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Abstract 

Global gyrokinetic simulations with kinetic electrons for collisionless damping of zonal flows 

in LHD and W7-X stellarators show that the helical components of the equilibrium magnetic 

field responsible for helically trapped particles have significant impacts on zonal flow. 

Kinetic electrons reduce zonal flow residue and increase the frequency of low frequency 

oscillation (LFO). The LFO is induced by dominant helical harmonics of magnetic field 

strength. Furthermore, linear toroidal coupling of multiple toroidal n-harmonics barely affects 

the zonal flows, but can generate long wavelength toroidal harmonics with the same toroidal 

number as the helical magnetic field.   

Keywords: term, term, term 

 

1. Introduction 

The reduction of neoclassical transport in the W7-X stellarator 

thanks to its quasi-isodynamic design [1] and the finding of an 

optimized operation regime in the LHD stellarator [2] have 

shifted research interest from neoclassical to turbulent 

transport. Recent experiments in the W7-X have shown that a 

significant amount of transport may be driven by 

microturbulence [3,4,5]. The role of spontaneously generated 

zonal flows in regulating the microturbulence has been 

extensively studied in axisymmetric tokamaks [6,7,8]. Zonal 

flows have also been shown to regulate ion temperature 

gradient (ITG) turbulence in the LHD and W7-X stellarators 

in recent global simulations [9]. Therefore, it is important to 

understand the dynamics of zonal flow and its impact on the 

microturbulence in the stellarators.  

In the past decades, the advances of both analytical theory and 

gyrokinetic simulations have provided insights of the 

dynamics of the zonal flows, which are subjected to 

collisionless damping by transit time magnetic pumping 

effects in tokamaks. Rosenbluth-Hinton [10] showed that an 

initial zonal density perturbation is not fully damped, which 

results in a residual level due to the neoclassical polarization 

mostly contributed by toroidally-trapped ions. Xiao-Catto and 

Wang-Hahm extended the Rosenbluth-Hinton calculations by 

including shaping effects [11] and dependence on zonal flow 

radial wavelength [12,13]. Sugama-Watanabe showed that a 

residue can survive in the optimized helical configurations 

with reduced neoclassical transport [14,15]. A low frequency 

oscillation (LFO) of the zonal flows was found to be induced 

by the radial drift of helically trapped particles [16,17] in the 

stellarators. The LFO frequency is much smaller than the 

geodesic acoustic mode (GAM) [18] and has been 

experimentally observed in the TJ-II stellarator [19]. 

After earlier work by flux-tube GKV [14] simulations of a 

simplified LHD-like equilibrium, gyrokinetic simulations of 

collisionless damping of zonal flows in stellarators have been 

extended to more realistic equilibrium: LHD [17,20,21], W7-

X [17] and TJ-II [22] using global EUTERPE and GT5D 

codes and flux-tube GENE and GKV codes. Kinetic electrons 

were found to have little effects on the zonal flow residual 

level in the tokamaks from the global GTC simulations [23] 

but can reduce the residual level in the stellarators from the 

CAS3D-K calculations and GENE and GKV simulations 

[21,24].  

Despite this progress, important physics of the zonal flow 

dynamics in the stellarators has not been well studied. First, 

zonal flows in the stellarators can linearly couple with other 

toroidal harmonics with 𝑛 ≠ 0, unlike in the axisymmetric 

tokamaks. What are the effects of this linear toroidal coupling 

on the dynamics of zonal flow and other toroidal harmonics? 

Secondly, the number of helically-trapped particles could be 
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much more than that of toroidally-trapped particles in some 

stellarators such as the W7-X. What are the effects of these 

helically-trapped particles on the zonal flow dynamics? 

Global simulation is needed to study these unexplored physics 

since helically-trapped particles may reside in different 

magnetic field lines and may drift far away across magnetic 

surfaces. While the effects of a helical magnetic field on the 

zonal flow damping have been analyzed theoretically in 

Ref.[14-17], by some  simulations with adiabatic electrons 

[17,20,22,25-31] and by flux-tube simulations with kinetic 

electrons [21,24], the impact of (helically-trapped) kinetic 

electrons is not yet fully understood. 

