10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

'l) Check for updates

DR. ELKE EICHELMANN (Orcid ID : 0000-0001-9516-7951)
DR. SAMUEL D CHAMBERLAIN (Orcid ID : 0000-0002-5570-764X)

DR. DENNIS BALDOCCHI (Orcid ID : 0000-0003-3496-4919)

Article type  : Primary Research Article

Title: A novel approach to partitioning evapotranspiration into evaporation and transpiration

in flooded ecosystems

Running Title: A novel approach to T/ET partitioning

Authors: Elke Eichelmann*?, Mauricio C. Mantoani?*, Samuel D. Chamberlain®, Kyle S.
HemesP, Patricia Y. Oikawa®, Daphne Szutu®, Alex Valach®”, Joseph Verfaillie®, and Dennis
D. Baldocchi®

Affiliation:

2 School of Biology and Environmental Science, University College Dublin, Science Centre
West, Belfield, Dublin 4, Ireland

b Department of Environmental Science, Policy & Management, UC Berkeley, 130 Mulford
Hall, Berkeley, CA, 94720, USA

¢ Department of Earth and Environmental Sciences, California State University, East Bay,
North Science room 329, Hayward, CA, 94542, USA

* now at: Institute of Astronomy, Geophysics and Atmosperic Science (IAG), University of

Sao Paulo, Sao Paulo, Brazil

This is the author manuscript accepted for publication and has undergone full peer review but
has not been through the copyediting, typesetting, pagination and proofreading process, which
may lead to differences between this version and the Version of Record. Please cite this article

asdoi: 10.1111/GCB.15974

This article is protected by copyright. All rights reserved


https://doi.org/10.1111/GCB.15974
https://doi.org/10.1111/GCB.15974
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgcb.15974&domain=pdf&date_stamp=2021-11-13

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61

" now at: Climate and Agriculture Group, Agroscope, 191 Reckenholzstrasse, 8046 Zurich,

Switzerland

*Corresponding author; tel. +353 (0)1 716 2020; Elke.Eichelmann@ucd.ie

Abstract: Reliable partitioning of micrometeorologically measured evapotranspiration (ET)
into evaporation (E) and transpiration (T) would greatly enhance our understanding of the
water cycle and its response to climate change related shifts in local-to-regional climate
conditions and rising global levels of vapor pressure deficit (VPD). While some methods on
ET partitioning have been developed, their underlying assumptions make them difficult to
apply more generally, especially in sites with large contributions of E. Here, we report a
novel ET partitioning method using Artificial Neural Networks (ANN) in combination with a
range of environmental input variables to predict daytime E from nighttime ET
measurements. The study uses eddy covariance data from four restored wetlands in the
Sacramento-San Joaquin Delta, California, USA, as well as leaf-level T data for validation.
The four wetlands vary in their vegetation make-up and structure, representing a range of ET
conditions. The ANNs were built with increasing complexity by adding the input variable
that resulted in the next highest average value of model testing R? across all sites. The order
of variable inclusion (and importance) was: VPD > gap-filled sensible heat flux (H_gf) > air
temperature (T,;) > friction velocity (u.) > other variables. The model using VPD, H gf, Ty,
and u. showed the best performance during validation with independent data and had a mean
testing R? value of 0.853 (averaged across all sites, range from 0.728 to 0.910). In
comparison to other methods, our ANN method generated T/ET partitioning results which
were more consistent with CO, exchange data especially for more heterogeneous sites with
large E contributions. Our method improves the understanding of T/ET partitioning. While it
may be particularly suited to flooded ecosystems, it can also improve T/ET partitioning in
other systems, increasing our knowledge of the global water cycle and ecosystem

functioning.
Key-words: artificial neural networks; eddy covariance; machine learning; latent energy;

terrestrial water cycle; wetlands; vapor pressure deficit.

1 Introduction
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Evapotranspiration (ET) is the combined water loss from terrestrial ecosystems via
transpiration (T), i.e., water lost by plants during the process of carbon assimilation, and
evaporation (E), i.e., water lost via direct evaporation of soil and surface water (including
evaporation of intercepted precipitation; NB: There is some discussion in the community
around the correct use of the terms evapotranspiration vs evaporation (Miralles et al, 2020);
We have opted to follow the common use of the term evapotranspiration throughout this
manuscript to describe the total biosphere-atmosphere water flux, including transpiration as
well as direct evaporation from soil and surface waters). Through these processes, ET adds on
the order of 65 to 75 thousand km? of water to the atmosphere every year (Oki & Kanae,
2006; Trenberth, Fasullo, & Kiehl, 2009; Jung et al., 2018; Dorigo et al., 2021) and
constitutes an important component of the terrestrial water cycle. Despite its importance to
the global water cycle, ET is, however, currently poorly constrained in global land surface
models (LSM), and although there is general consensus that ET will increase under climate
change, the processes and trends are unclear, which creates large uncertainties in climate
predictions (Brutsaert & Parlange, 1998; Zeng et al., 2018; Pascolini-Campbell et al., 2021).
This partly occurs because E and T have different drivers and mechanisms.

Vapor pressure deficit (VPD) is recognized as one of the most important drivers to
control water cycling by means of interacting with T and plant stomata (Novick et al., 2016;
Yuan et al., 2019; Grossiord et al., 2020; Lopez, Way, & Sadok, 2021). VPD levels are
projected to limit ET in most biomes, with climate change increasing the importance of
evaporative demands worldwide (Novick et al., 2016). Thus, the continuous rise in the global
levels of atmospheric VPD is of major concern as it can have drastic effects on plant
communities, mainly increasing T (Grossiord et al., 2020) and reducing plant productivity
(Yuan et al., 2019; Lopez, Way, & Sadok, 2021), impacting on water cycling. Previous work
in several flooded ecosystems, however, identified air and water temperatures as strong
drivers of nighttime ET, considered to be mainly E at these sites, with VPD playing a less
important role (Eichelmann et al., 2018). Increasing global temperatures could, therefore,
have significant implications for evaporative water loss from these systems. Consequently,
improving our understanding of the relative contribution of E and T to ET will allow us to
analyze the physiological responses of plant communities to climate change, as well as
improve our ability to predict how the water cycle will evolve with climate change within and
across ecosystems (Stoy et al., 2019).

Assessments of E and T fluxes at an ecosystem scale (i.e., 100 m to km) have been

attempted using a variety of methods (Stoy et al., 2019). While some methods attempt to
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determine E and T components by direct measurements (e.g., measurement of soil
evaporation, sap-flux measurements for transpiration, and isotopic tracer approaches), these
are often time and labor intensive and present significant challenges upscaling results to
ecosystem level (Wilson et al., 2001). Micrometeorological methods, such as eddy
covariance (EC), are well-established methods that assess biosphere-atmosphere fluxes of
trace gases at the ecosystem scale (Baldocchi et al., 1988). With EC (see Fluxnet.org, 2021)
continuous measurements of ecosystem trace gas fluxes such as water vapor can be made on
time scales from individual half hours to years (Baldocchi, 2003). However, it can generally
only provide direct measurements of the net biosphere-atmosphere flux above the plant
canopy. In the case of water vapor fluxes, this includes the net flux of E and T combined. The
ability to partition micrometeorologically measured ET fluxes into E and T components
would greatly improve our understanding of the pathways by which ecosystems use water,
including how E and T components change on different timescales and with changing
climatic conditions, as well as the impact of site-specific characteristics like vegetation cover
heterogeneity (Eichelmann et al., 2018).

While there are several well tested and established methods to partition net
ecosystem CO, fluxes into its components of gross primary production and ecosystem
respiration (Baldocchi, 2003; Reichstein et al., 2005; Desai et al., 2008), less work has been
done on partitioning ET fluxes (Stoy et al., 2019). Stoy et al. (2019) provide a review of the
most common methods for determining E and T fluxes at ecosystem level. Most methods
proposed for partitioning micrometeorologically measured ET fluxes use the intrinsic
relationship between CO, uptake and transpirational water loss, linked through stomatal
exchange at the plant level, to estimate ecosystem T (e.g., Scanlon and Sahu, 2008; Zhou et
al., 2016; Scott and Biederman, 2017; Nelson et al., 2018; Li et al., 2019). Scott and
Biederman (2017) proposed a method to partition long-term ET measurements into E and T.
Their method provides multi-year averages of partitioning on a weekly to yearly timescale.
However, it requires datasets of multiple year lengths with high interannual consistency in
seasonal ecosystem ET behavior. Furthermore, it is unclear if this method provides reliable
results in systems that have a large contribution of E or large interannual variation in
ecosystem water exchange behavior.

