal of*
802 *Greenhouse Gas Control* 118.

803 Thompson, R.L., Culp, J., Tiwari, S.P., Basha, O., Shi, W., Damodaran, K., Resnik, K., Siefert,
804 N., Hopkinson, D., 2019. Effect of Molecular Structure on the CO₂ Separation Properties of
805 Hydrophobic Solvents Consisting of Grafted Poly Ethylene Glycol and Poly Dimethylsiloxane
806 Units. *Energy and Fuels* 33, 4432-4441.

807 Trapp, C., de Servi, C., Casella, F., Bardow, A., Colonna, P., 2015a. Dynamic modelling and
808 validation of pre-combustion CO₂ absorption based on a pilot plant at the Buggenum IGCC
809 power station. *International Journal of Greenhouse Gas Control* 36, 13-26.

810 Trapp, C., Thomaser, T., Van Dijk, H.A.J., Colonna, P., 2015b. Design optimization of a pre-
811 combustion CO₂ capture plant embedding experimental knowledge. *Fuel* 157, 126-139.

812 Wu, T., 2022. National Carbon Capture Center (FE0022596), 2022 Carbon Management Project
813 Review Meeting. National Energy Technology Laboratory, Pittsburgh, USA.
814

815

816 **9 Supplemental Information**

817
 818 The following tables contain additional simulation detail, simulation results and experimental data
 819 including the raw data collected during VLE experiments and pilot plant trials. These VLE data
 820 were used to plot the figures in the main manuscript. The binary interaction parameters used for
 821 predicting gas solubility in the solvents in Aspen Plus via the PC-SAFT equation of state have also
 822 been provided. Simulation results for variation in solvent flow rate have also been provided.

823

824 **Table S1. Equilibrium CO₂ solubility as a function of pressure and temperature for dry**
 825 **physical solvents (a) PEGDME, (b) CASSH-1, (c) PEG-PDMS-3, (d) TBP. These data were**
 826 **measured using the Hiden IGA VLE apparatus.**

PEGDME CO ₂ solubility, mol/L				
Temperature, °C →	10°C	25°C	40°C	55°C
Pressure (MPa) ↓				
0	0	0	0	0
0.1	0.19	0.14	0.11	0.08
0.15	0.29	0.20	0.15	0.11
0.3	0.60	0.42	0.31	0.23
0.45	0.92	0.64	0.47	0.34
0.6	1.26	0.86	0.64	0.47
0.75	1.62	1.09	0.81	0.59
0.9	1.99	1.34	0.98	0.71
1.05	2.39	1.59	1.15	0.84
1.2	2.80	1.85	1.33	0.97
1.35	3.24	2.11	1.52	
1.5	3.70	2.39	1.70	
1.65	4.20	2.68	1.90	
1.8	4.72	2.98	2.10	
CASSH-1 CO ₂ solubility, mol/L				
Temperature, °C →	10°C	25°C	40°C	55°C
Pressure (MPa) ↓				
0	0	0	0	0
0.1	0.159	0.123	0.095	0.076
0.15	0.239	0.178	0.142	0.116
0.3	0.496	0.375	0.290	0.236
0.45	0.766	0.569	0.439	0.348
0.6	1.049	0.770	0.588	0.462
0.75	1.346	0.974	0.738	0.578

0.9	1.659	1.188	0.898	0.696
1.05	1.987	1.408	1.061	0.819
1.2	2.334	1.637	1.230	0.945
1.35	2.700	1.872	1.399	1.070
1.5	3.084	2.114	1.573	1.197
1.65	3.495	2.366	1.751	1.326
1.8	3.932	2.626	1.931	1.456

PEG-PDMS-3 CO₂ solubility, mol/L

Temperature, °C →	10°C	25°C	40°C	55°C
Pressure (MPa) ↓				
0	0	0.000	0	0
0.1	0.169	0.119	0.088	0.072
0.15	0.254	0.179	0.133	0.109
0.3	0.508	0.356	0.266	0.216
0.45	0.769	0.540	0.397	0.326
0.6	1.037	0.727	0.534	0.431
0.75	1.319	0.915	0.670	0.535
0.9	1.609	1.112	0.808	0.642
1.05	1.914	1.314	0.952	0.751
1.2	2.229	1.524	1.101	0.862
1.35	2.559	1.737	1.244	0.969
1.5	2.904	1.958	1.399	1.095
1.65	3.271	2.186	1.556	1.208
1.8	3.659	2.422	1.717	1.330