Most of the previous gyrokinetic simulations of 

microturbulence in stellarators have been local flux-tube 

simulations which have provided useful insights of turbulent 

transport. However, the flux-tube simulation [32] makes the 

usual assumptions of the ballooning mode representation 

including an axisymmetric equilibrium (i.e. every field line is 

equivalent), a radially translational symmetry (i.e. high-n 

ballooning mode approximation), and a finite magnetic shear 

(i.e., out-going boundary condition along the magnetic field 

line) [33]. These assumptions are, in general, not valid in the 

3D geometry of the stellarators. In fact, recent local and global 

simulations with adiabatic electrons of zonal flow damping in 

the HSX and NCSX quasi-symmetric stellarators [30] and the 

W7-X and LHD optimized stellarators [31] confirm that 

different flux-tubes produce different zonal flow dynamics in 

general, and that only some aspects of the zonal flow 

dynamics in a specific geometry can be recovered from some 

flux-tube simulations using adequately long parallel flux-

tubes. Recently, global gyrokinetic simulations of 

microturbulence using adiabatic electrons in stellarators have 

been performed by the EUTERPE[34], GTC[9], XGC-S[35] 

and GENE-3D[36]. Global simulations are necessary to 

include the effects of the 3D magnetic field such as the secular 

radial drift of helically-trapped particles, radial turbulence 

spreading, linear toroidal coupling of multiple-n toroidal 

harmonics (i.e., localization of eigenmodes to discrete 

magnetic field lines), and the linear toroidal coupling between 

zonal flows and low-n harmonics [9].  

In this paper, we study the collisionless damping of zonal 

flows in the LHD and W7-X stellarators using the global GTC 

simulations with kinetic electrons. Simulation results show 

that the helical components of the magnetic field responsible 

for helically-trapped particles reduce the residue level [24] and 

that kinetic electrons increase the LFO frequency.  The LFO 

is induced by the dominant helical harmonics of the 

equilibrium magnetic field strength. Furthermore, linear 

toroidal coupling barely affects the zonal flows, but can 

generate low-n toroidal harmonics with the same toroidal 

number as the dominant helical component of the equilibrium 

magnetic field. 

The rest of the paper is organized as follows. In Sec.2 global 

GTC simulation models for the stellarators are described. 

Simulation results of collisionless damping of zonal flow are 

presented in Sec.3 for the LHD stellarator and in Sec.4 for the 

W7-X stellarator. Finally, conclusions are given in Sec.5.  

2. Implementation of the global gyrokinetic 
simulation model 

2.1. Implementation of the model 
 

The numerical simulations presented in this paper are 

performed using the GTC [6], which is well-benchmarked and 

extensively utilized for simulations of microturbulence, 

Alfven eigenmodes, MHD instabilities and neoclassical 

transport. The code has recently been upgraded for 

simulations of Alfvén instabilities in the LHD [37], 

microturbulence in the W7-X and LHD [9], neoclassical and 

turbulent transport in the W7-X [38], microturbulence in the 

DIII-D tokamak with 3D resonant magnetic perturbations 

(RMP) [39] and effects of magnetic islands on neoclassical 

bootstrap current [40] and microturbulence [41]. GTC has also 

been used to simulate collisionless and collisional damping of 

the zonal flows in the axisymmetric tokamak and their effects 

on the turbulent transport [6,42,43]. 

 

 The main goal of this work is to show the effect of kinetic 

electrons in the zonal flow damping. First, we will perform 

simulations with “adiabatic” electrons, that is, the electron 

response is assumed to be zero to the zonal (flux-surface 

averaged) component of the electrostatic potential, but 

adiabatic to the non-zonal components. Then the results will 

be compared with simulations with kinetic electrons solving 

the drift kinetic equation [44], where the electron response to 

the zonal component may not be negligible due to helically-

trapped electrons. The gyrokinetic model is described in 

Sec.2.2. 

 

 One important feature of the GTC is that the turbulence mesh 

used for representing all turbulence quantities (e.g., perturbed 

density, electrostatic potential, etc.) is a global field-aligned 

mesh in the real space coordinates [45,46], which achieves the 

maximal numerical efficiency without making the usual 

approximation in the ballooning mode coordinates. This 

turbulence mesh only needs a small number of parallel grid 

points to resolve drift-wave eigenmode structures, which are 

elongated in the parallel direction. 

 

The equilibria of the LHD and W7-X, taken from Refs. [47] 

and [9], are calculated by the ideal MHD equilibrium code 

VMEC [48]. VMEC equilibrium data (magnetic field, metric 

tensor, etc.) are provided by a Fourier series in poloidal and 

toroidal direction on a discrete radial mesh. The equilibrium 

data are then transformed to the Boozer coordinates as a 

Fourier series in the toroidal direction on a discrete 2D mesh 

on the poloidal plane. Finally, GTC uses a 3D quadratic spline 

function defined on an equilibrium mesh to represent these 

equilibrium quantities for better computational efficiency. 

