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We show analytically using a macrospin approximation that easy-plane spin Hall nano-oscillators
excited by a spin-current polarized perpendicularly to the easy-plane have phase dynamics analogous
to that of Josephson junctions. Similarly to Josephson junctions, they can reproduce the spiking
behavior of biological neurons that is appropriate for neuromorphic computing. To take advan-
tage of typical spin-orbit torques, we use a nano-constriction geometry, in which the magnetostatic
interaction and magnetocrystalline anisotropy are tuned to create an easy plane that includes the
interface normal direction. We perform micromagnetic simulations of such oscillators realized in this
geometry and show that the easy-plane spiking dynamics is preserved in this experimentally feasible
architecture. Finally we simulate two elementary neural network blocks that implement operations
essential for neuromorphic computing. First, we show that output spikes energies from two neurons
can be summed and injected into a following layer neuron and second, we demonstrate that outputs
can be multiplied by synaptic weights implemented by locally modifying the anisotropy.

Spintronic nano-oscillators can emulate neurons: their
nonlinear dynamics has already enabled multiple demon-
strations of supervised learning [1-4]. However, spin-
tronic devices have not yet produced the spiking behavior
of biological neurons.

Spiking dynamics is interesting for neuromorphic com-
puting for several reasons: it allows for particularly
energy-efficient encoding of information, but it could also
allow for the implementation of local learning rules such
as spike timing-dependent plasticity (STDP) that enables
some forms of unsupervised learning [5, 6].

On the other hand, several groups are pursuing Joseph-
son junctions as spiking neurons in neuromorphic com-
puting schemes. Indeed, the superconducting phase in
Josephson junctions can be made to oscillate so pre-
dictably that they consitute the realization of the volt
within the Systéme international d’unités (SI). They can
also operate in a spiking regime in which they make sin-
gle cycles in their phase [7, 8]. The chaotic physics of
these systems can give rise to rich and useful neural dy-
namics, but there the picosecond timescale of the phase
spikes [9] and the low-temperature setup required for su-
perconducting physics both make integration of Joseph-
son junction neurons with other computing technologies
challenging.

Khymyn et al. have recently showed that spiking dy-
namics similar to that of Josephson junctions could be
obtained in spin Hall nano-oscillators (SHNOs) based on
antiferromagnetic materials [10]. These devices could
produce voltage spikes at terahertz rates provided the
injected spin-current is polarized perpendicularly to the
easy-plane. Their magnetization undergoes a precession
in the easy-plane with a phase that can be described
by equations analogous to those of the superconducting
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phase in Josephson junctions [11]. Similarly to the volt-
age spikes that Josephson junctions emit above the crit-
ical supercurrent [7-9], easy-plane antiferromagnetic os-
cillators can emit voltage spikes above the critical spin
current density. This result is promising for its appli-
cations in terahertz generation, neuromorphic comput-
ing, [12], and macroscopic antiferromagnetic qubits [13].
However, it is challenging to realize these devices because
of the difficulty of growing easy-plane antiferromagnetic
materials and controlling their domain structure. At-
tempts to address this difficulty have led to the discov-
ery that similar dynamics can be obtained in synthetic
antiferromagnetic junctions [14].

In this work we demonstrate spiking behavior in an
analogous architecture with easy-plane ferromagnetic
materials, which are more readily mastered experimen-
tally, by tuning anisotropies to create a perpendicular
easy plane as shown in Fig. 1. Besides their capacity to
spike, easy-plane ferromagnetic oscillators are fundamen-
tally interesting for their characteristic oscillation prop-
erties emerging from the circular precession as opposed
to the elliptical precession more common in easy-axis os-
cillators. Circular precession at angular frequency w can
eliminate the emission at 2w that increases the effective
damping [15]. As a consequence, easy-plane oscillators
should have both lower frequency and damping than the
easy-axis oscillators.