Similarly, the partitioning method proposed by Scanlon and Sahu (2008), Scanlon
and Kustas (2010), and Skaggs et al. (2018), uses the correlation between the high frequency
fluctuation of water vapor and CO, concentrations to determine the stomatal and non-

stomatal mediated components of the net water and CO, fluxes. However, this method relies
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on the knowledge of water use efficiency (WUE), which is the ratio of carbon uptake through
photosynthesis to water loss through T, at the plant or leaf-level. Since information on WUE
is not always readily available at the temporal scale required for this method, and because
WUE can change over time with successional age and environmental factors like stomatal
response to increasing atmospheric CO, concentration (van der Sleen et al., 2015), it restricts
the wider use of this method. Another method based on the relationship between CO, uptake
and T proposed by Zhou et al. (2016) to partition ET data from EC measurements works with
the underlying assumption that there will be periods for which E is zero and T/ET approaches
one. Similarly, the method proposed by Nelson et al. (2018) assumes that the ecosystem will
be dominated by T for some time periods. While such methods are an advancement on T/ET
partitioning, there is space for other new approaches particularly if they do not need
specialized data or costly equipment to increase the wider use and applicability of such
techniques.

Ecosystems with large contributions of E, where total ET is not always dominated
by T and which have complex interrelationships between ecosystem productivity, E, and T,
might violate some or all of the underlying assumptions necessary for partitioning methods
based on the relationship between CO, uptake and water loss to work (Stoy et al., 2019). This
is the case for wetlands, where the contribution of E-T is altered significantly by structural
factors such as areas of open water, as well as environmental factors, for instance, diurnal
fluctuations in air or water temperature and water table (Drexler et al., 2004; Goulden et al.,
2007; Eichelmann et al., 2018). In addition, the before-mentioned methods only work when
the ecosystem CO, flux is known in conjunction with ET. Although this is often the case for
EC measurements, there are other micrometeorological methods that provide measurements
of ET without measuring CO, fluxes. Consequently, a partitioning method that does not rely
on knowledge of CO, flux and assumptions of carbon-water flux correlations would greatly
enhance our ability to partition T/ET in a diversity of settings.

Methods applied to partition CO, fluxes usually use relationships of environmental
drivers with the individual flux components determined from time periods where only one
flux component is present and extrapolate these to the other periods (Reichstein et al., 2005;
Desai et al.,, 2008). Many methods (e.g., Barr et al., 2004; Reichstein et al., 2005) use
relationships between temperature and ecosystem respiration based on nighttime fluxes, when
CO,; uptake is zero, and extrapolate these to calculate daytime ecosystem respiration. The
gross CO, uptake component is then determined as the difference between the net flux and

the estimated daytime ecosystem respiration. While this method works well for carbon flux
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partitioning, where the primary driver of ecosystem respiration is considered to be
temperature, it can face limitations in the case of water fluxes where nighttime fluxes are
often very small and the drivers of E and T are complex. However, it has been shown that
nighttime T from plants is usually very small in many ecosystems (Caird et al., 2006;
Dawson et al., 2007). Thus, for non-water limited systems with large contributions of E, such
as wetlands, we can approximate nighttime water fluxes as exclusively E.

A newer approach used to partition net ecosystem carbon fluxes into the individual
components of gross primary production and ecosystem respiration uses Artificial Neural
Networks (ANN) (Papale & Valentini, 2003; Desai et al., 2008; Tramontana et al., 2020).
ANNSs and other machine learning approaches have also been successfully applied in the
context of interpolating ecosystem biosphere-atmosphere  exchange, including
evapotranspiration fluxes, both spatially and temporally (Jung et al. 2010; Jung et al., 2011;
Zhao et al., 2019; Kim et al., 2020; Tramontana et al., 2020; Irvin et al., 2021). Although the
use of ANNs could also be directed at T/ET partitioning, the application of this technique has
not been done yet and needs further exploration. Since machine learning methods can resolve
complex, nonlinear relationships between environmental drivers and flux variables (Papale &
Valentini, 2003; Tramontana et al., 2020), ANNSs are a promising approach to partition T/ET
in ecosystems where existing ET partitioning methods face limitations, such as wetlands and
river deltas.

There has been a growing interest in restoring freshwater wetlands in regions where
they historically existed, such as the Sacramento-San Joaquin River Delta, California, USA
(hereafter, the Delta). While restoring freshwater wetlands can have many benefits, including
those related to wildlife habitat, climate, and carbon sequestration, it can also lead to
increased water loss through ET depending on the vegetation cover characteristics
(Eichelmann et al., 2018). Moreover, given that changes in local and regional ET can affect
cloud formation and precipitation distribution (Gerken et al., 2018), this may have a knock-on
effect on the water cycle and on the climate feedback of wetlands (Hemes et al., 2018). In
locations that experience spatial and temporal water shortages, such as California, increasing
our knowledge of the local water cycle and understanding how ET is affected by external
drivers is extremely important.

Here, we show that we can partition ET measurements above flooded wetlands in
the Delta by predicting daytime E from nighttime ET measurements using ANNs in
combination with environmental driver variables such as VPD, temperature, atmospheric

turbulence, canopy greenness index, and others. The meso-network of diverse wetland EC
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sites used in this study is ideal to test this new ET partitioning method as it provides a
continuum of T/ET conditions across complex canopy architectures. We present the most
promising models and discuss the application of ANN to partition T/ET measurements.
While there is an emphasis on wetlands, we show evidence that our method may be applied
to other ecosystems as well, increasing the knowledge of the water cycle and shedding light

on plant-water productivity relationships at an ecosystem level.

2 Methods

2.1 Site Description

The Delta plays an essential role in the water supply of the state of California, USA.
It supplies the majority of freshwater to large metropolises in Southern California and
provides water for irrigation of crops in the Central Valley (Deverel & Rojstaczer, 1996).
Historically, the peat soils were flooded with large areas of freshwater marsh, but the
majority of the Delta land area is now actively drained and cultivated for agriculture. More
recently, there has been growing interest in restoring freshwater wetlands to prevent further
soil subsidence. In one of the approaches used, the restored wetlands in the Delta are flooded
with a water table that is above ground level at all times (Hemes et al., 2019). The four
restored wetlands in the Delta selected for this study represent a range of conditions with
some sites dominated by open water areas and others covered in dense vegetation throughout
(Eichelmann et al., 2018), representing varying amounts of T/ET ratios expected at the
different sites.

We conducted EC measurements at four wetland sites in the Sacramento-San
Joaquin river delta in Northern California: West Pond (38° 6.44'N, 121° 38.81'W, Ameriflux
ID: US-TW1; Valach et al., 2021b), East End (38° 6.17'N, 121° 38.48'W, Ameriflux ID: US-
TW4; Eichelmann et al., 2021), Mayberry Farms (38° 2.99'N, 121° 45.90'W, Ameriflux ID:
US-MYB; Hatala-Matthes et al., 2021), and Sherman Island (38° 2.21'N 121° 45.28'W,
Ameriflux ID: US-Sne; Shortt et. al., 2021). All sites are part of the Ameriflux network and
the EC data from these sites are available for download through the Ameriflux data sharing
platform (https://ameriflux.Ibl.gov/). The sites have been described in detail in other
publications (Detto et al., 2010; Hatala et al., 2012; Knox et al., 2015; Eichelmann et al.,
2018; Hemes et al., 2018, 2019) and their main characteristics will only be briefly

summarized here. Overall the dataset used in this study covers 24 site-years of data with
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individual sites spanning between 4 and 7 years of data coverage. All four wetlands are
artificially constructed wetlands managed by the Department of Water Resources to reverse
soil subsidence in the area. The water table is actively managed to be above ground level
throughout the flooded portions of the wetlands at all sites.

