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Abstract

This work presents new evidence that the heat flux width, 4, in the Alcator C-Mod tokamak scales with the
edge electron pressure, as observed in the ASDEX Upgrade (AUG) tokamak (D Silvagni et al 2020 Plasma Phys.
Control. Fusion 62 045015), but the scaling with volume-averaged pressure, p, from the plasma stored
energy, found by Brunner et al. (D Brunner et al 2018 Nucl. Fusion 58 094002), is a better predictor of A4 in
Alcator C-Mod than the edge electron pressure. These previous studies, which find that 4, decreases with
increasing plasma pressure, imply that a high performance core at high pressure will lead to challenging heat
and particle exhaust due to very small A4. This concern has led to our significant enlargement of the C-Mod
database with the electron density, temperature, and pressure profile data from the Thomson scattering and
electron cyclotron emission diagnostics. Using the C-Mod database augmented with new profile data, we find
that 4, decreases with increasing edge electron pressure as A4 < p;905'26, similar to results from AUG, and
showing the strength of cross-machine comparisons. We also find that 44 < pe}%ff, consistent with the
original finding from C-Mod that the heat flux width scales as 5_0'48 (D Brunner et al 2018 Nucl. Fusion 58
094002). The scalings of A, with separatrix pressure and gradient scale length are found to match the AUG
results qualitatively. The C-Mod scalings with edge plasma quantities have more scatter than the p scaling,
and, importantly, show different trends for H-modes relative to L- and I-mode. Investigating the source of this
discrepancy presents an opportunity for further study that may improve our ability to predict the heat flux
width in different confinement scenarios in the pursuit of optimizing core-edge performance in future
reactors.

Introduction

In tokamaks, the heat flux width 4, describes the decay length of the parallel heat flux into the scrape-off
layer (SOL). A4 is typically inferred by analysis of the heat flux to the divertor target and subsequent magnetic
mapping of the profile from the target to the outboard midplane. The target heat flux is obtained using
infrared thermography, embedded thermocouples, or Langmuir probe measurements. The mapped profiles
are fit with a parametric function [1]. A small value of A, results in challengingly large heat fluxes to the
divertor, which, if not mitigated, can result in unacceptable sputtering and melting of plasma-facing
components. Empirical databases and power law fits are a common technique in fusion research to project
parameters to new devices, lacking validated theoretical or first-principles ways of doing so. A multi-machine
study by Eich et al. [1] found that 4, scales approximately as the inverse of the poloidal magnetic field B,
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measured at the outer midplane separatrix for plasmas with H-mode confinement and with the outer
divertor “leg” attached to the divertor target. This scaling predicts 4, < 1 mm for ITER and SPARC [2,3], for
plasmas in which ~100 MW (ITER) [1] and ~28 MW (SPARC) of power is foreseen to reach the scrape-off layer
[3]. Study of an extensive Alcator C-Mod database found that the average pressure from stored energy (p =
2/3 Wynp/Vicrs, where Wyyp is the plasma stored energy and Vi cps is the plasma volume inside the
magnetic separatrix, both calculated from EFIT magnetic reconstructions [4]) was an excellent predictor of 4,
with a unified scaling across L-, |-, and H-mode confinement regimes [2]. This implies that high-pressure, high-
performance fusion plasmas with conventional magnetic divertor shapes (e.g. the single-null configuration)
will likely produce unsustainably high heat flux densities if unmitigated, further motivating the development
of solutions such as controlled detachment [5] and advanced divertor configurations such as the super-X [6—
9], X-point target [3,7-10], and snowflake divertor [11-13].