In the first part of this article we show using the
macrospin approximation that Josephson dynamics can
be obtained in an easy-plane ferromagnetic spin Hall
architecture. We explore the spiking dynamics of this
model and show that a spiking macrospin neuron can
trigger the activation of a second macrospin neuron via
the spin wave emissions resulting from a spike event.
In the second part we perform micromagnetic simula-
tions and show that such dynamics is preserved for ex-
perimentally feasible nano-constriction oscillator archi-
tecture [16]. In the third part we show that these oscil-
lators can be coupled in two-dimensional arrays through



FIG. 1. Schematic of an easy-plane spin Hall nano-oscillator.
The bottom layer is a normal heavy metal (NM) that polarizes
the electrical current j. in spin. The top layer is a ferromagnet
(FM) with a net easy-plane (the zz-plane) perpendicular to
the polarization p of the injected spins. The magnetization m
precesses in the xz-plane with phase ¢ and small out-of-plane
tilt e.

synapses whose weights can be controlled by locally mod-
ifying the anisotropy. We also show that the nano-
constriction geometry allows for a multi-input neuron.
We close by discussing prospects for neuromorphic com-
puting.

I. MACROSPIN MODEL

To motivate the essential physics of the easy-plane
ferromagnetic neuron, we show how an appropriately
chosen system can exhibit dynamics described by the
same damped driven pendulum physics that governs the
Josephson equation. We consider a bilayer, shown in
Fig. 1, composed of a low damping ferromagnet with
perpendicular magnetic anisotropy (PMA) on top of a
non-magnetic heavy metal with large spin-orbit coupling
which polarizes the spin of the electrical current through
the spin Hall effect. In the macrospin approximation,
the dynamics of the scaled ferromagnet magnetization,
m = M /M, where Mj is the saturation magnetization,
follows the Landau-Liftshitz-Gilbert (LLG) equation

m = —yom x Hez + am x 1 +71m x (m x p), (1)

where 7 = ¢j is the spin torque, j is the current density,
a is the Gilbert damping, p = e, is the spin current
polarization direction, vo = po7y, po is the permeability
of free space, and + is the gyromagnetic ratio. Since the
spins that are injected from the heavy metal are along the
y-direction, we tune the shape and magnetocrystalline
anisotropies to create a net easy xz-plane. This can be
accomplished by tuning the PMA to roughly cancel the
out-of-plane shape anisotropy and elongating the slab in
Fig. 1 along the z-direction to create a net hard axis
along y and a weak easy axis along x [17]. We model
this anisotropy with an effective magnetic field

Heff = Hema:ex - Hhmyeya (2)

with characteristic easy- and hard-axis anisotropy fre-
quencies we = Y9H, and wy = v9Hp. The LLG equation
above underpins both the macrospin and micromagnet-
ics simulations throughout the remainder of this paper.
In the next section, we reduce this equation to an effec-
tive equation of motion in ¢ = arctan(m,/m;), and show
that it maps onto several other systems of physical inter-
est. Then in Sec. I B we show that simple simulations of a
few coupled macrospins can capture the physics of spike
transmission from neuron to neuron through a magnetic
medium, motivating the full-scale micromagnetic simula-
tions developped in the rest of the paper.

A. Mapping to the Josephson equation

For easy-axis anisotropy much smaller than hard-axis
anisotropy, we < wp, to linear order in w,/wy, we find
from Eq. (1) that the precession phase,

m
¢ = arctan( Z) ,
My

has the equation of motion

1 . . . 2 . ) .
OThQS + ap + % (1 + w}%qﬁz) sin 2¢ = 0. (3)

Under the change of variable § = 2¢, and neglecting for
now the ¢? term, this is analogous to that of a supercon-
ducting phase ¢ of a Josephson junction [18]
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with R, C, and I. the resistance, capacitance and crit-
ical current, or equivalently the equation of motion for
a damped driven pendulum. Also of this form are the
dynamics of the precessional phase ¢ of an antiferromag-
netic spin Hall oscillator [10-12]

1

é+aq’5+%sin2¢>=aj. (5)
ex
The hard axis anisotropy wy, in the ferromagnet gives the
inertia to the system, similarly to the exchange coupling
Wex 1n the antiferromagnet and the capacitance C' in the
Josephson junction. As in the antiferromagnetic system,
the second-order inertial dynamics arises by integrating
out the small out-of-plane magnetization.

