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We present converged ab initio calculations of structure factors for elastic spin-dependent WIMP
scattering off all nuclei used in dark matter direct-detection searches: 19F, 23Na, 27Al, 29Si, 73Ge, 127I, and
129;131Xe. From a set of established two- and three-nucleon interactions derived within chiral effective field
theory, we construct consistent WIMP-nucleon currents at the one-body level, including effects from axial-
vector two-body currents. We then apply the in-medium similarity renormalization group to construct
effective valence-space Hamiltonians and consistently transformed operators of nuclear responses.
Combining the recent advances of natural orbitals with three-nucleon forces expressed in large spaces,
we obtain basis-space converged structure factors even in heavy nuclei. Generally results are consistent
with previous calculations but large uncertainties in 127I highlight the need for further study.
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The nature of dark matter (DM) is perhaps one of the
most important unanswered questions in physics [1–4].
Weakly interacting massive particles (WIMPs) [5–8]
remain among the most likely DM candidates, favored
by many theories beyond the standard model of particle
physics. A large number of direct-detection experiments
worldwide aim to gain some insight into their properties
through observation of the nuclear recoil from the scatter-
ing of galactic WIMPs off particular target nuclei. In order
to meaningfully interpret the results of such searches,
accurate theoretical WIMP-nucleus cross sections are
needed to determine the rate of potential DM scattering
events. Such calculations are tremendously complicated
and require solid theoretical underpinnings of both particle
and nuclear physics: first to determine howWIMPs interact
with nucleons in nuclei, then to fold in the relevant nuclear
structure for detector nuclei, which span the medium- and
heavy-mass regions.
Chiral effective field theory (EFT) provides a systematic

expansion and consistent treatment of both nuclear forces
and one- and two-body currents (2BCs) of external probes
coupling to nucleons, such as WIMP-nucleus scattering [9].
Indeed 2BCs have a significant impact on both electroweak
transitions in nuclei [10–17] and DM scattering [18–22].
Nuclear physics is then encoded in the so-called structure
factors [5]. To date, phenomenological large-scale shell
model (LSSM) approaches, including effects from 2BCs,
have provided the most prominent calculations of structure
factors for detector nuclei [18–20,23–25]. In the LSSM,
however, operators must typically be adjusted to further
account for neglected many-body physics outside the

valence space and improve agreement with data [26,27],
but currently no WIMP-nucleus scattering data exist to
compare.
Over the past decade, ab initio nuclear theory has made

rapid progress in the range of masses and physics that
can be treated [28] and has already been applied to DM
scattering in light nuclei [21,29–33]. All detector nuclei,
however, reside in the medium- or heavy-mass region,
where significant computational hurdles have so far hin-
dered converged calculations. Recently a novel storage
scheme for three-nucleon (3N) force matrix elements was
developed, which allows converged ground- and excited-
state energies to the 208Pb region [34,35], as well as
neutrinoless double-beta decay matrix elements in 136Xe
[36,37]. Furthermore, the natural-orbital (NAT) basis
[38–40] provides a complementary framework for improv-
ing basis-space convergence. In this Letter we exploit these
combined advantages in the valence-space formulation
of the in-medium similarity renormalization group (VS-
IMSRG) [41–46] to obtain basis-space converged spin-
dependent structure factors for all relevant detector nuclei:
19F, 23Na, 27Al, 29Si, 73Ge, 127I, and 129;131Xe. While we find
our results generally agree well with previous LSSM
calculations, providing a consistent picture from indepen-
dent theoretical approaches, large uncertainties in 127I
warrant further study. This framework can also be applied
straightforwardly to neutrino and spin-independent DM
scattering.
The effective Lagrangian for the axial-vector inter-

action of a WIMP χ with a standard-model field is given
by [5,6,18,19]
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Lχ ¼ −
GFffiffiffi
2

p χ̄γμγ5χ ·
X

q¼u;d;s

Cqq̄γμγ5q; ð1Þ

where the sum runs over the light quark fields q, GF is the
Fermi coupling constant, and Cq are WIMP-quark coupling
constants. Here the WIMP spin is assumed to be 1=2, and
we neglect the pseudoscalar interaction, which is sup-
pressed in the non-relativistic limit [5]. The differential
cross section for spin-dependent WIMP elastic scattering
off a nucleus in a ground state with total angular momen-
tum J is given by [5]