Due to the toroidal variations of equilibrium quantities in the 

stellarator, the number of toroidal grid points in the 

equilibrium mesh is typically larger than that of the parallel 

grid points in the turbulence mesh. 

 

 When simulating the collisionless damping of the zonal 

flow in this work, equilibrium density and temperature 

profiles for both ions and electrons are assumed to be uniform 

with 𝑇𝑒 = 𝑇𝑖  to avoid complications of pressure gradients. 

Simulations are performed in a narrow radial domain so the 

rotational transform and aspect ratio have little variations 

within the simulation domain. An initial ion gyrocenter 

density perturbation is imposed as a sinusoidal function with 

only radial variations. Zonal flows with various radial 

wavenumber 𝑘𝑟  are simulated. To avoid undesirable effects 

from the radial boundaries, the perturbation amplitude is 

enclosed within a Gaussian function so the perturbation is 

maximum in the center of the radial domain and weak near the 

boundaries. We analyze the temporal evolution and relaxation 

of the zonal flows in the simulations. In particular we focus on 
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the zonal electrostatic potential 〈𝜙〉 where the brackets 

indicate a flux-surface average. In all the simulations 

presented in this paper, time is given in units of 𝑅0 𝑐𝑠⁄ where 

𝑅0is the major radius, 𝑐𝑠 = √𝑇𝑒 𝑚𝑖⁄ , and 𝑚𝑖 the ion mass. In 

the LHD, the magnetic axis is always located in the same 

location in the poloidal plane for any toroidal angle so  𝑅0 is a 

constant. However, in the W7-X the location of the magnetic 

axis varies along the toroidal direction so we take an 

“averaged” 𝑅0. 

 

2.2. Gyrokinetic simulation model 
 

We perform GTC linear electrostatic simulations to study 

collisionless damping of zonal flows in the stellarators. Ion 

dynamics is described by the collisionless gyrokinetic 

equation [49,50] 

      
𝑑

𝑑𝑡
𝑓(𝑿, 𝜇, 𝑣∥, 𝑡) = [

𝜕

𝜕𝑡
+ 𝑿̇ ∙ ∇ + 𝑣̇∥

𝜕

𝜕𝑣∥

] 𝑓 = 0            (1) 

where 

𝑿̇ = 𝑣∥𝒃 + 𝒗𝑬 + 𝒗𝒅 

and 

𝑣̇∥ = −
1

𝑚

𝑩∗

𝐵
∙ (𝜇∇𝐵 + 𝑍∇𝜙). 

The 𝑓(𝑿, 𝜇, 𝑣∥, 𝑡)  is the distribution function with X the 

gyrocenter, µ the magnetic moment and  𝑣∥  the parallel 

velocity. B is the equilibrium magnetic field, 𝑩∗ = 𝑩 +
𝐵𝑣∥

Ω
∇ × 𝒃 , 𝒃 = 𝑩 𝐵⁄  and 𝒗𝑬  and 𝒗𝒅  are the 𝑬 × 𝑩  drift 

velocity and magnetic drift velocity, respectively. 𝜙  is the 

perturbed electrostatic potential, Z is the ion charge and m its 

mass. The perturbed potential is decomposed into zonal and 

non-zonal components ϕ=〈ϕ〉 + δϕ, where 〈𝜙〉  is the flux-

surface averaged zonal mode. 

 

In this work, in order to reduce particle nose, we use the 𝛿𝑓 

method [51] for the ion species. The ion gyrocenter 

distribution function 𝑓 = 𝑓0 + 𝛿𝑓 is separated into an 

equilibrium part 𝑓0  and a perturbed part 𝛿𝑓 . Eq.[1] may be 

written as 𝐿𝑓 = 0 and the propagator L can be decomposed 

into equilibrium L0 and perturbed 𝛿𝐿 parts. So 

𝐿0 =
𝜕

𝜕𝑡
+ (𝑣∥𝒃 + 𝒗𝒅) ∙ ∇ −

1

𝑚

𝑩∗

𝐵
∙ (𝜇∇𝐵)

𝜕

𝜕𝑣∥

           (2) 

and 

             𝛿𝐿 = 𝒗𝑬 ∙ ∇ −
1

𝑚

𝑩∗

𝐵
∙ (𝑍∇𝜙)

𝜕

𝜕𝑣∥

                       (3) 