A recent study on ASDEX Upgrade (AUG) found a correlation between 4, and the average pressure,
and a stronger correlation between A, and the edge electron pressure from Thomson scattering data at ppol
= 0.95, where ppo1 = M and ¥y = (¥ — Waxis)/ (Wsep — Waxis) is the normalized poloidal flux.
Furthermore, it found that 4, scales with the electron pressure decay length at the separatrix 4, and that
the data conformed to a relationship of A; = 2/7 A, between the heat flux width and the separatrix electron
temperature decay length as expected in the Spitzer-Harm electron heat conduction regime [14]. It is
reasoned that the localized edge pressure and gradients are more directly correlated with the heat flux width
than the average pressure. Earlier work on AUG has also verified that profile edge gradients are related to 4,4
[15].

The unified scalings with average pressure in C-Mod and with average/edge pressure in AUG differ
from others in the literature, which tend to be developed for individual confinement modes. Early multi-
device studies focused on L-mode [16] and H-mode extrapolations of A4 to ITER [1,17]. The heuristic drift
model performs well for H-modes across several devices but overpredicts 4, in C-Mod [18,19]. The C-Mod
scaling with average pressure has also been tested on a multi-machine L-mode database, which found
acceptable cross-device performance that was improved by the inclusion of the inverse aspect ratio a/R( and
the plasma beta (the study also tested many other L-mode scalings) [20]. The critical gradient model, in which
a ballooning instability sets an upper limit on the pressure gradient scale length that is related to the heat
flux width, is satisfied on DIII-D but does not provide as good a scaling for A4 as the heuristic drift model
[21,22]. A theory-based scaling for the near SOL pressure decay length in L-mode, however, has been found
to be a good predictor of the experimentally measured 4, in a multi-machine database [23]. Recent studies in
H-mode on AUG found that a turbulence control parameter is highly relevant [24] and that filament transport
can have a strong impact on 4, an effect that is not captured by many of the existing scalings [25]. This
underscores the importance of developing empirical scalings for A, from databases that cover a wide variety
of plasma conditions. The main goal of the present study is to determine whether, as found in AUG [14],
localized measurements provide better scalings than the volume-averaged pressure in Alcator C-Mod. A
secondary goal is to examine the relationship between edge gradients and the heat flux width in C-Mod.

Experimental Setup and Methods

The C-Mod heat flux width database [2] contains fits to the outer divertor heat flux profile for around 300
shots expressing no edge-localized modes (ELMs). In the present work, the original database was narrowed
down to around 120 shots that have good core and edge profile data from the Thomson scattering system
and stationary plasma conditions over a period of at least 100 milliseconds, resulting in the parameter ranges
shown in Table 1. While the database covers a wide range of engineering parameters, the ranges of plasma
triangularity and elongation are narrow due to the requirement to sweep the outer strike point over the
Langmuir probes and surface thermocouples to measure heat flux profiles on the lower outer divertor target.
As in the original database, there are approximately equal proportions of L-mode, I-mode [26], and enhanced
D-alpha (EDA) [27] H-mode shots. Approximately half of the L-mode shots are with “forward” toroidal field

Page 2 of 14



Page 3 of 14

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - NF-105232.R2

(i.e. with the ion B X VB drift toward the X-point and lower divertor) and half are with “reversed” toroidal
field. All of the I-mode shots are with reversed field, and all of the EDA H-mode shots are with forward field.
No relationship is observed between the heat flux width and the toroidal field direction. The target heat flux
profiles are fit using a piecewise sum of exponentials called the multi-A fit [2] which provides a well-matching
shape over the large dynamic range of the probe and thermocouple data, rather than the original parametric
single-A fit that was used for fitting infrared measurements of divertor heat flux from multiple machines
including C-Mod and AUG [1]. One of the quantities obtained from the multi-A fit, 14 cn, describes the falloff
in heat flux density in the near common flux region, just as 4, in the single-A fit does, so they can be treated
the same despite originating from different parametric fits. In this work, the “A,” values from C-Mod are
actually A4 cn.

