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34 Abstract: Reliable partitioning of micrometeorologically measured evapotranspiration (ET) 

35 into evaporation (E) and transpiration (T) would greatly enhance our understanding of the 

36 water cycle and its response to climate change related shifts in local-to-regional climate 

37 conditions and rising global levels of vapor pressure deficit (VPD). While some methods on 

38 ET partitioning have been developed, their underlying assumptions make them difficult to 

39 apply more generally, especially in sites with large contributions of E. Here, we report a 

40 novel ET partitioning method using Artificial Neural Networks (ANN) in combination with a 

41 range of environmental input variables to predict daytime E from nighttime ET 

42 measurements. The study uses eddy covariance data from four restored wetlands in the 

43 Sacramento-San Joaquin Delta, California, USA, as well as leaf-level T data for validation. 

44 The four wetlands vary in their vegetation make-up and structure, representing a range of ET 

45 conditions. The ANNs were built with increasing complexity by adding the input variable 

46 that resulted in the next highest average value of model testing R2 across all sites. The order 

47 of variable inclusion (and importance) was: VPD > gap-filled sensible heat flux (H_gf) > air 

48 temperature (Tair) > friction velocity (u∗) > other variables. The model using VPD, H_gf, Tair, 

49 and u∗ showed the best performance during validation with independent data and had a mean 

50 testing R2 value of 0.853 (averaged across all sites, range from 0.728 to 0.910). In 

51 comparison to other methods, our ANN method generated T/ET partitioning results which 

52 were more consistent with CO2 exchange data especially for more heterogeneous sites with 

53 large E contributions. Our method improves the understanding of T/ET partitioning. While it 

54 may be particularly suited to flooded ecosystems, it can also improve T/ET partitioning in 

55 other systems, increasing our knowledge of the global water cycle and ecosystem 

56 functioning.

57

58 Key-words: artificial neural networks; eddy covariance; machine learning; latent energy; 

59 terrestrial water cycle; wetlands; vapor pressure deficit.

60 1 Introduction

61
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62 Evapotranspiration (ET) is the combined water loss from terrestrial ecosystems via 

63 transpiration (T), i.e., water lost by plants during the process of carbon assimilation, and 

64 evaporation (E), i.e., water lost via direct evaporation of soil and surface water (including 

65 evaporation of intercepted precipitation; NB: There is some discussion in the community 

66 around the correct use of the terms evapotranspiration vs evaporation (Miralles et al, 2020); 

67 We have opted to follow the common use of the term evapotranspiration throughout this 

68 manuscript to describe the total biosphere-atmosphere water flux, including transpiration as 

69 well as direct evaporation from soil and surface waters). Through these processes, ET adds on 

70 the order of 65 to 75 thousand km3 of water to the atmosphere every year (Oki & Kanae, 

71 2006; Trenberth, Fasullo, & Kiehl, 2009; Jung et al., 2018; Dorigo et al., 2021) and 

72 constitutes an important component of the terrestrial water cycle. Despite its importance to 

73 the global water cycle, ET is, however, currently poorly constrained in global land surface 

74 models (LSM), and although there is general consensus that ET will increase under climate 

75 change, the processes and trends are unclear, which creates large uncertainties in climate 

76 predictions (Brutsaert & Parlange, 1998; Zeng et al., 2018; Pascolini-Campbell et al., 2021). 

77 This partly occurs because E and T have different drivers and mechanisms. 

78 Vapor pressure deficit (VPD) is recognized as one of the most important drivers to 

79 control water cycling by means of interacting with T and plant stomata (Novick et al., 2016; 

80 Yuan et al., 2019; Grossiord et al., 2020; López, Way, & Sadok, 2021). VPD levels are 

81 projected to limit ET in most biomes, with climate change increasing the importance of 

82 evaporative demands worldwide (Novick et al., 2016). Thus, the continuous rise in the global 

83 levels of atmospheric VPD is of major concern as it can have drastic effects on plant 

84 communities, mainly increasing T (Grossiord et al., 2020) and reducing plant productivity 

85 (Yuan et al., 2019; López, Way, & Sadok, 2021), impacting on water cycling. Previous work 

86 in several flooded ecosystems, however, identified air and water temperatures as strong 

87 drivers of nighttime ET, considered to be mainly E at these sites, with VPD playing a less 

88 important role (Eichelmann et al., 2018). Increasing global temperatures could, therefore, 

89 have significant implications for evaporative water loss from these systems. Consequently, 

90 improving our understanding of the relative contribution of E and T to ET will allow us to 

91 analyze the physiological responses of plant communities to climate change, as well as 

92 improve our ability to predict how the water cycle will evolve with climate change within and 

93 across ecosystems (Stoy et al., 2019).

94 Assessments of E and T fluxes at an ecosystem scale (i.e., 100 m to km) have been 

95 attempted using a variety of methods (Stoy et al., 2019). While some methods attempt to 
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96 determine E and T components by direct measurements (e.g., measurement of soil 

97 evaporation, sap-flux measurements for transpiration, and isotopic tracer approaches), these 

98 are often time and labor intensive and present significant challenges upscaling results to 

99 ecosystem level (Wilson et al., 2001). Micrometeorological methods, such as eddy 

100 covariance (EC), are well-established methods that assess biosphere-atmosphere fluxes of 

101 trace gases at the ecosystem scale (Baldocchi et al., 1988). With EC (see Fluxnet.org, 2021) 

102 continuous measurements of ecosystem trace gas fluxes such as water vapor can be made on 

103 time scales from individual half hours to years (Baldocchi, 2003). However, it can generally 

104 only provide direct measurements of the net biosphere-atmosphere flux above the plant 

105 canopy. In the case of water vapor fluxes, this includes the net flux of E and T combined. The 

106 ability to partition micrometeorologically measured ET fluxes into E and T components 

107 would greatly improve our understanding of the pathways by which ecosystems use water, 

108 including how E and T components change on different timescales and with changing 

109 climatic conditions, as well as the impact of site-specific characteristics like vegetation cover 

110 heterogeneity (Eichelmann et al., 2018).

111 While there are several well tested and established methods to partition net 

112 ecosystem CO2 fluxes into its components of gross primary production and ecosystem 

113 respiration (Baldocchi, 2003; Reichstein et al., 2005; Desai et al., 2008), less work has been 

114 done on partitioning ET fluxes (Stoy et al., 2019). Stoy et al. (2019) provide a review of the 

115 most common methods for determining E and T fluxes at ecosystem level. Most methods 

116 proposed for partitioning micrometeorologically measured ET fluxes use the intrinsic 

117 relationship between CO2 uptake and transpirational water loss, linked through stomatal 

118 exchange at the plant level, to estimate ecosystem T (e.g., Scanlon and Sahu, 2008; Zhou et 

119 al., 2016; Scott and Biederman, 2017; Nelson et al., 2018; Li et al., 2019). Scott and 

120 Biederman (2017) proposed a method to partition long-term ET measurements into E and T. 

121 Their method provides multi-year averages of partitioning on a weekly to yearly timescale. 

122 However, it requires datasets of multiple year lengths with high interannual consistency in 

123 seasonal ecosystem ET behavior. Furthermore, it is unclear if this method provides reliable 

124 results in systems that have a large contribution of E or large interannual variation in 

125 ecosystem water exchange behavior. 

126 Similarly, the partitioning method proposed by Scanlon and Sahu (2008), Scanlon 

127 and Kustas (2010), and Skaggs et al. (2018), uses the correlation between the high frequency 

128 fluctuation of water vapor and CO2 concentrations to determine the stomatal and non-

129 stomatal mediated components of the net water and CO2 fluxes. However, this method relies 
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130 on the knowledge of water use efficiency (WUE), which is the ratio of carbon uptake through 

131 photosynthesis to water loss through T, at the plant or leaf-level. Since information on WUE 

132 is not always readily available at the temporal scale required for this method, and because 

133 WUE can change over time with successional age and environmental factors like stomatal 

134 response to increasing atmospheric CO2 concentration (van der Sleen et al., 2015), it restricts 

135 the wider use of this method. Another method based on the relationship between CO2 uptake 

136 and T proposed by Zhou et al. (2016) to partition ET data from EC measurements works with 

137 the underlying assumption that there will be periods for which E is zero and T/ET approaches 

138 one. Similarly, the method proposed by Nelson et al. (2018) assumes that the ecosystem will 

139 be dominated by T for some time periods. While such methods are an advancement on T/ET 

140 partitioning, there is space for other new approaches particularly if they do not need 

141 specialized data or costly equipment to increase the wider use and applicability of such 

142 techniques.