dσ
dq2

¼ 8G2
F

ð2J þ 1Þv2 SAðq
2Þ; ð2Þ

where q (q≡ jqj) denotes the momentum transfer from
nucleus to WIMP, v indicates the WIMP velocity, and
SAðq2Þ is the axial-vector structure factor, obtained from
detailed nuclear theory calculations.
Combining one- and two-body currents to order Q3 in

chiral EFT, SAðq2Þ can be expressed in terms of the
transverse and longitudinal nuclear response functions

F
Σ0
L

� ðqÞ and F
Σ00
L

� ðqÞ [24]

SA ¼
X

L

n
a0F

Σ0
Lþ ðqÞ þ a1½1þ δ0ðq2ÞÞFΣ0

L− ðq�
o
2

þ
X

L

n
a0F

Σ00
Lþ ðqÞ þ a1½1þ δ00ðq2ÞÞFΣ00

L− ðq�
o
2
; ð3Þ

where the labels 0ðþÞ and 1ð−Þ distinguish isoscalar and
isovector contributions, respectively, while the coupling
constants a0 and a1 are form factors encoding information
from the particle and hadronic sectors [18,19,24]. The
terms δ0ðq2Þ and δ00ðq2Þ encode physics beyond leading
spin-dependent coupling, combining effects of radius
corrections, pseudoscalar form factors, and 2BCs:

δ0ðq2Þ ¼ −
q2hr2Ai

6
þ δaðq2Þ;

δ00ðq2Þ ¼ −
gπNNFπ

gAmN

q2

q2 þM2
π
þ δaðq2Þ þ δaPðq2Þ; ð4Þ

where hr2Ai is the axial radius, taken to be 0.46ð16Þ fm2

from a global analysis of muon capture and neutrino
scattering [47]. For the axial-vector coupling constant
gA, pion-decay constant Fπ , πN coupling constant gπNN ,
we take values consistent with chiral nuclear forces.
The 2BC contributions δa ðq2Þ and δaP ðq2Þ are approxi-

mated via normal ordering with respect to a Fermi gas
reference state with density ρ [24], similar to β and ββ
decay studies [12,17]. To assess the accuracy of this
approximation, we note that the δa term that remains at
q ¼ 0 MeV in Eq. (4) is the same as for Gamow-Teller

transitions, where full 2BCs have been calculated. Since the
full 2BC result lies within the range obtained by normal
ordering with ρ ¼ 0.08…0.12 fm−3 [17], we at least expect
this to be reliable at low-momentum transfer, and similar
investigations are underway for heavier nuclei. As in
Refs. [19,24], we take ρ ¼ 0.08…0.12 fm−3 and include
all pion-exchange, pion-pole, and contact terms derived in
Ref. [24]. For consistency we take the values for coupling
constants and LECs (e.g., c1, c3, c4, and cD) that appear
in chiral currents to be the same as in the particular
chiral nucleon-nucleon (NN) interactions used in this work
[17,48–52]. One should use 2BCs consistent with the chiral
order of nuclear forces, but when there is a mismatch (e.g.,
the N4LOþ 3Nlnl interaction), higher-order effects can be
estimated by shifting LECs [50,53]. We find such effects to
be 10% for structure factors. Since we also consider a Δ-full
interaction, we consistently include the 2BCs due to the
excitation of a nucleon into a Δ via pion exchange [54].
Finally, we use a value of c6 ¼ 5.01ð1.06Þ GeV−1 adopted
from Table V in Ref. [24], including uncertainty from chiral
loops correction. See Supplemental Material [55] for further
details, which includes Refs. [56–61].
The structure factor SAðqÞ can be decomposed into

isoscalar or isovector components S00, S01, and S11 through

SAðqÞ ¼ a20S00ðqÞ þ a0a1S01ðqÞ þ a21S11ðqÞ: ð5Þ

However, it is common in the literature to use the “proton”
(Sp) and “neutron” (Sn) factors, defined by the couplings
a0 ¼ a1 ¼ 1 and a0 ¼ −a1 ¼ 1, respectively. Here we
focus on Sp and Sn, but the S00, S01, and S11 can be
obtained from our public Jupyter notebook [62].
To investigate uncertainties due to nuclear Hamiltonians,