The C-Mod and AUG databases have some notable differences. The C-Mod database includes higher
average pressures and lower values of A, than the AUG database: AUG has 3 < p/kPa<35and 0.8 < Aq/
mm < 5, while C-Mod has 12 < p/kPa < 160 and 0.6 < Ag/mm < 2.3. The C-Mod database also includes a
larger range of average pressures for |- and H-mode shots compared to AUG. The AUG database includes
inter-ELM periods from ELMy H-modes and ELM-free H-modes, while the H-modes in the C-Mod database
are EDA H-modes, which have no ELMs but rather a quasi-coherent edge mode that flushes impurities and
particles out of the confined plasma, thereby maintaining a steady-state H-mode [28,29].

Table 1: Parameter ranges for the subset of the C-Mod heat flux width database with good profile data. The poloidal magnetic
field is that calculated 1 mm outside the separatrix at the outer midplane.

Parameter Range
On-axis toroidal magnetic field By [T] 5.1-7.9
Poloidal magnetic field By, [T] 0.42-1.3
Average electron density n, [102° m3] 0.44-4.8
Input power Pj, [MW] 0.52-5.8
Elongation (k) 1.5-1.8
Triangularity (&) 0.49-0.61

The C-Mod core and edge Thomson scattering diagnostics were used to obtain electron density and
temperature data [30]. Electron cyclotron emission (ECE) diagnostics (GPC1 and GPC2) were used to obtain
additional electron temperature data [31]. Gaussian process regression (GPR) [32] was used to fit the profiles
of density and temperature. Confidence bounds resulting from this method are not rigorous because the
Markov chain Monte Carlo (MCMC) method was not used; MCMC can require time-consuming fine tuning
which was not feasible for 120 profiles.
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Figure 1: Example of electron temperature and density data and resulting fits from GPR for an H-mode shot (1160729008). The
light blue shaded region around the GPR fit shows the confidence bounds.

In order to overcome uncertainty in the location of the separatrix in the Thomson scattering profiles
[33,34], the profiles of electron density and temperature obtained from GPR fitting were shifted to have a
separatrix temperature consistent with the 2-point model [35]:

2/7
( 7 PsepqulA)
e v
16 ki A,
as was done for the AUG profiles [14]. The power crossing the separatrix Psep was approximated as Picgrr +
Bk
Poy —dW /dt — P44 core, Where the core radiated power is computed from a foil bolometer array. qcy1 = ﬁ

p

Holp

is the safety factor, where B; is the toroidal magnetic field at the magnetic axis, (Bp) is the average

T 2mak

poloidal magnetic field, A = R/a is the aspect ratio, and k =+/1 + KZ/Z, where k is the elongation. A value of
7

Kk§ ~ 2000 (eV)> W m ~! was used for the Spitzer-Hirm electron conductivity. The values of Aq were those
from the database, obtained from fits to the heat flux profile at the outer target. The values of TgPobtained
using this formalism ranged from 54 to 160 eV.
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Results and Discussion

Aq dependence on edge pressure, density, and temperature
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Figure 2: Scalings of the heat flux width with (a) average pressure from stored energy and (b) with electron pressure at Ppol
= 0.95 fit with regressions of form Aq/mm = A(P/kPa)b. Fits within individual confinement modes are shown by the
correspondingly colored lines, and fits across all confinement modes are shown by black lines.

Figure 2 compares the scaling of A, with the average pressure evaluated from the plasma stored energy
(Figure 2(a)), and the scaling with the electron pressure at ppol = 0.95 (W = 0.90) from temperature and
density profiles (Figure 2(b)). The data are fit with scalings of the form 4;/mm = A(p/kPa)b, with Aand b
being the two free parameters output by the fit. There is good agreement between C-Mod and AUG in the
scaling of heat flux width with average pressure across all modes: the C-Mod scaling is A;/mm = (8.2 & 0.5)(
p/kPa) ~048£002 \yhile the AUG scaling is Ag/mm = (7.6 £ 0.25)(p/kPa) —0-52£0.01 114]. Both fit factors
are very similar, making this a remarkably good cross-regime and cross-device scaling. The fits with electron
pressure at pyo = 0.95, 4,/mm = (2.5 + 0.02)(p25/kPa) ~******! (AUG) [14] and A,/mm = (1.8 + 0.1)