The equilibrium distribution function satisfies 𝐿0𝑓0 = 0 so 𝑓0 

is the neoclassical solution (however 𝑓0is approximated to a 

local Maxwellian in our simulations). This way the perturbed 

distribution function can be calculated as (𝐿0 + 𝛿𝐿) 𝛿𝑓 =
−𝛿𝐿𝑓0. We define the particle weight as 𝑤 = 𝛿𝑓 𝑓⁄ , so 

𝑑

𝑑𝑡
𝑤 = (1 − 𝑤) [−𝒗𝑬 ∙

∇𝑓0

𝑓0

+
𝑍

𝑚𝑓0

𝑩∗

𝐵
∙ ∇𝜙

𝜕𝑓0

𝜕𝑣∥

]         (4) 

 

We use the electrostatic hybrid model [44] for the 

electron species. The electron drift kinetic equation can be 

written as 𝐿𝑓𝑒 = 0  where the electron distribution function 

can be described as the sum 

𝑓𝑒 = 𝑓0𝑒 + 𝛿𝑓𝑒
(0)

+ 𝛿ℎ𝑒 

The equilibrium distribution satisfies 𝐿0𝑓0𝑒 = 0. The lowest 

order perturbed distribution is adiabatic response 𝛿𝑓𝑒
(0)

=

𝑓0𝑒
𝑒𝛿𝜙(0)

𝑇𝑒
 and the higher order perturbed distribution is non-

adiabatic response 𝛿ℎ𝑒. The non-zonal potential 𝛿𝜙 can also 

be expanded order by order 𝛿𝜙 = 𝛿𝜙(0) + 𝛿𝜙(1) . The 

gyrokinetic Poisson equation for the non-zonal component in 

the lowest order 𝛿𝜙(0) becomes 

(𝜏 + 1)𝑒𝛿𝜙(0)

𝑇𝑒

−
𝜏𝑒𝛿𝜙̃(0)

𝑇𝑒

=
𝛿𝑛̅𝑖 − 〈𝛿𝑛̅𝑖〉

𝑛0

          (5) 

where 𝜏 = 𝑇𝑒 𝑇𝑖⁄ , 𝑛0is the equilibrium electron density, tilde 

represent double-gyroaveraging and 𝛿𝑛̅𝑖 = ∫ 𝛿𝑓𝑑3𝒗. 

   The non-adiabatic electron particle weight is defined as 
𝑤𝑒 = 𝛿ℎ𝑒 𝑓𝑒⁄ , which is governed by  

𝑑𝑤𝑒

𝑑𝑡
= (1 −

𝛿𝑓𝑒
(0)

𝑓0𝑒
− 𝑤𝑒) [

−𝒗𝑬 ∙ ∇ ln 𝑓0𝑒 |𝑣⊥
−

𝜕

𝜕𝑡
(

𝑒𝛿𝜙(0)

𝑇𝑒
)

−(𝒗𝒅 + 𝛿𝒗𝑬) ∙ ∇ (
𝑒〈𝜙〉

𝑇𝑒
)

]     (6) 

The non-zonal potential with the first order correction 

becomes 

         𝑒𝑒𝛿𝜙 𝑇𝑒⁄ = 𝑒𝑒𝛿𝜙(0) 𝑇𝑒⁄ −
𝛿𝑛𝑒 − 〈𝛿𝑛𝑒〉

𝑛0

            (7) 

with 𝛿𝑛𝑒 = ∫ 𝛿ℎ𝑒𝑑3𝒗. Eq 6 and 7 can be repeated to reach 

higher order in the expansion. After a converge test, we found 

that a second order expansion is sufficient for this work. 

Finally, the zonal component of the potential is calculated 

from 

       
𝜏𝑒(〈𝜙〉 − 〈𝜙̃〉)

𝑇𝑒

=
〈𝛿𝑛̅𝑖〉 − 〈𝛿𝑛𝑒〉

𝑛0

         (8) 

 

3. Collisionless damping of zonal flow in LHD 

3.1. Zonal flow damping in LHD with adiabatic 
electrons 

 

First, we analyze the zonal flow damping in the LHD, 

which is a heliotron with a helical pole number of l=2. Its main 

helical field has the m=2 poloidal and n=10 toroidal number. 

The flux surface shapes also vary along the toroidal direction. 

The model equilibrium used in the present simulations 

corresponds to the outward-shifted configuration.  