In the case of the ferromagnetic easy-plane SHNO

there exists an additional q52 sin2¢ term that can-

not be neglected. Nevertheless, in the limit w, < wp,
the precession dynamics is dominated by the hard-axis
anisotropy, ¢ ~ wy, such that

We 19

— 0% ™ W,. 6
St (6)
This additional term is of the same order as the other
sin 2¢ term and presents a velocity-dependent contribu-
tion to the restoring force. That the restoring force dif-
fers by a factor of two between the rest and precessional



states of the oscillator may quantitatively complicate the
post-spike relaxation of the system, but the spiking be-
havior we observe in simulation is qualitatively similar to

that of Egs. (4) and (5).

B. Simulation of spiking behavior

In analogy to the superconducting phase across
Josephson junctions obeying Eq. (4), we identify 27
phase slips of the in-plane angle ¢ with neural spiking
events, that is, a 27 rotation in ¢ corresponds to a single
spike. In order to generate coordinated spiking behavior
in one of these oscillators, we require that the driving
torque 7 sit near the spiking threshold. For ¢ = ¢ = 0,
Eq. (3) exhibits a fixed point at ¢* = arcsin[27/w,]/2,
which has a real solution only when 27 < w., and has
a vertical asymptote at m/4. This value of 7/4 is the
critical angle beyond which the driving force will gener-
ate a full 27 rotation of the system. It is the analogous
to the 7/2 angle of a damped driven pendulum with re-
spect to the direction of gravity. By tuning the current
in our oscillator to move the fixed point as close to 7 /4
as possible, we can make the neuron’s spiking dynamics
arbitrarily sensitive to incoming torques, such as those
arising from spin waves due to another neuron’s spike
emission.

From a macrospin perspective, holding ¢* close to 7/4
is not alone sufficient to generate coherent spiking. If
¢* is near 7/4 but « is too small, then a single spike
event will take the system into an autooscillation regime
and a rest state can never be recovered. This can be
understood by imagining the neighborhood around ¢* as
a simple harmonic oscillator. If ¢* = 7/4 — € and « is
too small, then the system will have an underdamped re-
sponse when it returns to ¢* after a spike event. If the
amplitude of the underdamped oscillations are greater
than or equal to e then the system will not settle into
¢* but instead pass the critical threshold ¢ = /4 and
undergo another spike event. Since we want e arbitrar-
ily small, we use a large damping value of 0.5 in the
macrospin simulations to ensure an overdamped return
to equilibrium (see Appendix A for more details). In
a real system however, the Gilbert damping should be
small for efficiently communicating angular momentum
between neurons. A solution is to use large synapses into
which energy can be rapidly evacuated over a single spike
period as a way to present a large effective damping for
these oscillator neurons, as shown in Section II.

Note that the total angular momentum generated by a
spike event is largely independent of the angle e. The no-
tion that e can be made arbitrarily small while the spik-
ing energy remains roughly constant is a crucial feature
of this system for neuromorphic application. Guarantees
on stable spiking behavior near a small value of ¢ enable
neural fan-out, as the large angular momentum burst of
a single neural spike can be split up to trigger multi-
ple e-thresholded neurons downstream, where the fan-out

® ®

FIG. 2. Lattice topology of the macrospin simulation. Each
circle represents a macrospin. White circles (¢o and ¢1) are
neuronal macrospins with easy-plane anisotropy and other rel-
evant interactions; gray circles are synaptic macrospins. Con-
nections between macrospins indicate the presence of an ex-
change interaction.

count depends on € and the spike energy. To show that
this is possible, we simulate a small 3 x 3 square lattice
of weakly easy-axis macrospins to which is attached two
“neuron” macrospins that nominally obey Eq. (3). The
setup is depicted in Fig. 2.