(pgs/kPa) —0-26£0.03 (C-Mod) are quite similar. The absolute value of the edge pressure fit exponent is lower
than that of the fit with average pressure. There is also considerably more scatter in the edge data, with
lower coefficients of determination (R?) in all cases. Finally, if we separately fit data from L-, I-, and H-mode
as a function of p25, it is found that the H-mode heat flux width scales as (p25) _0'55, which is quite a different
exponent compared to that of the L-modes (-0.27) and I-modes (-0.21). The AUG database has a smaller
range of average and edge pressures in H-mode, making it difficult to identify whether a separate trend for
H-modes exists in AUG.
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Figure 3: (a) Core (Ppot = 0.1) electron pressure as a function of the average pressure from stored energy, and (b) electron
pressure at Ppot = 0.95 as a function of the average pressure.

Figure 3(a) shows an approximately linear relationship between core (ppo1 = 0.1) electron pressure
and average pressure, with all confinement modes obeying a similar trend, but in Figure 3(b) H-modes have
clearly higher edge pressure at ppol = 0.95 than L- and I-modes. This is expected due to the fact that the
majority of H-modes do not have higher core pressure than L- and I-mode shots, but have higher edge
pressure due to their higher edge density. This explains why using the edge pressure for regressions in this
database leads to different trends for different confinement modes.
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Figure 4: (top row) Exponent obtained from fitting a regression of form Aq = AX b at each radial coordinate of normalized
poloidal flux ¥, with X being the electron pressure (column a), electron density (column b), and electron temperature (column
¢). (bottom row) Coefficient of determination szor each regression. Colored lines show fits to individual confinement modes,
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1

2

3 and black lines show fits to all confinement modes. Dashed horizontal lines show exponents and R? values for fits to volume-
4 averaged quantities: average pressure from stored energy (column a), average electron density from profiles (column b), and
5 average electron temperature from profiles (column c).

6

7 The large range of average pressures in the C-Mod database across all confinement modes and the
8 availability of profiles of n, and T, make it possible to exhaustively evaluate relationships between A, and

9 localized plasma parameters. Figure 4 shows regressions of the form 4, = AX®, where X is alternately pe, ne,
10 and T, and fits are performed at every radial coordinate. Superimposed in dashed horizontal lines are the

11 results of fits using volume-averaged quantities. p is obtained from the plasma stored energy while n, and T,
g are obtained by integrating profiles from Wy of 0 to 1, with no T¢*P-based shifting to avoid having to

14 extrapolate profiles in case of an outward shift (note that the T¢P-based shifting impacts the average values
15 much less than local values). The graphs show Wy up to 1.03, past which the experimental data can be scarce
16 due to the T§P-based shifting or have large error bars, and the value of R?is near zero.

17 The fits of 44 with p,, e, and T, computed at every point along the profiles in Figure 4 can be used
18 to determine the local quantities most strongly correlated with A, for shots in all confinement modes (L+I+H,
19 black lines in Figure 4). The scalings with p. for all modes in the region of ¥y < 0.5 have the highest R?

20 among the local quantity scalings, while the edge T at ppo1 = 0.95 (W = 0.90) somewhat exceeds the R? of
21 the p. fit at the same location. The fits with local n, for L+I1+H modes have quite low R? over the entire profile
;g due to the separate clustering of each confinement mode (not shown). Fits using the average quantities

>4 (dashed lines in Figure 4) have higher R? than the local pe fits but similar R? compared to those with n, and
25 T.. We conclude that the core pressure and to a lesser extent the edge temperature appear to be the most
26 strongly correlated with 4, across all confinement modes.