143 Ecosystems with large contributions of E, where total ET is not always dominated 

144 by T and which have complex interrelationships between ecosystem productivity, E, and T, 

145 might violate some or all of the underlying assumptions necessary for partitioning methods 

146 based on the relationship between CO2 uptake and water loss to work (Stoy et al., 2019). This 

147 is the case for wetlands, where the contribution of E-T is altered significantly by structural 

148 factors such as areas of open water, as well as environmental factors, for instance, diurnal 

149 fluctuations in air or water temperature and water table (Drexler et al., 2004; Goulden et al., 

150 2007; Eichelmann et al., 2018). In addition, the before-mentioned methods only work when 

151 the ecosystem CO2 flux is known in conjunction with ET. Although this is often the case for 

152 EC measurements, there are other micrometeorological methods that provide measurements 

153 of ET without measuring CO2 fluxes. Consequently, a partitioning method that does not rely 

154 on knowledge of CO2 flux and assumptions of carbon-water flux correlations would greatly 

155 enhance our ability to partition T/ET in a diversity of settings.

156 Methods applied to partition CO2 fluxes usually use relationships of environmental 

157 drivers with the individual flux components determined from time periods where only one 

158 flux component is present and extrapolate these to the other periods (Reichstein et al., 2005; 

159 Desai et al., 2008). Many methods (e.g., Barr et al., 2004; Reichstein et al., 2005) use 

160 relationships between temperature and ecosystem respiration based on nighttime fluxes, when 

161 CO2 uptake is zero, and extrapolate these to calculate daytime ecosystem respiration. The 

162 gross CO2 uptake component is then determined as the difference between the net flux and 

163 the estimated daytime ecosystem respiration. While this method works well for carbon flux 
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164 partitioning, where the primary driver of ecosystem respiration is considered to be 

165 temperature, it can face limitations in the case of water fluxes where nighttime fluxes are 

166 often very small and the drivers of E and T are complex. However, it has been shown that 

167 nighttime T from plants is usually very small in many ecosystems (Caird et al., 2006; 

168 Dawson et al., 2007). Thus, for non-water limited systems with large contributions of E, such 

169 as wetlands, we can approximate nighttime water fluxes as exclusively E. 

170 A newer approach used to partition net ecosystem carbon fluxes into the individual 

171 components of gross primary production and ecosystem respiration uses Artificial Neural 

172 Networks (ANN) (Papale & Valentini, 2003; Desai et al., 2008; Tramontana et al., 2020). 

173 ANNs and other machine learning approaches have also been successfully applied in the 

174 context of interpolating ecosystem biosphere-atmosphere exchange, including 

175 evapotranspiration fluxes, both spatially and temporally (Jung et al. 2010; Jung et al., 2011; 

176 Zhao et al., 2019; Kim et al., 2020; Tramontana et al., 2020; Irvin et al., 2021). Although the 

177 use of ANNs could also be directed at T/ET partitioning, the application of this technique has 

178 not been done yet and needs further exploration. Since machine learning methods can resolve 

179 complex, nonlinear relationships between environmental drivers and flux variables (Papale & 

180 Valentini, 2003; Tramontana et al., 2020), ANNs are a promising approach to partition T/ET 

181 in ecosystems where existing ET partitioning methods face limitations, such as wetlands and 

182 river deltas. 

183  There has been a growing interest in restoring freshwater wetlands in regions where 

184 they historically existed, such as the Sacramento-San Joaquin River Delta, California, USA 

185 (hereafter, the Delta). While restoring freshwater wetlands can have many benefits, including 

186 those related to wildlife habitat, climate, and carbon sequestration, it can also lead to 

187 increased water loss through ET depending on the vegetation cover characteristics 

188 (Eichelmann et al., 2018). Moreover, given that changes in local and regional ET can affect 

189 cloud formation and precipitation distribution (Gerken et al., 2018), this may have a knock-on 

190 effect on the water cycle and on the climate feedback of wetlands (Hemes et al., 2018). In 

191 locations that experience spatial and temporal water shortages, such as California, increasing 

192 our knowledge of the local water cycle and understanding how ET is affected by external 

193 drivers is extremely important. 

194 Here, we show that we can partition ET measurements above flooded wetlands in 

195 the Delta by predicting daytime E from nighttime ET measurements using ANNs in 

196 combination with environmental driver variables such as VPD, temperature, atmospheric 

197 turbulence, canopy greenness index, and others. The meso-network of diverse wetland EC 
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198 sites used in this study is ideal to test this new ET partitioning method as it provides a 

199 continuum of T/ET conditions across complex canopy architectures. We present the most 

200 promising models and discuss the application of ANN to partition T/ET measurements. 

201 While there is an emphasis on wetlands, we show evidence that our method may be applied 

202 to other ecosystems as well, increasing the knowledge of the water cycle and shedding light 

203 on plant-water productivity relationships at an ecosystem level. 

204

205 2 Methods

206

207 2.1 Site Description

208

209 The Delta plays an essential role in the water supply of the state of California, USA. 

210 It supplies the majority of freshwater to large metropolises in Southern California and 

211 provides water for irrigation of crops in the Central Valley (Deverel & Rojstaczer, 1996). 

212 Historically, the peat soils were flooded with large areas of freshwater marsh, but the 

213 majority of the Delta land area is now actively drained and cultivated for agriculture. More 

214 recently, there has been growing interest in restoring freshwater wetlands to prevent further 

215 soil subsidence. In one of the approaches used, the restored wetlands in the Delta are flooded 

216 with a water table that is above ground level at all times (Hemes et al., 2019). The four 

217 restored wetlands in the Delta selected for this study represent a range of conditions with 

218 some sites dominated by open water areas and others covered in dense vegetation throughout 

219 (Eichelmann et al., 2018), representing varying amounts of T/ET ratios expected at the 

220 different sites.

221 We conducted EC measurements at four wetland sites in the Sacramento-San 

222 Joaquin river delta in Northern California: West Pond (38° 6.44′N, 121° 38.81′W, Ameriflux 

223 ID: US-TW1; Valach et al., 2021b), East End (38° 6.17′N, 121° 38.48′W, Ameriflux ID: US-

224 TW4; Eichelmann et al., 2021), Mayberry Farms (38° 2.99′N, 121° 45.90′W, Ameriflux ID: 

225 US-MYB; Hatala-Matthes et al., 2021), and Sherman Island (38° 2.21′N 121° 45.28′W, 

226 Ameriflux ID: US-Sne; Shortt et. al., 2021). All sites are part of the Ameriflux network and 

227 the EC data from these sites are available for download through the Ameriflux data sharing 

228 platform (https://ameriflux.lbl.gov/). The sites have been described in detail in other 

229 publications (Detto et al., 2010; Hatala et al., 2012; Knox et al., 2015; Eichelmann et al., 

230 2018; Hemes et al., 2018, 2019) and their main characteristics will only be briefly 

231 summarized here. Overall the dataset used in this study covers 24 site-years of data with 
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232 individual sites spanning between 4 and 7 years of data coverage. All four wetlands are 

233 artificially constructed wetlands managed by the Department of Water Resources to reverse 

234 soil subsidence in the area. The water table is actively managed to be above ground level 

235 throughout the flooded portions of the wetlands at all sites. 

236 The West Pond wetland is the oldest of the four wetlands, originally constructed in 

237 1998. It is the most homogeneous of the study sites, with a fairly even, but slightly sloping, 

238 ground surface and dense vegetation covering the whole wetland (97% vegetation cover 

239 within EC footprint in 2018, Valach et al., 2021a). The water table varies slightly throughout 

240 the wetland due to the sloping ground level but is generally between 20 and 40 cm above 

241 ground level. The Mayberry Farms wetland was constructed in 2010 and has a very 

242 heterogeneous footprint. With a heterogeneous bathymetry this wetland features small islands 

243 of vegetation and deeper channels and pools of open water (64% vegetation cover within EC 

244 footprint in 2018, Valach et al., 2021a). The water depth varies from 2 m above ground level 

245 to 2 cm above ground level in the flooded portions, with some dry areas. The East End 

246 wetland was constructed in 2013 and also features some areas of open water channels and 

247 pools. The vegetation at East End has filled in more evenly since its establishment and it has 

248 a greater vegetation cover than Mayberry Farms (96% vegetation cover within EC footprint 

249 in 2018, Valach et al., 2021a). The Sherman Island wetland is the newest wetland constructed 

250 in 2016. Similarly to Mayberry Farms, it features a very heterogeneous bathymetry and the 

251 footprint is dominated by large portions of open water. Vegetation has only taken hold in 

252 very few and small patches within the footprint of the EC measurements (45% vegetation 

253 cover within EC footprint in 2018, Valach et al., 2021a). While the individual make-up and 

254 proportions vary slightly between sites, the dominant vegetation species at all sites are tules 

255 (Schoenoplectus acutus) and cattails (Typha spp.) (O’Connell et al., 2015).