To ensure that the neuronal spikes undergo 27 phase
slips and don’t get stuck on the easy axis potential well
at ¢ = m, we apply a weak magnetic field B = Be, to
the entire system. This modifies Eq. (3) through the ad-
dition of a Bsin ¢ term on the left-hand side. We tune
the current j so that the system sits just below the au-
tooscillation regime, and then apply a small perturbative
current ¢j (around 3.5 % of j) over a small time window
At shown by dotted lines in Fig. 3. We find that this
generates a spike (red curve in Fig. 3, and the angular
mometum of that spike deposited into the lattice is strong
enough to trigger spiking events in the other neuron as
well (blue curve in Fig. 3. Note that 0j is turned off
well before the spike peaks; it contributes just enough
torque to push the neuron past its threshold. The rest of
the energy for generating the spike is sourced from the
global j running through the entire system. In this way,
j acts as a local energy source for the neurons, similar to
electrochemical energy stored in ATP in the brain or the
voltage rails V =0 and V = Vyq in a CMOS circuit.

One also observes small bumps preceding the ¢, spikes
in Fig. 3. Just as d0j triggers the spiking of ¢g, these
bumps trigger the spiking of ¢;. A more detailed analysis
reveals that these bumps correspond to a spin-y torque
injected from the neighboring easy-axis macrospins in
the lattice. Plots demonstrating this behavior, as well
as details of the macrospin model, are presented in Ap-
pendix A.

The macrospin model illustrates the principles of op-
eration we envision for a neuromorphic system built on
easy-plane spiking oscillators, but it is limited by the
scope of its realism. In the remainder of the paper, we
explore the neuromorphic system in micromagnetic simu-
lations. Although the microscale physics becomes signifi-
cantly more complex, we recover the same neural behav-
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FIG. 3. Spiking dynamics of the in-plane phase for the neu-
ronal spins ¢o and ¢1. The system is held close to threshold
until a small current pulse is applied to ¢¢ during a time inter-
val during indicated by the dotted lines. This causes a phase
spike for ¢o (red curve). A short time later, ¢1 spikes due
to excitations from the ¢o spike pushing it over its thresh-
old (blue curve). The process is then repeated multiple times
with different intervals.

FIG. 4. Geometry for micromagnetic simulations. The bot-
tom layer is normal heavy metal such as Pt and the top layer
is a 2 nm thick CoFeB. The dark blue arrow shows large in
plane (yellow) 27 precessions of the top layer magnetization.

ior, and investigate additional interesting phenomenon
such as a multi-neuron chains, synaptic weights, and ad-
ditive fan-in.

II. MICROMAGNETIC SIMULATIONS

We perform micromagnetic simulations to show that
easy-plane oscillations and voltage spikes can be obtained
in a nano-constriction oscillator architecture that is con-
venient for coupling oscillators in chains [19]. We con-
sider the geometry shown schematically in Figure 4. The
nano-constriction is 300 nm long and 60 nm wide with
arms that are 150 nm long and 540 nm wide.

Easy-plane dynamics requires a ferromagnetic material
with an easy-plane perpendicular to the polarization of
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FIG. 5. (a) Scaled magnetization components as a function
of perpendicular magnetic anisotropy K,. Transition from
in-plane (m, = 1) to out-of-plane (m. = 1) magnetization is
observed for K, = 0.54 x 10° J/m®. We use minimize routine
from MuMax3 [20] that finds the ground state using the con-
jugate gradient method. (b) Magnetization precession in the
x — z plane with color coded time for input current density
j = 2.4 x10' A/m?. Discrepancies from the circular trajec-
tory due to the exact nano-constriction shape are visible in
the projections on the three planes. (c) Oscillation frequency
as a function of the current density. Critical current density
is 1.5 x10'° A/m?.
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FIG. 6. Normalized tunneling magnetoresistance of the nano-
constriction easy-plane SHNO. Current pulses with density
j = 2.5 x 10*® A/m? are applied over 2 ns time intervals
spaced by 50 ns.

the spin current. Previous studies have used spin valves
with perpendicular spin current polarizer, which has the
benefit of easy-plane in the magnetic film plane that is
easy to obtain, but at the price of a complicated mag-
netic film stack fabrication [21-23]. Here we make the
choice to use the spin Hall effect to inject a spin current.
In this case, fabrication is simple, but the spin current
polarization is in the film plane, such that the easy-plane
needs to be perpendicular to the film plane.