TBP CO₂ solubility, mol/L

Temperature, °C →	10°C	25°C	40°C	55°C
Pressure (MPa) ↓				
0	0	0	0	0
0.1	0.184	0.126	0.106	0.078
0.15	0.275	0.188	0.151	0.122
0.3	0.540	0.380	0.299	0.231
0.45	0.818	0.579	0.448	0.342
0.6	1.110	0.784	0.601	0.462
0.75	1.415	0.994	0.756	0.576
0.9	1.739	1.213	0.915	0.694
1.05	2.076	1.442	1.082	0.818
1.2	2.434	1.679	1.251	0.939
1.35	2.813	1.922	1.422	1.066
1.5	3.219	2.183	1.602	1.195
1.65	3.648	2.460	1.789	1.320
1.8	4.115	2.720	1.970	1.457

827 **Table S2. Equilibrium pure gas solubility for CH₄, N₂ and H₂ as a function of pressure and**
 828 **temperature for dry physical solvents (a) PEGDME, (b) CASSH-1, (c) PEG-PDMS-3, (d)**
 829 **TBP. These data were measured using the CSTR apparatus. These data are not presented in**
 830 **figures in the manuscript.**

PEGDME H ₂ solubility			
25 °C		40 °C	
Pressure (Mpa)	H ₂ Solubility (mol/L)	Pressure (Mpa)	H ₂ Solubility (mol/L)
0.5038	0.0052	0.5043	0.0049
1.1274	0.0240	1.1345	0.0213
1.7913	0.0439	1.8044	0.0387
2.4693	0.0645	2.4769	0.0567
2.9339	0.0777	2.9363	0.0682
CASSH-1 H ₂ solubility			
25 °C		40 °C	
Pressure (Mpa)	H ₂ Solubility (mol/L)	Pressure (Mpa)	H ₂ Solubility (mol/L)
0.51	0.0083	0.51	0.0086
1.10	0.0201	1.10	0.0241
1.74	0.0336	1.74	0.0408
2.39	0.0464	2.39	0.0568
2.87	0.0571	2.87	0.0681
CASSH-1 N ₂ solubility			
25 °C		40 °C	
Pressure (Mpa)	N ₂ Solubility (mol/L)	Pressure (Mpa)	N ₂ Solubility (mol/L)
0.49	0.0151	0.52	0.0168
1.05	0.0353	1.08	0.0380
1.67	0.0564	1.70	0.0589
2.32	0.0783	2.36	0.0791
2.79	0.0924	2.82	0.0958
CASSH-1 CH ₄ solubility			
25 °C		40 °C	
Pressure (Mpa)	CH ₄ Solubility (mol/L)	Pressure (Mpa)	CH ₄ Solubility (mol/L)
0.45	0.0615	0.46	0.0570
1.01	0.1362	1.00	0.1239
1.64	0.2162	1.62	0.1977
2.29	0.2965	2.27	0.2676

2.78	0.3571	2.75	0.3193
PEG-PDMS-3 H₂ solubility			
25 °C		40 °C	
Pressure (Mpa)	H ₂ Solubility (mol/L)	Pressure (Mpa)	H ₂ Solubility (mol/L)
0.49	0.0094	0.48	0.0124
1.09	0.0214	1.09	0.0254
1.74	0.0342	1.74	0.0388
2.40	0.0482	2.40	0.0538
2.87	0.0576	2.87	0.0633
PEG-PDMS-3 N₂ solubility			
25 °C		40 °C	
Pressure (Mpa)	N ₂ Solubility (mol/L)	Pressure (Mpa)	N ₂ Solubility (mol/L)
0.4866	0.0121	0.4889	0.0235
1.0712	0.0366	1.0776	0.0477
1.7224	0.0653	1.7013	0.0747
2.3507	0.0984	2.3471	0.1060
2.8566	0.1261	2.8655	0.1328
PEG-PDMS-3 CH₄ solubility			
25 °C		40 °C	
Pressure (Mpa)	CH ₄ Solubility (mol/L)	Pressure (Mpa)	CH ₄ Solubility (mol/L)
0.4667	0.0617	0.4904	0.0606
1.0307	0.1428	1.0508	0.1362
1.6396	0.2363	1.6638	0.2175
2.2805	0.3440	2.3067	0.3066
2.7695	0.4230	2.7969	0.3765

