

1
2 DR. ELKE EICHELMANN (Orcid ID : 0000-0001-9516-7951)
3 DR. SAMUEL D CHAMBERLAIN (Orcid ID : 0000-0002-5570-764X)
4 DR. DENNIS BALDOCCHI (Orcid ID : 0000-0003-3496-4919)
5
6
7 Article type : Primary Research Article
8
9
10 **Title:** A novel approach to partitioning evapotranspiration into evaporation and transpiration
11 in flooded ecosystems
12
13 **Running Title:** A novel approach to T/ET partitioning
14
15 **Authors:** Elke Eichelmann^{*a}, Mauricio C. Mantoani^{a+}, Samuel D. Chamberlain^b, Kyle S.
16 Hemes^b, Patricia Y. Oikawa^c, Daphne Szutu^b, Alex Valach^{b^}, Joseph Verfaillie^b, and Dennis
17 D. Baldocchi^b
18
19 **Affiliation:**
20 ^a School of Biology and Environmental Science, University College Dublin, Science Centre
21 West, Belfield, Dublin 4, Ireland
22 ^b Department of Environmental Science, Policy & Management, UC Berkeley, 130 Mulford
23 Hall, Berkeley, CA, 94720, USA
24 ^c Department of Earth and Environmental Sciences, California State University, East Bay,
25 North Science room 329, Hayward, CA, 94542, USA
26 ⁺ now at: Institute of Astronomy, Geophysics and Atmospheric Science (IAG), University of
27 São Paulo, São Paulo, Brazil

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the [Version of Record](#). Please cite this article as [doi: 10.1111/GCB.15974](https://doi.org/10.1111/GCB.15974)

This article is protected by copyright. All rights reserved

28 ^ now at: Climate and Agriculture Group, Agroscope, 191 Reckenholzstrasse, 8046 Zurich,
29 Switzerland

30

31 *Corresponding author; tel. +353 (0)1 716 2020; Elke.Eichelmann@ucd.ie

32

33

34 **Abstract:** Reliable partitioning of micrometeorologically measured evapotranspiration (ET)
35 into evaporation (E) and transpiration (T) would greatly enhance our understanding of the
36 water cycle and its response to climate change related shifts in local-to-regional climate
37 conditions and rising global levels of vapor pressure deficit (VPD). While some methods on
38 ET partitioning have been developed, their underlying assumptions make them difficult to
39 apply more generally, especially in sites with large contributions of E. Here, we report a
40 novel ET partitioning method using Artificial Neural Networks (ANN) in combination with a
41 range of environmental input variables to predict daytime E from nighttime ET
42 measurements. The study uses eddy covariance data from four restored wetlands in the
43 Sacramento-San Joaquin Delta, California, USA, as well as leaf-level T data for validation.
44 The four wetlands vary in their vegetation make-up and structure, representing a range of ET
45 conditions. The ANNs were built with increasing complexity by adding the input variable
46 that resulted in the next highest average value of model testing R^2 across all sites. The order
47 of variable inclusion (and importance) was: VPD > gap-filled sensible heat flux (H_{gf}) > air
48 temperature (T_{air}) > friction velocity (u_*) > other variables. The model using VPD, H_{gf} , T_{air} ,
49 and u_* showed the best performance during validation with independent data and had a mean
50 testing R^2 value of 0.853 (averaged across all sites, range from 0.728 to 0.910). In
51 comparison to other methods, our ANN method generated T/ET partitioning results which
52 were more consistent with CO_2 exchange data especially for more heterogeneous sites with
53 large E contributions. Our method improves the understanding of T/ET partitioning. While it
54 may be particularly suited to flooded ecosystems, it can also improve T/ET partitioning in
55 other systems, increasing our knowledge of the global water cycle and ecosystem
56 functioning.

57

58 **Key-words:** artificial neural networks; eddy covariance; machine learning; latent energy;
59 terrestrial water cycle; wetlands; vapor pressure deficit.

60 **1 Introduction**

61

62 Evapotranspiration (ET) is the combined water loss from terrestrial ecosystems via
63 transpiration (T), i.e., water lost by plants during the process of carbon assimilation, and
64 evaporation (E), i.e., water lost via direct evaporation of soil and surface water (including
65 evaporation of intercepted precipitation; NB: There is some discussion in the community
66 around the correct use of the terms evapotranspiration vs evaporation (Miralles et al, 2020);
67 We have opted to follow the common use of the term evapotranspiration throughout this
68 manuscript to describe the total biosphere-atmosphere water flux, including transpiration as
69 well as direct evaporation from soil and surface waters). Through these processes, ET adds on
70 the order of 65 to 75 thousand km³ of water to the atmosphere every year (Oki & Kanae,
71 2006; Trenberth, Fasullo, & Kiehl, 2009; Jung et al., 2018; Dorigo et al., 2021) and
72 constitutes an important component of the terrestrial water cycle. Despite its importance to
73 the global water cycle, ET is, however, currently poorly constrained in global land surface
74 models (LSM), and although there is general consensus that ET will increase under climate
75 change, the processes and trends are unclear, which creates large uncertainties in climate
76 predictions (Brutsaert & Parlange, 1998; Zeng et al., 2018; Pascolini-Campbell et al., 2021).
77 This partly occurs because E and T have different drivers and mechanisms.

78 Vapor pressure deficit (VPD) is recognized as one of the most important drivers to
79 control water cycling by means of interacting with T and plant stomata (Novick et al., 2016;
80 Yuan et al., 2019; Grossiord et al., 2020; López, Way, & Sadok, 2021). VPD levels are
81 projected to limit ET in most biomes, with climate change increasing the importance of
82 evaporative demands worldwide (Novick et al., 2016). Thus, the continuous rise in the global
83 levels of atmospheric VPD is of major concern as it can have drastic effects on plant
84 communities, mainly increasing T (Grossiord et al., 2020) and reducing plant productivity
85 (Yuan et al., 2019; López, Way, & Sadok, 2021), impacting on water cycling. Previous work
86 in several flooded ecosystems, however, identified air and water temperatures as strong
87 drivers of nighttime ET, considered to be mainly E at these sites, with VPD playing a less
88 important role (Eichelmann et al., 2018). Increasing global temperatures could, therefore,
89 have significant implications for evaporative water loss from these systems. Consequently,
90 improving our understanding of the relative contribution of E and T to ET will allow us to
91 analyze the physiological responses of plant communities to climate change, as well as
92 improve our ability to predict how the water cycle will evolve with climate change within and
93 across ecosystems (Stoy et al., 2019).

94 Assessments of E and T fluxes at an ecosystem scale (i.e., 100 m to km) have been
95 attempted using a variety of methods (Stoy et al., 2019). While some methods attempt to

96 determine E and T components by direct measurements (e.g., measurement of soil
97 evaporation, sap-flux measurements for transpiration, and isotopic tracer approaches), these
98 are often time and labor intensive and present significant challenges upscaling results to
99 ecosystem level (Wilson et al., 2001). Micrometeorological methods, such as eddy
100 covariance (EC), are well-established methods that assess biosphere-atmosphere fluxes of
101 trace gases at the ecosystem scale (Baldocchi et al., 1988). With EC (see Fluxnet.org, 2021)
102 continuous measurements of ecosystem trace gas fluxes such as water vapor can be made on
103 time scales from individual half hours to years (Baldocchi, 2003). However, it can generally
104 only provide direct measurements of the net biosphere-atmosphere flux above the plant
105 canopy. In the case of water vapor fluxes, this includes the net flux of E and T combined. The
106 ability to partition micrometeorologically measured ET fluxes into E and T components
107 would greatly improve our understanding of the pathways by which ecosystems use water,
108 including how E and T components change on different timescales and with changing
109 climatic conditions, as well as the impact of site-specific characteristics like vegetation cover
110 heterogeneity (Eichelmann et al., 2018).

111 While there are several well tested and established methods to partition net
112 ecosystem CO₂ fluxes into its components of gross primary production and ecosystem
113 respiration (Baldocchi, 2003; Reichstein et al., 2005; Desai et al., 2008), less work has been
114 done on partitioning ET fluxes (Stoy et al., 2019). Stoy et al. (2019) provide a review of the
115 most common methods for determining E and T fluxes at ecosystem level. Most methods
116 proposed for partitioning micrometeorologically measured ET fluxes use the intrinsic
117 relationship between CO₂ uptake and transpirational water loss, linked through stomatal
118 exchange at the plant level, to estimate ecosystem T (e.g., Scanlon and Sahu, 2008; Zhou et
119 al., 2016; Scott and Biederman, 2017; Nelson et al., 2018; Li et al., 2019). Scott and
120 Biederman (2017) proposed a method to partition long-term ET measurements into E and T.
121 Their method provides multi-year averages of partitioning on a weekly to yearly timescale.
122 However, it requires datasets of multiple year lengths with high interannual consistency in
123 seasonal ecosystem ET behavior. Furthermore, it is unclear if this method provides reliable
124 results in systems that have a large contribution of E or large interannual variation in
125 ecosystem water exchange behavior.

126 Similarly, the partitioning method proposed by Scanlon and Sahu (2008), Scanlon
127 and Kustas (2010), and Skaggs et al. (2018), uses the correlation between the high frequency
128 fluctuation of water vapor and CO₂ concentrations to determine the stomatal and non-
129 stomatal mediated components of the net water and CO₂ fluxes. However, this method relies

130 on the knowledge of water use efficiency (WUE), which is the ratio of carbon uptake through
131 photosynthesis to water loss through T, at the plant or leaf-level. Since information on WUE
132 is not always readily available at the temporal scale required for this method, and because
133 WUE can change over time with successional age and environmental factors like stomatal
134 response to increasing atmospheric CO₂ concentration (van der Sleen et al., 2015), it restricts
135 the wider use of this method. Another method based on the relationship between CO₂ uptake
136 and T proposed by Zhou et al. (2016) to partition ET data from EC measurements works with
137 the underlying assumption that there will be periods for which E is zero and T/ET approaches
138 one. Similarly, the method proposed by Nelson et al. (2018) assumes that the ecosystem will
139 be dominated by T for some time periods. While such methods are an advancement on T/ET
140 partitioning, there is space for other new approaches particularly if they do not need
141 specialized data or costly equipment to increase the wider use and applicability of such
142 techniques.

143 Ecosystems with large contributions of E, where total ET is not always dominated
144 by T and which have complex interrelationships between ecosystem productivity, E, and T,
145 might violate some or all of the underlying assumptions necessary for partitioning methods
146 based on the relationship between CO₂ uptake and water loss to work (Stoy et al., 2019). This
147 is the case for wetlands, where the contribution of E-T is altered significantly by structural
148 factors such as areas of open water, as well as environmental factors, for instance, diurnal
149 fluctuations in air or water temperature and water table (Drexler et al., 2004; Goulden et al.,
150 2007; Eichelmann et al., 2018). In addition, the before-mentioned methods only work when
151 the ecosystem CO₂ flux is known in conjunction with ET. Although this is often the case for
152 EC measurements, there are other micrometeorological methods that provide measurements
153 of ET without measuring CO₂ fluxes. Consequently, a partitioning method that does not rely
154 on knowledge of CO₂ flux and assumptions of carbon-water flux correlations would greatly
155 enhance our ability to partition T/ET in a diversity of settings.

156 Methods applied to partition CO₂ fluxes usually use relationships of environmental
157 drivers with the individual flux components determined from time periods where only one
158 flux component is present and extrapolate these to the other periods (Reichstein et al., 2005;
159 Desai et al., 2008). Many methods (e.g., Barr et al., 2004; Reichstein et al., 2005) use
160 relationships between temperature and ecosystem respiration based on nighttime fluxes, when
161 CO₂ uptake is zero, and extrapolate these to calculate daytime ecosystem respiration. The
162 gross CO₂ uptake component is then determined as the difference between the net flux and
163 the estimated daytime ecosystem respiration. While this method works well for carbon flux

partitioning, where the primary driver of ecosystem respiration is considered to be temperature, it can face limitations in the case of water fluxes where nighttime fluxes are often very small and the drivers of E and T are complex. However, it has been shown that nighttime T from plants is usually very small in many ecosystems (Caird et al., 2006; Dawson et al., 2007). Thus, for non-water limited systems with large contributions of E, such as wetlands, we can approximate nighttime water fluxes as exclusively E.

A newer approach used to partition net ecosystem carbon fluxes into the individual components of gross primary production and ecosystem respiration uses Artificial Neural Networks (ANN) (Papale & Valentini, 2003; Desai et al., 2008; Tramontana et al., 2020). ANNs and other machine learning approaches have also been successfully applied in the context of interpolating ecosystem biosphere-atmosphere exchange, including evapotranspiration fluxes, both spatially and temporally (Jung et al. 2010; Jung et al., 2011; Zhao et al., 2019; Kim et al., 2020; Tramontana et al., 2020; Irvin et al., 2021). Although the use of ANNs could also be directed at T/ET partitioning, the application of this technique has not been done yet and needs further exploration. Since machine learning methods can resolve complex, nonlinear relationships between environmental drivers and flux variables (Papale & Valentini, 2003; Tramontana et al., 2020), ANNs are a promising approach to partition T/ET in ecosystems where existing ET partitioning methods face limitations, such as wetlands and river deltas.

There has been a growing interest in restoring freshwater wetlands in regions where they historically existed, such as the Sacramento-San Joaquin River Delta, California, USA (hereafter, the Delta). While restoring freshwater wetlands can have many benefits, including those related to wildlife habitat, climate, and carbon sequestration, it can also lead to increased water loss through ET depending on the vegetation cover characteristics (Eichelmann et al., 2018). Moreover, given that changes in local and regional ET can affect cloud formation and precipitation distribution (Gerken et al., 2018), this may have a knock-on effect on the water cycle and on the climate feedback of wetlands (Hemes et al., 2018). In locations that experience spatial and temporal water shortages, such as California, increasing our knowledge of the local water cycle and understanding how ET is affected by external drivers is extremely important.