To obtain the perpendicular easy-plane we choose
the strategy that was already used to obtain magnetic
skyrmions in Co, that relies on adjusting the ferromagnet
thickness such that the demagnetizing field compensates
the PMA [17]. In the simulations we fix the thickness and
determine the average equilibrium magnetization along
the different axis for different values of PMA (Fig. 5
(a)). We consider 2 nm thick CoFeB with saturation
magnetization My = 9.55 x 10° A/m, exchange constant
Aoy = 2x 10" J/m and magnetic damping a = 0.01. We
find the easy plane anisotropy at the transition from in
plane (m,=1) to out of plane (m,=1) magnetization for
the z-axis anisotropy of K, = 0.54 x 10% J/m3.

In the following, we set the anisotropy to the compen-
sation value and we apply a spin current js along the
y-direction with the spin polarization set to 1. For a
current density of 1.5 x 10'® A/m? we obtain large cir-
cular oscillations in the perpendicular easy plane that
present distortions compared to the simplified macrospin
model, as can be observed in Fig. 5(b) [24]. This spin
current density is comparable to those typically found in
spin-torque nano-oscillators [25], making it realistic for
experimental realizations.

We find easy-plane dynamics for nano-constriction
widths of 20 nm, 40 nm, and 60 nm, but not for larger
widths. This is due to the fact that magnetization con-

finement is not strong enough for larger widths and the
hard-axis anisotropy is not large enough. For the 60 nm
width the precession orbit is less circular than for smaller
widths; nevertheless, all the results we report in this pa-
per use the 60 nm width because of the greater ease of de-
vice fabrication with e-beam lithography. Furthermore,
we find that it is important that y dimensions of the
arms are larger than their x dimensions, such that their
magnetizations are aligned along the y axis and thus do
not interfere with the zz-plane oscillations in the nano-
constriction.

We use Hilbert transforms to extract the instanta-
neous oscillation frequency as a function of current den-
sity (Fig. 5(c)). The frequency varies approximately lin-
early over a range of 1 x 10! A/m?. For increasing cur-
rent density the magnetization cants more and more out
of the easy-plane. For j = 2.7 x 10'* A/m? the tra-
jectory starts to deviate considerably from a circle in
the easy-plane, which makes the frequency saturate. At
j =3.3x10'% A/m? the out-of-plane angle becomes too
large and there are no more coherent oscillations.

In simple bilayer spin Hall structures, magnetization
dynamics can be detected through the anisotropic mag-
netoresistance effect [26], arising from the fact that the
resistance of the device is dependent on the mutual ori-
entation between the electric current and the magnetiza-
tion. Alternatively, a tunnel junction could be added on
the top such that the magnetization dynamics could be
detected through the tunneling magnetoresistance effect
which has a larger amplitude. For magnetization states
confined to the easy plane

R(6) — R(0) ~ sin® (‘5) . M)

In the figures below, we plot the angular dependence
(rather than the resistance directly) to maintain a close
analogy with the physics of the Josephson junction phase.
To obtain the voltage spikes, we apply a current pulse for
a duration that is equal to a single oscillation period, on
the order of 2 ns for the geometrical parameters we chose.
The magnetization makes a single turn corresponding to
a single spike in magnetoresistance and then slowly re-
laxes towards the easy axis within the easy plane. It
takes about 50 ns to completely relax. After this relax-
ation time, the nano-constriction oscillator neuron can
be excited and spike again, as shown in Fig. 6.