The West Pond wetland is the oldest of the four wetlands, originally constructed in
1998. It is the most homogeneous of the study sites, with a fairly even, but slightly sloping,
ground surface and dense vegetation covering the whole wetland (97% vegetation cover
within EC footprint in 2018, Valach et al., 2021a). The water table varies slightly throughout
the wetland due to the sloping ground level but is generally between 20 and 40 cm above
ground level. The Mayberry Farms wetland was constructed in 2010 and has a very
heterogeneous footprint. With a heterogeneous bathymetry this wetland features small islands
of vegetation and deeper channels and pools of open water (64% vegetation cover within EC
footprint in 2018, Valach et al., 2021a). The water depth varies from 2 m above ground level
to 2 cm above ground level in the flooded portions, with some dry areas. The East End
wetland was constructed in 2013 and also features some areas of open water channels and
pools. The vegetation at East End has filled in more evenly since its establishment and it has
a greater vegetation cover than Mayberry Farms (96% vegetation cover within EC footprint
in 2018, Valach et al., 2021a). The Sherman Island wetland is the newest wetland constructed
in 2016. Similarly to Mayberry Farms, it features a very heterogeneous bathymetry and the
footprint is dominated by large portions of open water. Vegetation has only taken hold in
very few and small patches within the footprint of the EC measurements (45% vegetation
cover within EC footprint in 2018, Valach et al., 2021a). While the individual make-up and
proportions vary slightly between sites, the dominant vegetation species at all sites are tules

(Schoenoplectus acutus) and cattails (Typha spp.) (O’Connell et al., 2015).

2.2 Eddy Covariance Data

We measured continuous fluxes of H,O, CO, and sensible heat using the EC method
at all sites (Baldocchi et al., 1988). A detailed description of the instrument set-up and
calculation procedures can be found in previously published papers (Detto et al., 2010; Hatala
et al., 2012; Knox et al., 2015; Eichelmann et al., 2018; Hemes et al., 2018, 2019) and will
only be summarized here. At each site, the EC instrumentation consisted of a sonic
anemometer (WindMaster 1590 or WindMaster Pro 1352, Gill Instruments Ltd, Lymington,

Hampshire, England) and an open path trace gas analyzer for H,O and CO, concentrations
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(LI-7500 or LI-7500A, LI-COR Inc., Lincoln, NE, USA). The instruments were mounted at a
fixed height at least 1 m above the maximum height of the canopy.

High frequency (20 Hz) measurements of sonic temperature, three-dimensional wind
speed, and trace gas concentrations were recorded on USB drives in the field through the
analyzer interface (LI-7550, LI-COR Inc., Lincoln, NE, USA). The data were collected
approximately every two weeks, with routine maintenance and servicing of the instruments
taking place at the same time. The LI-7500 trace gas analyzers were calibrated approximately
every three to six months in the laboratory. The performance of the EC set-up was also cross
checked periodically at individual sites by the Ameriflux mobile EC reference system
(Schmidt et al., 2012).

All data processing and filtering was performed offline. Thirty-minute average
fluxes were calculated using custom software written in-house (MATLAB, MathWorks Inc.,
R2015b, version 8.6.0) after basic de-spiking of high frequency data and filtering for
instrument malfunctioning (Detto et al., 2010; Hatala et al., 2012; Knox et al., 2015;
Eichelmann et al., 2018). A rotation into the mean wind was performed for each 30-minute
averaging interval and the Webb-Pearman-Leuning correction for air density fluctuations for
open path sensors was applied to the calculated fluxes (Webb et al., 1980). Fluxes were
filtered for low friction velocity (u.), as well as based on stability and turbulence conditions
(Foken & Wichura, 1996). Low friction velocity thresholds are based on the point where
nighttime CO, fluxes become independent of u, and are defined individually at each site. The
thresholds can vary seasonally and usually range from 0.12 m s! to 0.2 m s°!. Because of the
narrow shape of the wetland, the West Pond wetland fluxes were also filtered by wind
direction to ensure flux footprints originated from the ecosystem of interest.

Energy budget closure is often used as a quality indicator for EC data (Wilson et al.,
2002). At the flooded wetland sites covered in this study the energy budget closure of daily
totals was between 73% and 81%, which is slightly lower than typically found in dry
ecosystems. H,O fluxes from the West Pond, Mayberry Farms, and East End wetland sites
used in this study have been published and discussed in detail by Eichelmann et al. (2018),
including a discussion of data quality, energy budget closure, and the difficulties estimating
energy storage components in the flooded wetlands. Because of the importance of storage
terms in the context of these sites, energy fluxes measured by the EC method have not been
adjusted for incomplete energy budget closure (Eichelmann et al., 2018). In this study,

positive fluxes indicate a gain to the atmosphere and negative fluxes indicate a loss from the
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atmosphere. All analyzes and data processing described in this study were performed using

MATLAB (MathWorks Inc., R2018a, version 9.4.0).

2.3 Auxiliary Data

Meteorological and environmental data were also measured continuously in addition
to EC data at all sites. The following auxiliary measurements were available at all wetland
sites: Air temperature (T,;); water temperature at 3 to 6 different water depths (Tyater, depths
vary between site due to differences in water tables); soil temperature at 6 different depths
(Tso); relative humidity (RH); atmospheric pressure; incoming and outgoing shortwave
radiation; incoming and outgoing longwave radiation; net radiation; incoming and outgoing
photosynthetically active radiation; water table depth; water conductivity; and vegetation
greenness index from camera data. Moreover, the West Pond and East End wetland sites were
equipped with a rain gauge to measure precipitation and the East End wetland site was
equipped to measure ground heat flux (G).

Data were recorded as half hour averages (or totals in the case of precipitation) with
individual sampling frequency varying between 1 and 15 minutes depending on the sensor.
Specifically of interest for this study are measurements of vapor pressure deficit (VPD),
water table depth (WT), air temperature (T,;), vegetation greenness index (green chromatic
coordinate; GCC), and net radiation (Rnet). VPD was calculated from relative humidity
measurements in combination with air temperature data, both measured with aspirated and
wind-shielded humidity and temperature probes (HMP-60, Vaisala Inc., Helsinki, Finland).
Net radiation was measured using either a net radiometer (NR-LITE Radiometer, Hukseflux,
Delft, the Netherlands; at Mayberry Farms) or a four-component net radiometer (NRO1 Net
Radiometer, Hukseflux, Delft, the Netherlands; at West Pond, East End, and Sherman
Island).

2.4 Artificial Neural Network Partitioning Routine

Artificial Neural Networks have been applied for gap-filling and partitioning EC
fluxes in the past (Papale & Valentini, 2003; Oikawa et al., 2017; Tramontana et al., 2020).
Specifically, for CO, fluxes, ANNs have shown to perform well when used to gap-fill
missing data (Moffat et al., 2007) and partitioning net CO, fluxes into the component fluxes
of gross primary production (GPP) and ecosystem respiration (R..,) (Desai et al., 2008;
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Oikawa et al., 2017; Tramontana et al., 2020). Following a similar approach to partitioning

CO, data, we assumed that nighttime ET data is dominated by E at these flooded sites:

ET=T+E (1)
TnightE 0 (2)
ETnight:E (3)

In this study, daytime and nighttime are distinguished by the local solar zenith angle
(ze) with nighttime being defined as ze >= 90°. We conducted several leaf-level chamber
measurements using a LI-6400 Portable Photosynthesis System (LI-COR Inc., Lincoln, NE,
USA) throughout the growing season of 2017 to confirm that nighttime and dark T flux is
indeed negligible at these sites. The available nighttime E data is used in combination with
environmental input variables to train the ANN routine to predict daytime E. Daytime T was

then calculated as the difference between total ET and E:

T day = ET, measured — Epredicted ( 4)

Before ET partitioning was performed all flux data were gap-filled using ANN
routines described in previous studies (Knox et al., 2015, 2016; Oikawa et al., 2017,
Eichelmann et al., 2018).