Here, we show that we can partition ET measurements above flooded wetlands in the Delta by predicting daytime E from nighttime ET measurements using ANNs in combination with environmental driver variables such as VPD, temperature, atmospheric turbulence, canopy greenness index, and others. The meso-network of diverse wetland EC

198 sites used in this study is ideal to test this new ET partitioning method as it provides a
199 continuum of T/ET conditions across complex canopy architectures. We present the most
200 promising models and discuss the application of ANN to partition T/ET measurements.
201 While there is an emphasis on wetlands, we show evidence that our method may be applied
202 to other ecosystems as well, increasing the knowledge of the water cycle and shedding light
203 on plant-water productivity relationships at an ecosystem level.

204

205 **2 Methods**

206

207 **2.1 Site Description**

208

209 The Delta plays an essential role in the water supply of the state of California, USA.
210 It supplies the majority of freshwater to large metropolises in Southern California and
211 provides water for irrigation of crops in the Central Valley (Deverel & Rojstaczer, 1996).
212 Historically, the peat soils were flooded with large areas of freshwater marsh, but the
213 majority of the Delta land area is now actively drained and cultivated for agriculture. More
214 recently, there has been growing interest in restoring freshwater wetlands to prevent further
215 soil subsidence. In one of the approaches used, the restored wetlands in the Delta are flooded
216 with a water table that is above ground level at all times (Hemes et al., 2019). The four
217 restored wetlands in the Delta selected for this study represent a range of conditions with
218 some sites dominated by open water areas and others covered in dense vegetation throughout
219 (Eichelmann et al., 2018), representing varying amounts of T/ET ratios expected at the
220 different sites.

221 We conducted EC measurements at four wetland sites in the Sacramento-San
222 Joaquin river delta in Northern California: West Pond ($38^{\circ} 6.44'N$, $121^{\circ} 38.81'W$, Ameriflux
223 ID: US-TW1; Valach et al., 2021b), East End ($38^{\circ} 6.17'N$, $121^{\circ} 38.48'W$, Ameriflux ID: US-
224 TW4; Eichelmann et al., 2021), Mayberry Farms ($38^{\circ} 2.99'N$, $121^{\circ} 45.90'W$, Ameriflux ID:
225 US-MYB; Hatala-Matthes et al., 2021), and Sherman Island ($38^{\circ} 2.21'N$ $121^{\circ} 45.28'W$,
226 Ameriflux ID: US-Sne; Shortt et. al., 2021). All sites are part of the Ameriflux network and
227 the EC data from these sites are available for download through the Ameriflux data sharing
228 platform (<https://ameriflux.lbl.gov/>). The sites have been described in detail in other
229 publications (Detto et al., 2010; Hatala et al., 2012; Knox et al., 2015; Eichelmann et al.,
230 2018; Hemes et al., 2018, 2019) and their main characteristics will only be briefly
231 summarized here. Overall the dataset used in this study covers 24 site-years of data with

232 individual sites spanning between 4 and 7 years of data coverage. All four wetlands are
233 artificially constructed wetlands managed by the Department of Water Resources to reverse
234 soil subsidence in the area. The water table is actively managed to be above ground level
235 throughout the flooded portions of the wetlands at all sites.

236 The West Pond wetland is the oldest of the four wetlands, originally constructed in
237 1998. It is the most homogeneous of the study sites, with a fairly even, but slightly sloping,
238 ground surface and dense vegetation covering the whole wetland (97% vegetation cover
239 within EC footprint in 2018, Valach et al., 2021a). The water table varies slightly throughout
240 the wetland due to the sloping ground level but is generally between 20 and 40 cm above
241 ground level. The Mayberry Farms wetland was constructed in 2010 and has a very
242 heterogeneous footprint. With a heterogeneous bathymetry this wetland features small islands
243 of vegetation and deeper channels and pools of open water (64% vegetation cover within EC
244 footprint in 2018, Valach et al., 2021a). The water depth varies from 2 m above ground level
245 to 2 cm above ground level in the flooded portions, with some dry areas. The East End
246 wetland was constructed in 2013 and also features some areas of open water channels and
247 pools. The vegetation at East End has filled in more evenly since its establishment and it has
248 a greater vegetation cover than Mayberry Farms (96% vegetation cover within EC footprint
249 in 2018, Valach et al., 2021a). The Sherman Island wetland is the newest wetland constructed
250 in 2016. Similarly to Mayberry Farms, it features a very heterogeneous bathymetry and the
251 footprint is dominated by large portions of open water. Vegetation has only taken hold in
252 very few and small patches within the footprint of the EC measurements (45% vegetation
253 cover within EC footprint in 2018, Valach et al., 2021a). While the individual make-up and
254 proportions vary slightly between sites, the dominant vegetation species at all sites are tules
255 (*Schoenoplectus acutus*) and cattails (*Typha* spp.) (O'Connell et al., 2015).

256

257 **2.2 Eddy Covariance Data**

258

259 We measured continuous fluxes of H_2O , CO_2 and sensible heat using the EC method
260 at all sites (Baldocchi et al., 1988). A detailed description of the instrument set-up and
261 calculation procedures can be found in previously published papers (Detto et al., 2010; Hatala
262 et al., 2012; Knox et al., 2015; Eichelmann et al., 2018; Hemes et al., 2018, 2019) and will
263 only be summarized here. At each site, the EC instrumentation consisted of a sonic
264 anemometer (WindMaster 1590 or WindMaster Pro 1352, Gill Instruments Ltd, Lymington,
265 Hampshire, England) and an open path trace gas analyzer for H_2O and CO_2 concentrations

266 (LI-7500 or LI-7500A, LI-COR Inc., Lincoln, NE, USA). The instruments were mounted at a
267 fixed height at least 1 m above the maximum height of the canopy.

268 High frequency (20 Hz) measurements of sonic temperature, three-dimensional wind
269 speed, and trace gas concentrations were recorded on USB drives in the field through the
270 analyzer interface (LI-7550, LI-COR Inc., Lincoln, NE, USA). The data were collected
271 approximately every two weeks, with routine maintenance and servicing of the instruments
272 taking place at the same time. The LI-7500 trace gas analyzers were calibrated approximately
273 every three to six months in the laboratory. The performance of the EC set-up was also cross
274 checked periodically at individual sites by the Ameriflux mobile EC reference system
275 (Schmidt et al., 2012).

276 All data processing and filtering was performed offline. Thirty-minute average
277 fluxes were calculated using custom software written in-house (MATLAB, MathWorks Inc.,
278 R2015b, version 8.6.0) after basic de-spiking of high frequency data and filtering for
279 instrument malfunctioning (Detto et al., 2010; Hatala et al., 2012; Knox et al., 2015;
280 Eichelmann et al., 2018). A rotation into the mean wind was performed for each 30-minute
281 averaging interval and the Webb-Pearman-Leuning correction for air density fluctuations for
282 open path sensors was applied to the calculated fluxes (Webb et al., 1980). Fluxes were
283 filtered for low friction velocity (u_*), as well as based on stability and turbulence conditions
284 (Foken & Wichura, 1996). Low friction velocity thresholds are based on the point where
285 nighttime CO₂ fluxes become independent of u_* and are defined individually at each site. The
286 thresholds can vary seasonally and usually range from 0.12 m s⁻¹ to 0.2 m s⁻¹. Because of the
287 narrow shape of the wetland, the West Pond wetland fluxes were also filtered by wind
288 direction to ensure flux footprints originated from the ecosystem of interest.

289 Energy budget closure is often used as a quality indicator for EC data (Wilson et al.,
290 2002). At the flooded wetland sites covered in this study the energy budget closure of daily
291 totals was between 73% and 81%, which is slightly lower than typically found in dry
292 ecosystems. H₂O fluxes from the West Pond, Mayberry Farms, and East End wetland sites
293 used in this study have been published and discussed in detail by Eichelmann et al. (2018),
294 including a discussion of data quality, energy budget closure, and the difficulties estimating
295 energy storage components in the flooded wetlands. Because of the importance of storage
296 terms in the context of these sites, energy fluxes measured by the EC method have not been
297 adjusted for incomplete energy budget closure (Eichelmann et al., 2018). In this study,
298 positive fluxes indicate a gain to the atmosphere and negative fluxes indicate a loss from the

299 atmosphere. All analyzes and data processing described in this study were performed using
300 MATLAB (MathWorks Inc., R2018a, version 9.4.0).

301

302 **2.3 Auxiliary Data**

303

304 Meteorological and environmental data were also measured continuously in addition
305 to EC data at all sites. The following auxiliary measurements were available at all wetland
306 sites: Air temperature (T_{air}); water temperature at 3 to 6 different water depths (T_{water} , depths
307 vary between site due to differences in water tables); soil temperature at 6 different depths
308 (T_{soil}); relative humidity (RH); atmospheric pressure; incoming and outgoing shortwave
309 radiation; incoming and outgoing longwave radiation; net radiation; incoming and outgoing
310 photosynthetically active radiation; water table depth; water conductivity; and vegetation
311 greenness index from camera data. Moreover, the West Pond and East End wetland sites were
312 equipped with a rain gauge to measure precipitation and the East End wetland site was
313 equipped to measure ground heat flux (G).

314 Data were recorded as half hour averages (or totals in the case of precipitation) with
315 individual sampling frequency varying between 1 and 15 minutes depending on the sensor.
316 Specifically of interest for this study are measurements of vapor pressure deficit (VPD),
317 water table depth (WT), air temperature (T_{air}), vegetation greenness index (green chromatic
318 coordinate; GCC), and net radiation (Rnet). VPD was calculated from relative humidity
319 measurements in combination with air temperature data, both measured with aspirated and
320 wind-shielded humidity and temperature probes (HMP-60, Vaisala Inc., Helsinki, Finland).
321 Net radiation was measured using either a net radiometer (NR-LITE Radiometer, Hukseflux,
322 Delft, the Netherlands; at Mayberry Farms) or a four-component net radiometer (NR01 Net
323 Radiometer, Hukseflux, Delft, the Netherlands; at West Pond, East End, and Sherman
324 Island).

325

326 **2.4 Artificial Neural Network Partitioning Routine**

327

328 Artificial Neural Networks have been applied for gap-filling and partitioning EC
329 fluxes in the past (Papale & Valentini, 2003; Oikawa et al., 2017; Tramontana et al., 2020).
330 Specifically, for CO_2 fluxes, ANNs have shown to perform well when used to gap-fill
331 missing data (Moffat et al., 2007) and partitioning net CO_2 fluxes into the component fluxes
332 of gross primary production (GPP) and ecosystem respiration (R_{eco}) (Desai et al., 2008;

333 Oikawa et al., 2017; Tramontana et al., 2020). Following a similar approach to partitioning
334 CO₂ data, we assumed that nighttime ET data is dominated by E at these flooded sites:

335

336 $ET = T + E$ (1)

337 $T_{night} \cong 0$ (2)

338 $ET_{night} = E$ (3)

339

340 In this study, daytime and nighttime are distinguished by the local solar zenith angle
341 (ze) with nighttime being defined as ze >= 90°. We conducted several leaf-level chamber
342 measurements using a LI-6400 Portable Photosynthesis System (LI-COR Inc., Lincoln, NE,
343 USA) throughout the growing season of 2017 to confirm that nighttime and dark T flux is
344 indeed negligible at these sites. The available nighttime E data is used in combination with
345 environmental input variables to train the ANN routine to predict daytime E. Daytime T was
346 then calculated as the difference between total ET and E:

347

348 $T_{day} = ET_{measured} - E_{predicted}$ (4)

349

350 Before ET partitioning was performed all flux data were gap-filled using ANN
351 routines described in previous studies (Knox et al., 2015, 2016; Oikawa et al., 2017,
352 Eichelmann et al., 2018).

353

354 2.4.1 Artificial Neural Network Routine Set-up

355

356 To partition ET data using ANNs in this study, we followed a similar set-up and
357 architecture as described for gap-filling and partitioning CO₂ data in previous studies
358 (Balocchi & Sturtevant, 2015; Knox et al., 2015, 2016; Oikawa et al., 2017). We applied
359 feedforward networks specialized for function fitting using symmetric sigmoid transfer
360 functions in all layers except the final layer which uses a linear transfer function. The
361 networks are trained using the Levenberg-Marquardt optimization algorithm. For each site,
362 the entire available (multi-year) explanatory dataset was split into 20 data clusters using the
363 k-means clustering algorithm. The data used for training, testing, and validation of the ANNs
364 was proportionally sampled from these clusters with one third of the available data used for
365 training, testing, and validation each. This procedure avoids a sampling bias towards periods
366 when more data are available, such as a specific time of the year or time of the day.

367 Proportional data sampling from the k-means clusters into training, testing, and validation
368 data was repeated 20 times. For each of the 20 re-sampled training, testing, and validation
369 datasets several ANN architectures were tested starting with one hidden layer and the same
370 number of nodes as the number of explanatory input variables ($n_{inputvar}$). Each architecture
371 was initialized 10 times with random starting weights and the initialization with the lowest
372 mean sampling error was used. The complexity of the ANN architecture was increased first
373 by increasing the number of nodes to 1.5 times $n_{inputvar}$ and then by increasing the number of
374 hidden layers until a further increase in complexity results in less than 5% reduction of the
375 mean standard error. For our datasets, this commonly resulted in the use of an architecture
376 with two hidden layers, the first one with $n_{inputvar}$ nodes, the second one with $0.5*n_{inputvar}$
377 nodes, although for some sites and input variable combinations architectures with only one
378 hidden layer produced better results. The ‘validation’ step within the ANN procedure
379 described above is performed on nighttime data only and is therefore distinctly different from
380 the validation with flooding and leaf level data described below. Throughout the remainder of
381 the manuscript when we use the term ‘validation’ we refer to the independent flooding and
382 leaf level data validation. The ANN internal validation routine based on nighttime data is
383 referred to as ‘testing’. An overview of the ANN training, testing, and validation process is
384 presented in the flowchart in Fig. S1.