831

832 **Table S3. Equilibrium gas solubility at 25°C as a function of pressure for dry physical
833 solvents PEGDME, CASSH-1, PEG-PDMS-3 and TBP. These data were measured using the
834 Isosorp VLE apparatus.**

PEGDME at 25°C				
Pressure, MPa	CO ₂ solubility, mol/L	N ₂ solubility, mol/L	H ₂ solubility, mol/L	CH ₄ solubility, mol/L
0.1	0.14	0.0021	0.0021	0.0102
0.5	0.70	0.0106	0.0104	0.0511
1	1.49	0.021	0.021	0.1012
1.5	2.38	0.0317	0.0312	0.1501
2	3.38	0.0423	0.0416	0.1979

2.5	4.51	0.0528	0.0521	0.2447
3	5.79	0.0634	0.0625	0.2903
CASSH-1 at 25°C				
Pressure, MPa	CO ₂ solubility, mol/L	N ₂ solubility, mol/L	H ₂ solubility, mol/L	CH ₄ solubility, mol/L
0.1	0.1294	0.0038	0.0026	0.0167
0.5	0.6347	0.0188	0.0132	0.0829
1	1.3353	0.0377	0.0264	0.1634
1.5	2.1210	0.0565	0.0396	0.2415
2	3.0023	0.0753	0.0528	0.3173
2.5	3.9907	0.0942	0.0660	0.3909
3	5.0994	0.1130	0.0792	0.4622
PEG-PDMS-3 at 25°C				
Pressure, MPa	CO ₂ solubility, mol/L	N ₂ solubility, mol/L	H ₂ solubility, mol/L	CH ₄ solubility, mol/L
0.1	0.11	0.0034	0.0026	0.0146
0.5	0.57	0.0168	0.0130	0.0731
1	1.20	0.0331	0.0259	0.1453
1.5	1.91	0.0490	0.0389	0.2165
2	2.69	0.0645	0.0519	0.2869
2.5	3.56	0.0795	0.0648	0.3563
3	4.54	0.0940	0.0778	0.4248
TBP at 25°C				
Pressure, MPa	CO ₂ solubility, mol/L	N ₂ solubility, mol/L	H ₂ solubility, mol/L	CH ₄ solubility, mol/L
0.1	0.13	0.0041	0.0035	0.0177
0.5	0.65	0.0203	0.0173	0.0882
1	1.38	0.0403	0.0345	0.1751
1.5	2.21	0.0601	0.0518	0.2607
2	3.15	0.0797	0.0690	0.3450
2.5	4.22	0.0990	0.0863	0.4281
3	5.44	0.1181	0.1036	0.5098

835

836 **Table S4. Equilibrium CO₂ gas solubility at 10, 25 & 40°C as a function of pressure for dry**
 837 **physical solvents PEGDME, CASSH-1, PEG-PDMS-3 and TBP. These data were measured**
 838 **using the Isosorp VLE apparatus.**

PEGDME CO ₂ solubility					
10 °C		25 °C		40 °C	
Pressure (Mpa)	CO ₂ Solubility (mol/L)	Pressure (Mpa)	CO ₂ Solubility (mol/L)	Pressure (Mpa)	CO ₂ Solubility (mol/L)
0.1	0.22	0.1	0.14	0.1	0.10
0.5	0.99	0.5	0.70	0.5	0.51
1	2.16	1	1.49	1	1.06
1.5	3.65	1.5	2.38	1.5	1.66

2	5.53	2	3.38	2	2.30
2.5	7.91	2.5	4.51	2.5	3.00
3	10.92	3	5.79	3	3.75

CASSH-1 CO₂ solubility

10 °C		25 °C		40 °C	
Pressure (Mpa)	CO ₂ Solubility (mol/L)	Pressure (Mpa)	CO ₂ Solubility (mol/L)	Pressure (Mpa)	CO ₂ Solubility (mol/L)
0.10	0.16	0.10	0.09	0.10	0.09
0.49	0.91	0.29	0.37	0.49	0.47
1.00	1.97	0.49	0.63	0.99	0.97
1.49	3.22	1.00	1.32	1.49	1.52
1.99	4.75	1.49	2.12	1.99	2.10
2.50	6.77	2.00	2.97	2.49	2.72
3.00	9.66	2.49	3.98	3.00	3.57
		1.49	2.13		
		0.51	0.65		