2.4.1 Artificial Neural Network Routine Set-up

To partition ET data using ANNSs in this study, we followed a similar set-up and
architecture as described for gap-filling and partitioning CO, data in previous studies
(Baldocchi & Sturtevant, 2015; Knox et al., 2015, 2016; Oikawa et al., 2017). We applied
feedforward networks specialized for function fitting using symmetric sigmoid transfer
functions in all layers except the final layer which uses a linear transfer function. The
networks are trained using the Levenberg-Marquard optimization algorithm. For each site,
the entire available (multi-year) explanatory dataset was split into 20 data clusters using the
k-means clustering algorithm. The data used for training, testing, and validation of the ANNs
was proportionally sampled from these clusters with one third of the available data used for
training, testing, and validation each. This procedure avoids a sampling bias towards periods

when more data are available, such as a specific time of the year or time of the day.
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Proportional data sampling from the k-means clusters into training, testing, and validation
data was repeated 20 times. For each of the 20 re-sampled training, testing, and validation
datasets several ANN architectures were tested starting with one hidden layer and the same
number of nodes as the number of explanatory input variables (Nispuwvar). Each architecture
was initialized 10 times with random starting weights and the initialization with the lowest
mean sampling error was used. The complexity of the ANN architecture was increased first
by increasing the number of nodes to 1.5 times Ninpuvar and then by increasing the number of
hidden layers until a further increase in complexity results in less than 5% reduction of the
mean standard error. For our datasets, this commonly resulted in the use of an architecture
with two hidden layers, the first one with njppuvar nodes, the second one with 0.5*ninuevar
nodes, although for some sites and input variable combinations architectures with only one
hidden layer produced better results. The °‘validation’ step within the ANN procedure
described above is performed on nighttime data only and is therefore distinctly different from
the validation with flooding and leaf level data described below. Throughout the remainder of
the manuscript when we use the term ‘validation’ we refer to the independent flooding and
leaf level data validation. The ANN internal validation routine based on nighttime data is
referred to as ‘testing’. An overview of the ANN training, testing, and validation process is

presented in the flowchart in Fig. S1.

2.4.2 Selection of Explanatory Variables

A number of different explanatory environmental input variables were tested
individually and in combination. Based on the general understanding of the drivers of E
fluxes in terrestrial and aquatic ecosystems we tested the following input parameters:
Meteorological and environmental variables: VPD, Rnet, GCC, WT, T,;; Flux variables:
friction velocity (u.), gap-filled sensible heat flux (H_gf), gap-filled CO, flux (wc_gf), and
ecosystem respiration (er Reichstein) partitioned using the temperature dependency method
proposed by Reichstein et al. (2005). In addition, we used a running decimal timestamp
(datetime) as input variable in all our ANN runs. VPD, u,, and T,; describe the atmospheric
demand driving E. Rnet and H_gf are connected to ET (or latent energy) through the energy
balance equation. GCC, wc_gf, and er Reichstein are directly or indirectly related to plant
physiological responses that can impact ET components. Finally, WT is related to the water
budget of the ecosystem. Given the strong correlation of water temperature (Tyaer) With

nighttime ET documented at these sites in a previous study (Eichelmann et al., 2018) we
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would also expect Ty to perform well as an environmental input variable. Unfortunately,
we were unable to include Ty as an input variable in this study since we did not have
consistent Ty, measurements across time for any of the four sites.

We ran the ANN routine for each of these parameters individually and recorded the
R? value, slope, and RSME of the linear regression of the nighttime EC data initially set aside
for testing within the ANN routine versus the predictions. This R? value is called ‘testing R?’
throughout this manuscript and is based only on nighttime data. Starting with the input
parameter with the highest testing R?, we ran the ANN routine with increasing numbers of
input variables, each time adding on the variable with the next highest testing R? value. We
continued this process until a further increase in input variables resulted in less than 1%
increase in the testing R? value. We averaged the testing R? values across the four sites and
used this value to estimate increases in the performance of the ANNs. While this average
testing R? does not have any statistical relevance, it gave us a good indicator on how well the

models performed across all sites studied.

2.5 Validation of Results

One of the main issues facing validation of ET partitioning methods is often the lack
of independent E or T data to validate against (Stoy et al., 2019). Taking independent
measurements of ecosystem E or T is challenging and one of the main reasons why
partitioning approaches for EC measurements of ET are much sought after. Since we do not
have independent measurements of ecosystem level E or T available at our sites, we reverted
to validating our partitioning data by a conditional sampling approach, selecting EC
measurement data from certain time periods when E and T can be known or closely
approximated to compare with the ANN predicted E or T. One of these time periods is the
initial time right after flooding of the wetland (referred to as flooding data), when vegetation
had not yet established within the footprint of our instruments. During this time, it can be
assumed that the entire H,O flux coming off the surface is from E, with negligible T.

Since we trained our ANN routines only on nighttime data, we were able to use the
daytime data during the initial flooding period as an independent validation dataset for E.
Apart from the initial flooding period, T can also be assumed to be small to negligible during
the senescent winter months. However, since the plants are not harvested or otherwise
removed and the climate in this region is fairly mild, some do stay green throughout the

winter and may continue to be photosynthetically active. Additionally, vegetation on dry
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areas such as levees usually starts to green up during the winter months in this region. Both of
these would be contributing to a small T flux from the ecosystem. Moreover, ET fluxes
during the winter period are generally lower and subject to larger errors due to more
challenging turbulence conditions during this time. Such conditions result in large relative
error in flux measurements during this period limiting the insights gained from the validation
during the senescent winter period. Nonetheless, we included validation of E predicted from
our ANN method against E measured during winter times to further test the performance of
our method. Testing our ANN method against daytime data is particularly important as some
of the drivers of E can exhibit strong diurnal patterns (e.g. H gf) and interdependencies
between energy fluxes and environmental conditions (e.g. evaporation, transpiration, and
canopy VPD) can change between day and night. While ANNs have been shown to provide
good performance in predicting non-linear responses of biological data and extrapolating
outside of the training variable space (Papale & Valentini, 2003), by using nighttime data
only for training the ANNs we may not correctly capture the daytime response of E to the
driver variables or changes in interdependent relationships. This would be highlighted
through poor performance in the winter and flooding data validations. We compared the
variable space covered by our nighttime training dataset with the variable space covered by
the daytime prediction dataset and the flooding validation dataset (Fig. S2). While the
daytime distributions show proportionally more values in the high end of the distributions, for
most variables there is a reasonably good representation of higher values within the training
and validation datasets. In addition, the proportional sampling from environmental clusters
for our training dataset ensures all environmental conditions are represented equally during
training.

In addition to the validation during periods when T was zero, we also conducted a
number of leaf-level T measurements in the summer of 2017 at the East End wetland using a
LI-6400 portable photosynthesis system (LI-COR Inc., Lincoln, NE, USA) with a clear
conifer chamber (part number 6400-05) encasing sections of the leafs or culms. Six
individual leaf-level measurement points (three for each of the dominant plant species) taken
during the same half hour period were pooled to allow comparison with the half hourly EC
data. These measurements provided us with an estimate of T per unit of sunlit leaf area and
may potentially be converted to the ecosystem scale if the ecosystem leaf area index and the
leaf angle distribution are known. Efforts have been made to estimate the leaf area index in a
number of the wetlands in the study region, however, due to the high heterogeneity and litter

accumulation in these systems there is a high level of uncertainty associated with the
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measured leaf area indexes (Dronova & Taddeo, 2016). Additionally, the leaf angle
distribution is unknown in these systems and can only be approximated, which is an intrinsic
limitation of this technique.

Taking all these uncertainties into account, ecosystem T scaled up from leaf-level
measurements is associated with very large error intervals and cannot serve as a reasonable
constraint on the absolute values of our ANN partitioned T fluxes. However, since the scaling
factors to convert leaf-level values to ecosystem level are constant multipliers, we should still
be seeing a linear relationship between the leaf-level flux and the partitioned ecosystem level
T if our partitioning algorithm predicts the correct T behavior across a range of
environmental conditions. While we may not be able to compare the absolute T values, we
can compare the response cycle of ANN predicted T with the field measurements to validate

that we are predicting the right behavior.