385

386 **2.4.2 Selection of Explanatory Variables**

387

388 A number of different explanatory environmental input variables were tested
389 individually and in combination. Based on the general understanding of the drivers of E
390 fluxes in terrestrial and aquatic ecosystems we tested the following input parameters:
391 Meteorological and environmental variables: VPD, Rnet, GCC, WT, T_{air} ; Flux variables:
392 friction velocity (u_*), gap-filled sensible heat flux (H_{gf}), gap-filled CO_2 flux (wc_{gf}), and
393 ecosystem respiration ($er_{Reichstein}$) partitioned using the temperature dependency method
394 proposed by Reichstein et al. (2005). In addition, we used a running decimal timestamp
395 (`datetime`) as input variable in all our ANN runs. VPD, u_* , and T_{air} describe the atmospheric
396 demand driving E. Rnet and H_{gf} are connected to ET (or latent energy) through the energy
397 balance equation. GCC, wc_{gf} , and $er_{Reichstein}$ are directly or indirectly related to plant
398 physiological responses that can impact ET components. Finally, WT is related to the water
399 budget of the ecosystem. Given the strong correlation of water temperature (T_{water}) with
400 nighttime ET documented at these sites in a previous study (Eichelmann et al., 2018) we

401 would also expect T_{water} to perform well as an environmental input variable. Unfortunately,
402 we were unable to include T_{water} as an input variable in this study since we did not have
403 consistent T_{water} measurements across time for any of the four sites.

404 We ran the ANN routine for each of these parameters individually and recorded the
405 R^2 value, slope, and RSME of the linear regression of the nighttime EC data initially set aside
406 for testing within the ANN routine versus the predictions. This R^2 value is called ‘testing R^2 ’
407 throughout this manuscript and is based only on nighttime data. Starting with the input
408 parameter with the highest testing R^2 , we ran the ANN routine with increasing numbers of
409 input variables, each time adding on the variable with the next highest testing R^2 value. We
410 continued this process until a further increase in input variables resulted in less than 1%
411 increase in the testing R^2 value. We averaged the testing R^2 values across the four sites and
412 used this value to estimate increases in the performance of the ANNs. While this average
413 testing R^2 does not have any statistical relevance, it gave us a good indicator on how well the
414 models performed across all sites studied.

415

416 **2.5 Validation of Results**

417

418 One of the main issues facing validation of ET partitioning methods is often the lack
419 of independent E or T data to validate against (Stoy et al., 2019). Taking independent
420 measurements of ecosystem E or T is challenging and one of the main reasons why
421 partitioning approaches for EC measurements of ET are much sought after. Since we do not
422 have independent measurements of ecosystem level E or T available at our sites, we reverted
423 to validating our partitioning data by a conditional sampling approach, selecting EC
424 measurement data from certain time periods when E and T can be known or closely
425 approximated to compare with the ANN predicted E or T. One of these time periods is the
426 initial time right after flooding of the wetland (referred to as flooding data), when vegetation
427 had not yet established within the footprint of our instruments. During this time, it can be
428 assumed that the entire H_2O flux coming off the surface is from E, with negligible T.

429 Since we trained our ANN routines only on nighttime data, we were able to use the
430 daytime data during the initial flooding period as an independent validation dataset for E.
431 Apart from the initial flooding period, T can also be assumed to be small to negligible during
432 the senescent winter months. However, since the plants are not harvested or otherwise
433 removed and the climate in this region is fairly mild, some do stay green throughout the
434 winter and may continue to be photosynthetically active. Additionally, vegetation on dry

435 areas such as levees usually starts to green up during the winter months in this region. Both of
436 these would be contributing to a small T flux from the ecosystem. Moreover, ET fluxes
437 during the winter period are generally lower and subject to larger errors due to more
438 challenging turbulence conditions during this time. Such conditions result in large relative
439 error in flux measurements during this period limiting the insights gained from the validation
440 during the senescent winter period. Nonetheless, we included validation of E predicted from
441 our ANN method against E measured during winter times to further test the performance of
442 our method. Testing our ANN method against daytime data is particularly important as some
443 of the drivers of E can exhibit strong diurnal patterns (e.g. H_{gf}) and interdependencies
444 between energy fluxes and environmental conditions (e.g. evaporation, transpiration, and
445 canopy VPD) can change between day and night. While ANNs have been shown to provide
446 good performance in predicting non-linear responses of biological data and extrapolating
447 outside of the training variable space (Papale & Valentini, 2003), by using nighttime data
448 only for training the ANNs we may not correctly capture the daytime response of E to the
449 driver variables or changes in interdependent relationships. This would be highlighted
450 through poor performance in the winter and flooding data validations. We compared the
451 variable space covered by our nighttime training dataset with the variable space covered by
452 the daytime prediction dataset and the flooding validation dataset (Fig. S2). While the
453 daytime distributions show proportionally more values in the high end of the distributions, for
454 most variables there is a reasonably good representation of higher values within the training
455 and validation datasets. In addition, the proportional sampling from environmental clusters
456 for our training dataset ensures all environmental conditions are represented equally during
457 training.

458 In addition to the validation during periods when T was zero, we also conducted a
459 number of leaf-level T measurements in the summer of 2017 at the East End wetland using a
460 LI-6400 portable photosynthesis system (LI-COR Inc., Lincoln, NE, USA) with a clear
461 conifer chamber (part number 6400-05) encasing sections of the leafs or culms. Six
462 individual leaf-level measurement points (three for each of the dominant plant species) taken
463 during the same half hour period were pooled to allow comparison with the half hourly EC
464 data. These measurements provided us with an estimate of T per unit of sunlit leaf area and
465 may potentially be converted to the ecosystem scale if the ecosystem leaf area index and the
466 leaf angle distribution are known. Efforts have been made to estimate the leaf area index in a
467 number of the wetlands in the study region, however, due to the high heterogeneity and litter
468 accumulation in these systems there is a high level of uncertainty associated with the

469 measured leaf area indexes (Dronova & Taddeo, 2016). Additionally, the leaf angle
470 distribution is unknown in these systems and can only be approximated, which is an intrinsic
471 limitation of this technique.

472 Taking all these uncertainties into account, ecosystem T scaled up from leaf-level
473 measurements is associated with very large error intervals and cannot serve as a reasonable
474 constraint on the absolute values of our ANN partitioned T fluxes. However, since the scaling
475 factors to convert leaf-level values to ecosystem level are constant multipliers, we should still
476 be seeing a linear relationship between the leaf-level flux and the partitioned ecosystem level
477 T if our partitioning algorithm predicts the correct T behavior across a range of
478 environmental conditions. While we may not be able to compare the absolute T values, we
479 can compare the response cycle of ANN predicted T with the field measurements to validate
480 that we are predicting the right behavior.

481

482 **2.6 Comparison with Other T/ET Partitioning Approaches**

483

484 Direct comparisons with the Scott and Biederman's (2017) method were carried out
485 in order to evaluate the performance of our own models against their approach. For these
486 comparisons, we used the model (F11, see Results below) that achieved the best R^2 value
487 against the validation with leaf-level/flooding data. The Scott and Biederman (2017) method
488 uses data from multi-year monthly ET and gross ecosystem productivity ($GEP = -GPP$;
489 determined from EC data using ANN based partitioning). At each site, regressions are
490 calculated between all available monthly ET and GEP values measured for a specific month
491 (e.g., July) across years (see Fig. 4 for illustration). Regressions are extrapolated to zero GEP
492 to estimate the long-term average E for the specific month of interest. While Scott and
493 Biederman (2017) forced all monthly regressions between ET and GEP to the same slope, we
494 used different slopes for each regression. This was done to ensure the best fit since our
495 datasets did not show the same uniform behavior across months. The Scott and Biederman
496 (2017) method only provides average monthly E and T values across the entire dataset, not
497 for individual years. Indirect comparisons with other methodologies mentioned above are
498 also discussed.

499

500 **3 Results**

501

502 **3.1 Artificial Neural Network Architecture Performances**

This article is protected by copyright. All rights reserved

503

504 Alongside the basic timestamp (datetime), VPD and T_{air} were the meteorological
505 variables that best explained our data when only looking at the nighttime testing data, with
506 average testing R^2 values across all sites of 0.648 (model F26) and 0.565 (model F22),
507 respectively (Table 1 and Supplementary Table 1). The flux related variables that showed the
508 highest average testing R^2 values and added most information to the models were H_{gf}
509 (testing R^2 of 0.620, model F28) and u_* (testing R^2 of 0.531, model F27). To increase the
510 ANNs complexity we, therefore, followed the variables order of $VPD > H_{gf} > T_{air} > u_*$,
511 adding each of them into the models sequentially. VPD was the variable that contributed the
512 most to increase the testing R^2 values of the ANNs, with an average increase of 24% across
513 all sites and a maximum of 36% for West Pond, when models F21 and F26 were compared
514 (Table 1). The incorporation of H_{gf} was responsible for an average increase of 10% in
515 testing R^2 , when comparing the ANNs F26 and F33 (Table 1). T_{air} only increased the ANNs
516 testing R^2 by 1% (i.e., when comparing models F33 and F34), however, when we added u_* ,
517 the average testing R^2 value increased across all sites by 9%, when comparing models F34
518 and F11 (Table 1). Thus, building the ANN F11 using datetime, VPD, H_{gf} , T_{air} , and u_* , the
519 average testing R^2 value across all sites reached 0.853, with a minimum of 0.728 (West Pond)
520 and a maximum of 0.910 (Sherman Island; Supplementary Table 1).

521 Of all the 36 ANNs tested, the highest average testing R^2 (0.891) was reached when
522 all the explanatory variables (i.e., datetime, H_{gf} , u_* , wc_{gf} , $er_{Reichstein}$, VPD, T_{air} , GCC,
523 R_{net} and WT) were put into the model F36 (Table 1 and Supplementary Table 1).
524 Consequently, on average, all the other variables analyzed (i.e., wc_{gf} , $er_{Reichstein}$, GCC,
525 R_{net} and WT) accounted for less than 4% of the testing R^2 value across all the four sites
526 (when comparing models F36 and F11; Table 1). The top five ANNs (F36 > F14 > F20 > F35
527 > F11) that performed better than 0.85 all have datetime, VPD, H_{gf} , T_{air} , and u_* as their
528 explanatory variables and all the 11 ANNs that scored an average testing R^2 higher than 0.80
529 have both VPD and u_* in their models (Table 1 and Supplementary Table 1). Fifteen ANNs
530 showed an average testing R^2 higher than 0.70 and the lowest average testing R^2 among these
531 (0.730) was presented by the ANN F2, constructed using only datetime, T_{air} , and u_*
532 (Supplementary Table 1). Unsurprisingly, the lowest average testing R^2 (0.410) of all the 36
533 ANNs analyzed was given by the ANN built using datetime alone (F21). The slope and
534 RSME values (Table 1 and Supplementary Table 2) of the different ANNs followed quite
535 closely the pattern described for the increase in testing R^2 values.

536

537 **3.2 Validation of Artificial Neural Networks**

538

539 **3.2.1 Flooding Validation**

540

541 To evaluate the performance of our ANN partitioning method, we compared the
542 model predicted E with EC measurement data from conditionally sampled post-flooding
543 periods, during which we assume T to be negligible (Table 2). The ANN F11 showed the
544 highest validation R^2 values for East End (0.81), Mayberry Farms (0.69), and Sherman Island
545 (0.82). These values surpassed those from the model F36 (most complex), which reached
546 0.51, 0.56, and 0.53, for East End, Mayberry Farms, and Sherman Island, respectively. The
547 slope values overall follow very similar patterns to the R^2 values. With regards to the RSME
548 values, models F21 and F15 have lower RSME values than model F11 for most of the sites.
549 However, the extremely low R^2 and slope values for model F21 and F15 highlight that these
550 relationships are poorly constrained and, therefore, model performance evaluation should not
551 be based on RSME alone (Table 2). Nevertheless, the slope and RSME values should be used
552 as secondary selection criteria to ensure predictions are not offset by a constant factor, which
553 would not be visible by evaluating R^2 values alone. Figure 1 shows the validation comparison
554 between F11 and F36 for the three sites.

555

556 **3.3.2 Winter Time Validation**

557

558 Judging by the observed R^2 values, the validation using daytime data from senescent
559 periods during the winter time (December to February, Table 3) performed quite poorly in
560 comparison to the validation performed with data during the initial flooding periods (Table
561 2). Nevertheless, the winter period validation overall did confirm the same trends and
562 observations as the flooding validation. At Mayberry Farms and Sherman Island ANN F11
563 again had the highest R^2 values (0.56 and 0.70, respectively). However, at East End and West
564 Pond the model F36, which included all input variables, performed best with R^2 values of
565 0.45 and 0.36, respectively. Figure 2 shows the validation comparison between F11 and F36
566 for the four sites using winter data.

567

568 **3.3.2 Validation on Diurnal Measurements of Leaf-Level Data for East End**

569

570 To evaluate the performance of our method further, we compared the model
571 predicted T with independent leaf-level data collected during a field campaign in summer
572 2017 at the East End wetland. The leaf-level data showed high variability across individual
573 measurements (Fig. 3). F11 again showed a high R^2 (0.986, Table 4). Other models (F15,
574 F33) also performed quite well in the leaf-level validation, in contrast to their performance
575 for the validation during flooding or senescent periods. The most complex ANN (F36) had a
576 lower R^2 value (0.92) for the leaf-level validation. In general, adding too many variables did
577 not lead to enhancement of validation values, but it is to be noted that all models showed a
578 high level of agreement with the leaf-level data (Table 4). Figure 3 shows both F11 and F36
579 validations against leaf-level data.