we start from three established chiral interactions and
corresponding currents. Specifically, we use 1.8=2.0ðEMÞ
[48,63], which reproduces ground-state energies to the
heavy-mass region (while underpredicting charge radii)
[64,65]; the N4LOþ 3Nlnl interaction of Refs. [66,67];
and the newly developed ΔNNLOGOð394Þ [51] which
includes explicit Δ-isobar degrees of freedom and optimizes
NN and 3N forces simultaneously at the N2LO level.
For the nuclear calculation, we begin in a harmonic

oscillator (HO) basis with frequency ℏω then transform the
Hamiltonian and nuclear response operators to the Hartree-
Fock (HF) or NAT basis constructed from the perturba-
tively improved one-body density matrix [38–40]. We take
e ¼ 2nþ l ≤ eHF=NATmax , with an additional truncation
e1 þ e2 þ e3 ≤ E3max imposed for 3N matrix elements.
Finally, we use the Magnus formulation of the VS-IMSRG
[41–45,68] in a smaller subspace emax ≤ eHF=NATmax to
decouple a valence-space Hamiltonian, using ensemble
normal ordering to approximately capture 3N forces
between valence nucleons [44]. The operators for the
nuclear response are consistently transformed to produce

PHYSICAL REVIEW LETTERS 128, 072502 (2022)

072502-2



effective valence-space operators, truncated at the two-
body level, the IMSRG(2) approximation. We take the
same valence spaces used in LSSM calculations: sd shell
for 19F, 23Na, 27Al, and 29Si; f1p3=2; 0f5=2; 1p1=2; 0g9=2g
orbits above a 56Ni core for 73Ge, and f0g7=2; 1d5=2;
1d3=2; 2s1=2; 0h11=2g orbitals above a 100Sn core for 127I
and 129;131Xe and perform exact diagonalizations with the
KSHELL code [69].
Ab initio calculations of structure factors require con-

siderable computational resources. In the present study,
each nuclear response is calculated at 15 momentum
transfer points, each requiring its own IMSRG transforma-

tion. Furthermore F
Σ0
L

� ðqÞ and F
Σ00
L

� ðqÞ are sums over the
possible multipoles L (e.g., L ¼ 1, 3 and 5 in 127I case) and
the cost of the IMSRG transformation grows with L.
Therefore convergence at relatively low emax is necessary
for such computations to be tractable in heavy nuclei.
In Fig. 1(a), we illustrate convergence of Sn within the

HF and NAT bases for 129Xe, where Sp and all other studied
nuclei follow a similar pattern. For HF, we take the
conventional eHFmax ¼ emax truncation, while we use eNATmax ¼
14 to construct the NAT basis, then perform the VS-IMSRG
calculation in the smaller emax ð< eNATmax Þ subspace noted in
the figure. While we find a rather slow convergence within
the HF basis, in the NAT basis, there is almost no change
from emax ¼ 8–10, demonstrating convergence is obtained
by emax ¼ 8. In Fig. 1(b), we further confirm convergence
at emax ¼ 8 through variation of the basis parameter

ℏω ¼ 12–20 MeV, with results nearly independent of
this choice. We also note that the smallest ℏω gives the
most rapid convergence, consistent with other studies of
electroweak observables in heavy nuclei [70], suggesting a
choice of ℏω ¼ 12 MeV is preferable in the 132Sn region.
Finally in panel (b), we also illustrate the effects of
including 2BCs, that result in a ∼20% suppression
(q ≲ 100 MeV region) of the structure factor similar to
previous LSSM works [19].
Based on convergence trends, we take the following

prescription for our final structure factor calculations.
For nuclei in the sd shell and 73Ge, we use the HF basis
with eHFmax ¼ emax ¼ 10, while for the heavy nuclei 129I
and 129;131Xe, we use the NAT basis with eNATmax ¼ 14 and
emax ¼ 8. In all cases we use ℏω ¼ 16 MeV and
E3max ¼ 22, which, as illustrated in the Supplemental
Material [55], is sufficient to obtain converged structure
factors. While a large E3max is necessary to obtain con-
verged ground-state energies of heavy nuclei [34], we note
structure factors are largely converged by E3max ¼ 18.
At q ¼ 0 MeV, the structure factor is given by [5]