2.6 Comparison with Other T/ET Partitioning Approaches

Direct comparisons with the Scott and Biederman’s (2017) method were carried out
in order to evaluate the performance of our own models against their approach. For these
comparisons, we used the model (F11, see Results below) that achieved the best R? value
against the validation with leaf-level/flooding data. The Scott and Biederman (2017) method
uses data from multi-year monthly ET and gross ecosystem productivity (GEP = -GPP;
determined from EC data using ANN based partitioning). At each site, regressions are
calculated between all available monthly ET and GEP values measured for a specific month
(e.g., July) across years (see Fig. 4 for illustration). Regressions are extrapolated to zero GEP
to estimate the long-term average E for the specific month of interest. While Scott and
Biederman (2017) forced all monthly regressions between ET and GEP to the same slope, we
used different slopes for each regression. This was done to ensure the best fit since our
datasets did not show the same uniform behavior across months. The Scott and Biederman
(2017) method only provides average monthly E and T values across the entire dataset, not
for individual years. Indirect comparisons with other methodologies mentioned above are

also discussed.

3 Results

3.1 Artificial Neural Network Architecture Performances
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Alongside the basic timestamp (datetime), VPD and T, were the meteorological
variables that best explained our data when only looking at the nighttime testing data, with
average testing R? values across all sites of 0.648 (model F26) and 0.565 (model F22),
respectively (Table 1 and Supplementary Table 1). The flux related variables that showed the
highest average testing R? values and added most information to the models were H gf
(testing R? of 0.620, model F28) and u. (testing R? of 0.531, model F27). To increase the
ANNs complexity we, therefore, followed the variables order of VPD > H gf > T, > u.,
adding each of them into the models sequentially. VPD was the variable that contributed the
most to increase the testing R? values of the ANNs, with an average increase of 24% across
all sites and a maximum of 36% for West Pond, when models F21 and F26 were compared
(Table 1). The incorporation of H gf was responsible for an average increase of 10% in
testing R?, when comparing the ANNs F26 and F33 (Table 1). T, only increased the ANNs
testing R? by 1% (i.e., when comparing models F33 and F34), however, when we added u.,
the average testing R? value increased across all sites by 9%, when comparing models F34
and F11 (Table 1). Thus, building the ANN F11 using datetime, VPD, H_gf, T, and u., the
average testing R? value across all sites reached 0.853, with a minimum of 0.728 (West Pond)
and a maximum of 0.910 (Sherman Island; Supplementary Table 1).

Of all the 36 ANNSs tested, the highest average testing R? (0.891) was reached when
all the explanatory variables (i.e., datetime, H gf, u,, wec_gf, er Reichstein, VPD, T,;, GCC,
Rnet and WT) were put into the model F36 (Table 1 and Supplementary Table 1).
Consequently, on average, all the other variables analyzed (i.e., wc_gf, er Reichstein, GCC,
Rnet and WT) accounted for less than 4% of the testing R? value across all the four sites
(when comparing models F36 and F11; Table 1). The top five ANNs (F36 > F14 > F20 > F35
> F11) that performed better than 0.85 all have datetime, VPD, H gf, T,;, and u. as their
explanatory variables and all the 11 ANNs that scored an average testing R? higher than 0.80
have both VPD and u, in their models (Table 1 and Supplementary Table 1). Fifteen ANNs
showed an average testing R? higher than 0.70 and the lowest average testing R? among these
(0.730) was presented by the ANN F2, constructed using only datetime, T,,, and u.
(Supplementary Table 1). Unsurprisingly, the lowest average testing R? (0.410) of all the 36
ANNs analyzed was given by the ANN built using datetime alone (F21). The slope and
RSME values (Table 1 and Supplementary Table 2) of the different ANNs followed quite

closely the pattern described for the increase in testing R? values.

This article is protected by copyright. All rights reserved

85UB01 SUOWWOD A1) 8|l [dde 8y} A peusenob aJe Ssjpie O ‘9sn JOse|nl J0j AriqIT 8UIUQ A8]IM UO (SUORIPUOD-PUE-SBI/ALIO" A3 1M AeIq Ul [UO//SdnL) SUORIPUOD pue swie 1 8y} 89S *[£202/0T/0T] Uo ARIqI]auluQ A8]I/MW ‘UOTIEWLIOJU] [ED1ULDS L PUY IINUBIS JO 89140 AQ 726GT GOB/TTTT 0T/I0p/wW0d Ao im Areiqjeuljuo//sdny wo.j pepeojumod ‘€ ‘2202 ‘987ZS9ET



537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557

558
559
560
561
562
563
564
565
566
567

568

569

3.2 Validation of Artificial Neural Networks

3.2.1 Flooding Validation

To evaluate the performance of our ANN partitioning method, we compared the
model predicted E with EC measurement data from conditionally sampled post-flooding
periods, during which we assume T to be negligible (Table 2). The ANN F11 showed the
highest validation R? values for East End (0.81), Mayberry Farms (0.69), and Sherman Island
(0.82). These values surpassed those from the model F36 (most complex), which reached
0.51, 0.56, and 0.53, for East End, Mayberry Farms, and Sherman Island, respectively. The
slope values overall follow very similar patterns to the R? values. With regards to the RSME
values, models F21 and F15 have lower RSME values than model F11 for most of the sites.
However, the extremely low R? and slope values for model F21 and F15 highlight that these
relationships are poorly constrained and, therefore, model performance evaluation should not
be based on RSME alone (Table 2). Nevertheless, the slope and RSME values should be used
as secondary selection criteria to ensure predictions are not offset by a constant factor, which
would not be visible by evaluating R? values alone. Figure 1 shows the validation comparison

between F11 and F36 for the three sites.

3.3.2 Winter Time Validation

Judging by the observed R? values, the validation using daytime data from senescent
periods during the winter time (December to February, Table 3) performed quite poorly in
comparison to the validation performed with data during the initial flooding periods (Table
2). Nevertheless, the winter period validation overall did confirm the same trends and
observations as the flooding validation. At Mayberry Farms and Sherman Island ANN F11
again had the highest R? values (0.56 and 0.70, respectively). However, at East End and West
Pond the model F36, which included all input variables, performed best with R? values of
0.45 and 0.36, respectively. Figure 2 shows the validation comparison between F11 and F36

for the four sites using winter data.

3.3.2 Validation on Diurnal Measurements of Leaf-Level Data for East End
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To evaluate the performance of our method further, we compared the model
predicted T with independent leaf-level data collected during a field campaign in summer
2017 at the East End wetland. The leaf-level data showed high variability across individual
measurements (Fig. 3). F11 again showed a high R? (0.986, Table 4). Other models (F15,
F33) also performed quite well in the leaf-level validation, in contrast to their performance
for the validation during flooding or senescent periods. The most complex ANN (F36) had a
lower R? value (0.92) for the leaf-level validation. In general, adding too many variables did
not lead to enhancement of validation values, but it is to be noted that all models showed a
high level of agreement with the leaf-level data (Table 4). Figure 3 shows both F11 and F36

validations against leaf-level data.

3.3 Artificial Neural Networks Performance Across the Wetland Sites

To look for model consistency across diverse canopy architecture and successional
stages, we compared ANN testing R? values between the four sites. Among the four sites,
East End and Sherman Island were the only sites that had ANNs with testing R? values larger
than 0.90 for the EC testing data set aside during the ANN routine (Supplementary Table 1).
At Sherman Island, East End, and Mayberry Farms 22, 20, and 19 ANN models reached
testing R? values above 0.70, respectively, whereas at West Pond only 11 models reached
testing R? values above 0.7 (Supplementary Table 1). In comparison with the other three
studied sites, West Pond showed testing R? values in the order of 9-18% smaller when
analyzing the top five ANNs with average testing R? larger than 0.85 (Supplementary Table
1). Considering all 36 ANNS, differences in testing R? between the same ANN for different
sites reached a maximum of 46%, when comparing model F6 at West Pond with Sherman

Island (Supplementary Table 1).
3.4 Comparisons with Other Partitioning Approaches

To compare our ANN method with existing T/ET partitioning methods, we applied
the Scott and Biederman (2017) long-term flux data partitioning method at all four sites. As
expected, the Scott and Biederman (2017) method worked better for datasets with > 6 years

(Fig. 4; Mayberry Farms, West Pond, and East End). Sherman Island, the shortest dataset
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with four years of data collection, performed poorly, showing negative correlations of ET vs
GEP for the months of June to September (Fig. 4 d). Average monthly T fluxes from the
Scott and Biederman (2017) method for Mayberry Farms and Sherman Island (Fig. 5a and d)
both showed increases in T at the end of the growing season (i.e., October) out of line with
the observed GEP patterns. Conversely, West Pond and East End (Fig. 5b and ¢) showed a T
pattern parallel to GEP with the growing season.