256

257 2.2 Eddy Covariance Data

258

259 We measured continuous fluxes of H2O, CO2 and sensible heat using the EC method 

260 at all sites (Baldocchi et al., 1988). A detailed description of the instrument set-up and 

261 calculation procedures can be found in previously published papers (Detto et al., 2010; Hatala 

262 et al., 2012; Knox et al., 2015; Eichelmann et al., 2018; Hemes et al., 2018, 2019) and will 

263 only be summarized here. At each site, the EC instrumentation consisted of a sonic 

264 anemometer (WindMaster 1590 or WindMaster Pro 1352, Gill Instruments Ltd, Lymington, 

265 Hampshire, England) and an open path trace gas analyzer for H2O and CO2 concentrations 
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266 (LI-7500 or LI-7500A, LI-COR Inc., Lincoln, NE, USA). The instruments were mounted at a 

267 fixed height at least 1 m above the maximum height of the canopy. 

268 High frequency (20 Hz) measurements of sonic temperature, three-dimensional wind 

269 speed, and trace gas concentrations were recorded on USB drives in the field through the 

270 analyzer interface (LI-7550, LI-COR Inc., Lincoln, NE, USA). The data were collected 

271 approximately every two weeks, with routine maintenance and servicing of the instruments 

272 taking place at the same time. The LI-7500 trace gas analyzers were calibrated approximately 

273 every three to six months in the laboratory. The performance of the EC set-up was also cross 

274 checked periodically at individual sites by the Ameriflux mobile EC reference system 

275 (Schmidt et al., 2012). 

276 All data processing and filtering was performed offline. Thirty-minute average 

277 fluxes were calculated using custom software written in-house (MATLAB, MathWorks Inc., 

278 R2015b, version 8.6.0) after basic de-spiking of high frequency data and filtering for 

279 instrument malfunctioning (Detto et al., 2010; Hatala et al., 2012; Knox et al., 2015; 

280 Eichelmann et al., 2018). A rotation into the mean wind was performed for each 30-minute 

281 averaging interval and the Webb-Pearman-Leuning correction for air density fluctuations for 

282 open path sensors was applied to the calculated fluxes (Webb et al., 1980). Fluxes were 

283 filtered for low friction velocity (u∗), as well as based on stability and turbulence conditions 

284 (Foken & Wichura, 1996). Low friction velocity thresholds are based on the point where 

285 nighttime CO2 fluxes become independent of u∗ and are defined individually at each site. The 

286 thresholds can vary seasonally and usually range from 0.12 m s-1 to 0.2 m s-1. Because of the 

287 narrow shape of the wetland, the West Pond wetland fluxes were also filtered by wind 

288 direction to ensure flux footprints originated from the ecosystem of interest. 

289 Energy budget closure is often used as a quality indicator for EC data (Wilson et al., 

290 2002). At the flooded wetland sites covered in this study the energy budget closure of daily 

291 totals was between 73% and 81%, which is slightly lower than typically found in dry 

292 ecosystems. H2O fluxes from the West Pond, Mayberry Farms, and East End wetland sites 

293 used in this study have been published and discussed in detail by Eichelmann et al. (2018), 

294 including a discussion of data quality, energy budget closure, and the difficulties estimating 

295 energy storage components in the flooded wetlands. Because of the importance of storage 

296 terms in the context of these sites, energy fluxes measured by the EC method have not been 

297 adjusted for incomplete energy budget closure (Eichelmann et al., 2018). In this study, 

298 positive fluxes indicate a gain to the atmosphere and negative fluxes indicate a loss from the 
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299 atmosphere. All analyzes and data processing described in this study were performed using 

300 MATLAB (MathWorks Inc., R2018a, version 9.4.0). 

301

302 2.3 Auxiliary Data

303

304 Meteorological and environmental data were also measured continuously in addition 

305 to EC data at all sites. The following auxiliary measurements were available at all wetland 

306 sites: Air temperature (Tair); water temperature at 3 to 6 different water depths (Twater, depths 

307 vary between site due to differences in water tables); soil temperature at 6 different depths 

308 (Tsoil); relative humidity (RH); atmospheric pressure; incoming and outgoing shortwave 

309 radiation; incoming and outgoing longwave radiation; net radiation; incoming and outgoing 

310 photosynthetically active radiation; water table depth; water conductivity; and vegetation 

311 greenness index from camera data. Moreover, the West Pond and East End wetland sites were 

312 equipped with a rain gauge to measure precipitation and the East End wetland site was 

313 equipped to measure ground heat flux (G). 

314 Data were recorded as half hour averages (or totals in the case of precipitation) with 

315 individual sampling frequency varying between 1 and 15 minutes depending on the sensor. 

316 Specifically of interest for this study are measurements of vapor pressure deficit (VPD), 

317 water table depth (WT), air temperature (Tair), vegetation greenness index (green chromatic 

318 coordinate; GCC), and net radiation (Rnet). VPD was calculated from relative humidity 

319 measurements in combination with air temperature data, both measured with aspirated and 

320 wind-shielded humidity and temperature probes (HMP-60, Vaisala Inc., Helsinki, Finland). 

321 Net radiation was measured using either a net radiometer (NR-LITE Radiometer, Hukseflux, 

322 Delft, the Netherlands; at Mayberry Farms) or a four-component net radiometer (NR01 Net 

323 Radiometer, Hukseflux, Delft, the Netherlands; at West Pond, East End, and Sherman 

324 Island).

325

326 2.4 Artificial Neural Network Partitioning Routine

327

328 Artificial Neural Networks have been applied for gap-filling and partitioning EC 

329 fluxes in the past (Papale & Valentini, 2003; Oikawa et al., 2017; Tramontana et al., 2020). 

330 Specifically, for CO2 fluxes, ANNs have shown to perform well when used to gap-fill 

331 missing data (Moffat et al., 2007) and partitioning net CO2 fluxes into the component fluxes 

332 of gross primary production (GPP) and ecosystem respiration (Reco) (Desai et al., 2008; 
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333 Oikawa et al., 2017; Tramontana et al., 2020). Following a similar approach to partitioning 

334 CO2 data, we assumed that nighttime ET data is dominated by E at these flooded sites: 

335

336 ET = T + E  (1)

337 Tnight ≅ 0 (2)

338 ETnight = E (3)

339

340 In this study, daytime and nighttime are distinguished by the local solar zenith angle 

341 (ze) with nighttime being defined as ze >= 90°. We conducted several leaf-level chamber 

342 measurements using a LI-6400 Portable Photosynthesis System (LI-COR Inc., Lincoln, NE, 

343 USA) throughout the growing season of 2017 to confirm that nighttime and dark T flux is 

344 indeed negligible at these sites. The available nighttime E data is used in combination with 

345 environmental input variables to train the ANN routine to predict daytime E. Daytime T was 

346 then calculated as the difference between total ET and E:

347

348 Tday = ETmeasured – Epredicted (4)

349

350 Before ET partitioning was performed all flux data were gap-filled using ANN 

351 routines described in previous studies (Knox et al., 2015, 2016; Oikawa et al., 2017, 

352 Eichelmann et al., 2018).

353

354 2.4.1 Artificial Neural Network Routine Set-up

355

356 To partition ET data using ANNs in this study, we followed a similar set-up and 

357 architecture as described for gap-filling and partitioning CO2 data in previous studies 

358 (Baldocchi & Sturtevant, 2015; Knox et al., 2015, 2016; Oikawa et al., 2017). We applied 

359 feedforward networks specialized for function fitting using symmetric sigmoid transfer 

360 functions in all layers except the final layer which uses a linear transfer function. The 

361 networks are trained using the Levenberg-Marquard optimization algorithm. For each site, 

362 the entire available (multi-year) explanatory dataset was split into 20 data clusters using the 

363 k-means clustering algorithm. The data used for training, testing, and validation of the ANNs 

364 was proportionally sampled from these clusters with one third of the available data used for 

365 training, testing, and validation each. This procedure avoids a sampling bias towards periods 

366 when more data are available, such as a specific time of the year or time of the day. 
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367 Proportional data sampling from the k-means clusters into training, testing, and validation 

368 data was repeated 20 times. For each of the 20 re-sampled training, testing, and validation 

369 datasets several ANN architectures were tested starting with one hidden layer and the same 

370 number of nodes as the number of explanatory input variables (ninputvar). Each architecture 

371 was initialized 10 times with random starting weights and the initialization with the lowest 

372 mean sampling error was used. The complexity of the ANN architecture was increased first 

373 by increasing the number of nodes to 1.5 times ninputvar and then by increasing the number of 

374 hidden layers until a further increase in complexity results in less than 5% reduction of the 

375 mean standard error. For our datasets, this commonly resulted in the use of an architecture 

376 with two hidden layers, the first one with ninputvar nodes, the second one with 0.5*ninputvar 

377 nodes, although for some sites and input variable combinations architectures with only one 

378 hidden layer produced better results. The ‘validation’ step within the ANN procedure 

379 described above is performed on nighttime data only and is therefore distinctly different from 

380 the validation with flooding and leaf level data described below. Throughout the remainder of 

381 the manuscript when we use the term ‘validation’ we refer to the independent flooding and 

382 leaf level data validation. The ANN internal validation routine based on nighttime data is 

383 referred to as ‘testing’. An overview of the ANN training, testing, and validation process is 

384 presented in the flowchart in Fig. S1.