PEG-PDMS-3 CO₂ solubility

10 °C		25 °C		40 °C	
Pressure (Mpa)	CO ₂ Solubility (mol/L)	Pressure (Mpa)	CO ₂ Solubility (mol/L)	Pressure (Mpa)	CO ₂ Solubility (mol/L)
0.1	0.18	0.1	0.11	0.1	0.08
0.5	0.81	0.5	0.57	0.5	0.43
1	1.75	1	1.20	1	0.89
1.5	2.90	1.5	1.91	1.5	1.38
2	4.30	2	2.69	2	1.91
2.5	6.01	2.5	3.56	2.5	2.47
3	8.09	3	4.54	3	3.07

TBP CO₂ solubility

10 °C		25 °C		40 °C	
Pressure (Mpa)	CO ₂ Solubility (mol/L)	Pressure (Mpa)	CO ₂ Solubility (mol/L)	Pressure (Mpa)	CO ₂ Solubility (mol/L)
0.1	0.18	0.1	0.13	0.1	0.09
0.5	0.80	0.5	0.65	0.5	0.49
1	1.79	1	1.38	1	1.01
1.5	3.09	1.5	2.21	1.5	1.59
2	4.78	2	3.15	2	2.21
2.5	7.00	2.5	4.22	2.5	2.89
3	9.91	3	5.44	3	3.62

841 **Table S5a. Inlet syngas composition data for each day of operation during trial 2 (Days 1-5: CASSH-1; Days 6-10: PEGDME).** These normalized values represent averages from the two
 842 gas analyzers on each gas stream.

Syngas component	PEGDME					CASSH-1				
	Day 1	Day 1	Day 2	Day 3	Day 4	Day 5	Day 2	Day 3	Day 4	Day 5
H ₂ , mol%	15.0	17.8	15.0	15.8	16.9	16.9	13.8	14.1	16.0	16.2
N ₂ , mol%	28.0	23.9	26.0	23.6	22.1	25.3	28.4	25.2	27.1	24.0
CO, mol%	1.1	0.3	0.6	0.9	1.0	1.1	1.5	1.4	1.3	1.5
CO ₂ , mol%	53.9	55.2	56.3	57.0	57.5	54.5	53.6	56.9	53.1	55.7
CH ₄ , mol%	1.6	2.4	1.6	2.3	2.2	1.8	2.4	2.0	2.3	2.4
H ₂ S, ppm	3773.3	4188.8	4628.4	4107.8	4191.5	3951.0	3684.0	3529.2	2996.9	3067.4

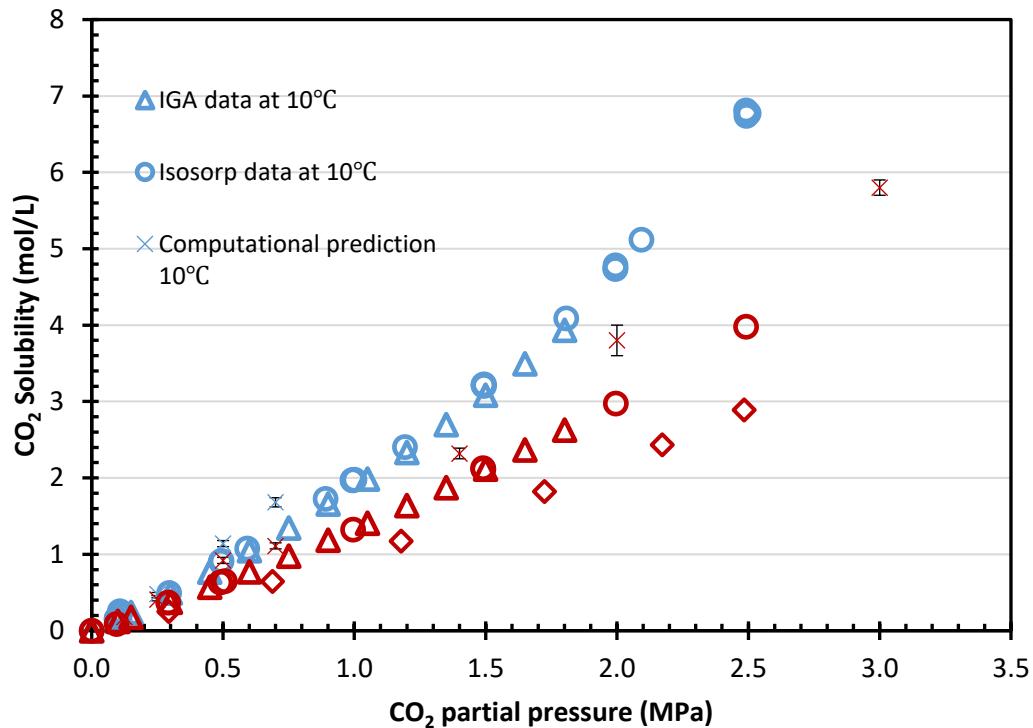
844
 845 **Table S5b. Sweet gas composition data for each day of operation during trial 2.** These
 846 normalized values represent averages from the two gas analyzers on each gas stream.