27 The scalings of 44 in individual confinement modes in Figure 4 show the complicated realities that
28 underlie the scalings for L+I+H mode. The scaling with p is the most unified across modes, with the dashed
29 lines in Figure 4(a) having the exponents that are very similar in value. In scalings with n, and p,, H-modes
30 have very different exponents compared to L- and I-modes. H-modes also have significantly poorer fits with
31 T, compared to L- and I-mode. This visualization shows that the scalings of A, with local quantities are in all
32 cases less unified across confinement modes than those with average quantities: H-mode scalings with local
:i quantities in particular stand out compared to L- and I-mode, warranting further investigation.
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The importance of p25 in predicting Aq is also tested using fits which allow for independent
exponents of electron density and temperature (14/mm = A(n,/10*°m _3)b(Te/keV)C) shown in Figure 5. In
the region of ppo = 0.1, the n and T, exponents are both around -0.6 (see Figure 5(a) x-axis label), which is
close to the p scaling exponent of -0.48 (Figure 2(a)), and results in the same R? value as the fit with p&°®
alone. Further toward the edge, the fit exponent is larger in magnitude for T, (-0.5) than n, (-0.15). These
two-parameter fits have a higher R? in the edge than the fit with p25 alone (Figure 4(a) black curve), but the
low R? of the p25 fit is mainly due to the H-modes having a different slope and less overlap compared to L/I-
mode (Figure 2(b)). We conclude from these fits with independent 1, and T, exponents that near the core,
the pressure is indeed the important variable to predict A4, because n, and T, have similar exponents in the
optimal fit, while near the edge, the temperature appears to be more important than the pressure.

Ag [mm]

8.2p~248 AmPeas

Figure 6: Comparison of the experimental Aq with (a) Aq predicted by the Brunner scaling with p and (b) Aq predicted by a mode-
dependent fit with De at Ppor = 0.95. The identity line is shown in black.

Because the H-modes appear to follow quite a different scaling of 4, with edge quantities compared
to L/I-mode, another option is to abandon the unified scalings and use a different scaling for each
confinement mode, i.e. 14 = Ampz’gs where the index m indicates the confinement mode in which the fit was

calculated (the values of A and b for each confinement mode are shown in the legend of Figure 2(b)). This
mode-dependent fit with p, 95 (shown in Figure 6(b)) results in an R? value of 0.71, approaching the quality of
the p scaling (shown for comparison in Figure 6(a)). A mode-dependent fit using independent exponents for
neand T, at ppor = 0.95 (44, = Amnggsngs) did not provide much improvement, achieving an R? value of
0.73. Itis therefore possible to achieve accurate predictions of 4, in C-Mod using edge p. if the confinement
mode is taken into account, and random error in the n, and T, profiles does not appear to be responsible for

the significantly lower R? of the mode-independent p25 scaling.
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Aq dependence on edge gradients of pressure, temperature, and density
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Figure 7: Heat flux width as a function of the gradient length evaluated at the separatrix for (a) electron pressure, (b) electron
density, and (c) electron temperature. The solid black line in (c) shows Aq assuming Spitzer-Hdrm electron heat conduction. The
dashed black vertical lines show the smallest radial feature size of approximately 1.5 mm that can be resolved by Thomson
scattering.