580
581

582 **3.3 Artificial Neural Networks Performance Across the Wetland Sites**

583

584 To look for model consistency across diverse canopy architecture and successional
585 stages, we compared ANN testing R^2 values between the four sites. Among the four sites,
586 East End and Sherman Island were the only sites that had ANNs with testing R^2 values larger
587 than 0.90 for the EC testing data set aside during the ANN routine (Supplementary Table 1).
588 At Sherman Island, East End, and Mayberry Farms 22, 20, and 19 ANN models reached
589 testing R^2 values above 0.70, respectively, whereas at West Pond only 11 models reached
590 testing R^2 values above 0.7 (Supplementary Table 1). In comparison with the other three
591 studied sites, West Pond showed testing R^2 values in the order of 9-18% smaller when
592 analyzing the top five ANNs with average testing R^2 larger than 0.85 (Supplementary Table
593 1). Considering all 36 ANNs, differences in testing R^2 between the same ANN for different
594 sites reached a maximum of 46%, when comparing model F6 at West Pond with Sherman
595 Island (Supplementary Table 1).

596

597 **3.4 Comparisons with Other Partitioning Approaches**

598

599 To compare our ANN method with existing T/ET partitioning methods, we applied
600 the Scott and Biederman (2017) long-term flux data partitioning method at all four sites. As
601 expected, the Scott and Biederman (2017) method worked better for datasets with > 6 years
602 (Fig. 4; Mayberry Farms, West Pond, and East End). Sherman Island, the shortest dataset

603 with four years of data collection, performed poorly, showing negative correlations of ET vs
604 GEP for the months of June to September (Fig. 4 d). Average monthly T fluxes from the
605 Scott and Biederman (2017) method for Mayberry Farms and Sherman Island (Fig. 5a and d)
606 both showed increases in T at the end of the growing season (i.e., October) out of line with
607 the observed GEP patterns. Conversely, West Pond and East End (Fig. 5b and c) showed a T
608 pattern parallel to GEP with the growing season.

609 While the T values from our ANN approach showed a similar behavior as GEP
610 during the growing season, as would be expected, the T values from the Scott and Biederman
611 (2017) method did deviate somewhat from the GEP pattern for all sites (Fig. 5). The best
612 ANN (F11) also produced more reasonable T numbers for Sherman Island compared to the
613 Scott and Bierderman (2017) method. In addition, the E values retrieved in our analysis for
614 all sites were also more stable and did not fluctuate as much across months compared to the E
615 values from the Scott and Biederman (2017) method (Fig. 5). While the Scott and Biederman
616 (2017) method is not intended to produce reliable results for T/ET partitioning during winter
617 months when GEP is small, it did show very good agreement of produced E and T values
618 when compared to our ANN based values from October to February for all sites.

619

620 **3.5 Resulting Evaporation and Transpiration Estimates**

621

622 Figure 6 shows the annual (2013-2019) ANN based T/ET partitioning
623 intercomparison for all sites using ANN F11. Only years with a full year of data are used.
624 While ET stayed fairly consistent between 850-1250 mm for all sites and years (Fig. 6a),
625 GEP showed more fluctuations between the different sites, as well as interannually within
626 each site (Fig. 6b). Looking at the predicted partitioning of E and T (Fig. 6c, d), Sherman
627 Island showed the highest values of E (approximately 1100 mm) for the three years of
628 measurements available at this site, while West Pond had the lowest E values across all years
629 and sites (200 to 300 mm). Although values at East End were always higher compared to
630 Mayberry Farms for all years with measurements from both sites, decreasing pattern can be
631 observed for E at both sites, ranging from high values of 831 mm at Mayberry Farms in 2013
632 and 1119 mm at East End in 2014 down to low values of 449 mm at Mayberry and 630 mm
633 at East End in 2019. Transpiration showed opposite trends compared to E, with West Pond
634 having the highest values (between 700-800 mm in most years), followed by Mayberry Farms
635 with T values between 300-500 mm. The T pattern predicted at Mayberry Farms follows a
636 similar pattern as the GEP measurements, most notably is the significant reduction in GEP in

637 2016 which was caused by saltwater intrusion at the site (Eichelmann et al., 2018,
638 Chamberlain et al., 2020). This was mirrored in a reduction of T values in 2016, however, E
639 was not affected. Sherman Island and East End showed T values below 300 mm for all years,
640 considerably lower than the other two sites. In the first full year of measurements (2014), T at
641 East End was even predicted as negative (-24 mm), similar to the negative T predictions
642 observed at East End during the winter validation (Fig. 2). However, this value falls within
643 the uncertainty range of 91 mm for annual ET measurements at this site in 2014 (Eichelmann
644 et al., 2018). East End and Sherman Island both had a very high open water surface area,
645 especially in the first years after flooding, so it would be expected that E is more dominant.
646 Sherman Island specifically had extremely sparse vegetation cover throughout the EC
647 measurement footprint for the first two years of measurements, also evident in the very low
648 values of GEP. For both of these sites, East End and Sherman Island, we can see that
649 gradually E declines and T increases as the vegetation fills in from year to year.
650 Consequently, when comparing the T/ET values across sites (Fig. 6e), West Pond had the
651 highest value of T/ET (70%-75% on T), followed by Mayberry Farms (30%-50%), East End
652 (0-30%), and Sherman Island (<15%). This highlights that only West Pond can be described
653 as a T dominated site with T/ET values in the range between 0.5 and 0.8 reported for other
654 terrestrial ecosystems (Schlesinger & Jasechko, 2014). The other three sites are clearly E
655 dominated and have T/ET values considerably lower than those expected for terrestrial
656 ecosystems.

657

658 **4 Discussion**

659

660 **4.1 Artificial Neural Network Architecture Performances**

661

662 The ANN F36, which was built using all studied variables, presented the highest
663 average testing R^2 value (0.891) for the nighttime-based testing dataset among all 36 ANNs
664 analyzed. Nevertheless, there was not much improvement in testing R^2 in the models (i.e.,
665 maximum of 3-4% on average) after the ANN F11. This indicates that not all variables are
666 necessary to provide good results in the partitioning of ET into E and T, and that less
667 complex models can result in good predictions. For instance, using only datetime + H_gf +
668 VPD (F33) or datetime + u_* + T_{air} (F2) the average testing R^2 value across all sites was > 0.70 , indicating a good correlation. In addition, when using datetime + VPD alone the

670 average testing R^2 value for three sites (i.e., East End, Mayberry Farms and Sherman Island)
671 was > 0.70 .

672 In our study, the order of variable inclusion to increase model complexity was:
673 `datetime > VPD > H_gf > T_air > u_*`. VPD was the variable that contributed the most in the
674 improvement of the ANNs, with an average of 24% increase in testing R^2 values across all
675 sites. VPD is routinely measured at most EC sites (e.g., Fluxnet.org, 2021) and its effect on
676 ecosystem water cycling by limiting surface conductance and reducing transpiration under
677 high VPD is well documented (Buckley, 2005, Novick et al., 2016). The fact that the top 14
678 ANNs (i.e., with the highest testing R^2 value) were constructed using VPD as one of the input
679 parameters highlights the importance of VPD as a predictor of ecosystem water exchange. In
680 addition, all the 11 ANNs that scored an average testing $R^2 > 0.80$ have u_* in their models,
681 indicating that information on atmospheric turbulence is important to incorporate in ET
682 partitioning prediction if available. It may not be surprising that at these flooded sites E is
683 mainly explained by atmospheric conditions such as VPD, T_{air} , and turbulence (u_*)
684 underlining their importance in the ANN partitioning routine. At sites with different surface
685 and vegetation characteristics, such as dryland sites, it would be important to investigate the
686 importance of other variables such as soil moisture, soil temperature, or leaf wetness. It
687 would be expected that these, together with other energy balance components such as
688 radiation, would play a larger role in explaining E at water limited sites.

689

690 **4.2 Artificial Neural Network Validation Against Post-Flooding Periods and Leaf-Level 691 Data**

692

693 The validation of our models against data collected right after flooding (for East
694 End, Mayberry Farms, and Sherman Island) and with leaf-level data (for East End only)
695 indicated that models with less input variables (F11) performed better in comparison to the
696 model that incorporated all 10 studied variables (F36). It might be that overfitting occurred
697 when incorporating input variables that deal directly and/or indirectly with the same
698 property/factor (i.e., carbon assimilation). In this case, F36 includes `er_Reichstein`, `wc_gf` and
699 `GCC` which are all related to carbon uptake by vegetation. Thus, even with a smaller average
700 testing R^2 value, models with fewer input variables (e.g., F11) still performed better than F36
701 during validation with ground-truth leaf-level and flooding data. Specifically, the ANN F11,
702 which showed the best performance for all three of the sites with flooding data validation
703 (East End, Mayberry Farms, and Sherman Island) included `datetime + H_gf + VPD + T_air +`

704 u*. The validation based on data collected right after flooding also emphasized the importance
705 of validating the ANN partitioning routine against data collected during daytime periods.
706 Some of the tested input variables showed strong differences in daytime and nighttime
707 behavior (e.g., Rnet). Using these variables as inputs can lead to incorrect daytime
708 predictions for the nighttime-based ANN routine as seen in the poor performance of F15 for
709 the flooding validation at East End and Mayberry Farms, despite a high testing R^2 of 0.75
710 (Supplementary Table 1).

711 The flooding validation also highlights site-specific differences in the input variables
712 that provided good predictions. While the best performance was achieved with the same
713 model (F11) across all three validation sites, the behavior of the other tested models varied
714 across sites. We recommend that the selection of input parameters for ANN partitioning of
715 ET should be based on the unique site characteristics rather than a standardized set of
716 variables since vegetation heterogeneity and other site level characteristics can influence
717 ecosystem ET levels (Eichelmann et al., 2018).

718 This is also evident in the validation using data from the winter/senescent period,
719 where F11 performed best at Mayberry Farms and Sherman Island, whereas F36 performed
720 best at East End and West Pond. The overall performance of our ANNs in predicting E
721 during the winter/senescent periods was also considerably lower in comparison to the
722 flooding and leaf-level data validation. This is partially due to the smaller fluxes observed
723 overall during this period, leading to larger relative errors. In addition, the assumption that all
724 measured ET during the winter months represents solely E is likely incorrect. Especially at
725 the sites with high vegetation cover (Mayberry and West Pond) it is likely that a small
726 amount of T occurs during this time which would be included in the measured ET signal,
727 leading to an apparent under-prediction of E for the ANN. For East End and Sherman Island,
728 however, we can see that the ANNs are actually over-predicting E (Fig. 2), leading to
729 consistent, albeit relatively small, negative T prediction in the winter months, specifically at
730 East End (Fig. 4). It is unclear what is causing the discrepancy between measured and
731 modeled E at East End and Sherman Island during the winter months. However, the fact that
732 inclusion of variables linked to vegetation growth (GCC, wc_gf, er_Reichstein) reduced the
733 over-prediction at both sites (e.g., F36 or F15) could indicate that E dynamics linked to
734 phenology and vegetation cover are not adequately reproduced in models without these input
735 variables at East End and Sherman Island.

736 Unfortunately, a limitation in our study is that we were not able to validate our
737 results across all sites/sampling times due to a lack of leaf-level data collected from all sites,

738 which is very time and labor intensive. In addition, no data were available from the initial
739 flooding period at the West Pond wetland. Nonetheless, we are aware that validation of T/ET
740 partitioning is quite scarce in the literature and that the data validated against our ANNs
741 prove that good results can be achieved using the protocol tested here.

742

743 **4.3 Artificial Neural Network Performance Across the Wetland Sites**

744

745 Concerning the performance of all the 36 ANNs across the four wetlands analyzed
746 in this study, West Pond showed smaller testing R^2 values in comparison to the three other
747 sites. Between-site differences reached up to 46% for the same model. The main reason for
748 this divergence was likely the differing amounts of open water surfaces and density of the
749 vegetation between these sites. West Pond, with little to no open water, is likely to see less E
750 compared to the other wetlands (Eichelmann et al., 2018). In addition, West Pond also has the
751 lowest water temperature and a very dense vegetation canopy decoupling the water surface
752 from the atmosphere and leading to further reductions in E, especially at night (Drexler et al.,
753 2004; Goulden et al., 2007; Eichelmann et al., 2018). Because our method predicts E based
754 on nighttime data and calculates T based on the difference between total ET and E, if E
755 values are small the relative accuracy of the prediction will decrease, which is reflected in the
756 testing R^2 values. However, because the E values are small, the absolute error of the predicted
757 E and T would be proportionately small, hence the total T and E values can still be reliable.
758 Unfortunately, we did not have a set of ground-truth validation data available for the West
759 Pond site to investigate the true performance of the ANN ET partitioning. However, our
760 comparison with the Scott and Biederman (2017) partitioned data and expected relationships
761 based on the observed carbon fluxes and vegetation dynamics give us high confidence in the
762 performance of the ANN partitioning routine at the West Pond wetland site. This shows that
763 the ANN partitioning method can also be successfully applied in situations where nighttime E
764 fluxes are small, indicating that it could be applicable to a large variety of ecosystems. In this
765 context it is important to note that some studies have found non-negligible nighttime
766 transpiration values for certain ecosystems (Caird et al., 2006; Novick et al., 2009; Resco de
767 Dios et al., 2019). To be able to apply the ANN methodology from our study to other sites or
768 ecosystems it is essential to confirm that nighttime transpiration is indeed negligible at the
769 respective site. Additionally, careful consideration needs to be given to the changing
770 interactive effects between energy fluxes and environmental conditions from nighttime to

771 daytime. Any application of this methodology will require validation against independent
772 daytime data to ensure these effects are correctly captured in the ANN models.

773

774 **4.4 Comparisons with Other Partitioning Approaches and Wider Implications**

775

776 In comparison to other established methods in the literature our own approach using
777 ANNs to determine the T/ET partitioning achieved very good results with fewer limitations,
778 which makes it easier to apply in other contexts/ecosystems. For instance, Scott and
779 Biederman's (2017) method only works when there are enough years of data. The shortest
780 dataset Scott and Biederman (2017) analyzed spanned eight years, which is a considerably
781 long time period and reduces its applicability to shorter studies. Also, in the absence of
782 climate consistency among sampling sites or if the research takes place in areas where fluxes
783 are not limited by water availability (e.g., wetlands), their model fails to partition T/ET
784 correctly, limiting it to relatively dry ecosystems. This was evident from direct comparisons
785 with our own method, particularly for Sherman Island which has the shortest dataset (i.e.,
786 four years) and the highest area of open water, with the largest relative contribution of E (Fig.
787 4, 5).