The LHD has a number of field periods Nfp=10, i.e., all 

equilibrium quantities including magnetic field and metric 

tensors are symmetric under a 0.2π rotation in the toroidal 

direction. That periodicity allows us to simulate one-tenth of 

the torus to capture the dynamics of the zonal flows. Full torus 

simulations give similar results at a higher computational cost. 
To ensure the toroidal periodicity in a global field-aligned 

mesh, we shift the grid points in the poloidal direction by an 

angle ∆𝜃 = 2𝜋 (𝑞𝑁𝑓𝑝)⁄  after a toroidal circuit when only one 

field period is simulated. The LHD equilibrium quantities are 

represented on the equilibrium mesh in GTC, where the radial, 

poloidal, and toroidal grid numbers are, respectively, 200, 799, 

and 27 over one field period (i.e., one-tenth of the torus). 

The radial domain in the current simulations is restricted 

from 𝜓 = 0.13𝜓𝑥  to 𝜓 = 0.23𝜓𝑥  (where 𝜓𝑥  is the poloidal 

flux at the last closed flux surface) and the diagnostics are 

done on the 𝜓 = 0.18𝜓𝑥  flux surface where the rotational 

transform is 𝜄 = 0.42 and the local inverse aspect ratio is 𝜖 =
𝑟 𝑅0⁄ ≈ 0.05. All m poloidal and n toroidal harmonics of the 

equilibrium are included in the simulations unless it is 

explicitly stated. Based on convergence studies, we simulate 

60 particles per cell in the turbulence mesh with 120 radial 

grid points, 270 poloidal grid points and 9 parallel grid points 

over one-tenth of the torus. Only n=0 harmonic is retained in 

these simulations in Sec 3.1, 3.2 and 3.3. The toroidal coupling 

with n≠0 harmonics is analyzed in Sec.3.4 
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Fig.1: Time history of zonal potential in LHD for various 

radial wavenumbers krρi. 

 

Figure 1 shows the time evolution of flux-surface average 

electrostatic potential 〈𝜙〉  (normalized by its initial value) 

after an initial zonal gyrocenter density perturbation is 

imposed in GTC simulations with adiabatic electrons for 

different 𝑘𝑟𝜌𝑖  values where 𝜌𝑖  is the ion gyroradius. The 

zonal potential oscillates with a GAM frequency, which is 

damped by collisionless magnetic pumping effects on a fast 

time scale in the order of ion transit time. The zonal flow 

residue then reaches a quasi-steady state level, which could be 

further damped on a much longer time scale by toroidal or 

poloidal viscosity. 

 
Fig.2: Time frequency spectrum of zonal flows shown in Fig.1. 

Vertical red dashed line indicates theoretical GAM frequency. 

 

In Fig.2 we show the frequency spectrum of the zonal 

potential from Fourier transform of the time history data 

shown in Fig.1. The vertical red dashed line in Fig. 2 indicates 

the theoretical GAM frequency [15]. The zonal flow with a 

long wavelength (𝑘𝑟𝜌𝑖 = 0.07)  exhibits two distinct 

frequencies: a larger and wider peak of the GAM frequency at 

𝜔 ≈ 2.5 𝑐𝑠 𝑅0⁄ , and a smaller and narrower peak with a lower 

frequency 𝜔 ≈ 0.3 𝑐𝑠 𝑅0⁄ . The low frequency oscillation 

(LFO) has been predicted by analytic theory and observed in 

earlier simulations by the EUTERPE and GENE codes [17]. 

GAM is observed in all cases but LFO is only visible for long 

wavelength modes(𝑘𝑟𝜌𝑖 ≤ 0.12). 

 

3.2. Effects of kinetic electrons 
 

To study kinetic electron effects on the collisionless damping 

of zonal flows, we perform a series of GTC simulations with 

kinetic electrons. Figure 3 shows a comparison between a 

simulation with adiabatic electrons (red dashed line) and 

kinetic electrons (green solid line) for a long wavelength 

𝑘𝑟𝜌𝑖 = 0.08. The time evolution of the zonal potential shows 

a quite similar behavior. The frequency spectrum of the zonal 

potential (inset plot in Fig.3) shows that the GAM frequency 

is the same but the LFO increases from ~0.3 𝑐𝑠 𝑅0⁄  to 

~0.45 𝑐𝑠 𝑅0⁄  by the kinetic electrons. Furthermore, the kinetic 

electrons enhance the damping of the GAM and LFO. 

 

 
Fig.3: Time history of zonal electrostatic potential with initial 

𝑘𝑟𝜌𝑖 = 0.08  for simulations with adiabatic electrons (red 

dashed line) and kinetic electrons (solid green line). Inset plot: 

frequency spectrum of zonal potential.  