Easy-plane nano-constriction spin Hall oscillators can
thus emulate the spiking behavior of biological neurons.
In the following section we begin the exploration of how
they can be assembled in physical neural networks and
used to encode and process information through dynam-
ics.
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FIG. 7. (a) Top view of a “two-to-one” neural network building block. (b) Current input only in the first of the input layer
neurons (blue), the output neuron (green) does not spike. (¢) Current input only in the second of the input layer neurons (red),
the output neuron does not spike. (d) When both input neurons spike, the energies of output spin waves sum up and make the

output layer neuron spike.

IIT. PROPOSAL FOR NEUROMORPHIC
COMPUTING - SPIKE PROPAGATION IN
CHAINS OF NANO-CONSTRICTIONS

Easy-plane spin Hall neurons can be assembled in
a neural network as a two-dimensional array of nano-
constrictions. In this section we simulate two building
blocks of such a neural network that implement opera-
tions essential for neuromorphic computing.

First we show that outputs from two neurons in the
same neural network layer can be summed and injected
into a neuron in the following layer. For this we simu-
late the architecture shown in Fig. 7(a). The two nano-
constrictions on the left correspond to the two input
layer neurons, and the nano-constriction on the right to
a single output layer neuron. Input neurons can receive
an input in the form of a current pulse. In order to
apply current pulses, we envision placing electrodes on
each island and using additive and subtractive currents
to achieve placing the desired current through a single
nano-constriction, as in Ref. [3]. We show that if only
one of the input neurons spikes (Fig. 7(b—c)), the en-
ergy transmitted to the output neuron by the spin waves
propagating in the island between the nano-constrictions
is not sufficient to make it spike. However if both in-
put neurons spike at the same time, the output neuron
spikes as well (Fig. 7(d)). In the simulations, a con-
stant bias is applied in all the neurons at current density
Jbias = 0.6 x 1010 A/mQ, that is below the critical current
density of 1.9 x 10'% A /m? of the three nano-constrictions
structure. The spike in the first (resp. second) neuron is
induced by a 2.7 ns long input current pulse applied 2 ns
(resp. 2.8 ns) after the beginning of the simulation.

Second, we show that neural outputs can be multiplied
by synaptic weights. To do this, we simulate a chain of
three nano-constriction neurons, whose top view is shown
in Figure 8 (a). Only the first neuron in the chain receives
the input current pulse. The whole chain is biased with

a constant current jpi.s = 1.6 x 101 A/m?2. An input
spin current pulse with density jpuse = 4 x 1019 A/m?
is applied to the first nano-constriction for a duration
of 2.7 ns. The excitation from the first neuron propa-
gates down the chain and with approximately 2 ns delays
we observe spikes in the second and third junctions, see
Figure 8 (b). We demonstrate synaptic functionality by
modifying the coupling between the nano-oscillators and
thus controllably altering the spike propagation in the
chain. This can be done by locally modifying magnetic
properties such as anisotropy or damping in the synaptic
islands between each pair of nano-constriction neurons.
Indeed, neurons are magnetically coupled by spin waves
that propagate in these islands. A discontinuity in mag-
netic properties induces spin wave reflections and lowers
the coupling between nano-constriction oscillators. Here
we choose to modify anisotropy rather than damping be-
cause experimentally it can be done in situ by the ap-
plication of a dc voltage [27]. Alternatively, damping
could be modified by ion irradiation [28] once the neural
network has been trained offline and the physical neural
network is prepared for inference.

The anisotropy in the whole magnetic structure is
K, = 0.54x 105 J/m3. We locally modify the anisotropy
by 10 % in a 150 nm wide area in the center of the island
between the second and third neuron, such that synap-
tic anisotropy becomes K = 0.6 x 105 J/m?, and we
observe that the first two neurons undergo spike bursts
containing two spikes each, while the third neuron does
not spike (Figure 8 (c)). As the input current pulse is of
the same amplitude and duration, we interpret this emer-
gence of spike bursts as due to the conservation of the to-
tal energy in the system. For the first neuron, the second
spike lasts longer because the magnetization decelerates
when aligned with the easy-axis as it is not receiving any
drive current any more.