385

386 2.4.2 Selection of Explanatory Variables

387

388 A number of different explanatory environmental input variables were tested 

389 individually and in combination. Based on the general understanding of the drivers of E 

390 fluxes in terrestrial and aquatic ecosystems we tested the following input parameters: 

391 Meteorological and environmental variables: VPD, Rnet, GCC, WT, Tair; Flux variables: 

392 friction velocity (u∗), gap-filled sensible heat flux (H_gf), gap-filled CO2 flux (wc_gf), and 

393 ecosystem respiration (er_Reichstein) partitioned using the temperature dependency method 

394 proposed by Reichstein et al. (2005). In addition, we used a running decimal timestamp 

395 (datetime) as input variable in all our ANN runs. VPD, u∗, and Tair describe the atmospheric 

396 demand driving E. Rnet and H_gf are connected to ET (or latent energy) through the energy 

397 balance equation. GCC, wc_gf, and er_Reichstein are directly or indirectly related to plant 

398 physiological responses that can impact ET components. Finally, WT is related to the water 

399 budget of the ecosystem. Given the strong correlation of water temperature (Twater) with 

400 nighttime ET documented at these sites in a previous study (Eichelmann et al., 2018) we 
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401 would also expect Twater to perform well as an environmental input variable. Unfortunately, 

402 we were unable to include Twater as an input variable in this study since we did not have 

403 consistent Twater measurements across time for any of the four sites.

404 We ran the ANN routine for each of these parameters individually and recorded the 

405 R2 value, slope, and RSME of the linear regression of the nighttime EC data initially set aside 

406 for testing within the ANN routine versus the predictions. This R2 value is called ‘testing R2’ 

407 throughout this manuscript and is based only on nighttime data. Starting with the input 

408 parameter with the highest testing R2, we ran the ANN routine with increasing numbers of 

409 input variables, each time adding on the variable with the next highest testing R2 value. We 

410 continued this process until a further increase in input variables resulted in less than 1% 

411 increase in the testing R2 value. We averaged the testing R2 values across the four sites and 

412 used this value to estimate increases in the performance of the ANNs. While this average 

413 testing R2 does not have any statistical relevance, it gave us a good indicator on how well the 

414 models performed across all sites studied.

415

416 2.5 Validation of Results

417

418 One of the main issues facing validation of ET partitioning methods is often the lack 

419 of independent E or T data to validate against (Stoy et al., 2019). Taking independent 

420 measurements of ecosystem E or T is challenging and one of the main reasons why 

421 partitioning approaches for EC measurements of ET are much sought after. Since we do not 

422 have independent measurements of ecosystem level E or T available at our sites, we reverted 

423 to validating our partitioning data by a conditional sampling approach, selecting EC 

424 measurement data from certain time periods when E and T can be known or closely 

425 approximated to compare with the ANN predicted E or T. One of these time periods is the 

426 initial time right after flooding of the wetland (referred to as flooding data), when vegetation 

427 had not yet established within the footprint of our instruments. During this time, it can be 

428 assumed that the entire H2O flux coming off the surface is from E, with negligible T. 

429 Since we trained our ANN routines only on nighttime data, we were able to use the 

430 daytime data during the initial flooding period as an independent validation dataset for E. 

431 Apart from the initial flooding period, T can also be assumed to be small to negligible during 

432 the senescent winter months. However, since the plants are not harvested or otherwise 

433 removed and the climate in this region is fairly mild, some do stay green throughout the 

434 winter and may continue to be photosynthetically active. Additionally, vegetation on dry 
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435 areas such as levees usually starts to green up during the winter months in this region. Both of 

436 these would be contributing to a small T flux from the ecosystem. Moreover, ET fluxes 

437 during the winter period are generally lower and subject to larger errors due to more 

438 challenging turbulence conditions during this time. Such conditions result in large relative 

439 error in flux measurements during this period limiting the insights gained from the validation 

440 during the senescent winter period. Nonetheless, we included validation of E predicted from 

441 our ANN method against E measured during winter times to further test the performance of 

442 our method. Testing our ANN method against daytime data is particularly important as some 

443 of the drivers of E can exhibit strong diurnal patterns (e.g. H_gf) and interdependencies 

444 between energy fluxes and environmental conditions (e.g. evaporation, transpiration, and 

445 canopy VPD) can change between day and night. While ANNs have been shown to provide 

446 good performance in predicting non-linear responses of biological data and extrapolating 

447 outside of the training variable space (Papale & Valentini, 2003), by using nighttime data 

448 only for training the ANNs we may not correctly capture the daytime response of E to the 

449 driver variables or changes in interdependent relationships. This would be highlighted 

450 through poor performance in the winter and flooding data validations. We compared the 

451 variable space covered by our nighttime training dataset with the variable space covered by 

452 the daytime prediction dataset and the flooding validation dataset (Fig. S2). While the 

453 daytime distributions show proportionally more values in the high end of the distributions, for 

454 most variables there is a reasonably good representation of higher values within the training 

455 and validation datasets. In addition, the proportional sampling from environmental clusters 

456 for our training dataset ensures all environmental conditions are represented equally during 

457 training.

458 In addition to the validation during periods when T was zero, we also conducted a 

459 number of leaf-level T measurements in the summer of 2017 at the East End wetland using a 

460 LI-6400 portable photosynthesis system (LI-COR Inc., Lincoln, NE, USA) with a clear 

461 conifer chamber (part number 6400-05) encasing sections of the leafs or culms. Six 

462 individual leaf-level measurement points (three for each of the dominant plant species) taken 

463 during the same half hour period were pooled to allow comparison with the half hourly EC 

464 data. These measurements provided us with an estimate of T per unit of sunlit leaf area and 

465 may potentially be converted to the ecosystem scale if the ecosystem leaf area index and the 

466 leaf angle distribution are known. Efforts have been made to estimate the leaf area index in a 

467 number of the wetlands in the study region, however, due to the high heterogeneity and litter 

468 accumulation in these systems there is a high level of uncertainty associated with the 
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469 measured leaf area indexes (Dronova & Taddeo, 2016). Additionally, the leaf angle 

470 distribution is unknown in these systems and can only be approximated, which is an intrinsic 

471 limitation of this technique. 

472 Taking all these uncertainties into account, ecosystem T scaled up from leaf-level 

473 measurements is associated with very large error intervals and cannot serve as a reasonable 

474 constraint on the absolute values of our ANN partitioned T fluxes. However, since the scaling 

475 factors to convert leaf-level values to ecosystem level are constant multipliers, we should still 

476 be seeing a linear relationship between the leaf-level flux and the partitioned ecosystem level 

477 T if our partitioning algorithm predicts the correct T behavior across a range of 

478 environmental conditions. While we may not be able to compare the absolute T values, we 

479 can compare the response cycle of ANN predicted T with the field measurements to validate 

480 that we are predicting the right behavior. 

481

482 2.6 Comparison with Other T/ET Partitioning Approaches

483

484 Direct comparisons with the Scott and Biederman’s (2017) method were carried out 

485 in order to evaluate the performance of our own models against their approach. For these 

486 comparisons, we used the model (F11, see Results below) that achieved the best R2 value 

487 against the validation with leaf-level/flooding data. The Scott and Biederman (2017) method 

488 uses data from multi-year monthly ET and gross ecosystem productivity (GEP = -GPP; 

489 determined from EC data using ANN based partitioning). At each site, regressions are 

490 calculated between all available monthly ET and GEP values measured for a specific month 

491 (e.g., July) across years (see Fig. 4 for illustration). Regressions are extrapolated to zero GEP 

492 to estimate the long-term average E for the specific month of interest. While Scott and 

493 Biederman (2017) forced all monthly regressions between ET and GEP to the same slope, we 

494 used different slopes for each regression. This was done to ensure the best fit since our 

495 datasets did not show the same uniform behavior across months. The Scott and Biederman 

496 (2017) method only provides average monthly E and T values across the entire dataset, not 

497 for individual years. Indirect comparisons with other methodologies mentioned above are 

498 also discussed.