 Kinetic electrons also affect the quasi-steady state residual 

level of the zonal electrostatic potential. In Fig.4 we plot the 

residual level from simulations with adiabatic or kinetic 

electrons for various 𝑘𝑟𝜌𝑖  values. The analytical expression 

by Wang-Hahm[13] for the residual level for the axisymmetric 

tokamak is also plotted as a reference. The simulated residual 

levels are obtained by a temporal average over a time long 

enough (𝛥𝑡 = 30 𝑅0 𝑐𝑠⁄ )  once the GAM oscillation 

amplitude diminishes. The error bars correspond to one 

standard deviation of that temporal average. The results show 

that the residual level increases as 𝑘𝑟𝜌𝑖 increases [15,17,20].  

Finally, simulations with kinetic electrons show that electron 

kinetic effects significantly reduce the residual level [21]. 

Fig.4: Residual level of zonal potential as a function of radial 

wavenumber 𝑘𝑟𝜌𝑖. 

3.3 Effects of the helical components of the 3D magnetic 
field 

The zonal flows in the stellarators exhibit, not only the 

GAM frequency (as in the tokamaks), but also a characteristic 

LFO, which has been predicted theoretically [17] to be 

induced by helically trapped particles. In the LHD model 

equilibrium used in this work, the main helical magnetic field 
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is the 𝐵(𝑚=2,𝑛=10) component which is comparable to the 𝐵1,0 

component responsible for the GAM oscillation in both 

tokamaks and stellarators.  

 To verify that the main helical magnetic field component 

causes the LFO, we perform several controlled simulations 

with adiabatic electrons by selectively including various 3D 

equilibrium effects. The equilibrium magnetic field and metric 

tensor can be represented as a summation of the toroidal 

harmonic n. Therefore, the equilibrium in GTC simulations 

can include some or all of the n harmonics for either the 

magnetic field or the metric tensor. Because of the stellarator 

symmetry of the LHD (Nfp=10), we focus on the effect of the 

dominant n=10 harmonics, which are responsible for the 

helically-trapped particles. 

 

 

Fig. 5: Time history of zonal potential from simulations with 

various magnetic field and metric tensor components. 

Subscript of B and g represents the toroidal harmonic n. Inset 

figure indicates residual levels for all simulations. 

We perform four simulations by selectively including various 

helical components besides the axisymmetric (n=0) 

component of the equilibrium: (a) the full 3D equilibrium 

including all toroidal harmonics n, (b) only the n=10 

harmonics in the magnetic field, (c) only the n=10 harmonic 

in the metric tensor g, and (d) no 3D effects, i.e., only the 

axisymmetric (n=0) harmonic in both magnetic field and 

metric tensor.  Note that the equilibria (b) and (c) may not be 

self-consistent because the Jacobian depends on magnetic 

field strength in the Boozer coordinates. All m poloidal 

harmonics of the perturbed electrostatic potential were kept in 

the simulation.  Figure 5 shows that including the n=0 and 10 

harmonics in the B field but only the n=0 harmonic of the 

metric tensor recovers a similar result as the full equilibrium 

simulation. The frequency spectrum (not shown here) shows 

that the LFO is only visible if the n=10 magnetic field B10 is 

included in the simulation. On the other hand, the GAM 

frequency is clearly visible in all the four simulations. This 

means that the main helical component B10 of the magnetic 

field generates the LFO, but not the GAM which is induced by 

the n=0 axisymmetric component B0. Furthermore, both the 

B10 and the g10 components enhance the damping of the GAM 

oscillation, as predicted by analytic theory [15]. Finally, the 

main helical component B10 of the magnetic field reduces the 

residual level as shown in the inset panel of Fig.5. The residual 

levels for the axisymmetric magnetic field (c) and (d) show a 

value above the Rosenbluth-Hinton residual level which is 

roughly ~0.02. Such high value could be caused by the 

equilibrium shape [11]. 

 3.4 Effects of linear toroidal coupling 

In our previous simulations [9], a linear toroidal coupling of 

zonal flows with n>0 harmonics was suggested to explain the 

effects of the zonal flows on the nonlinear spectrum of the ITG 

turbulence. The effect is caused by the toroidal variation of the 

magnetic field in the stellarators, which is dominated by the 

n=10 harmonic in the LHD. Here, we carry out linear 

simulations with adiabatic electrons of the zonal flow damping 

in the LHD to analyze that mechanism. 