While the T values from our ANN approach showed a similar behavior as GEP
during the growing season, as would be expected, the T values from the Scott and Biederman
(2017) method did deviate somewhat from the GEP pattern for all sites (Fig. 5). The best
ANN (F11) also produced more reasonable T numbers for Sherman Island compared to the
Scott and Bierderman (2017) method. In addition, the E values retrieved in our analysis for
all sites were also more stable and did not fluctuate as much across months compared to the E
values from the Scott and Biederman (2017) method (Fig. 5). While the Scott and Biederman
(2017) method is not intended to produce reliable results for T/ET partitioning during winter
months when GEP is small, it did show very good agreement of produced E and T values

when compared to our ANN based values from October to February for all sites.

3.5 Resulting Evaporation and Transpiration Estimates

Figure 6 shows the annual (2013-2019) ANN based T/ET partitioning
intercomparison for all sites using ANN F11. Only years with a full year of data are used.
While ET stayed fairly consistent between 850-1250 mm for all sites and years (Fig. 6a),
GEP showed more fluctuations between the different sites, as well as interannually within
each site (Fig. 6b). Looking at the predicted partitioning of E and T (Fig. 6¢, d), Sherman
Island showed the highest values of E (approximately 1100 mm) for the three years of
measurements available at this site, while West Pond had the lowest E values across all years
and sites (200 to 300 mm). Although values at East End were always higher compared to
Mayberry Farms for all years with measurements from both sites, decreasing pattern can be
observed for E at both sites, ranging from high values of 831 mm at Mayberry Farms in 2013
and 1119 mm at East End in 2014 down to low values of 449 mm at Mayberry and 630 mm
at East End in 2019. Transpiration showed opposite trends compared to E, with West Pond
having the highest values (between 700-800 mm in most years), followed by Mayberry Farms
with T values between 300-500 mm. The T pattern predicted at Mayberry Farms follows a

similar pattern as the GEP measurements, most notably is the significant reduction in GEP in
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2016 which was caused by saltwater intrusion at the site (Eichelmann et al., 2018,
Chamberlain et al., 2020). This was mirrored in a reduction of T values in 2016, however, E
was not affected. Sherman Island and East End showed T values below 300 mm for all years,
considerably lower than the other two sites. In the first full year of measurements (2014), T at
East End was even predicted as negative (-24 mm), similar to the negative T predictions
observed at East End during the winter validation (Fig. 2). However, this value falls within
the uncertainty range of 91 mm for annual ET measurements at this site in 2014 (Eichelmann
et al., 2018). East End and Sherman Island both had a very high open water surface area,
especially in the first years after flooding, so it would be expected that E is more dominant.
Sherman Island specifically had extremely sparse vegetation cover throughout the EC
measurement footprint for the first two years of measurements, also evident in the very low
values of GEP. For both of these sites, East End and Sherman Island, we can see that
gradually E declines and T increases as the vegetation fills in from year to year.
Consequently, when comparing the T/ET values across sites (Fig. 6e), West Pond had the
highest value of T/ET (70%-75% on T), followed by Mayberry Farms (30%-50%), East End
(0-30%), and Sherman Island (<15%). This highlights that only West Pond can be described
as a T dominated site with T/ET values in the range between 0.5 and 0.8 reported for other
terrestrial ecosystems (Schlesinger & Jasechko, 2014). The other three sites are clearly E
dominated and have T/ET values considerably lower than those expected for terrestrial

ecosystems.

4 Discussion

4.1 Artificial Neural Network Architecture Performances

The ANN F36, which was built using all studied variables, presented the highest
average testing R? value (0.891) for the nighttime-based testing dataset among all 36 ANNs
analyzed. Nevertheless, there was not much improvement in testing R? in the models (i.e.,
maximum of 3-4% on average) after the ANN F11. This indicates that not all variables are
necessary to provide good results in the partitioning of ET into E and T, and that less
complex models can result in good predictions. For instance, using only datetime + H_gf +
VPD (F33) or datetime + u. + T, (F2) the average testing R? value across all sites was >

0.70, indicating a good correlation. In addition, when using datetime + VPD alone the
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average testing R? value for three sites (i.e., East End, Mayberry Farms and Sherman Island)
was > 0.70.

In our study, the order of variable inclusion to increase model complexity was:
datetime > VPD > H_gf > T, > u.. VPD was the variable that contributed the most in the
improvement of the ANNs, with an average of 24% increase in testing R? values across all
sites. VPD is routinely measured at most EC sites (e.g., Fluxnet.org, 2021) and its effect on
ecosystem water cycling by limiting surface conductance and reducing transpiration under
high VPD is well documented (Buckley, 2005, Novick et al., 2016). The fact that the top 14
ANNES (i.e., with the highest testing R? value) were constructed using VPD as one of the input
parameters highlights the importance of VPD as a predictor of ecosystem water exchange. In
addition, all the 11 ANNs that scored an average testing R> > 0.80 have u, in their models,
indicating that information on atmospheric turbulence is important to incorporate in ET
partitioning prediction if available. It may not be surprising that at these flooded sites E is
mainly explained by atmospheric conditions such as VPD, T,, and turbulence (u.)
underlining their importance in the ANN partitioning routine. At sites with different surface
and vegetation characteristics, such as dryland sites, it would be important to investigate the
importance of other variables such as soil moisture, soil temperature, or leaf wetness. It
would be expected that these, together with other energy balance components such as

radiation, would play a larger role in explaining E at water limited sites.

4.2 Artificial Neural Network Validation Against Post-Flooding Periods and Leaf-Level
Data

The validation of our models against data collected right after flooding (for East
End, Mayberry Farms, and Sherman Island) and with leaf-level data (for East End only)
indicated that models with less input variables (F11) performed better in comparison to the
model that incorporated all 10 studied variables (F36). It might be that overfitting occurred
when incorporating input variables that deal directly and/or indirectly with the same
property/factor (i.e., carbon assimilation). In this case, F36 includes er Reichstein, wc_gf and
GCC which are all related to carbon uptake by vegetation. Thus, even with a smaller average
testing R? value, models with fewer input variables (e.g., F11) still performed better than F36
during validation with ground-truth leaf-level and flooding data. Specifically, the ANN F11,
which showed the best performance for all three of the sites with flooding data validation

(East End, Mayberry Farms, and Sherman Island) included datetime + H gf + VPD + T,;, +
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u.. The validation based on data collected right after flooding also emphasized the importance
of validating the ANN partitioning routine against data collected during daytime periods.
Some of the tested input variables showed strong differences in daytime and nighttime
behavior (e.g., Rnet). Using these variables as inputs can lead to incorrect daytime
predictions for the nighttime-based ANN routine as seen in the poor performance of F15 for
the flooding validation at East End and Mayberry Farms, despite a high testing R? of 0.75
(Supplementary Table 1).

The flooding validation also highlights site-specific differences in the input variables
that provided good predictions. While the best performance was achieved with the same
model (F11) across all three validation sites, the behavior of the other tested models varied
across sites. We recommend that the selection of input parameters for ANN partitioning of
ET should be based on the unique site characteristics rather than a standardized set of
variables since vegetation heterogeneity and other site level characteristics can influence
ecosystem ET levels (Eichelmann et al., 2018).

This is also evident in the validation using data from the winter/senescent period,
where F11 performed best at Mayberry Farms and Sherman Island, whereas F36 performed
best at East End and West Pond. The overall performance of our ANNs in predicting E
during the winter/senescent periods was also considerably lower in comparison to the
flooding and leaf-level data validation. This is partially due to the smaller fluxes observed
overall during this period, leading to larger relative errors. In addition, the assumption that all
measured ET during the winter months represents solely E is likely incorrect. Especially at
the sites with high vegetation cover (Mayberry and West Pond) it is likely that a small
amount of T occurs during this time which would be included in the measured ET signal,
leading to an apparent under-prediction of E for the ANN. For East End and Sherman Island,
however, we can see that the ANNs are actually over-predicting E (Fig. 2), leading to
consistent, albeit relatively small, negative T prediction in the winter months, specifically at
East End (Fig. 4). It is unclear what is causing the discrepancy between measured and
modeled E at East End and Sherman Island during the winter months. However, the fact that
inclusion of variables linked to vegetation growth (GCC, wc_gf, er Reichstein) reduced the
over-prediction at both sites (e.g., F36 or F15) could indicate that E dynamics linked to
phenology and vegetation cover are not adequately reproduced in models without these input
variables at East End and Sherman Island.