Sweet gas component	PEGDME					CASSH-1				
	Day 1	Day 1	Day 2	Day 3	Day 4	Day 5	Day 2	Day 3	Day 4	Day 5
H ₂ , mol%	33.4	35.6	32.0	37.5	36.3	34.8	34.0	33.4	37.5	38.1
N ₂ , mol%	58.4	52.2	60.2	51.7	53.4	54.2	59.3	58.5	53.3	52.4
CO, mol%	1.6	0.4	0.5	1.0	1.2	1.8	1.6	1.5	1.9	2.0
CO ₂ , mol%	2.2	6.3	4.1	5.5	4.4	4.2	1.7	1.8	1.7	1.6
CH ₄ , mol%	4.5	5.4	3.2	4.3	4.7	5.1	3.5	4.7	5.6	6.0
H ₂ S, ppm	99.2	150.9	173.6	164.8	161.5	167.3	114.7	111.0	113.8	108.1

847
 848
 849 **Table S5c. Acid gas composition data for each day of operation during trial 2.** These normalized
 850 values represent averages from the two gas analyzers on each gas stream.

Acid gas component	PEGDME					CASSH-1				
	Day 1	Day 1	Day 2	Day 3	Day 4	Day 5	Day 2	Day 3	Day 4	Day 5
H ₂ , mol%	0.2	0.4	0.3	0.4	0.4	0.4	0.2	0.2	0.2	0.3
N ₂ , mol%	2.5	2.6	3.0	2.7	2.7	3.1	2.7	2.5	2.3	2.2
CO, mol%	0.2	0.1	0.1	0.2	0.2	0.2	0.4	0.4	0.2	0.3
CO ₂ , mol%	95.8	95.2	95.1	95.2	95.2	94.7	95.3	95.4	95.8	95.7
CH ₄ , mol%	0.7	1.0	0.6	0.8	0.8	0.9	0.7	0.9	0.9	1.0
H ₂ S, ppm	6457.5	7673.6	8054.2	7213.1	7210.9	7151.5	6718.4	6075.9	5600.3	5477.3

851
 852


853 **Table S6. Process simulation predictions for water solubility during pilot plant operation for**
 854 **CASSH-1 and PEGDME before and after the flash process. Note that experimental water VLE**
 855 **data were not regressed into the process simulation.**

	PEGDME		CASSH-1	
	Aspen Plus – Rate Based	Aspen Plus - Equilibrium	Aspen Plus – Rate Based	Aspen Plus - Equilibrium
Water Content Before Flash (ppm)	286	273	153	149
Water Content After Flash (ppm)	206	193	61	58
Experimental Water Content After Flash after Day 5 (ppm)	837		358	

856
 857 **Table S7. Computational predictions of CO₂ solubility in CASSH-1 from (Shi et al., 2021) at**
 858 **10°C and 25°C**

CASSH-1 at 10°C		CASSH-1 at 25°C	
Pressure, MPa	Predicted CO ₂ solubility, mol/L	Pressure, MPa	Predicted CO ₂ solubility, mol/L
0.125	0.060 ± 0.004	0.18	0.046 ± 0.003
0.25	0.113 ± 0.005	0.41	0.099 ± 0.004
0.5	0.230 ± 0.007	0.92	0.197 ± 0.006
0.7	0.307 ± 0.008	1.11	0.229 ± 0.006
		2.32	0.383 ± 0.008
		3.8	0.50 ± 0.01
		5.8	0.608 ± 0.006

859

860

861 **Figure S1.** CO_2 solubility in CASSH-1 as a function of CO_2 partial pressure for experimental
 862 VLE data and computational predictions by Shi et al. (Shi et al., 2021)

863

864 **Table S8.** Binary interaction parameters for PC-SAFT equation of state used to predict gas
 865 solubility in solvents. The binary interaction parameters were predicted using the equation:

866 $k_{ij} = A + \frac{B}{T'} + C \ln T' + DT' + ET'^2$ where $T' = T/T_{\text{ref}}$

867 The coefficients A, B, C, D and E in this equation are given in Table S8.

868

Component i	Component j	Regression	Temp units	A	B	C	D	E	Tref
CH ₄	CO ₂	APV110 PC-SAFT	K	0.065	0	0	0	0	298.15
CASSH-1	CO ₂	USER	K	-0.0494	0	0	0.0994	0	298.15
CASSH-1	H ₂	USER	K	-0.3	0	0	0	0	298.15
CASSH-1	N ₂	USER	K	0.075	0	0	0	0	298.15
CASSH-1	CH ₄	USER	K	-0.005	0	0	0	0	298.15
PEGDME	CO ₂	USER	K	-0.07438	0	0	0.099383	0	298.15
PEGDME	H ₂	USER	K	0.12	0	0	0	0	298.15
PEGDME	N ₂	USER	K	0.25	0	0	0	0	298.15
PEGDME	CH ₄	USER	K	0.122	0	0	0	0	298.15

869

870 **Table S9. Process simulation results for variation in solvent flow rate (Q_s) (avg. $Q_s \pm 1\sigma$ =
871 average solvent flow rate ± 1 standard deviation). These simulation results were obtained using
872 the Aspen Plus rate based model using operating conditions found in Table 3 (and varying
873 solvent flow rates as shown below) and the process flow sheet found in Figure 2.**

Solvent:	PEGDME			CASSH-1		
	Pilot plant	Simulation		Pilot plant	Simulation	
Property	Q_s avg. = 32.0 L/h	$Q_s + 1\sigma$ = 33.7 L/h	$Q_s - 1\sigma$ = 29.9 L/h	Q_s , avg. = 32.4 L/h	$Q_s + 1\sigma$ = 34.3 L/h	$Q_s - 1\sigma$ = 30.1 L/h
Absorber temperature						
Top of column	24.9 ± 0.3	25.3	25.5	28.7 ± 1.3	24.81	25.09
Upper	25.5 ± 0.7	26.3	26.8	34.0 ± 1.5	25.71	26.62
Mid	26.7 ± 1.6	27.8	28.9	37.7 ± 1.1	27.31	29.01
Lower	30.1 ± 2.8	30.4	31.9	39.6 ± 0.7	29.91	32.19
Bottom of column	36.4 ± 2.0	34.2	35.8	40.0 ± 0.6	33.41	35.30
Sweet gas flow rate, mol/h	59.3 ± 1.0	67.0	69.5	67.1 ± 5.2	66.5	70.6
Sweet gas, mol%						
H_2	36.5 ± 1.0	31.8	30.8	35.0 ± 2.1	35.4	33.7
N_2	55.4 ± 1.0	55.7	54.0	54.6 ± 1.5	53.9	51.4
CO	1.73 ± 0.04	1.9	1.9	1.1 ± 0.1	1.5	1.4
CO_2	1.6 ± 0.2	7.4	10.1	5.1 ± 0.3	6.9	11.1
CH_4	4.9 ± 0.1	3.2	3.1	4.2 ± 0.3	2.4	2.3
H_2S	0.012 \pm 0.001	0.006	0.006	0.017 \pm 0.001	0.01	0.01
Acid gas flow rate, mol/h	85.0 ± 1.0	78.3	75.8	81.3 ± 3.3	83.1	79.0
Acid gas, mol%						
H_2	0.21 ± 0.04	1.2	1.1	0.45 ± 0.15	1.6	1.4
N_2	2.6 ± 0.2	2.3	2.1	3.2 ± 0.40	3.5	3.1
CO	0.25 ± 0.05	0.32	0.29	0.14 ± 0.10	0.09	0.08
CO_2	95.6 ± 0.2	94.9	95.3	94.6 ± 0.30	93.4	94.1
CH_4	0.78 ± 0.10	0.56	0.51	0.82 ± 0.08	0.66	0.58
H_2S	0.60 ± 0.05	0.63	0.65	0.74 ± 0.01	0.74	0.77
CO_2 recovery, %	99.0 ± 0.5	94	91	95 ± 5	94	90
CO_2 uptake, mol \times L $^{-1}$	2.49 $\pm 0.06 \pm$ 0.15	2.20	2.41	2.40 $\pm 0.13 \pm$ 0.14	2.26	2.47

874