In Alcator C-Mod, the heat flux width appears to be overall weakly correlated with separatrix gradient scale
lengths (e.g. L¥P = TP /|VTEP|), as shown in Figure 7. No single gradient scale length variable appears to
have a much stronger correlation with A, than the others. Comparing confinement modes, H-modes may
have a strong correlation between 4, and the pressure and density gradient lengths, but there is significant
uncertainty in this statement due to the small range of H-mode gradient lengths. L- and I-modes cover a large
range of all gradient lengths but show very little correlation with A4. The AUG database finds a strong cross-
regime correlation between 4, and A7, which are well fit by 4, = 2/7 Ar,, the scaling of the Spitzer-Harm
electron heat conduction regime. Within individual confinement modes in the AUG database of [14], the
Spitzer-Harm scaling is only evident for the L-mode points, but in a different database of AUG H-modes only,
the Spitzer-Harm scaling is superior to the flux-limited model [15]. This is different from what is found in the
C-Mod database, where the Spitzer-Harm scaling does not adequately characterize any of the individual
confinement modes. This may be due to the L-mode data in C-Mod having a maximum L#? of 10 mm, while
the data in AUG with L¥P between 10-15 mm are crucial to observe the Spitzer-Harm scaling [14]. H-modes
in C-Mod also have smaller L¥? in the range of 1-6 mm compared to 5-8 mm [14] and 4-11 mm [15] in AUG,
and the Spitzer-Harm scaling underestimates A, in C-Mod while it overestimates it in AUG [14]. This may be
due to C-Mod H-modes having lower collisionality (consistent with steeper temperature gradients), which
would result in the Spitzer-Harm scaling being less adequate due to more important kinetic effects, nonlocal
transport, and heat flux limiting. This could also explain why the AUG data is better fit by scalings with p25
and AgSL than the C-Mod data: if the AUG SOL is better characterized by local transport than the C-Mod SOL,
AUG would see better correlations of A, with local quantities and gradients. We note that one possible
source of error in comparing C-Mod and AUG gradient scale lengths is that they are estimated differently. In
the AUG analysis, a small region about the separatrix is fit by an exponential with decay length Are, with A7,

= LF¥P. In contrast, the gradient lengths in the C-Mod database are calculated from the full-profile GPR fits.
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Figure 8: (a) Heat flux width as a function of pedestal electron pressure gradient length. (b) Inverse electron pressure gradient
length at the pedestal as a function of inverse electron pressure gradient length at the separatrix, both normalized by major
radius (R = 0.68 m for C-Mod).

Finally, we examine whether there is a link between A, and the pedestal pressure gradient length and
look for a relationship between the pedestal and separatrix pressure gradient lengths (Figure 8). The pressure
gradient length at the pedestal is defined, for the purpose of comparison to AUG, by the same approximation

95 + pSeP  psep __ p95
Pe Pe Pe” R R

Lped = — =~
pe
e 2 pFop
[14]. In Figure 8(a) we see a somewhat unified trend between 4, and ngd across all confinement modes, with

a similar amount of scatter as in the AUG database. Lg‘éd appears to be a better predictor of 4, in C-Mod than

Ly, at least for L- and I-mode shots (Figure 8(a) compared to Figure 7(a)). In Figure 8(b) we compare the
inverse gradient length at the separatrix to the approximate pedestal inverse gradient length, and observe
significantly greater spread in the data compared to AUG, with no clear unifying linear trend. This could be
due to the much smaller range of R/ngd on C-Mod of ~70 to ~85, compared to ~65 to ~125 on AUG [14]. The
fact that the pressure gradient in the SOL is somewhat independent of the weakly varying gradient in the
pedestal region of the confined plasma may help explain why the scalings of 4, with p25 and with L)?” have
more scatter than the scaling with average pressure.

Conclusions

The Alcator C-Mod tokamak heat flux width database, augmented with core and edge electron density,
temperature, and pressure profile data, displays a trend of decreasing heat flux width with increasing edge
electron pressure, similar to results from the AUG tokamak [14]. Compared to the scaling of 44 with the
average pressure calculated from the total stored energy, however, the absolute value of the exponent is
lower and depends on the plasma confinement regime (L-, |-, or H-mode). Therefore, we find that the edge
plasma pressure is a worse fit to the heat flux width in C-Mod than the average pressure. We now summarize
the results from the analysis of the augmented C-Mod database:
e The scalings with average pressure 4,/mm = 8.2(p/kPa) ~%*® (C-Mod [2]) and A,/mm = 7.6