Unfortunately, a limitation in our study is that we were not able to validate our

results across all sites/sampling times due to a lack of leaf-level data collected from all sites,
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which is very time and labor intensive. In addition, no data were available from the initial
flooding period at the West Pond wetland. Nonetheless, we are aware that validation of T/ET
partitioning is quite scarce in the literature and that the data validated against our ANNs

prove that good results can be achieved using the protocol tested here.

4.3 Artificial Neural Network Performance Across the Wetland Sites

Concerning the performance of all the 36 ANNs across the four wetlands analyzed
in this study, West Pond showed smaller testing R? values in comparison to the three other
sites. Between-site differences reached up to 46% for the same model. The main reason for
this divergence was likely the differing amounts of open water surfaces and density of the
vegetation between these sites. West Pond, with little to no open water, is likely to see less E
compared to the other wetlands (Eichelmann et al., 2018). In addition, West Pond also has the
lowest water temperature and a very dense vegetation canopy decoupling the water surface
from the atmosphere and leading to further reductions in E, especially at night (Drexler et al.,
2004; Goulden et al., 2007; Eichelmann et al., 2018). Because our method predicts E based
on nighttime data and calculates T based on the difference between total ET and E, if E
values are small the relative accuracy of the prediction will decrease, which is reflected in the
testing R? values. However, because the E values are small, the absolute error of the predicted
E and T would be proportionately small, hence the total T and E values can still be reliable.
Unfortunately, we did not have a set of ground-truth validation data available for the West
Pond site to investigate the true performance of the ANN ET partitioning. However, our
comparison with the Scott and Biederman (2017) partitioned data and expected relationships
based on the observed carbon fluxes and vegetation dynamics give us high confidence in the
performance of the ANN partitioning routine at the West Pond wetland site. This shows that
the ANN partitioning method can also be successfully applied in situations where nighttime E
fluxes are small, indicating that it could be applicable to a large variety of ecosystems. In this
context it is important to note that some studies have found non-negligible nighttime
transpiration values for certain ecosystems (Caird et al., 2006; Novick et al., 2009; Resco de
Dios et al., 2019). To be able to apply the ANN methodology from our study to other sites or
ecosystems it is essential to confirm that nighttime transpiration is indeed negligible at the
respective site. Additionally, careful consideration needs to be given to the changing

interactive effects between energy fluxes and environmental conditions from nighttime to
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daytime. Any application of this methodology will require validation against independent

daytime data to ensure these effects are correctly captured in the ANN models.

4.4 Comparisons with Other Partitioning Approaches and Wider Implications

In comparison to other established methods in the literature our own approach using
ANNS to determine the T/ET partitioning achieved very good results with fewer limitations,
which makes it easier to apply in other contexts/ecosystems. For instance, Scott and
Biederman’s (2017) method only works when there are enough years of data. The shortest
dataset Scott and Biederman (2017) analyzed spanned eight years, which is a considerably
long time period and reduces its applicability to shorter studies. Also, in the absence of
climate consistency among sampling sites or if the research takes place in areas where fluxes
are not limited by water availability (e.g., wetlands), their model fails to partition T/ET
correctly, limiting it to relatively dry ecosystems. This was evident from direct comparisons
with our own method, particularly for Sherman Island which has the shortest dataset (i.e.,
four years) and the highest area of open water, with the largest relative contribution of E (Fig.
4,5).

Considering the partitioning methods proposed by Scanlon and Sahu (2008),
Scanlon and Kustas (2010), and Skaggs et al. (2018), a priori knowledge on WUE and carbon
uptake is required to apply their method. Consequently, the paucity of previous
data/information or lack of equipment impede the application of this method to a broader
audience. We tried to run the Scanlon and Kustas (2010) and Skaggs et al. (2018) partitioning
methods for our wetland sites but were not able to retrieve reliable and meaningful
partitioning results for any of the sites discussed in this study. We did not test the method
proposed by Zhou et al. (2016) in this study, since we believe that some of the underlying
assumptions are easily violated at the wetland sites investigated here. Most importantly, the
Zhou et al. (2016) method is based on the assumption that some periods within the time series
represent conditions without E and the water flux is entirely based on T (i.e., T = ET). This is
most certainly not the case at flooded sites where we can reasonably expect that there will
always be E, albeit in varying amounts. Additionally, the potential underlying WUE is
assumed to be constant, which could be violated when multiple vegetation types or species
are present, as is the case with our sites. Finally, virtually all the other methods discussed
here lacked validation against ground-truth data in the original studies. We included several

verification types for the ANN method in this paper, which gives us confidence that our
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approach using ANNs produces reliable and meaningful estimates for E and T in wetland
ecosystems. The fact that our method does not rely on presumed relationships between water
and carbon fluxes and was shown to work across a range of ecosystem properties from T to E
dominated systems, provides an advantage against other methods that are limited to certain
ecosystems or need specialized input data/equipment.

In terms of wider implications, our results can help to connect T/ET partitioning
with other global atmospheric processes. An example is the constant increase in global VPD,
which is cause of much concern regarding natural and agricultural systems. Most studies to
date have focused on the effect of increasing VPD levels on plant physiology and reduced
plant growth or productivity with concomitantly increased T (Yuan et al., 2019; Grossiord et
al., 2020; Lopez, Way, & Sadok, 2021). However, VPD was the variable that contributed the
most to explain E across the 36 ANNs analyzed in our study, highlighting its importance not
only for plant regulated water cycling (T), but also for driving E. Two independent studies
indicated that VPD levels are increasing in our study region (i.e., southwest USA, California).
Seager et al. (2015) have found a consistent rise in atmospheric VPD since 1960s and Ficklin
and Novick (2017) also projected higher VPD levels with amplified effects during summer
months, potentially driving more pronounced water loss through E regardless of the plant
physiological response. While other factors might be more important at controlling plant
productivity in some ecosystems (e.g., soil moisture in semi-arid areas; see Liu et al., 2020),
atmospheric vapor demand is projected to become more important with climate change in all
ecosystems (Novick et al., 2016). Consequently, the estimates of T/ET partitioning given by
our new approach will be important as they allow us to explain the effects of rising global

VPD levels on E and T separately.

5 Summary

A novel T/ET partitioning method using Artificial Neural Networks (ANN) to
predict daytime E from nighttime ET measurements in a combination with a range of
environmental variables was presented and compared to previous methods from the literature.
In comparison to other approaches, the ANN method achieved better results, particularly with
shorter-term data (i.e., <5 years) and was successfully applied to flooded ecosystems. The
order of variable inclusion (and importance) for the ANN construction was: vapor pressure
deficit (VPD) > gap-filled sensible heat flux (H_gf) > air temperature (T,;,) > friction velocity
(u,) > other variables. The best performing ANN, model F11, used datetime, VPD, H gf, T,
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and u, inputs with an average testing R? value across all sites of 0.85. This model also
performed the best when validated against ground-truth leaf-level data and periods where
sites were completely flooded with no T from vegetation. Our method sheds light on T/ET
partitioning methods and applications. While here it has only been tested for flooded
ecosystems, we present strong indicators that it could also perform well in other ecosystems,
contributing to the understanding of the global water cycle and its response to atmospheric

processes such as rising global VPD levels.
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Table 1: Average testing R?, slope, and RSME values for 12 ANN architecture models used
to partition evapotranspiration measurements, demonstrating an increase in complexity from

models F21 (most basic) to F36 (most complex).