499

500 3 Results

501

502 3.1 Artificial Neural Network Architecture Performances
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503

504 Alongside the basic timestamp (datetime), VPD and Tair were the meteorological 

505 variables that best explained our data when only looking at the nighttime testing data, with 

506 average testing R2 values across all sites of 0.648 (model F26) and 0.565 (model F22), 

507 respectively (Table 1 and Supplementary Table 1). The flux related variables that showed the 

508 highest average testing R2 values and added most information to the models were H_gf 

509 (testing R2 of 0.620, model F28) and u∗ (testing R2 of 0.531, model F27). To increase the 

510 ANNs complexity we, therefore, followed the variables order of VPD > H_gf > Tair > u∗, 
511 adding each of them into the models sequentially. VPD was the variable that contributed the 

512 most to increase the testing R2 values of the ANNs, with an average increase of 24% across 

513 all sites and a maximum of 36% for West Pond, when models F21 and F26 were compared 

514 (Table 1). The incorporation of H_gf was responsible for an average increase of 10% in 

515 testing R2, when comparing the ANNs F26 and F33 (Table 1). Tair only increased the ANNs 

516 testing R2 by 1% (i.e., when comparing models F33 and F34), however, when we added u∗, 
517 the average testing R2 value increased across all sites by 9%, when comparing models F34 

518 and F11 (Table 1). Thus, building the ANN F11 using datetime, VPD, H_gf, Tair, and u∗, the 

519 average testing R2 value across all sites reached 0.853, with a minimum of 0.728 (West Pond) 

520 and a maximum of 0.910 (Sherman Island; Supplementary Table 1).

521 Of all the 36 ANNs tested, the highest average testing R2 (0.891) was reached when 

522 all the explanatory variables (i.e., datetime, H_gf, u∗, wc_gf, er_Reichstein, VPD, Tair, GCC, 

523 Rnet and WT) were put into the model F36 (Table 1 and Supplementary Table 1). 

524 Consequently, on average, all the other variables analyzed (i.e., wc_gf, er_Reichstein, GCC, 

525 Rnet and WT) accounted for less than 4% of the testing R2 value across all the four sites 

526 (when comparing models F36 and F11; Table 1). The top five ANNs (F36 > F14 > F20 > F35 

527 > F11) that performed better than 0.85 all have datetime, VPD, H_gf, Tair, and u∗ as their 

528 explanatory variables and all the 11 ANNs that scored an average testing R2 higher than 0.80 

529 have both VPD and u∗ in their models (Table 1 and Supplementary Table 1). Fifteen ANNs 

530 showed an average testing R2 higher than 0.70 and the lowest average testing R2 among these 

531 (0.730) was presented by the ANN F2, constructed using only datetime, Tair, and u∗ 

532 (Supplementary Table 1). Unsurprisingly, the lowest average testing R2 (0.410) of all the 36 

533 ANNs analyzed was given by the ANN built using datetime alone (F21). The slope and 

534 RSME values (Table 1 and Supplementary Table 2) of the different ANNs followed quite 

535 closely the pattern described for the increase in testing R2 values. 

536
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537 3.2 Validation of Artificial Neural Networks 

538

539 3.2.1 Flooding Validation

540

541 To evaluate the performance of our ANN partitioning method, we compared the 

542 model predicted E with EC measurement data from conditionally sampled post-flooding 

543 periods, during which we assume T to be negligible (Table 2). The ANN F11 showed the 

544 highest validation R2 values for East End (0.81), Mayberry Farms (0.69), and Sherman Island 

545 (0.82). These values surpassed those from the model F36 (most complex), which reached 

546 0.51, 0.56, and 0.53, for East End, Mayberry Farms, and Sherman Island, respectively. The 

547 slope values overall follow very similar patterns to the R2 values. With regards to the RSME 

548 values, models F21 and F15 have lower RSME values than model F11 for most of the sites. 

549 However, the extremely low R2 and slope values for model F21 and F15 highlight that these 

550 relationships are poorly constrained and, therefore, model performance evaluation should not 

551 be based on RSME alone (Table 2). Nevertheless, the slope and RSME values should be used 

552 as secondary selection criteria to ensure predictions are not offset by a constant factor, which 

553 would not be visible by evaluating R2 values alone. Figure 1 shows the validation comparison 

554 between F11 and F36 for the three sites. 

555  

556 3.3.2 Winter Time Validation

557

558 Judging by the observed R2 values, the validation using daytime data from senescent 

559 periods during the winter time (December to February, Table 3) performed quite poorly in 

560 comparison to the validation performed with data during the initial flooding periods (Table 

561 2). Nevertheless, the winter period validation overall did confirm the same trends and 

562 observations as the flooding validation. At Mayberry Farms and Sherman Island ANN F11 

563 again had the highest R2 values (0.56 and 0.70, respectively). However, at East End and West 

564 Pond the model F36, which included all input variables, performed best with R2 values of 

565 0.45 and 0.36, respectively. Figure 2 shows the validation comparison between F11 and F36 

566 for the four sites using winter data.

567

568 3.3.2 Validation on Diurnal Measurements of Leaf-Level Data for East End

569
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570 To evaluate the performance of our method further, we compared the model 

571 predicted T with independent leaf-level data collected during a field campaign in summer 

572 2017 at the East End wetland. The leaf-level data showed high variability across individual 

573 measurements (Fig. 3). F11 again showed a high R2 (0.986, Table 4). Other models (F15, 

574 F33) also performed quite well in the leaf-level validation, in contrast to their performance 

575 for the validation during flooding or senescent periods. The most complex ANN (F36) had a 

576 lower R2 value (0.92) for the leaf-level validation. In general, adding too many variables did 

577 not lead to enhancement of validation values, but it is to be noted that all models showed a 

578 high level of agreement with the leaf-level data (Table 4). Figure 3 shows both F11 and F36 

579 validations against leaf-level data. 

580

581

582 3.3 Artificial Neural Networks Performance Across the Wetland Sites

583

584 To look for model consistency across diverse canopy architecture and successional 

585 stages, we compared ANN testing R2 values between the four sites. Among the four sites, 

586 East End and Sherman Island were the only sites that had ANNs with testing R2 values larger 

587 than 0.90 for the EC testing data set aside during the ANN routine (Supplementary Table 1). 

588 At Sherman Island, East End, and Mayberry Farms 22, 20, and 19 ANN models reached 

589 testing R2 values above 0.70, respectively, whereas at West Pond only 11 models reached 

590 testing R2 values above 0.7 (Supplementary Table 1). In comparison with the other three 

591 studied sites, West Pond showed testing R2 values in the order of 9-18% smaller when 

592 analyzing the top five ANNs with average testing R2 larger than 0.85 (Supplementary Table 

593 1). Considering all 36 ANNs, differences in testing R2 between the same ANN for different 

594 sites reached a maximum of 46%, when comparing model F6 at West Pond with Sherman 

595 Island (Supplementary Table 1).

596

597 3.4 Comparisons with Other Partitioning Approaches

598

599 To compare our ANN method with existing T/ET partitioning methods, we applied 

600 the Scott and Biederman (2017) long-term flux data partitioning method at all four sites. As 

601 expected, the Scott and Biederman (2017) method worked better for datasets with > 6 years 

602 (Fig. 4; Mayberry Farms, West Pond, and East End). Sherman Island, the shortest dataset 
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603 with four years of data collection, performed poorly, showing negative correlations of ET vs 

604 GEP for the months of June to September (Fig. 4 d). Average monthly T fluxes from the 

605 Scott and Biederman (2017) method for Mayberry Farms and Sherman Island (Fig. 5a and d) 

606 both showed increases in T at the end of the growing season (i.e., October) out of line with 

607 the observed GEP patterns. Conversely, West Pond and East End (Fig. 5b and c) showed a T 

608 pattern parallel to GEP with the growing season. 

609 While the T values from our ANN approach showed a similar behavior as GEP 

610 during the growing season, as would be expected, the T values from the Scott and Biederman 

611 (2017) method did deviate somewhat from the GEP pattern for all sites (Fig. 5). The best 

612 ANN (F11) also produced more reasonable T numbers for Sherman Island compared to the 

613 Scott and Bierderman (2017) method. In addition, the E values retrieved in our analysis for 

614 all sites were also more stable and did not fluctuate as much across months compared to the E 

615 values from the Scott and Biederman (2017) method (Fig. 5). While the Scott and Biederman 

616 (2017) method is not intended to produce reliable results for T/ET partitioning during winter 

617 months when GEP is small, it did show very good agreement of produced E and T values 

618 when compared to our ANN based values from October to February for all sites.

619

620 3.5 Resulting Evaporation and Transpiration Estimates

621  

622 Figure 6 shows the annual (2013-2019) ANN based T/ET partitioning 

623 intercomparison for all sites using ANN F11. Only years with a full year of data are used. 