 

Fig. 6: Time history of zonal electrostatic potential from 

simulations keeping only zonal mode (green solid line) or both 

zonal mode and n=10 toroidal harmonic (red dashed line). 

Figure 6 shows the time history of the zonal electrostatic 

potential from two simulations of an initial zonal mode with a 

radial wavenumber 𝑘𝑟𝜌𝑖 = 0.07. The electrostatic potential 

has been filtered to allow only the n=0 harmonic or both the 

n=0 and n=10 harmonics. The zonal mode (dominated by the 

n=0 harmonic) can linearly couple to the n=10 harmonic of 

the perturbed electrostatic potential due to the dominant 

helical component (n=10) of the equilibrium magnetic field in 

the LHD. The simulation results show that linear toroidal 

coupling of the zonal mode to the n>0 harmonics has little 

effects on the collisionless damping of the long wavelength 

zonal flow. 

However, the zonal mode can generate low-n harmonics by 

the linear toroidal coupling. Figure 7 shows the time evolution 

of the amplitudes of various non-zonal components of the 

electrostatic potential normalized by the initial zonal mode 

amplitude. Besides the flux-surface averaged zonal mode, the 

axisymmetric component 𝜙𝑚=1,𝑛=0  is the largest component 

followed by the second harmonic 𝜙2,0 . The largest non-

axisymmetric components, n=10, are much smaller than the 

axisymmetric n=0 components. These results are compared 

with the components of the equilibrium magnetic field that 

induces these linear couplings. In the flux-surface of interest, 

the main harmonics of the magnetic field strength are  

𝐵0,0 > 𝐵1,0 > 𝐵2,10 > 𝐵1,10 > 𝐵3,10 > 𝐵2,0 

The largest harmonic after the 𝐵0,0 is the 𝐵1,0. Similarly, the 

electrostatic potential 𝜙1,0 is also the largest harmonic after 

the zonal mode 𝜙0,0 . This characteristic is also typical in 

axisymmetric tokamaks where there is a strong coupling 

between 𝜙0,0  and 𝜙1,0  due to the 𝐵1,0 . Similarly, the 𝜙2,0  is 

generated mostly due to the 𝐵2,0 component.  
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The helical components with n≠0, for example, 𝜙2,10  and 

𝜙1,10, of the electrostatic potential are also generated due to 

the n=10 harmonics of the magnetic field (𝐵2,10, 𝐵1,10) . 

However, the ordering of the magnitudes for these potential 

harmonics does not exactly match the ordering of the 

magnitudes for the magnetic field harmonics. The toroidal 

coupling seems to be relatively weaker than the poloidal 

coupling. In spite of the fact that the amplitudes of these  𝜙2,10 

and 𝜙1,10  helical harmonics are much smaller than the 

axisymmetric harmonics 𝜙1,0 and 𝜙2,0, the low-n harmonics 

can act as quasi-modes to enhance the inverse cascade of the 

toroidal spectrum from the high-n unstable harmonics to the 

low-n damped harmonics [9].  

 

Fig. 7: Time history of various non-zonal components of 

perturbed electrostatic potential  𝜙. 

4.  Collisionless damping of zonal flows in W7-X 

4.1. Zonal flow damping in W7-X with adiabatic 
electrons 

A similar analysis of the collisionless damping of zonal flow 

is performed now for the W7-X stellarator. The magnetic field 

in the W7-X exhibits a strong variation along the toroidal 

direction peaking at the inner corners of the pentagon. In each 

field period the poloidal cross section shape considerably 

changes so the magnetic axis shows a helical structure. The 

rotational transform has little variation along the radial 

direction, i.e., the magnetic shear is weak. In this work, we use 

the high mirror magnetic configuration equilibrium which 

leads to a higher fraction of trapped particles than other 

configurations.  

The W7-X has Nfp=5 field periods so equilibrium quantities 

are symmetric after a 0.4π rotation in the toroidal direction. In 

a similar way as we did in Sec.3, the dynamics of zonal flows 

can be simulated using one-fifth of the torus taking advantage 

of that symmetry. The equilibrium quantities are represented 

on the equilibrium mesh, where the radial, poloidal, and 

toroidal grid numbers are, respectively, 200, 799, and 27 over 

one field period (i.e., one-fifth of the torus). 