788 Considering the partitioning methods proposed by Scanlon and Sahu (2008),
789 Scanlon and Kustas (2010), and Skaggs et al. (2018), *a priori* knowledge on WUE and carbon
790 uptake is required to apply their method. Consequently, the paucity of previous
791 data/information or lack of equipment impede the application of this method to a broader
792 audience. We tried to run the Scanlon and Kustas (2010) and Skaggs et al. (2018) partitioning
793 methods for our wetland sites but were not able to retrieve reliable and meaningful
794 partitioning results for any of the sites discussed in this study. We did not test the method
795 proposed by Zhou et al. (2016) in this study, since we believe that some of the underlying
796 assumptions are easily violated at the wetland sites investigated here. Most importantly, the
797 Zhou et al. (2016) method is based on the assumption that some periods within the time series
798 represent conditions without E and the water flux is entirely based on T (i.e., T = ET). This is
799 most certainly not the case at flooded sites where we can reasonably expect that there will
800 always be E, albeit in varying amounts. Additionally, the potential underlying WUE is
801 assumed to be constant, which could be violated when multiple vegetation types or species
802 are present, as is the case with our sites. Finally, virtually all the other methods discussed
803 here lacked validation against ground-truth data in the original studies. We included several
804 verification types for the ANN method in this paper, which gives us confidence that our

805 approach using ANNs produces reliable and meaningful estimates for E and T in wetland
806 ecosystems. The fact that our method does not rely on presumed relationships between water
807 and carbon fluxes and was shown to work across a range of ecosystem properties from T to E
808 dominated systems, provides an advantage against other methods that are limited to certain
809 ecosystems or need specialized input data/equipment.

810 In terms of wider implications, our results can help to connect T/ET partitioning
811 with other global atmospheric processes. An example is the constant increase in global VPD,
812 which is cause of much concern regarding natural and agricultural systems. Most studies to
813 date have focused on the effect of increasing VPD levels on plant physiology and reduced
814 plant growth or productivity with concomitantly increased T (Yuan et al., 2019; Grossiord et
815 al., 2020; López, Way, & Sadok, 2021). However, VPD was the variable that contributed the
816 most to explain E across the 36 ANNs analyzed in our study, highlighting its importance not
817 only for plant regulated water cycling (T), but also for driving E. Two independent studies
818 indicated that VPD levels are increasing in our study region (i.e., southwest USA, California).
819 Seager et al. (2015) have found a consistent rise in atmospheric VPD since 1960s and Ficklin
820 and Novick (2017) also projected higher VPD levels with amplified effects during summer
821 months, potentially driving more pronounced water loss through E regardless of the plant
822 physiological response. While other factors might be more important at controlling plant
823 productivity in some ecosystems (e.g., soil moisture in semi-arid areas; see Liu et al., 2020),
824 atmospheric vapor demand is projected to become more important with climate change in all
825 ecosystems (Novick et al., 2016). Consequently, the estimates of T/ET partitioning given by
826 our new approach will be important as they allow us to explain the effects of rising global
827 VPD levels on E and T separately.

828

829 **5 Summary**

830

831 A novel T/ET partitioning method using Artificial Neural Networks (ANN) to
832 predict daytime E from nighttime ET measurements in a combination with a range of
833 environmental variables was presented and compared to previous methods from the literature.
834 In comparison to other approaches, the ANN method achieved better results, particularly with
835 shorter-term data (i.e., <5 years) and was successfully applied to flooded ecosystems. The
836 order of variable inclusion (and importance) for the ANN construction was: vapor pressure
837 deficit (VPD) > gap-filled sensible heat flux (H_{gf}) > air temperature (T_{air}) > friction velocity
838 (u_*) > other variables. The best performing ANN, model F11, used datetime, VPD, H_{gf} , T_{air} ,

839 and u_* inputs with an average testing R^2 value across all sites of 0.85. This model also
840 performed the best when validated against ground-truth leaf-level data and periods where
841 sites were completely flooded with no T from vegetation. Our method sheds light on T/ET
842 partitioning methods and applications. While here it has only been tested for flooded
843 ecosystems, we present strong indicators that it could also perform well in other ecosystems,
844 contributing to the understanding of the global water cycle and its response to atmospheric
845 processes such as rising global VPD levels.

846

847 **6 Acknowledgments**

848 **Author contributions:** Conceptualization: E.E., D.D.B.; Data collection and
849 processing: E.E., S.D.C., K.S.H., P.Y.O., D.S., A.V., J.V.; Formal analysis: E.E.; M.C.M;
850 Writing—original draft: E.E., M.C.M; Writing—review and editing: D.D.B., A.V., K.S.H.,
851 P.Y.O.;

852 **Funding sources:** This work was supported by Enterprise Ireland (H2020- Proposal
853 Preparation Support CS20202080); the California Department of Water Resources (DWR)
854 through a contract from the California Department of Fish and Wildlife; and the United States
855 Department of Agriculture (NIFA grant #2011-67003-30371). Funding for the AmeriFlux
856 core sites was provided by the U.S. Department of Energy's Office of Science (AmeriFlux
857 contract #7079856). Dennis D. Baldocchi was supported by the McIntire-Stennis Capacity
858 Grant funding to the California Agricultural Experiment Station and the NASA ECOSTRESS
859 project. Kyle S. Hemes was supported by the California Sea Grant Delta Science Fellowship.
860 This material is based upon work supported by the Delta Stewardship Council Delta Science
861 Program under Grant No. 2271 and California Sea Grant College Program Project R/SF-70.

862

863 **7 Data Availability Statement**

864 All data used in this study are publicly available through the Ameriflux network
865 under the AmeriFlux CC-BY-4.0 License and the EC data from the sites are available for
866 download through the Ameriflux data sharing platform (<https://ameriflux.lbl.gov/>). Specific
867 DOIs for each site dataset: Twitchell Wetland West Pond Ameriflux ID US-TW1;
868 <https://doi.org/10.17190/AMF/1246147>, Twitchell East End Wetland Ameriflux ID: US-
869 TW4; <https://doi.org/10.17190/AMF/1246151>, Mayberry Wetland Ameriflux ID: US-MYB;
870 <https://doi.org/10.17190/AMF/1246139>, and Sherman Island Restored Wetland Ameriflux
871 ID: US-Sne; <https://doi.org/10.17190/AMF/1418684>

872 **References**

873

874 Baldocchi, D. and Sturtevant, C. (2015). Does day and night sampling reduce spurious
875 correlation between canopy photosynthesis and ecosystem respiration? *Agricultural
876 and Forest Meteorology*, 207. <https://doi.org/10.1016/j.agrformet.2015.03.010>

877 Baldocchi, D. D. (2003). Assessing the eddy covariance technique for evaluating carbon
878 dioxide exchange rates of ecosystems: past, present and future. *Global Change Biology*,
879 9(4):479–492. <http://dx.doi.org/10.1046/j.1365-2486.2003.00629.x>

880 Baldocchi, D. D., Hicks, B. B., and Meyers, T. P. (1988). Measuring biosphere-atmosphere
881 exchanges of biologically related gases with micrometeorological methods. *Ecology*,
882 69(5):1331–1340.

883 Barr, A. G., Black, T. A., Hogg, E. H., Kljun, N., Morgenstern, K., and Nesic, Z. (2004).
884 Inter-annual variability in the leaf area index of a boreal aspen-hazelnut forest in
885 relation to net ecosystem production. *Agricultural and Forest Meteorology*, 126(3-
886 4):237–255. <https://doi.org/10.1016/j.agrformet.2004.06.011>

887 Brutsaert, W. and Parlange, M. B. (1998). Hydrologic cycle explains the evaporation
888 paradox. *Nature*, 396(6706):30. <https://doi.org/10.1038/23845>

889 Buckley, T. N. (2005). The Control of Stomata by Water Balance. *The New Phytologist*,
890 168(2):275–291. <https://doi.org/10.1111/j.1469-8137.2005.01543.x>

891 Caird, M. A., Richards, J. H., and Donovan, L. A. (2006). Nighttime Stomatal Conductance
892 and Transpiration in C3 and C4 Plants. *Plant Physiology*, 143(1):4–10.
893 <https://doi.org/10.1104/pp.106.092940>

894 Chamberlain, S. D., Hemes, K. S., Eichelmann, E., Szutu, D. J., Verfaillie, J. G., &
895 Baldocchi, D. D. (2020). Effect of Drought-Induced Salinization on Wetland Methane
896 Emissions, Gross Ecosystem Productivity, and Their Interactions. *Ecosystems*, 23(3),
897 675–688. <https://doi.org/10.1007/s10021-019-00430-5>

898 Dawson, T. E., Burgess, S. S., Tu, K. P., Oliveira, R. S., Santiago, L. S., Fisher, J. B.,
899 Simonin, K. A., and Ambrose, A. R. (2007). Nighttime transpiration in woody plants
900 from contrasting ecosystems. *Tree Physiology*, 27(4):561–575.
901 <https://doi.org/10.1093/treephys/27.4.561>

902 Desai, A. R., Richardson, A. D., Moffat, A. M., Kattge, J., Hollinger, D. Y., Barr, A., Falge,
903 E., Noormets, A., Papale, D., Reichstein, M., and Stauch, V. J. (2008). Cross-site
904 evaluation of eddy covariance GPP and RE decomposition techniques. *Agricultural and*

905 Forest *Meteorology*, 148(6-7):821–838.
906 <https://doi.org/10.1016/j.agrformet.2007.11.012>

907 Detto, M., Baldocchi, D., and Katul, G. G. (2010). Scaling Properties of Biologically Active
908 Scalar Concentration Fluctuations in the Atmospheric Surface Layer over a Managed
909 Peatland. *Boundary-Layer Meteorology*, 136(3):407–430.
910 <http://dx.doi.org/10.1007/s10546-010-9514-z>

911 Deverel, S. J. and Rojstaczer, S. (1996). Subsidence of agricultural lands in the Sacramento-
912 San Joaquin Delta, California: Role of aqueous and gaseous carbon fluxes. *Water
913 Resources Research*, 32(8):2359–2367. <https://doi.org/10.1029/96WR01338>

914 Dorigo, W., Dietrich, S., Aires, F., Brocca, L., Carter, S., Cretaux, J.-F., Dunkerley, D.,
915 Enomoto, H., Forsberg, R., G?ntner, A., Hegglin, M. I., Hollmann, R., Hurst, D. F.,
916 Johannessen, J. A., Kummerow, C., Lee, T., Luo, K., Loos, U., Miralles, D. G., ...
917 Aich, V. (2021). Closing the Water Cycle from Observations across Scales: Where Do
918 We Stand? *Bulletin of the American Meteorological Society*, 102(10), E1897–E1935.
919 <https://doi.org/10.1175/BAMS-D-19-0316.1>

920 Drexler, J. Z., Snyder, R. L., Spano, D., and Paw U, K. T. (2004). A review of models and
921 micrometeorological methods used to estimate wetland evapotranspiration.
922 *Hydrological Processes*, 18(11):2071–2101. <http://doi.wiley.com/10.1002/hyp.1462>

923 Dronova, I. and Taddeo, S. (2016). Canopy Leaf Area Index in Non-Forested Marshes of the
924 California Delta. *Wetlands*, 36(4):705–716. <http://dx.doi.org/10.1007/s13157-016-0780-5>

925 Eichelmann, E., Shortt, R., Knox, S. H., Rey-Sanchez, C., Valach, A., Sturtevant, C., Szutu,
926 D., Verfaillie, J., Baldocchi, D. (2021), AmeriFlux BASE US-Tw4 Twitchell East End
927 Wetland, Ver. 11-5, AmeriFlux AMP, (Dataset).
928 <https://doi.org/10.17190/AMF/1246151>

929 Eichelmann, E., Hemes, K. S., Knox, S. H., Oikawa, P. Y., Chamberlain, S. D., Sturtevant,
930 C., Verfaillie, J., and Baldocchi, D. D. (2018). The effect of land cover type and
931 structure on evapotranspiration from agricultural and wetland sites in the Sacramento-
932 San Joaquin River Delta, California. *Agricultural and Forest Meteorology*, 256-
933 257:179–195. <https://doi.org/10.1016/j.agrformet.2018.03.007>

934 Ficklin, D. L. and Novick, K. A. (2017). Historic and projected changes in vapor pressure
935 deficit suggest a continental-scale drying of the United States atmosphere. *Journal of
936 Geophysical Research: Atmospheres*, 122: 2061-2079.
937 <https://doi.org/10.1002/2016JD025855>

938

939 Foken, T. and Wichura, B. (1996). Tools for quality assessment of surface-based flux
940 measurements. *Agricultural and Forest Meteorology*, 78(1-2):83–105.
941 [https://doi.org/10.1016/0168-1923\(95\)02248-1](https://doi.org/10.1016/0168-1923(95)02248-1)

942 Gerken, T., Bromley, G. T., and Stoy, P. C. (2018). Surface moistening trends in the Northern
943 North American great plains increase the likelihood of convective initiation. *Journal of*
944 *Hydrometeorology*, 19(1):227–244. <https://doi.org/10.1175/JHM-D-17-0117.1>

945 Goulden, M. L., Litvak, M., and Miller, S. D. (2007). Factors that control *Typha* marsh
946 evapotranspiration. *Aquatic Botany*, 86(2):97–106.
947 <https://doi.org/10.1016/j.aquabot.2006.09.005>

948 Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T.
949 W., Sperry, J. S., & McDowell, N. G. (2020). Plant responses to rising vapor pressure
950 deficit. *New Phytologist*, 226(6):1550–1566. <https://doi.org/10.1111/nph.16485>