(p/kPa) ~%2 (AUG) show good agreement across devices

e The scalings with edge pressure (ppo1 = 0.95) 4;/mm = 1.8(p25/kPa) —0-26

(C-Mod) and 4;/mm = 2.5
(pgs/kPa) —034 (AUG) are also quite similar, but H-modes in C-Mod have a different trend compared to
L- and I-mode
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e The core pressure is the local quantity with the highest R? when fit to Aq using data from all confinement
regimes

e  Fits using p25 that also depend on the confinement mode approach the high R? of the unified fit with P

e Gradient lengths of electron pressure, density, and temperature at the separatrix have a positive
correlation with 44, as found in the AUG database, but the Spitzer-Harm scaling of 4, = 2/7 Ar. observed
in AUG is not clearly followed in C-Mod

e There s a positive correlation between A, and the pedestal pressure gradient length (using values at ppo1
= 0.95 and at the separatrix), as in the AUG database

e Thereis little correlation between R/Lb¢! and R/L;% in the C-Mod database, which is different from the
strong correlation found in the AUG database

The finding that A, is better correlated with p in C-Mod than it is with p?s contrasts with theoretical
expectations that cross-field turbulent transport (due to instabilities and modes that strongly depend on local
plasma conditions) can broaden the heat load in the SOL [24], while there is as yet no theoretical justification
for A4 to instead be a strong function of the average pressure. We therefore list some possible reasons why
the scaling with edge pressure in C-Mod is of reduced quality compared to the average pressure:

e The average pressure, being an integrated quantity, can have lower random error than the localized
pressure or its gradient

e The edge ion temperature in C-Mod can be significantly higher than the electron temperature, especially
at low collisionality [36], which implies that the electron pressure provides an incomplete description
compared to the total pressure from stored energy

e There is some error in the EFIT mappings, which use preset functional forms of pressure and other
profiles that can lead to inaccuracy in the pedestal top position. Kinetic EFITs, which take experimental
profiles into account, could provide an improvement but are unlikely to have a significant impact on
quantities other than Lb¢4

While the sources of error listed here may explain some differences in fit quality between AUG and C-Mod,

they do not explain why H-modes in C-Mod have a clearly different scaling with pg° than L- and I-mode,

which stands as a counterexample to the AUG observation that the scaling with p25 is universal across all

confinement modes.

While the average pressure is a better predictor of the heat flux width in the C-Mod database and
the edge pressure does a better job in the AUG database, both of these scalings show some limits: the C-Mod
average pressure scaling still has room for improvement when used across different devices [20], and the
AUG scaling with edge pressure can be a less good predictor when there is increased filament frequency [25].
Further work is therefore needed for a robust scaling of the heat flux width across different regimes in
different devices.

Table 2: Extrapolations of Aq for ITER and SPARC full-power H-mode scenarios using the C-Mod scalings with average pressure,
electron pressure at Ppot = 0.95, and electron pressure at Ppot = 0.95 fitting only the H-mode shots. Aq values in parentheses
indicate that the scaling law was evaluated using the upper limit of the pedestal pressure in SPARC.

Scaling law ITER 4g [Mmm]  SPARC 4, [mm]
Aq/mm = 8.2(p/kPa) ~048 0.52 0.26

Ag/mm = 1.8(p?%/kPa) ~°*° 0.59 0.44 (0.38)
Aq/mm = 4.6(p2%/kPa) ~*>* (H-modes) 0.44 0.23(0.17)

Finally, we can use the scalings with edge electron pressure from the C-Mod database to extrapolate
to estimates for the heat flux width in ITER and SPARC (Table 2). The ITER scenario considered here is the
ITER baseline 15 MA, @ = 10, inductive H-mode scenario [37] and the SPARC scenario is the 8.7 MA, Q = 11
H-mode [38]. The predicted profiles for these scenarios are evaluated for the pressure at ppo; = 0.95
(equivalent to por = 0.87 given the profiles of the rotational transform in the C-Mod database). Using the
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upper limit of the pedestal pressure in SPARC [39] can provide a lower bound on 4, (Table 2 values in
parentheses). These extrapolations highlight the importance of preparing for challenging heat flux densities
in SPARC and ITER. Results from these two devices should provide crucial data on which of these scalings is
most relevant.
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