Model Model Structure Average Average Average
Name testing R? Slope RSME
F21 datetime 0.410 0.393 0.380
F26 datetime + VPD 0.648 0.626 0.378
F17 datetime + VPD + Tj; 0.672 0.636 0.369
F31 datetime + VPD + T, + GCC 0.686 0.657 0.364
F32 datetime + VPD + T,;; + GCC + Rnet 0.689 0.665 0.364

datetime + VPD + T,;. + GCC + Rnet +
F15 0.694 0.663 0.360
WT

F33 datetime + H _gf + VPD 0.753 0.726 0.340
F34 datetime + H gf + VPD + T,;; 0.762 0.734 0.336
F11 datetime + H gf + VPD + Ty, + u. 0.853 0.831 0.264

datetime + H gf+ VPD + T, + u,.+
F35 ) ] 0.863 0.851 0.258

er Reichstein

datetime + H gf+ u.+ VPD + T,;, +

F14 0.877 0.868 0.252
GCC + Rnet + WT

datetime + H gf + u,+ wc_gf +

F36 er Reichstein + VPD + T, + GCC + 0.891 0.880 0.237

Table 2: Validation R?, slope, and RSME values of seven ANNs used to partition

evapotranspiration measurements and validated with data collected right after flooding for
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1154 East End, Mayberry Farms, and Sherman Island wetland sites. Models are ordered by the
1155 increase in complexity, from model F21 (most basic) to F36 (most complex). Refer to Tables
1156 1 and 3 for each model’s input variables. Validation R? values higher than 0.7 are highlighted
1157 in bold.

Model East End Mayberry Farms Sherman Island

Name R?2 Slope RSME R? Slope RSME R? Slope RSME
F21 0.29 0.28 0.75 0.06 0.09 0.47 0.34 0.25 0.49
F26 0.48 0.52 0.90 0.26 0.37 0.82 0.61 0.50 0.56
F17 0.50 0.46 0.77 0.31 0.41 0.82 0.63 0.56 0.60
F15 0.24 0.15 0.44 0.16 0.13 0.39 0.37  0.28 0.50
F33 0.61 0.66 0.90 0.48 0.81 1.13 0.62  0.71 0.76
F11 0.81 0.86 0.70 0.69 0.95 0.85 0.82 1.00 0.65
F36 0.51 0.45 0.75 0.56 0.48 0.57 0.53 0.43 0.56

1158

1159

1160 Table 3: Validation R?, slope, and RSME values of seven ANNs used to partition
1161 evapotranspiration measurements and validated with winter time data (December to
1162 February) for each of the four wetlands studied (East End, Mayberry Farms, Sherman Island,
1163 and West Pond). Models are listed according to the increase in complexity, from model F21
1164 (most basic) to F36 (most complex). Refer to Tables 1 and 4 for each model’s input variables.
1165 Validation R? values higher than 0.7 are highlighted in bold.

Model East End Mayberry Farms Sherman Island West Pond

Name R? Slope RSME R? Slope RSME R? Slope RSME R? Slope RSME

F21 0.06 0.02 005 006 006 021 0.15 0.11 023  0.08 030 0.09
F26 0.17 025 041 026 038 058 045 048 045 0.03 0.08 046
F17 021 024 036 035 047 056 047 049 048 0.05 0.06 0.28
F15 033 041 044 014 0.12 026 043 0.29 031 017 0.11 0.25
F33 021 0.71 1.03 022 048 077 0.19 042 0.79 0.01 0.01 0.12
F11 0.33 1.15 1.23 056 0.71 0.55 0.70 1.27 0.76  0.11 0.11 0.29
F36 045 095 079 043 059 060 069 0.87 054 036 0.17 021

1166

1167
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Table 4: R? and slope values for linear regression of ecosystem level transpiration data
predicted by seven ANNSs versus leaf-level transpiration data collected in 2017 for East End.
Models are ordered by the increase in complexity from model F21 (most basic) to F36 (most
complex). Note that leaf-level transpiration is measured on a per leaf area basis, whereas
ANN predicted transpiration is measured on a per ground area basis (see section 2.5 for
details). The slope parameter, therefore, does not show an under-estimation of the ANN

predicted transpiration values in this case.

Model Name Model Structure R? value Slope value
F21 datetime 0.979 0.95
F26 datetime + VPD 0.984 0.79
F17 datetime + VPD + TA 0.984 0.75
F15 datetime + VPD + TA + GCC + Rnet + WT 0.987 0.81
F33 datetime + H _gf + VPD 0.99 0.93
F11 datetime + H gf + VPD + TA + u. 0.986 0.76

datetime + H gf + u,+ wc_gf + er Reichstein +

F36 VPD + TA + GCC + Rnet + WT 0.922 0.70

Figure Legends

Figure 1: Comparison between the eddy covariance measured daytime evaporation flux
(H2Omeasured) and daytime evaporation predicted by ANNs (H;Opodeleq) Using model F11 (top
panels, a-c) and F36 (bottom panels, d-f) based on data collected right after flooding for
Mayberry Farms (a, d), East End (b, e), and Sherman Island (c, f). Note: the black lines are
1:1 relationships for reference, red lines show linear regressions with standard deviation, and

blue dots represent the data.

Figure 2: Comparison between the eddy covariance measured daytime evaporation flux
(H2Omeasured) and daytime evaporation predicted by ANNs (HyOpogered) Using model F11 (top
panels, a-d) and F36 (bottom panels, e-h) based on data collected during senescent periods in
winter (December to February) at Mayberry Farms (a, ¢), East End (b, f), Sherman Island (c,
g), and West Pond (d, h). Note: the black lines are 1:1 relationships for reference, red lines

show linear regressions with standard deviation, and blue dots represent the data.
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Figure 3: Ecosystem level transpiration data (H,Oy0deleq) predicted by ANNs F11 (a) and F36
(b) validated against leaf-level (LL) transpiration data (HyOpeasured) collected during the field
campaigns in 2017 for the two dominant species in the wetland: Tule (yellow triangles) and
Cattail (blue squares). The overall linear regression line (solid red line) and standard
deviation (dashed red line) is based on average leaf-level transpiration across both species
(red asterisks). Error bars represent the standard deviation from the mean for each
measurement interval and species for the leaf-level data. Leaf-level data were pooled for 30-
min intervals to match the eddy covariance averaging period (i.e. each symbol (square,
triangle or asterisks) represents measurements taken during one 30-min interval). The solid
black lines show 1:1 relationships for reference. Note that leaf-level transpiration is measured
on a per leaf area basis, whereas ANN predicted transpiration is measured on a per ground
area basis (see section 2.5 for details). The slope, therefore, does not show an under-

estimation of the ANN predicted transpiration values in this case.

Figure 4: Monthly regressions of evapotranspiration (ET) vs Gross Ecosystem Productivity
(GEP) data for four wetland sites Mayberry Farms (a), East End (b), West Pond (c), and
Sherman Island (d) for T/ET partitioning using the Scott and Biederman (2017) method for
long-term flux data. Each regression line represents data for the same month across multiple
years. The method is considered unreliable for winter months when GEP is small (November
through March, shown in dashed lines and cross symbols). Negative regression lines for most
months at Sherman Island (d) indicate that the methodology does not work at this site,
potentially due to the shorter time period of this dataset (4 years) or because of the large

contribution of evaporation at this site (see main text for detailed discussion).

Figure 5: Average monthly evaporation (E) (top panels, a-d) and transpiration (T) (bottom
panels, e-h) fluxes across four wetland sites: Mayberry Farms (a, ¢), East End (b, f), West
Pond (c, g), and Sherman Island (d, h) comparing the ANN T/ET partitioning method
described in this paper (red lines and square symbols) and the Scott and Biederman (2017)
method (blue lines and triangle symbols) on long-term flux data. Error bars are based on the
standard error of the fit intercept and slope for the Scott and Biederman (2017) method and
on the interquartile range of the 20 individual ANN runs for the ANN method. Comparisons
were done using ANN F11 for all sites. Gross Ecosystem Productivity (GEP, yellow lines and
asterisks) for each site is shown for comparison in the bottom panels with a separate y-axis on

the right.
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Figure 6: Annual intercomparison of (a) total evapotranspiration (ET), (b) gross ecosystem
productivity (GEP), (c¢) evaporation (E), (d) transpiration (T), and (e) transpiration over
evapotranspiration ratio (T/ET) between four wetland sites (Mayberry Farms, 2013-2019,
blue triangles; West Pond, 2013-2019, red squares; East End, 2014-2019, yellow asterisks;
and Sherman Island, 2016-2019, purple circles). E and T values are based on the ANN
partitioning routine (F11) described in this study.
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