SAð0Þ¼
ðJþ1Þð2Jþ1Þ

4πJ
jða0þa01ÞhŜpiþða0−a01ÞhŜnij2;

ð6Þ

where Ŝp and Ŝn denote the total spin for protons and
neutrons, respectively, and a01 ¼ a1½1þ δað0Þ� includes
the effects from chiral 2BCs, namely, δað0Þ. In Fig. 2
we show the calculated spin expectation values compared
with the naive single-particle model (SPM) estimate of
Ref. [5] and LSSM results with different phenomenological
Hamiltonians [19]. Generally the VS-IMSRG gives similar
results independent of starting Hamiltonian and consistent
with the LSSM, though the uncertainties in heavy nuclei,

FIG. 1. (a) Convergence of the 129Xe structure factors Sn in the
HF and NAT bases with the 1.8=2.0ðEMÞ interaction. (b) ℏω
dependence of the results, where solid and dotted lines give
calculations with and without 2BCs, respectively. The inset in
panel (b) shows reduction rate of Sn caused by 2BCs.

FIG. 2. Ab initio results of spin expectation for proton Ŝp and
neutron Ŝn, compared to LSSM calculations [19] and single-
particle model (SPM) estimates of Ref. [5].
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as estimated by the spread in values, are somewhat smaller
than those from the LSSM. As expected for odd-mass
nuclei, there is a clear hierarchy of the spin expectation
values with either jhŜpij ≫ jhŜnij or jhŜnij ≫ jhŜpij,
depending on the unpaired nucleon. We note that the
ab initio result for 127I gives the biggest difference
compared with SPM and LSSM. This is because the wave
functions obtained with the ΔNNLOGO and N4LOþ 3Nlnl

interactions are dominated by a ð0g7=2Þ3 proton configu-
ration, while the 1.8=2.0ðEMÞ wave function has a larger
contribution from a fð0g7=2Þ2ð1d5=2Þ1g configuration, lead-
ing to the opposite spin.
To generate our final results, we note that in the case of the

HO basis, the matrix elements of F
Σ0
L

� ðqÞ andFΣ00
L

� ðqÞ can be
evaluated analytically, yielding forms ∼e−ðu=2ÞpðuÞ where
pðuÞ is a polynomial in the dimensionless variable u ¼
q2b2=2 and b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ðmωÞp
. Although ab initio many-body

wave functions are composed of a mixture of HO configu-

rations, the final F
Σ0
L

� ðqÞ and F
Σ00
L

� ðqÞ still follow the
e−ðu=2ÞpðuÞ forms. By fitting the results at the 15 calculated
q points, we obtain smooth curves for structure factors as a
function of q. Our Jupyter notebook gives the fit coefficients,
so structure factors can then be evaluated at any q point.
Figure 3 shows the final structure factors for all

spin-dependent detector nuclei, compared to those of

phenomenological LSSM calculations [24]. The overall
VS-IMSRG error band takes into account the uncertainty
due to the input nuclear interactions as well as the
parameter ρ ¼ 0.08…0.12 fm−3 in the treatment of
2BCs, while the LSSM uncertainty bands originate from
the LECs c3, c4 and the density ρ range. We note the
uncertainty from higher-order (> Q3) one-body and two-
body currents is not included in Fig. 3. We first see that the
structure factors Sp and Sn have a clear hierarchy for all
calculated nuclei, which is consistent with the spin expect-
ation values. The dominant structure factors are in overall
agreement with the LSSM predictions, while for the non-
dominant factors, ab initio calculations generally have a
larger uncertainty at q ≲ 100 MeV, primarily resulting
from the 2BCs from ΔNNLOGO. As shown in Figs. S10
and S11 in the Supplemental Material [55], the largest
differences with LSSM arise in 23Na and particularly 127I,
where the minimum value of the dominant factor band is
reduced by 66% and 92%, respectively (29Si gives a 120%
enhancement, but the LSSM Sn in 29Si is smaller than Sp in
23Na or 127I).
Because of the corrections shown in Eq. (4), the

dominance of either structure factor Spðq2Þ or Snðq2Þ
becomes somewhat less clear. The earlier LSSM calcu-
lations demonstrated that the δaðq2Þ and δaPðq2Þ give the
dominant corrections of structure factors in the small q