951 Hatala-Matthes, J. A., Sturtevant, C., Oikawa, P. Y., Chamberlain, S. D., Szutu, D., Arias-
952 Ortiz, A., Verfaillie, J., Baldocchi, D. (2021), AmeriFlux BASE US-Myb Mayberry
953 Wetland, Ver. 12-5, AmeriFlux AMP, (Dataset).
954 <https://doi.org/10.17190/AMF/1246139>

955 Hatala, J. A., Detto, M., Sonnentag, O., Deverel, S. J., Verfaillie, J., and Baldocchi, D. D.
956 (2012). Greenhouse gas (CO₂, CH₄, H₂O) fluxes from drained and flooded agricultural
957 peatlands in the Sacramento-San Joaquin Delta. *Agriculture, Ecosystems &*
958 *Environment*, 150:1–18. <https://doi.org/10.1016/j.agee.2012.01.009>

959 Hemes, K. S., Chamberlain, S. D., Eichelmann, E., Anthony, T., Valach, A., Kasak, K.,
960 Szutu, D., Verfaillie, J., Silver, W. L., and Baldocchi, D. D. (2019). Assessing the
961 carbon and climate benefit of restoring degraded agricultural peat soils to managed
962 wetlands. *Agricultural and Forest Meteorology*, 268:202–214.
963 <https://doi.org/10.1016/j.agrformet.2019.01.017>

964 Hemes, K. S., Eichelmann, E., Chamberlain, S., Knox, S. H., Oikawa, P. Y., Sturtevant, C.,
965 Verfaillie, J., Szutu, D., and Baldocchi, D. D. (2018). A unique combination of
966 aerodynamic and surface properties contribute to surface cooling in restored wetlands
967 of the Sacramento-San Joaquin Delta, California. *Journal of Geophysical Research: Biogeosciences*, 123(7):2072–2090. <https://doi.org/10.1029/2018JG004494>

969 Irwin, J., Zhou, S., McNicol, G., Lu, F., Liu, V., Fluet-Chouinard, E., Ouyang, Z., Knox, S.
970 H., Lucas-Moffat, A., Trotta, C., Papale, D., Vitale, D., Mammarella, I., Alekseychik,
971 P., Aurela, M., Avati, A., Baldocchi, D., Bansal, S., Bohrer, G., ... Jackson, R. B.
972 (2021). Gap-filling eddy covariance methane fluxes: Comparison of machine learning

973 model predictions and uncertainties at FLUXNET-CH4 wetlands. *Agricultural and*
974 *Forest Meteorology*, 308–309, 108528.
975 <https://doi.org/10.1016/j.agrformet.2021.108528>

976 Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Gustau-Camps-Valls, Papale, D.,
977 Schwalm, C., Tramontana, G., and Reichstein, M. (2018). The FLUXCOM ensemble of
978 global land-atmosphere energy fluxes. arXiv:1812.04951 [physics.ao-ph]

979 Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D., Arain, M. A.,
980 Arneth, A., Bernhofer, C., Bonal, D., Chen, J., Gianelle, D., Gobron, N., Kiely, G.,
981 Kutsch, W., Lasslop, G., Law, B. E., Lindroth, A., Merbold, L., Montagnani, L., ...
982 Williams, C. (2011). Global patterns of land-atmosphere fluxes of carbon dioxide,
983 latent heat, and sensible heat derived from eddy covariance, satellite, and
984 meteorological observations. *Journal of Geophysical Research: Biogeosciences*,
985 116(G3). <https://doi.org/10.1029/2010JG001566>

986 Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan,
987 G., Cescatti, A., Chen, J., de Jeu, R., Dolman, A. J., Eugster, W., Gerten, D., Gianelle,
988 D., Gobron, N., Heinke, J., Kimball, J., Law, B. E., Montagnani, L., ... Zhang, K.
989 (2010). Recent decline in the global land evapotranspiration trend due to limited
990 moisture supply. *Nature*, 467(7318), 951–954. <https://doi.org/10.1038/nature09396>

991 Kim, Y., Johnson, M. S., Knox, S. H., Black, T. A., Dalmagro, H. J., Kang, M., Kim, J., &
992 Baldocchi, D. (2020). Gap-filling approaches for eddy covariance methane fluxes: A
993 comparison of three machine learning algorithms and a traditional method with
994 principal component analysis. *Global Change Biology*, 26(3), 1499–1518.
995 <https://doi.org/10.1111/gcb.14845>

996 Knox, S. H., Matthes, J. H., Sturtevant, C., Oikawa, P. Y., Verfaillie, J., and Baldocchi, D. D.
997 (2016). Biophysical controls on interannual variability in ecosystem scale CO₂ and
998 CH₄ exchange in a California rice paddy. *Journal of Geophysical Research: Biogeosciences*,
999 121(3):978–1001. <http://doi.wiley.com/10.1002/2015JG003247>

1000 Knox, S. H., Sturtevant, C., Matthes, J. H., Koteen, L., Verfaillie, J., and Baldocchi, D.
1001 (2015). Agricultural peatland restoration: effects of land-use change on greenhouse gas
1002 (CO₂ and CH₄) fluxes in the Sacramento-San Joaquin Delta. *Global Change Biology*,
1003 21(2):750–65. <https://doi.org/10.1111/gcb.12745>

1004 Li, X., Gentine, P., Lin, C., Zhou, S., Sun, Z., Zheng, Y., Liu, J., and Zheng, C. (2019). A
1005 simple and objective method to partition evapotranspiration into transpiration and

1006 evaporation at eddy-covariance sites. *Agricultural and Forest Meteorology*, 265:171–
1007 182. <https://doi.org/10.1016/j.agrformet.2018.11.017>

1008 Liu, L., Gudmundsson, L., Hauser, M., Qin, D., Li, S., and Seneviratne, S. I. (2020). Soil
1009 moisture dominates dryness stress on ecosystem production globally. *Nature
1010 Communications*, 11: 4892. <http://dx.doi.org/10.1038/s41467-020-18631-1>

1011 López, J., Way, D. A., and Sadok, W. (2021). Systemic effects of rising atmospheric vapor
1012 pressure deficit on plant physiology and productivity. *Global Change Biology*, 27:
1013 1704–1720. <https://doi.org/10.1111/gcb.15548>

1014 Miralles, D. G., Brutsaert, W., Dolman, A. J., and Gash, J. H. (2020). On the Use of the Term
1015 “Evapotranspiration”. *Water Resources Research*, 56(11):e2020WR028055.
1016 <https://doi.org/10.1029/2020WR028055>

1017 Moffat, A. M., Papale, D., Reichstein, M., Hollinger, D. Y., Richardson, A. D., Barr, A. G.,
1018 Beckstein, C., Braswell, B. H., Churkina, G., Desai, A. R., Falge, E., Gove, J. H.,
1019 Heimann, M., Hui, D., Jarvis, A. J., Kattge, J., Noormets, A., and Stauch, V. J. (2007).
1020 Comprehensive comparison of gap-filling techniques for eddy covariance net carbon
1021 fluxes. *Agricultural and Forest Meteorology*, 147(3-4):209–232.
1022 <https://doi.org/10.1016/j.agrformet.2007.08.011>

1023 Nelson, J. A., Carvalhais, N., Cuntz, M., Delpierre, N., Knauer, J., Ogée, J., Migliavacca, M.,
1024 Reichstein, M., and Jung, M. (2018). Coupling Water and Carbon Fluxes to Constrain
1025 Estimates of Transpiration: The TEA Algorithm. *Journal of Geophysical Research: Biogeosciences*, 123(12):3617–3632. <https://doi.org/10.1029/2018JG004727>

1026 Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G., Oishi, A., Papuga, S.
1027 A., Blanken, P. D., Noormets, A., Sulman, B. N., Scott, R. L., Wang, L., and Phillips,
1028 R. P. (2016). The increasing importance of atmospheric demand for ecosystem water
1029 and carbon fluxes. *Nature Climate Change*, 6(11):1023–1027.
1030 <http://www.nature.com/doifinder/10.1038/nclimate3114>

1031 Novick, K. A., Oren, R., Stoy, P. C., Siqueira, M. B. S., and Katul, G. G. (2009). Nocturnal
1032 Evapotranspiration in Eddy-Covariance Records from Three Co-Located Ecosystems in
1033 the Southeastern U.S.: Implications for Annual Fluxes. *Agricultural and Forest
1034 Meteorology* 149 (9): 1491–1504. <https://doi.org/10.1016/j.agrformet.2009.04.005>

1035 O’Connell, J. L., Byrd, K. B., Kelly, M., Gould, R. W., Inoue, Y., and Thenkabail, P. S.
1036 (2015). A Hybrid Model for Mapping Relative Differences in Belowground Biomass
1037 and Root:Shoot Ratios Using Spectral Reflectance, Foliar N and Plant Biophysical Data
1038

1039 within Coastal Marsh. *Remote Sensing*, 7:16480–16503.
1040 <https://doi.org/10.3390/rs71215837>

1041 Oikawa, P. Y., Sturtevant, C., Knox, S. H., Verfaillie, J., Huang, Y. W., and Baldocchi, D. D.
1042 (2017). Revisiting the partitioning of net ecosystem exchange of CO₂ into
1043 photosynthesis and respiration with simultaneous flux measurements of ¹³CO₂ and
1044 CO₂, soil respiration and a biophysical model, CANVEG. *Agricultural and Forest
1045 Meteorology*, 234–235:149–163. <http://dx.doi.org/10.1016/j.agrformet.2016.12.016>

1046 Oki, T. and Kanae, S. (2006). Global Hydrological Cycles and World Water Resources.
1047 *Science*, 313(5790):1068 LP – 1072. <https://doi.org/10.1126/science.1128845>

1048 Papale, D. and Valentini, R. (2003). A new assessment of European forests carbon exchanges
1049 by eddy fluxes and artificial neural network spatialization. *Global Change Biology*,
1050 9(4):525–535. <http://doi.wiley.com/10.1046/j.1365-2486.2003.00609.x>

1051 Pascolini-Campbell, M., Reager, J. T., Chandanpurkar, H. A., and Rodell, M. (2021). A 10
1052 per Cent Increase in Global Land Evapotranspiration from 2003 to 2019. *Nature* 593
1053 (7860): 543–47. <https://doi.org/10.1038/s41586-021-03503-5>

1054 Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer,
1055 C., Buchmann, N., Gilmanov, T., Granier, A., Grunwald, T., Havrankova, K.,
1056 Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci,
1057 G., Meyers, T., Miglietta, F., Ourcival, J.-M., Pumpanen, J., Rambal, S., Rotenberg, E.,
1058 Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.
1059 (2005). On the separation of net ecosystem exchange into assimilation and ecosystem
1060 respiration: review and improved algorithm. *Global Change Biology*, 11(9):1424–1439.
1061 <http://doi.wiley.com/10.1111/j.1365-2486.2005.001002.x>

1062 Resco de Dios, V., Chowdhury, F. I., Granda, E., Yao, Y., and Tissue, D. T. (2019).
1063 Assessing the Potential Functions of Nocturnal Stomatal Conductance in C3 and C4
1064 Plants. *New Phytologist* 223 (4): 1696–1706. <https://doi.org/10.1111/nph.15881>

1065 Scanlon, T. M. and Kustas, W. P. (2010). Partitioning carbon dioxide and water vapor fluxes
1066 using correlation analysis. *Agricultural and Forest Meteorology*, 150(1):89–99.
1067 <https://doi.org/10.1016/j.agrformet.2009.09.005>

1068 Scanlon, T. M. and Sahu, P. (2008). On the correlation structure of water vapor and carbon
1069 dioxide in the atmospheric surface layer: A basis for flux partitioning. *Water Resources
1070 Research*, 44(10). <http://doi.wiley.com/10.1029/2008WR006932>

1071 Schlesinger, W. H. and Jasechko, S. (2014). Transpiration in the global water cycle.
1072 *Agricultural and Forest Meteorology*, 189-190:115–117.
1073 <https://doi.org/10.1016/j.agrformet.2014.01.011>

1074 Schmidt, A., Hanson, C., Chan, W. S., and Law, B. E. (2012). Empirical assessment of
1075 uncertainties of meteorological parameters and turbulent fluxes in the AmeriFlux
1076 network. *Journal of Geophysical Research: Biogeosciences*, 117(G4):0148-0227.
1077 <http://doi.wiley.com/10.1029/2012JG002100>

1078 Scott, R. L. and Biederman, J. A. (2017). Partitioning evapotranspiration using long-term
1079 carbon dioxide and water vapor fluxes. *Geophysical Research Letters*, 44(13):6833–
1080 6840. <http://doi.wiley.com/10.1002/2017GL074324>

1081 Seager, R., Hooks, A., Williams, A. P., Cook, B., Nakamura, J., and Henderson, N. (2015).
1082 Climatology, variability, and trends in the U.S. vapor pressure deficit, an important fire-
1083 related meteorological quantity. *Journal of Applied Meteorology and Climatology*,
1084 54(6): 1121-1141. <https://doi.org/10.1175/JAMC-D-14-0321.1>

1085 Shortt, R., Hemes, K. S., Szutu, D., Verfaillie, J., Baldocchi, D. (2021), AmeriFlux BASE
1086 US-Sne Sherman Island Restored Wetland, Ver. 7-5, AmeriFlux AMP, (Dataset).
1087 <https://doi.org/10.17190/AMF/1418684>

1088 Skaggs, T., Anderson, R., Alfieri, J., Scanlon, T., and Kustas, W. (2018). Fluxpart: Open
1089 source software for partitioning carbon dioxide and water vapor fluxes. *Agricultural
1090 and Forest Meteorology*, 253-254:218–224.
1091 <https://doi.org/10.1016/J.AGRFORMAT.2018.02.019>

1092 Stoy, P. C., El-Madany, T., Fisher, J. B., Gentine, P., Gerken, T., Good, S. P., Liu, S.,
1093 Miralles, D. G., Perez-Priego, O., Skaggs, T. H., Wohlfahrt, G., Anderson, R. G., Jung,
1094 M., Maes, W. H., Mammarella, I., Mauder, M., Migliavacca, M., Nelson, J. A.,
1095 Poyatos, R., Reichstein, M., Scott, R. L., and Wolf, S. (2019). Reviews and syntheses:
1096 Turning the challenges of partitioning ecosystem evaporation and transpiration into
1097 opportunities. *Biogeosciences Discussions*, pages 1–47. <https://doi.org/10.5194/bg-2019-85>