624 While ET stayed fairly consistent between 850-1250 mm for all sites and years (Fig. 6a), 

625 GEP showed more fluctuations between the different sites, as well as interannually within 

626 each site (Fig. 6b). Looking at the predicted partitioning of E and T (Fig. 6c, d), Sherman 

627 Island showed the highest values of E (approximately 1100 mm) for the three years of 

628 measurements available at this site, while West Pond had the lowest E values across all years 

629 and sites (200 to 300 mm). Although values at East End were always higher compared to 

630 Mayberry Farms for all years with measurements from both sites, decreasing pattern can be 

631 observed for E at both sites, ranging from high values of 831 mm at Mayberry Farms in 2013 

632 and 1119 mm at East End in 2014 down to low values of 449 mm at Mayberry and 630 mm 

633 at East End in 2019. Transpiration showed opposite trends compared to E, with West Pond 

634 having the highest values (between 700-800 mm in most years), followed by Mayberry Farms 

635 with T values between 300-500 mm. The T pattern predicted at Mayberry Farms follows a 

636 similar pattern as the GEP measurements, most notably is the significant reduction in GEP in 
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637 2016 which was caused by saltwater intrusion at the site (Eichelmann et al., 2018, 

638 Chamberlain et al., 2020). This was mirrored in a reduction of T values in 2016, however, E 

639 was not affected. Sherman Island and East End showed T values below 300 mm for all years, 

640 considerably lower than the other two sites. In the first full year of measurements (2014), T at 

641 East End was even predicted as negative (-24 mm), similar to the negative T predictions 

642 observed at East End during the winter validation (Fig. 2). However, this value falls within 

643 the uncertainty range of 91 mm for annual ET measurements at this site in 2014 (Eichelmann 

644 et al., 2018). East End and Sherman Island both had a very high open water surface area, 

645 especially in the first years after flooding, so it would be expected that E is more dominant. 

646 Sherman Island specifically had extremely sparse vegetation cover throughout the EC 

647 measurement footprint for the first two years of measurements, also evident in the very low 

648 values of GEP. For both of these sites, East End and Sherman Island, we can see that 

649 gradually E declines and T increases as the vegetation fills in from year to year. 

650 Consequently, when comparing the T/ET values across sites (Fig. 6e), West Pond had the 

651 highest value of T/ET (70%-75% on T), followed by Mayberry Farms (30%-50%), East End 

652 (0-30%), and Sherman Island (<15%). This highlights that only West Pond can be described 

653 as a T dominated site with T/ET values in the range between 0.5 and 0.8 reported for other 

654 terrestrial ecosystems (Schlesinger & Jasechko, 2014). The other three sites are clearly E 

655 dominated and have T/ET values considerably lower than those expected for terrestrial 

656 ecosystems.

657

658 4 Discussion

659

660 4.1 Artificial Neural Network Architecture Performances

661

662 The ANN F36, which was built using all studied variables, presented the highest 

663 average testing R2 value (0.891) for the nighttime-based testing dataset among all 36 ANNs 

664 analyzed. Nevertheless, there was not much improvement in testing R2 in the models (i.e., 

665 maximum of 3-4% on average) after the ANN F11. This indicates that not all variables are 

666 necessary to provide good results in the partitioning of ET into E and T, and that less 

667 complex models can result in good predictions. For instance, using only datetime + H_gf + 

668 VPD (F33) or datetime + u∗ + Tair (F2) the average testing R2 value across all sites was > 

669 0.70, indicating a good correlation. In addition, when using datetime + VPD alone the 
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670 average testing R2 value for three sites (i.e., East End, Mayberry Farms and Sherman Island) 

671 was > 0.70.

672 In our study, the order of variable inclusion to increase model complexity was: 

673 datetime > VPD > H_gf > Tair > u∗. VPD was the variable that contributed the most in the 

674 improvement of the ANNs, with an average of 24% increase in testing R2 values across all 

675 sites. VPD is routinely measured at most EC sites (e.g., Fluxnet.org, 2021) and its effect on 

676 ecosystem water cycling by limiting surface conductance and reducing transpiration under 

677 high VPD is well documented (Buckley, 2005, Novick et al., 2016). The fact that the top 14 

678 ANNs (i.e., with the highest testing R2 value) were constructed using VPD as one of the input 

679 parameters highlights the importance of VPD as a predictor of ecosystem water exchange. In 

680 addition, all the 11 ANNs that scored an average testing R2 > 0.80 have u∗ in their models, 

681 indicating that information on atmospheric turbulence is important to incorporate in ET 

682 partitioning prediction if available. It may not be surprising that at these flooded sites E is 

683 mainly explained by atmospheric conditions such as VPD, Tair, and turbulence (u∗) 
684 underlining their importance in the ANN partitioning routine. At sites with different surface 

685 and vegetation characteristics, such as dryland sites, it would be important to investigate the 

686 importance of other variables such as soil moisture, soil temperature, or leaf wetness. It 

687 would be expected that these, together with other energy balance components such as 

688 radiation, would play a larger role in explaining E at water limited sites. 

689

690 4.2 Artificial Neural Network Validation Against Post-Flooding Periods and Leaf-Level 

691 Data

692

693 The validation of our models against data collected right after flooding (for East 

694 End, Mayberry Farms, and Sherman Island) and with leaf-level data (for East End only) 

695 indicated that models with less input variables (F11) performed better in comparison to the 

696 model that incorporated all 10 studied variables (F36). It might be that overfitting occurred 

697 when incorporating input variables that deal directly and/or indirectly with the same 

698 property/factor (i.e., carbon assimilation). In this case, F36 includes er_Reichstein, wc_gf and 

699 GCC which are all related to carbon uptake by vegetation. Thus, even with a smaller average 

700 testing R2 value, models with fewer input variables (e.g., F11) still performed better than F36 

701 during validation with ground-truth leaf-level and flooding data. Specifically, the ANN F11, 

702 which showed the best performance for all three of the sites with flooding data validation 

703 (East End, Mayberry Farms, and Sherman Island) included datetime + H_gf + VPD + Tair + 
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704 u∗. The validation based on data collected right after flooding also emphasized the importance 

705 of validating the ANN partitioning routine against data collected during daytime periods. 

706 Some of the tested input variables showed strong differences in daytime and nighttime 

707 behavior (e.g., Rnet). Using these variables as inputs can lead to incorrect daytime 

708 predictions for the nighttime-based ANN routine as seen in the poor performance of F15 for 

709 the flooding validation at East End and Mayberry Farms, despite a high testing R2 of 0.75 

710 (Supplementary Table 1).

711 The flooding validation also highlights site-specific differences in the input variables 

712 that provided good predictions. While the best performance was achieved with the same 

713 model (F11) across all three validation sites, the behavior of the other tested models varied 

714 across sites. We recommend that the selection of input parameters for ANN partitioning of 

715 ET should be based on the unique site characteristics rather than a standardized set of 

716 variables since vegetation heterogeneity and other site level characteristics can influence 

717 ecosystem ET levels (Eichelmann et al., 2018). 

718 This is also evident in the validation using data from the winter/senescent period, 

719 where F11 performed best at Mayberry Farms and Sherman Island, whereas F36 performed 

720 best at East End and West Pond. The overall performance of our ANNs in predicting E 

721 during the winter/senescent periods was also considerably lower in comparison to the 

722 flooding and leaf-level data validation. This is partially due to the smaller fluxes observed 

723 overall during this period, leading to larger relative errors. In addition, the assumption that all 

724 measured ET during the winter months represents solely E is likely incorrect. Especially at 

725 the sites with high vegetation cover (Mayberry and West Pond) it is likely that a small 

726 amount of T occurs during this time which would be included in the measured ET signal, 

727 leading to an apparent under-prediction of E for the ANN. For East End and Sherman Island, 

728 however, we can see that the ANNs are actually over-predicting E (Fig. 2), leading to 

729 consistent, albeit relatively small, negative T prediction in the winter months, specifically at 

730 East End (Fig. 4). It is unclear what is causing the discrepancy between measured and 

731 modeled E at East End and Sherman Island during the winter months. However, the fact that 

732 inclusion of variables linked to vegetation growth (GCC, wc_gf, er_Reichstein) reduced the 

733 over-prediction at both sites (e.g., F36 or F15) could indicate that E dynamics linked to 

734 phenology and vegetation cover are not adequately reproduced in models without these input 

735 variables at East End and Sherman Island.