FIG. 3. Ab initio structure factors Sp and Sn for 19F, 23Na, 27Al, 29Si, 73Ge, 127I, and 129;131Xe as a function of momentum transfer q.
The gray bands indicate LSSM calculations, where results in 129;131Xe are obtained from Ref. [24]. For other nuclei, by taking fit
coefficients of nuclear response functions in Ref. [24], we give LSSM results including 2BCs with all pion-exchange, pion-pole, and
contact terms. The VS-IMSRG bands indicate the spread in results from different interactions (lighter bands) and uncertainties in 2BCs
(darker bands), while LSSM bands are from 2BC uncertainties only. We also give the structure factors in polar coordinates in the
Supplemental Material [55] to facilitate experimental comparisons.
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region ≲100 MeV [19]. Similar to previous works, our
calculations show that 2BCs suppress the dominant struc-
ture factor by 10%−35% at low q. Also, enhancement of
the nondominant structure factor is observed for the
1.8=2.0ðEMÞ and N4LOþ 3Nlnl interactions. Although
2BCs from ΔNNLOGO tend to increase the nondominant
factor significantly, we find a reduction in 19F and 127I. This
is a primary source of the large uncertainty bands shown in
Fig. 3. Since the relevant LECs employed in Δ-less and
Δ-full EFTs are quite different (see Supplemental Material
[55]), this is somewhat expected. We note that the Δ
excitation effects are compensated by the relatively large
LECs in the Δ-less chiral EFT, and the final corrections
δaðq2Þ and δaPðq2Þ are comparable in both EFTs, except
for the 19F and 127I cases. Moreover, we find that δaPðq2Þ is
overall suppressed by the contact-cD and pion-pole terms,
leading to an always negative longitudinal correction
δ00ðq2Þ in Eq. (4).
Finally, while our focus has been on structure factors, in

the Supplemental Material [55], including Refs. [71,72],
we show ground-state energies and spectra for the nuclei
studied. We note the at times poor agreement with experi-
ment, particularly for heavy nuclei (where deformation is
likely not adequately captured), but it is not clear to what
extent this appreciably impacts DM scattering, since, e.g.,
spin expectation values are nevertheless very similar to those
of the LSSM, which well reproduces all spectra. To this end
we have performed a preliminary systematic exploration
using a number of initial NN+3N forces spanning a vast
space of LECs [35] and find little to no correlation between
spectroscopic quality and spin expectation values.
In summary we have used the VS-IMSRG to compute

ab initio spin-dependent structure factors for all nuclei
currently used in direct detection searches. Using three
different NNþ 3N interactions from chiral EFT with
consistent 2BCs, we obtain convergence even in heavy
nuclei using the NAT basis with emax ¼ 8 and E3max ¼ 22.
Overall results are consistent with LSSM calculations, but
notable discrepancies at low momentum transfer can be
seen in several cases, highlighting the need for further
improvements. While the work presented here is a prom-
ising first step, additional sources of uncertainty remain to
be explored, such as the IMSRG(3) truncation [73] and
direct inclusion of 2BCs without the normal-ordering
approximation. Furthermore, nonrelativistic EFT [32,74]
is a complementary approach to tackle the physics of
WIMPs-nucleon interactions, and has already been imple-
mented within the VS-IMSRG to provide future compar-
isons with the chiral EFT results. Finally, work is currently
in progress to extend these calculations to nuclear structure
factors or nuclear responses for spin-independent WIMP-
nucleus scattering, inelastic WIMP scattering and coherent
elastic neutrino-nucleus scattering. All results presented
here are publicly available in a Jupyter notebook (see
Supplemental Material [55]).
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