1099 Tramontana, G., Migliavacca, M., Jung, M., Reichstein, M., Keenan, T. F., Camps-Valls, G.,
1100 Ogee, J., Verrelst, J., and Papale, D. (2020). Partitioning net carbon dioxide fluxes into
1101 photosynthesis and respiration using neural networks. *Global Change Biology*,
1102 26(9):5235–5253. <https://doi.org/10.1111/gcb.15203>

1103 Trenberth, K. E., Fasullo, J. T., and Kiehl, J. (2009). Earth's Global Energy Budget. *Bulletin*
1104 *of the American Meteorological Society*, 90(3):311–324.
1105 <https://doi.org/10.1175/2008BAMS2634.1>

1106 Valach, A.C., Kasak., K., Hemes, K., Anthony, T., Taddeo, S., Dronova, I., Silver, W., Szutu,
1107 D., Verfaillie, J., Baldocchi, D. (2021a). Productive wetlands restored for carbon
1108 sequestration quickly become net CO₂ sinks with site-level factors driving uptake
1109 variability, *PLOS One*, 16(3): e0248398. <https://doi.org/10.1371/journal.pone.0248398>

1110 Valach, A. C., Shortt, R., Szutu, D., Eichelmann, E., Knox, S. H., Hemes, K. S., Verfaillie, J.,
1111 Baldocchi, D. (2021b), AmeriFlux BASE US-Tw1 Twitchell Wetland West Pond, Ver.
1112 9-5, AmeriFlux AMP, (Dataset). <https://doi.org/10.17190/AMF/1246147>

1113 van der Sleen, P., Groenendijk, P., Vlam, M., Anten, N. P. R., Boom, A., Bongers, F., Pons,
1114 T. L., Terburg, G., and Zuidema, P. A. (2015). No Growth Stimulation of Tropical
1115 Trees by 150 Years of CO₂ Fertilization but Water-Use Efficiency Increased. *Nature*
1116 *Geoscience*, 8(1): 24–28. <https://doi.org/10.1038/ngeo2313>

1117 Webb, E. K., Pearman, G. I., and Leuning, R. (1980). Correction of flux measurements for
1118 density effects due to heat and water vapour transfer. *Quarterly Journal of the Royal*
1119 *Meteorological Society*, 106(447):85–100.
1120 <http://doi.wiley.com/10.1002/qj.49710644707>

1121 Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D. D., Berbigier, P., Bernhofer,
1122 C., Ceulemans, R., Dolman, H., Field, C., Grelle, A., Ibrom, A., Law, B. E., Kowalski,
1123 A., Meyers, T. P., Moncrieff, J., Monson, R., Oechel, W., Tenhunen, J., Valentini, R.,
1124 and Verma, S. (2002). Energy balance closure at FLUXNET sites. *Agricultural and*
1125 *Forest Meteorology*, 113(1-4):223–243.

1126 Wilson, K. B., Hanson, P. J., Mulholland, P. J., Baldocchi, D. D., and Wullschleger, S. D.
1127 (2001). A comparison of methods for determining forest evapotranspiration and its
1128 components: sap-flow, soil water budget, eddy covariance and catchment water
1129 balance. *Agricultural and Forest Meteorology*, 106(2):153–168.
1130 [https://doi.org/10.1016/S0168-1923\(00\)00199-4](https://doi.org/10.1016/S0168-1923(00)00199-4)

1131 Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., Ryu, Y., Chen, G.,
1132 Dong, W., Hu, Z., Jain, A. K., Jiang, C., Kato, E., Li, S., Lienert, S., Liu, S., Nabel, J.
1133 E. M. S., Qin, Z., Quine, T., Sitch, S., Smith, W. K., Wang, F., Wu, C., Xiao, Z., and
1134 Yang, S. (2019). Increased atmospheric vapor pressure deficit reduces global vegetation
1135 growth. *Science Advances*, 5(8): eaax1396. <https://doi.org/10.1126/sciadv.aax1396>

1136 Zeng, Z., Piao, S., Li, L. Z. X., Wang, T., Ciais, P., Xu, L., Yang, Y., Mao, J., Shi, X., and
 1137 Myneni, R. B. (2018). Impact of Earth Greening on the Terrestrial Water Cycle.
 1138 *Journal of Climate*, 31(7):2633–2650. <http://dx.doi.org/10.1175/JCLI-D-17-0236.1>

1139 Zhao, W. L., Gentine, P., Reichstein, M., Zhang, Y., Zhou, S., Wen, Y., Lin, C., Li, X., &
 1140 Qiu, G. Y. (2019). Physics-Constrained Machine Learning of Evapotranspiration.
 1141 *Geophysical Research Letters*, 46(24), 14496–14507.
 1142 <https://doi.org/10.1029/2019GL085291>

1143 Zhou, S., Yu, B., Zhang, Y., Huang, Y., and Wang, G. (2016). Partitioning evapotranspiration
 1144 based on the concept of underlying water use efficiency. *Water Resources Research*,
 1145 52(2):1160–1175. <https://doi.org/10.1002/2015WR017766>

1146

1147 **Table 1:** Average testing R², slope, and RSME values for 12 ANN architecture models used
 1148 to partition evapotranspiration measurements, demonstrating an increase in complexity from
 1149 models F21 (most basic) to F36 (most complex).

Model	Model Structure	Average testing R ²	Average Slope	Average RSME
Name				
F21	datetime	0.410	0.393	0.380
F26	datetime + VPD	0.648	0.626	0.378
F17	datetime + VPD + T _{air}	0.672	0.636	0.369
F31	datetime + VPD + T _{air} + GCC	0.686	0.657	0.364
F32	datetime + VPD + T _{air} + GCC + Rnet	0.689	0.665	0.364
F15	datetime + VPD + T _{air} + GCC + Rnet + WT	0.694	0.663	0.360
F33	datetime + H _{gf} + VPD	0.753	0.726	0.340
F34	datetime + H _{gf} + VPD + T _{air}	0.762	0.734	0.336
F11	datetime + H _{gf} + VPD + T _{air} + u _*	0.853	0.831	0.264
F35	datetime + H _{gf} + VPD + T _{air} + u _* + er Reichstein	0.863	0.851	0.258
F14	datetime + H _{gf} + u _* + VPD + T _{air} + GCC + Rnet + WT	0.877	0.868	0.252
F36	er_Reichstein + VPD + T _{air} + GCC +	0.891	0.880	0.237

1150

1151

1152 **Table 2:** Validation R², slope, and RSME values of seven ANNs used to partition
 1153 evapotranspiration measurements and validated with data collected right after flooding for

1154 East End, Mayberry Farms, and Sherman Island wetland sites. Models are ordered by the
 1155 increase in complexity, from model F21 (most basic) to F36 (most complex). Refer to Tables
 1156 1 and 3 for each model's input variables. Validation R^2 values higher than 0.7 are highlighted
 1157 in bold.

Model	East End			Mayberry Farms			Sherman Island		
	Name	R^2	Slope	RSME	R^2	Slope	RSME	R^2	Slope
F21	0.29	0.28	0.75	0.06	0.09	0.47	0.34	0.25	0.49
F26	0.48	0.52	0.90	0.26	0.37	0.82	0.61	0.50	0.56
F17	0.50	0.46	0.77	0.31	0.41	0.82	0.63	0.56	0.60
F15	0.24	0.15	0.44	0.16	0.13	0.39	0.37	0.28	0.50
F33	0.61	0.66	0.90	0.48	0.81	1.13	0.62	0.71	0.76
F11	0.81	0.86	0.70	0.69	0.95	0.85	0.82	1.00	0.65
F36	0.51	0.45	0.75	0.56	0.48	0.57	0.53	0.43	0.56

1158

1159

1160 **Table 3:** Validation R^2 , slope, and RSME values of seven ANNs used to partition
 1161 evapotranspiration measurements and validated with winter time data (December to
 1162 February) for each of the four wetlands studied (East End, Mayberry Farms, Sherman Island,
 1163 and West Pond). Models are listed according to the increase in complexity, from model F21
 1164 (most basic) to F36 (most complex). Refer to Tables 1 and 4 for each model's input variables.
 1165 Validation R^2 values higher than 0.7 are highlighted in bold.

Model	East End			Mayberry Farms			Sherman Island			West Pond		
	Name	R^2	Slope	RSME	R^2	Slope	RSME	R^2	Slope	RSME	R^2	Slope
F21	0.06	0.02	0.05	0.06	0.06	0.21	0.15	0.11	0.23	0.08	0.30	0.09
F26	0.17	0.25	0.41	0.26	0.38	0.58	0.45	0.48	0.45	0.03	0.08	0.46
F17	0.21	0.24	0.36	0.35	0.47	0.56	0.47	0.49	0.48	0.05	0.06	0.28
F15	0.33	0.41	0.44	0.14	0.12	0.26	0.43	0.29	0.31	0.17	0.11	0.25
F33	0.21	0.71	1.03	0.22	0.48	0.77	0.19	0.42	0.79	0.01	0.01	0.12
F11	0.33	1.15	1.23	0.56	0.71	0.55	0.70	1.27	0.76	0.11	0.11	0.29
F36	0.45	0.95	0.79	0.43	0.59	0.60	0.69	0.87	0.54	0.36	0.17	0.21

1166

1167

1168 **Table 4:** R^2 and slope values for linear regression of ecosystem level transpiration data
 1169 predicted by seven ANNs versus leaf-level transpiration data collected in 2017 for East End.
 1170 Models are ordered by the increase in complexity from model F21 (most basic) to F36 (most
 1171 complex). Note that leaf-level transpiration is measured on a per leaf area basis, whereas
 1172 ANN predicted transpiration is measured on a per ground area basis (see section 2.5 for
 1173 details). The slope parameter, therefore, does not show an under-estimation of the ANN
 1174 predicted transpiration values in this case.

Model Name	Model Structure	R^2 value	Slope value
F21	datetime	0.979	0.95
F26	datetime + VPD	0.984	0.79
F17	datetime + VPD + TA	0.984	0.75
F15	datetime + VPD + TA + GCC + Rnet + WT	0.987	0.81
F33	datetime + H_gf + VPD	0.99	0.93
F11	datetime + H_gf + VPD + TA + u_*	0.986	0.76
	datetime + H_gf + u_* + wc_gf + er_Reichstein +		
F36	VPD + TA + GCC + Rnet + WT	0.922	0.70

1175

1176

1177 **Figure Legends**

1178

1179 **Figure 1:** Comparison between the eddy covariance measured daytime evaporation flux
 1180 ($H_2O_{measured}$) and daytime evaporation predicted by ANNs ($H_2O_{modeled}$) using model F11 (top
 1181 panels, a-c) and F36 (bottom panels, d-f) based on data collected right after flooding for
 1182 Mayberry Farms (a, d), East End (b, e), and Sherman Island (c, f). Note: the black lines are
 1183 1:1 relationships for reference, red lines show linear regressions with standard deviation, and
 1184 blue dots represent the data.

1185

1186 **Figure 2:** Comparison between the eddy covariance measured daytime evaporation flux
 1187 ($H_2O_{measured}$) and daytime evaporation predicted by ANNs ($H_2O_{modeled}$) using model F11 (top
 1188 panels, a-d) and F36 (bottom panels, e-h) based on data collected during senescent periods in
 1189 winter (December to February) at Mayberry Farms (a, e), East End (b, f), Sherman Island (c,
 1190 g), and West Pond (d, h). Note: the black lines are 1:1 relationships for reference, red lines
 1191 show linear regressions with standard deviation, and blue dots represent the data.

1192

1193 **Figure 3:** Ecosystem level transpiration data ($H_2O_{modeled}$) predicted by ANNs F11 (a) and F36
1194 (b) validated against leaf-level (LL) transpiration data ($H_2O_{measured}$) collected during the field
1195 campaigns in 2017 for the two dominant species in the wetland: Tule (yellow triangles) and
1196 Cattail (blue squares). The overall linear regression line (solid red line) and standard
1197 deviation (dashed red line) is based on average leaf-level transpiration across both species
1198 (red asterisks). Error bars represent the standard deviation from the mean for each
1199 measurement interval and species for the leaf-level data. Leaf-level data were pooled for 30-
1200 min intervals to match the eddy covariance averaging period (i.e. each symbol (square,
1201 triangle or asterisks) represents measurements taken during one 30-min interval). The solid
1202 black lines show 1:1 relationships for reference. Note that leaf-level transpiration is measured
1203 on a per leaf area basis, whereas ANN predicted transpiration is measured on a per ground
1204 area basis (see section 2.5 for details). The slope, therefore, does not show an under-
1205 estimation of the ANN predicted transpiration values in this case.