Similarly, when we increase the anisotropy of the first
island, only the first neuron undergoes spike burst where
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FIG. 8. (a) Top view of a chain of three nano-constriction neurons. (b) Responses of the three nano-constrictions show spike
propagation. (¢) When the anisotropy is modified in the second synapse, the first and second neurons spike, but the third one
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FIG. 9. Lattice topology of the macrospin fan-out simulation.
The “upstream” neuron ¢ generates a spike after being given
a perturbative current j on top of the static current j. The
“downstream” neurons ¢1 and ¢2 both spike in response, as a
consequence of spin excitations mediated by the 3 x 3 lattice.

its magnetization makes three whole turns in the easy
plane, while the two following neurons stay still (Figure
8 (d)).

We can thus decrease the synaptic weights by locally
increasing the anisotropy in the islands by for example
applying a dc voltage on this area. This breaks the mag-
netization dynamics in the island and thus impacts the
mutual oscillator coupling.

IV. CONCLUSION

There are some attractive features of this approach
to neurons and synapses. Omne is that the close-to-
threshold current going through all of the neurons al-
lows for gain, serving as a local energy source for gener-
ated spikes. That the spike energy is independent of how
close to threshold the system sits could enable fan out.
We demonstrate the potential for fan-out behavior in a
macrospin simulation. We extend the macrospin model
of Sec. I (also detailed in Appendix A) by including two
downstream neurons rather than one. The lattice topol-
ogy of the coupled macrospins is indicated in Fig. 9.
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FIG. 10. Demonstration of spiking fan-out in a simulation
of coupled macrospins. A current j running through the en-
tire system keeps “neuron” macrospins close to their spiking
threshold. Then a small perturbative current (dashed gray
line) is applied only to one macrospin (corresponding to ¢o,
the black line). This extra torque pushes the spin over its
threshold, and it undergoes a single spiking event. Angular
momentum propagates through the lattice (Fig. 2) and trig-
gers spikes in both ¢:1 (red) and ¢2 (blue). The plots are
shifted arbitrarily in the vertical direction for clarity.

Again we hold the static torque as high as possible,
in this case 7 = 0.288, and again weakly coupled them
wy = 0.3 compared to the hard axis energy w, = 1. All
other parameters are the same as in Appendix A. Just
as before, we apply a small perturbative torque 67 =
0.001 only to the upstream neuron ¢g. The excitation in
the synaptic lattice generated by the spike on ¢y causes
spiking activity in ¢; and ¢5, shown in Fig. 10.

In such a small macrospin system, the simplified dy-
namical mechanisms can sometimes lead to different es-
sential physics than what one finds in micromagnetic sim-
ulations. We can verify by eye in the micromagnetic sim-
ulations that it is a pulse of spin wave energy that travels
from one neuron to another and causes the target neu-
ron to spike. But in the macrospin model, there exist
regimes that transmit spikes not by spin wave but by
effective single-domain switching driven by ¢q.
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FIG. 11. Spiking event interaction between a downstream

neural spin (¢1) in and its neighboring spin in the lattice
(Psynapse). By around wpt = 1550, the influence of an up-
stream spiking event (from ¢o) causes @synapse t0 cant in the
y-direction. Being exchange coupled to ¢synapse, the neural
spin ¢1 picks up a weak y-component and begins to precess,
driven by the hard-axis field. Even once the y-torque from the
synapse dies down (dashed gray line returning to equilibrium
at wpt ~ 1675), the neuron has already passed its threshold,
and starts to spike. Note that m; is the normalized magneti-
zation of the neuron, but in the simulation its non-normalized
magnetization M; is ten times that of the synaptic spins.