736 Unfortunately, a limitation in our study is that we were not able to validate our 

737 results across all sites/sampling times due to a lack of leaf-level data collected from all sites, 
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738 which is very time and labor intensive. In addition, no data were available from the initial 

739 flooding period at the West Pond wetland. Nonetheless, we are aware that validation of T/ET 

740 partitioning is quite scarce in the literature and that the data validated against our ANNs 

741 prove that good results can be achieved using the protocol tested here. 

742

743 4.3 Artificial Neural Network Performance Across the Wetland Sites

744

745 Concerning the performance of all the 36 ANNs across the four wetlands analyzed 

746 in this study, West Pond showed smaller testing R2 values in comparison to the three other 

747 sites. Between-site differences reached up to 46% for the same model. The main reason for 

748 this divergence was likely the differing amounts of open water surfaces and density of the 

749 vegetation between these sites. West Pond, with little to no open water, is likely to see less E 

750 compared to the other wetlands (Eichelmann et al., 2018). In addition, West Pond also has the 

751 lowest water temperature and a very dense vegetation canopy decoupling the water surface 

752 from the atmosphere and leading to further reductions in E, especially at night (Drexler et al., 

753 2004; Goulden et al., 2007; Eichelmann et al., 2018). Because our method predicts E based 

754 on nighttime data and calculates T based on the difference between total ET and E, if E 

755 values are small the relative accuracy of the prediction will decrease, which is reflected in the 

756 testing R2 values. However, because the E values are small, the absolute error of the predicted 

757 E and T would be proportionately small, hence the total T and E values can still be reliable. 

758 Unfortunately, we did not have a set of ground-truth validation data available for the West 

759 Pond site to investigate the true performance of the ANN ET partitioning. However, our 

760 comparison with the Scott and Biederman (2017) partitioned data and expected relationships 

761 based on the observed carbon fluxes and vegetation dynamics give us high confidence in the 

762 performance of the ANN partitioning routine at the West Pond wetland site. This shows that 

763 the ANN partitioning method can also be successfully applied in situations where nighttime E 

764 fluxes are small, indicating that it could be applicable to a large variety of ecosystems. In this 

765 context it is important to note that some studies have found non-negligible nighttime 

766 transpiration values for certain ecosystems (Caird et al., 2006; Novick et al., 2009; Resco de 

767 Dios et al., 2019). To be able to apply the ANN methodology from our study to other sites or 

768 ecosystems it is essential to confirm that nighttime transpiration is indeed negligible at the 

769 respective site. Additionally, careful consideration needs to be given to the changing 

770 interactive effects between energy fluxes and environmental conditions from nighttime to 
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771 daytime. Any application of this methodology will require validation against independent 

772 daytime data to ensure these effects are correctly captured in the ANN models.

773

774 4.4 Comparisons with Other Partitioning Approaches and Wider Implications

775

776 In comparison to other established methods in the literature our own approach using 

777 ANNs to determine the T/ET partitioning achieved very good results with fewer limitations, 

778 which makes it easier to apply in other contexts/ecosystems. For instance, Scott and 

779 Biederman’s (2017) method only works when there are enough years of data. The shortest 

780 dataset Scott and Biederman (2017) analyzed spanned eight years, which is a considerably 

781 long time period and reduces its applicability to shorter studies. Also, in the absence of 

782 climate consistency among sampling sites or if the research takes place in areas where fluxes 

783 are not limited by water availability (e.g., wetlands), their model fails to partition T/ET 

784 correctly, limiting it to relatively dry ecosystems. This was evident from direct comparisons 

785 with our own method, particularly for Sherman Island which has the shortest dataset (i.e., 

786 four years) and the highest area of open water, with the largest relative contribution of E (Fig. 

787 4, 5).

788 Considering the partitioning methods proposed by Scanlon and Sahu (2008), 

789 Scanlon and Kustas (2010), and Skaggs et al. (2018), a priori knowledge on WUE and carbon 

790 uptake is required to apply their method. Consequently, the paucity of previous 

791 data/information or lack of equipment impede the application of this method to a broader 

792 audience. We tried to run the Scanlon and Kustas (2010) and Skaggs et al. (2018) partitioning 

793 methods for our wetland sites but were not able to retrieve reliable and meaningful 

794 partitioning results for any of the sites discussed in this study. We did not test the method 

795 proposed by Zhou et al. (2016) in this study, since we believe that some of the underlying 

796 assumptions are easily violated at the wetland sites investigated here. Most importantly, the 

797 Zhou et al. (2016) method is based on the assumption that some periods within the time series 

798 represent conditions without E and the water flux is entirely based on T (i.e., T = ET). This is 

799 most certainly not the case at flooded sites where we can reasonably expect that there will 

800 always be E, albeit in varying amounts. Additionally, the potential underlying WUE is 

801 assumed to be constant, which could be violated when multiple vegetation types or species 

802 are present, as is the case with our sites. Finally, virtually all the other methods discussed 

803 here lacked validation against ground-truth data in the original studies. We included several 

804 verification types for the ANN method in this paper, which gives us confidence that our 
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805 approach using ANNs produces reliable and meaningful estimates for E and T in wetland 

806 ecosystems. The fact that our method does not rely on presumed relationships between water 

807 and carbon fluxes and was shown to work across a range of ecosystem properties from T to E 

808 dominated systems, provides an advantage against other methods that are limited to certain 

809 ecosystems or need specialized input data/equipment.

810 In terms of wider implications, our results can help to connect T/ET partitioning 

811 with other global atmospheric processes. An example is the constant increase in global VPD, 

812 which is cause of much concern regarding natural and agricultural systems. Most studies to 

813 date have focused on the effect of increasing VPD levels on plant physiology and reduced 

814 plant growth or productivity with concomitantly increased T (Yuan et al., 2019; Grossiord et 

815 al., 2020; López, Way, & Sadok, 2021). However, VPD was the variable that contributed the 

816 most to explain E across the 36 ANNs analyzed in our study, highlighting its importance not 

817 only for plant regulated water cycling (T), but also for driving E. Two independent studies 

818 indicated that VPD levels are increasing in our study region (i.e., southwest USA, California). 

819 Seager et al. (2015) have found a consistent rise in atmospheric VPD since 1960s and Ficklin 

820 and Novick (2017) also projected higher VPD levels with amplified effects during summer 

821 months, potentially driving more pronounced water loss through E regardless of the plant 

822 physiological response. While other factors might be more important at controlling plant 

823 productivity in some ecosystems (e.g., soil moisture in semi-arid areas; see Liu et al., 2020), 

824 atmospheric vapor demand is projected to become more important with climate change in all 

825 ecosystems (Novick et al., 2016). Consequently, the estimates of T/ET partitioning given by 

826 our new approach will be important as they allow us to explain the effects of rising global 

827 VPD levels on E and T separately.

828

829 5 Summary

830

831 A novel T/ET partitioning method using Artificial Neural Networks (ANN) to 

832 predict daytime E from nighttime ET measurements in a combination with a range of 

833 environmental variables was presented and compared to previous methods from the literature. 

834 In comparison to other approaches, the ANN method achieved better results, particularly with 

835 shorter-term data (i.e., <5 years) and was successfully applied to flooded ecosystems. The 

836 order of variable inclusion (and importance) for the ANN construction was: vapor pressure 

837 deficit (VPD) > gap-filled sensible heat flux (H_gf) > air temperature (Tair) > friction velocity 

838 (u∗) > other variables. The best performing ANN, model F11, used datetime, VPD, H_gf, Tair, 
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839 and u∗ inputs with an average testing R2 value across all sites of 0.85. This model also 

840 performed the best when validated against ground-truth leaf-level data and periods where 

841 sites were completely flooded with no T from vegetation. Our method sheds light on T/ET 

842 partitioning methods and applications. While here it has only been tested for flooded 

843 ecosystems, we present strong indicators that it could also perform well in other ecosystems, 

844 contributing to the understanding of the global water cycle and its response to atmospheric 

845 processes such as rising global VPD levels.

846
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Model 

Name

Model Structure Average 

testing R2

Average 

Slope

Average 

RSME

F21 datetime 0.410 0.393 0.380

F26 datetime + VPD 0.648 0.626 0.378

F17 datetime + VPD + Tair 0.672 0.636 0.369

F31 datetime + VPD + Tair + GCC 0.686 0.657 0.364

F32 datetime + VPD + Tair + GCC + Rnet 0.689 0.665 0.364

F15
datetime + VPD + Tair + GCC + Rnet + 

WT
0.694 0.663 0.360

F33 datetime + H_gf + VPD 0.753 0.726 0.340

F34 datetime + H_gf + VPD + Tair 0.762 0.734 0.336

F11 datetime + H_gf + VPD + Tair + u∗ 0.853 0.831 0.264

F35
datetime + H_gf + VPD + Tair + u∗+ 

er_Reichstein
0.863 0.851 0.258

F14
datetime + H_gf + u∗+ VPD + Tair + 

GCC + Rnet + WT
0.877 0.868 0.252

F36

datetime + H_gf + u∗+ wc_gf + 

er_Reichstein + VPD + Tair + GCC + 

Rnet + WT

0.891 0.880 0.237

1150

1151

1152 Table 2: Validation R2, slope, and RSME values of seven ANNs used to partition 

1153 evapotranspiration measurements and validated with data collected right after flooding for 
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1154 East End, Mayberry Farms, and Sherman Island wetland sites. Models are ordered by the 

1155 increase in complexity, from model F21 (most basic) to F36 (most complex). Refer to Tables 

1156 1 and 3 for each model’s input variables. Validation R2 values higher than 0.7 are highlighted 

1157 in bold.