1206

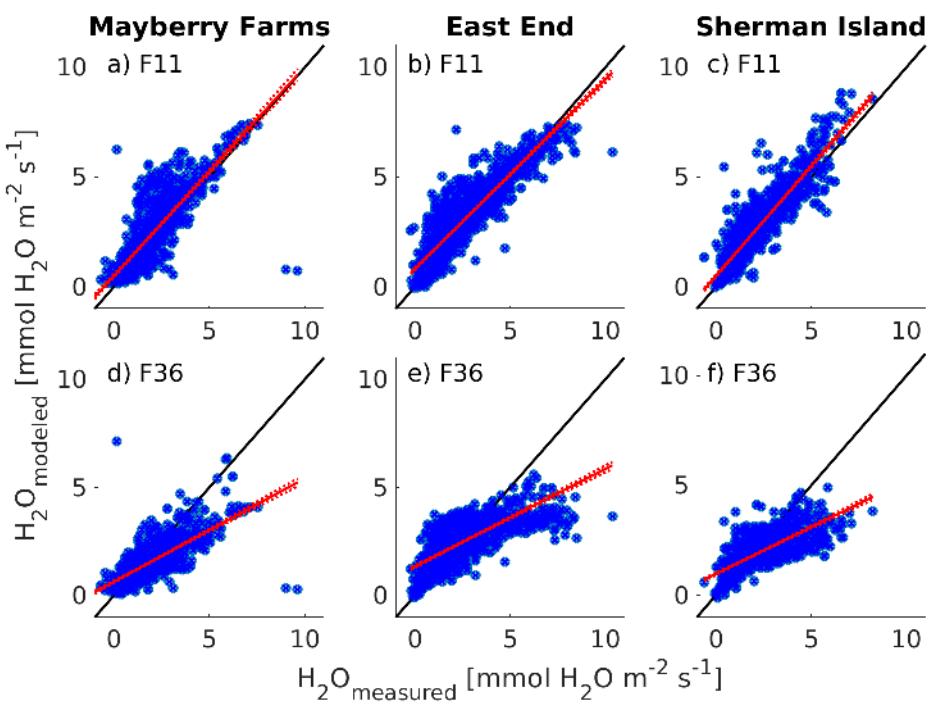
1207 **Figure 4:** Monthly regressions of evapotranspiration (ET) vs Gross Ecosystem Productivity
1208 (GEP) data for four wetland sites Mayberry Farms (a), East End (b), West Pond (c), and
1209 Sherman Island (d) for T/ET partitioning using the Scott and Biederman (2017) method for
1210 long-term flux data. Each regression line represents data for the same month across multiple
1211 years. The method is considered unreliable for winter months when GEP is small (November
1212 through March, shown in dashed lines and cross symbols). Negative regression lines for most
1213 months at Sherman Island (d) indicate that the methodology does not work at this site,
1214 potentially due to the shorter time period of this dataset (4 years) or because of the large
1215 contribution of evaporation at this site (see main text for detailed discussion).

1216

1217 **Figure 5:** Average monthly evaporation (E) (top panels, a-d) and transpiration (T) (bottom
1218 panels, e-h) fluxes across four wetland sites: Mayberry Farms (a, e), East End (b, f), West
1219 Pond (c, g), and Sherman Island (d, h) comparing the ANN T/ET partitioning method
1220 described in this paper (red lines and square symbols) and the Scott and Biederman (2017)
1221 method (blue lines and triangle symbols) on long-term flux data. Error bars are based on the
1222 standard error of the fit intercept and slope for the Scott and Biederman (2017) method and
1223 on the interquartile range of the 20 individual ANN runs for the ANN method. Comparisons
1224 were done using ANN F11 for all sites. Gross Ecosystem Productivity (GEP, yellow lines and
1225 asterisks) for each site is shown for comparison in the bottom panels with a separate y-axis on
1226 the right.

1227

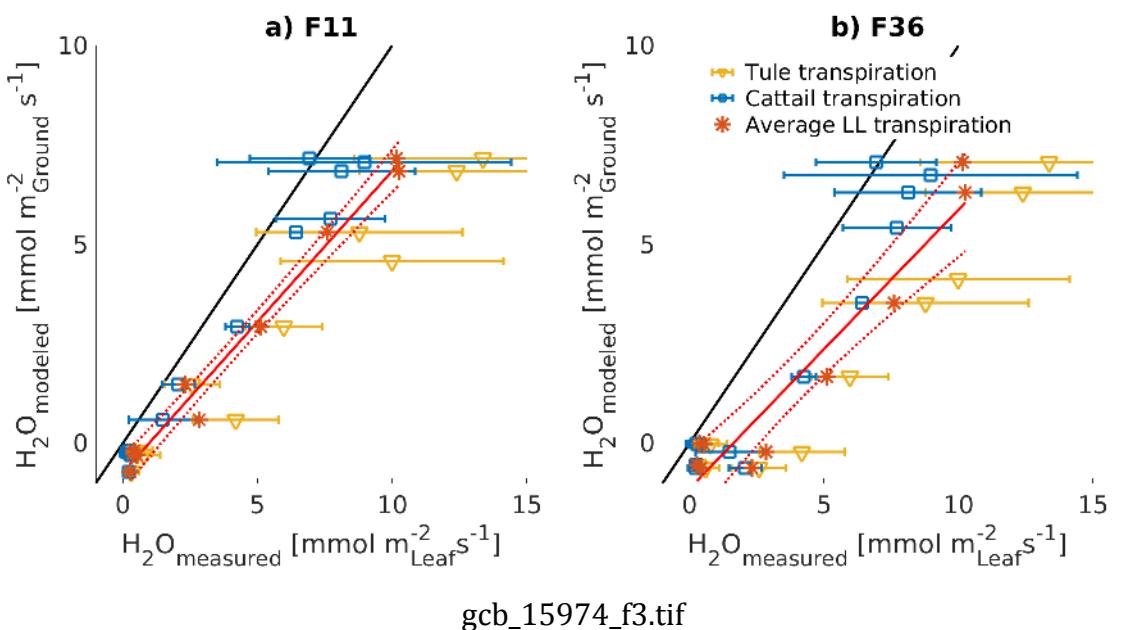
1228 **Figure 6:** Annual intercomparison of (a) total evapotranspiration (ET), (b) gross ecosystem
1229 productivity (GEP), (c) evaporation (E), (d) transpiration (T), and (e) transpiration over
1230 evapotranspiration ratio (T/ET) between four wetland sites (Mayberry Farms, 2013-2019,
1231 blue triangles; West Pond, 2013-2019, red squares; East End, 2014-2019, yellow asterisks;
1232 and Sherman Island, 2016-2019, purple circles). E and T values are based on the ANN
1233 partitioning routine (F11) described in this study.

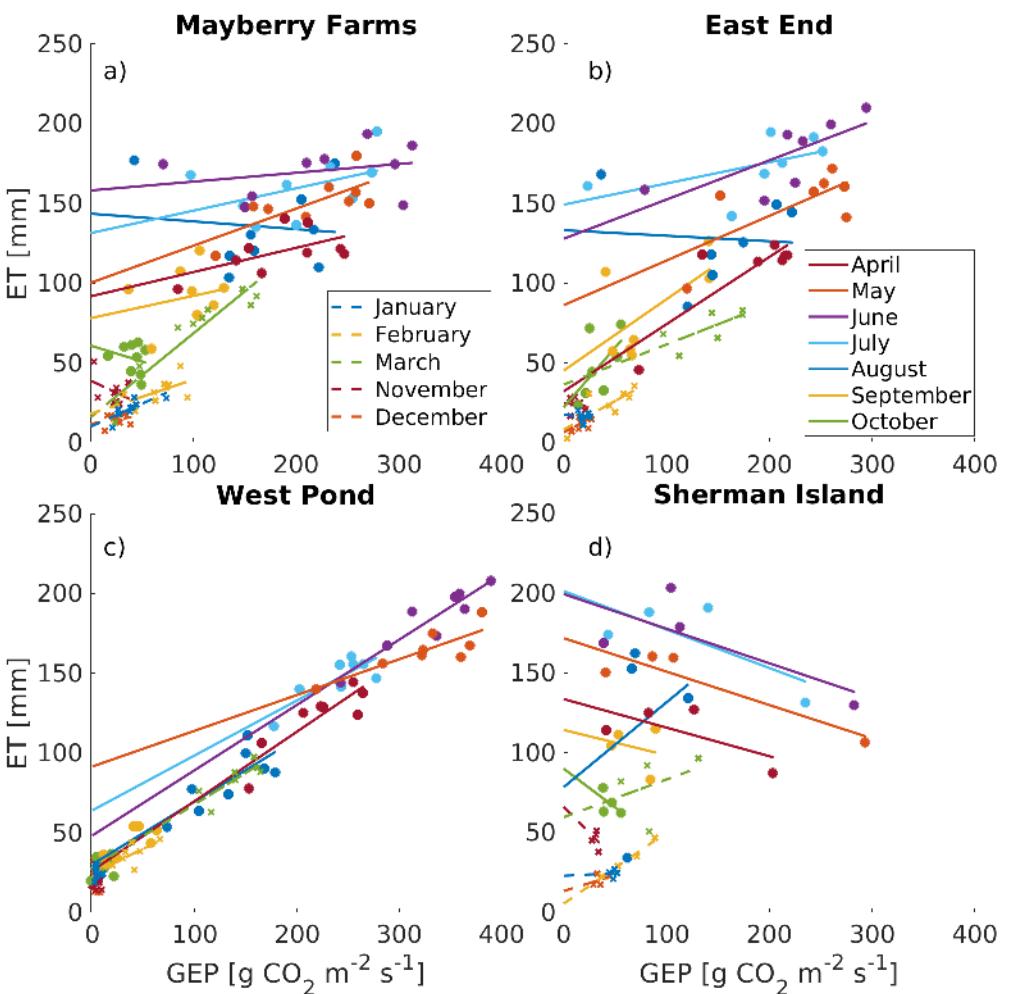


gcb_15974_f1.tif

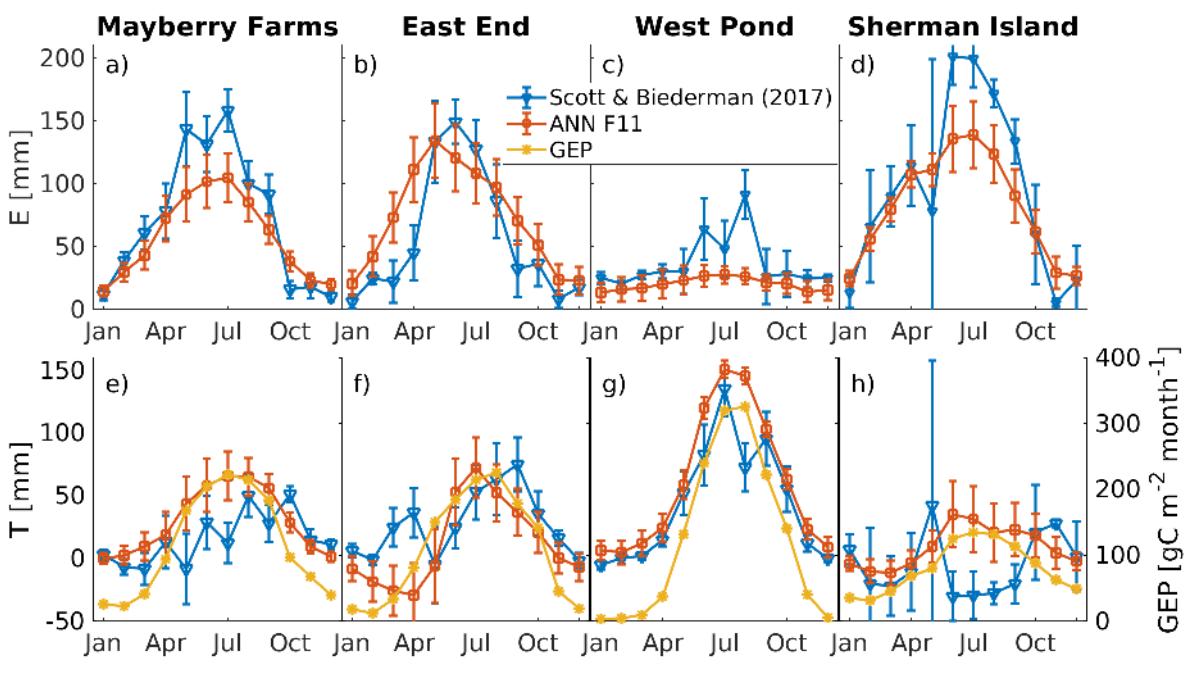


gcb_15974_f2.tif

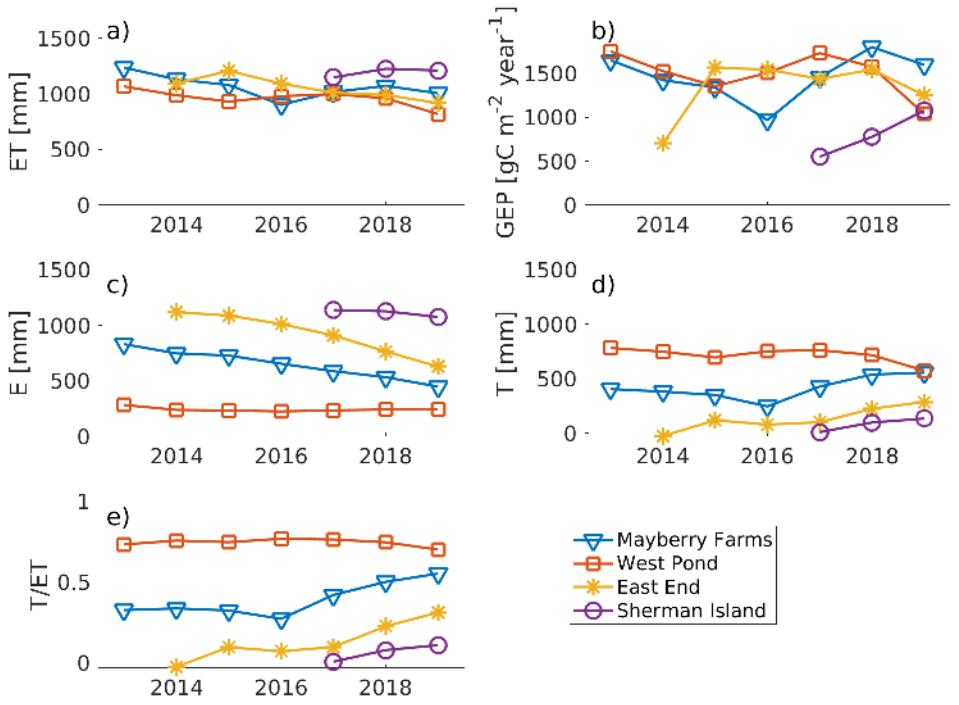




gcb_15974_f4.tif



gcb_15974_f5.tif



gcb_15974_f6.tif