To verify that we are in a spin-wave driven regime,
rather than a single-domain-driven one, we zoom in
on one of the induced spiking events. Fig. 11 shows
the angular behavior of an induced downstream neu-
ral macrospin in blue (¢1), and its neighboring lattice
macrospin in gray(@synapse). A wide packet of y-angular
momentum (gray dashed line) arrives from the lattice
centered around time wpt = 1600. The injection of
this angular momentum from synapse to neuron causes
the neuron moment to tilt slightly out of plane, which
in turns causes ¢, to precess slightly in the easy-plane
anisotropy field. By the time the packet of angular mo-
mentum is used up (around wyt = 1600), the neuron has
already passed its spiking threshold.

Notice that as the spiking grows, the neural phase is
advanced relative to the synaptic phase. This indicates
that the spiking mechanism does not arise from the lat-
tice mimicking the source neuron in a single domain fash-
ion and simply dragging the downstream neuron along
with it. Rather, a small packet of momentum triggers
a downstream spike event, and then the nearby lattice
spins are dragged through a spiking motion by this newly-
spiking downstream neuron.

In conclusion, we have proposed a new geometry for an
easy-plane ferromagnetic spin Hall oscillator. We have
shown using a macrospin model that such oscillator can
produce voltage spikes and thus emulate a biological neu-
ron. We have then shown in micromagnetic simulations
that such easy-plane geometry can be obtained in com-

pensated PMA ferromagnets and that it can be conserved
by fabricating oscillators in the nano-constriction geome-
try which is very convenient for coupling the oscillators in
chains. Finally, we show that spike propagation between
the nano-constrictions can be controlled, thus giving a
proof-of-principle demonstration of synaptic functionali-
ties.

This research was supported by the Quantum Mate-
rials for Energy Efficient Neuromorphic Computing (Q-
MEEN-C), an Energy Frontier Research Center funded
by the U.S. Department of Energy (DOE), Office of Sci-
ence, Basic Energy Sciences (BES), under Award DE-
SC0019273.

Appendix A: Macrospin model details

In Sec. I, we used a simple macrospin model to demon-
strate spiking and fan-out behavior. In this Appendix,
we clarify details of that model, and show that the down-
stream spiking is in fact driven by a small torque that sur-
passes a neural threshold rather than any sort of single-
domain spiking behavior that could plausibly occur in
such a small, simple model.

We simulate the model using the eleven spins con-
nected to their nearest neighbors by a simple exchange
interaction J in the topology of Fig. 2. It is convenient to
work in dimensionless units in which all frequencies are
scaled by wy, (time scaled by 1/wp) to set the timescale
similar to that of the spiking behavior. All quantities
reported below are dimensionless. We weakly couple the
spins by setting the characteristic exchange frequency
wy = 0.31, which is necessary to avoid a spiking event
simply driving single domain switching via strong ex-
change coupling. We use a large value a = 0.5 of the
Gilbert damping to represent dissipation modes that can-
not be modeled in the macrospin system, which are nec-
essary to ensure an overdamped return to the balance
point ¢* as outlined in Sec. I. The neuron macrospins
are subject to a weak easy axis anisotropy of character-
istic frequency w. = 0.05 along &, while the synaptic lat-
tice macrospins have an out of plane easy axis w, = 0.2
and a weak easy axis ws = 0.1 along gy that models the
shape anisotropy of the micromagnetic system. A weak
magnetic field with characteristic frequency wp = 0.05 is
applied to all spins to destabilize the ¢ = 7 potential well.
Finally, we artificially inflate the saturation magnetiza-
tion of the neuronal spins by a factor of ten compared to
the lattice spins. This models the comparative softness
of the synaptic modes compared to the hard neuronal
modes observed in micromagnetics.

The analysis of Sec. I suggests that the 7/4 threshold
sits at 7 = w./2 = 0.025. We find that we can push 7
slightly higher than this, to 7 = 0.02895, due to applied
B field. At selected times, we add a spike of height §7 =
0.001. This generates the neuronal spikes observed in
Fig. 3.
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