East End Mayberry Farms Sherman IslandModel 

Name R2 Slope RSME R2 Slope RSME R2 Slope RSME

F21 0.29 0.28 0.75 0.06 0.09 0.47 0.34 0.25 0.49

F26 0.48 0.52 0.90 0.26 0.37 0.82 0.61 0.50 0.56

F17 0.50 0.46 0.77 0.31 0.41 0.82 0.63 0.56 0.60

F15 0.24 0.15 0.44 0.16 0.13 0.39 0.37 0.28 0.50

F33 0.61 0.66 0.90 0.48 0.81 1.13 0.62 0.71 0.76

F11 0.81 0.86 0.70 0.69 0.95 0.85 0.82 1.00 0.65

F36 0.51 0.45 0.75 0.56 0.48 0.57 0.53 0.43 0.56

1158

1159

1160 Table 3: Validation R2, slope, and RSME values of seven ANNs used to partition 

1161 evapotranspiration measurements and validated with winter time data (December to 

1162 February) for each of the four wetlands studied (East End, Mayberry Farms, Sherman Island, 

1163 and West Pond). Models are listed according to the increase in complexity, from model F21 

1164 (most basic) to F36 (most complex). Refer to Tables 1 and 4 for each model’s input variables. 

1165 Validation R2 values higher than 0.7 are highlighted in bold.

East End Mayberry Farms Sherman Island West PondModel 

Name R2 Slope RSME R2 Slope RSME R2 Slope RSME R2 Slope RSME

F21 0.06 0.02 0.05 0.06 0.06 0.21 0.15 0.11 0.23 0.08 0.30 0.09

F26 0.17 0.25 0.41 0.26 0.38 0.58 0.45 0.48 0.45 0.03 0.08 0.46

F17 0.21 0.24 0.36 0.35 0.47 0.56 0.47 0.49 0.48 0.05 0.06 0.28

F15 0.33 0.41 0.44 0.14 0.12 0.26 0.43 0.29 0.31 0.17 0.11 0.25

F33 0.21 0.71 1.03 0.22 0.48 0.77 0.19 0.42 0.79 0.01 0.01 0.12

F11 0.33 1.15 1.23 0.56 0.71 0.55 0.70 1.27 0.76 0.11 0.11 0.29

F36 0.45 0.95 0.79 0.43 0.59 0.60 0.69 0.87 0.54 0.36 0.17 0.21

1166

1167
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1168 Table 4: R2 and slope values for linear regression of ecosystem level transpiration data 

1169 predicted by seven ANNs versus leaf-level transpiration data collected in 2017 for East End. 

1170 Models are ordered by the increase in complexity from model F21 (most basic) to F36 (most 

1171 complex). Note that leaf-level transpiration is measured on a per leaf area basis, whereas 

1172 ANN predicted transpiration is measured on a per ground area basis (see section 2.5 for 

1173 details). The slope parameter, therefore, does not show an under-estimation of the ANN 

1174 predicted transpiration values in this case.

Model Name Model Structure R2 value Slope value

F21 datetime 0.979 0.95

F26 datetime + VPD 0.984 0.79

F17 datetime + VPD + TA 0.984 0.75

F15 datetime + VPD + TA + GCC + Rnet + WT 0.987 0.81

F33 datetime + H_gf + VPD 0.99 0.93

F11 datetime + H_gf + VPD + TA + u∗ 0.986 0.76

F36

datetime + H_gf + u∗+ wc_gf + er_Reichstein + 

VPD + TA + GCC + Rnet + WT 0.922 0.70

1175

1176

1177 Figure Legends

1178

1179 Figure 1: Comparison between the eddy covariance measured daytime evaporation flux 

1180 (H2Omeasured) and daytime evaporation predicted by ANNs (H2Omodeled) using model F11 (top 

1181 panels, a-c) and F36 (bottom panels, d-f) based on data collected right after flooding for 

1182 Mayberry Farms (a, d), East End (b, e), and Sherman Island (c, f). Note: the black lines are 

1183 1:1 relationships for reference, red lines show linear regressions with standard deviation, and 

1184 blue dots represent the data.

1185

1186 Figure 2: Comparison between the eddy covariance measured daytime evaporation flux 

1187 (H2Omeasured) and daytime evaporation predicted by ANNs (H2Omodeled) using model F11 (top 

1188 panels, a-d) and F36 (bottom panels, e-h) based on data collected during senescent periods in 

1189 winter (December to February) at Mayberry Farms (a, e), East End (b, f), Sherman Island (c, 

1190 g), and West Pond (d, h). Note: the black lines are 1:1 relationships for reference, red lines 

1191 show linear regressions with standard deviation, and blue dots represent the data. 

1192
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1193 Figure 3: Ecosystem level transpiration data (H2Omodeled) predicted by ANNs F11 (a) and F36 

1194 (b) validated against leaf-level (LL) transpiration data (H2Omeasured) collected during the field 

1195 campaigns in 2017 for the two dominant species in the wetland: Tule (yellow triangles) and 

1196 Cattail (blue squares). The overall linear regression line (solid red line) and standard 

1197 deviation (dashed red line) is based on average leaf-level transpiration across both species 

1198 (red asterisks). Error bars represent the standard deviation from the mean for each 

1199 measurement interval and species for the leaf-level data. Leaf-level data were pooled for 30-

1200 min intervals to match the eddy covariance averaging period (i.e. each symbol (square, 

1201 triangle or asterisks) represents measurements taken during one 30-min interval). The solid 

1202 black lines show 1:1 relationships for reference. Note that leaf-level transpiration is measured 

1203 on a per leaf area basis, whereas ANN predicted transpiration is measured on a per ground 

1204 area basis (see section 2.5 for details). The slope, therefore, does not show an under-

1205 estimation of the ANN predicted transpiration values in this case.

1206

1207 Figure 4: Monthly regressions of evapotranspiration (ET) vs Gross Ecosystem Productivity 

1208 (GEP) data for four wetland sites Mayberry Farms (a), East End (b), West Pond (c), and 

1209 Sherman Island (d) for T/ET partitioning using the Scott and Biederman (2017) method for 

1210 long-term flux data. Each regression line represents data for the same month across multiple 

1211 years. The method is considered unreliable for winter months when GEP is small (November 

1212 through March, shown in dashed lines and cross symbols). Negative regression lines for most 

1213 months at Sherman Island (d) indicate that the methodology does not work at this site, 

1214 potentially due to the shorter time period of this dataset (4 years) or because of the large 

1215 contribution of evaporation at this site (see main text for detailed discussion).

1216

1217 Figure 5: Average monthly evaporation (E) (top panels, a-d) and transpiration (T) (bottom 

1218 panels, e-h) fluxes across four wetland sites: Mayberry Farms (a, e), East End (b, f), West 

1219 Pond (c, g), and Sherman Island (d, h) comparing the ANN T/ET partitioning method 

1220 described in this paper (red lines and square symbols) and the Scott and Biederman (2017) 

1221 method (blue lines and triangle symbols) on long-term flux data. Error bars are based on the 

1222 standard error of the fit intercept and slope for the Scott and Biederman (2017) method and 

1223 on the interquartile range of the 20 individual ANN runs for the ANN method. Comparisons 

1224 were done using ANN F11 for all sites. Gross Ecosystem Productivity (GEP, yellow lines and 

1225 asterisks) for each site is shown for comparison in the bottom panels with a separate y-axis on 

1226 the right.
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1227

1228 Figure 6: Annual intercomparison of (a) total evapotranspiration (ET), (b) gross ecosystem 

1229 productivity (GEP), (c) evaporation (E), (d) transpiration (T), and (e) transpiration over 

1230 evapotranspiration ratio (T/ET) between four wetland sites (Mayberry Farms, 2013-2019, 

1231 blue triangles; West Pond, 2013-2019, red squares; East End, 2014-2019, yellow asterisks; 

1232 and Sherman Island, 2016-2019, purple circles). E and T values are based on the ANN 

1233 partitioning routine (F11) described in this study. 
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