Radial simulation domain is restricted from 𝜓 = 0.44𝜓𝑥  to 

𝜓 = 0.54𝜓𝑥 and the diagnostics presented here are done on 

the 𝜓 = 0.50𝜓𝑥 flux surface where the rotational transform is 

𝜄 = 0.90 and the inverse aspect ratio is 𝜖 ≈ 0.06. Based on 

convergency studies, we simulate 80 particles per cell in the  

turbulence  mesh with 120 radial grid points, 300 poloidal grid 

points and 9 grid points in the parallel direction. Only the n=0 

harmonic is retained in the simulations in Sec 4.1, 4.2 and 4.3. 

The toroidal coupling with n≠0 harmonics is analyzed in 

Sec.4.4 

 

Fig. 8: Time history of zonal electrostatic potential 

(normalized to its initial value) in W7-X from GTC 

simulations for various radial wavenumbers 𝑘𝑟𝜌𝑖. 

Figure 8 shows the results from GTC simulations of the 

collisionless damping of the zonal electrostatic potential in the 

W7-X with adiabatic electrons for different values of initial 

wavenumber 𝑘𝑟. An oscillatory response is clearly observed 

for low values of 𝑘𝑟 , but for values 𝑘𝑟𝜌𝑖 > 0.15  such 

oscillations are mostly damped. Frequency spectrum of these 

oscillations is shown in Fig.9. The LFO frequency around 

0.18𝑐𝑠/𝑅0 is very prominent for low values of 𝑘𝑟  but not 

visible for 𝑘𝑟𝜌𝑖 ≳ 0.15. The GAM oscillation is not visible 

due to the strong Landau damping for the low safety factor 

𝑞 = 1/𝜄~1.1 [15] [17]. This large GAM damping was also 

observed in EUTERPE simulations of the TJ-II and W7-X 

stellarators [17,22]. LFO frequency obtained by GTC 

(~0.18𝑐𝑠/𝑅0) agrees reasonably with the value ~0.15𝑐𝑠/𝑅0 

obtained by Monreal et al. (see Fig.12 in Ref.[29]) using 

CAS3D-K and EUTERPE.  

 

Fig.9: Frequency spectrum of zonal potential shown in Fig.8. 

Vertical dashed line indicates GAM frequency. 

4.2. Effects of kinetic electrons 

To study the kinetic electron effects on the zonal flow 

damping, a set of GTC simulations of with kinetic electrons 

are carried out. Figure 10 shows the time history of the 

normalized flux-surface averaged electrostatic potential for a 

short (blue) and long (red) wavelengths with adiabatic (dashed 
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lines) and kinetic (solid lines) electrons. For long wavelength 

zonal modes, the LFO is observed in both simulations but the 

electron kinetic effects increase the frequency from 

~0.18 𝑐𝑠 𝑅0⁄  to ~0.25 𝑐𝑠 𝑅0⁄ . For shorter wavelength zonal 

modes, the LFO is completely damped but the residual level 

of the simulation with kinetic electrons is lower. 

 

 

Fig.10: Time history of zonal potential (normalized to its 

initial value) in W7-X from GTC simulations with adiabatic 

electrons (dashed lines) and kinetic electrons (solid lines) for 

different values of 𝑘𝑟𝜌𝑖. 

The slow damping of the LFO in the W7-X for long 

wavelength zonal modes requires a much longer simulation 

time to determine its residual level, which is a quasi-steady 

state due to the weaker toroidal viscosity on a longer time 

scale. To obtain the residual level, we fit the zonal mode 

amplitude to the following time-dependent function 

𝑐0 + 𝑐1𝑒−𝑐2𝑡 cos(𝑐3𝑡 + 𝑐4) 

where 𝑐0 is the residual value. Figure 11 shows the residual 

level from simulations with adiabatic and kinetic electrons for 

different values of 𝑘𝑟𝜌𝑖 . As a reference, a dashed line 

illustrates the analytical expression by Wang-Hahm [13] 

assuming an axisymmetric device with the inverse aspect ratio 

of |𝐵0,5|/|𝐵0,0|. We use the ratio of  |𝐵0,5|/|𝐵0,0| as the effective 

inverse aspect ratio in Fig.11 because it determines the 

variations of the magnetic field. In tokamaks, the ratio of   

|𝐵1,0|/|𝐵0,0| corresponds to the aspect ratio. Similar to the LHD, 

the residual value increases for shorter radial wavelength 

zonal mode. Kinetic electrons significantly reduce the residual 

level. The residual values and scaling from GTC simulations 

agree qualitatively with previously results by Monreal et al 

(see Fig.9 in Ref[24]), which used a different W7-X 

configuration. 

 

Figure 11: Zonal flow residual level as a function of radial 

wavenumber 𝑘𝑟𝜌𝑖. 

4.3 Effects of the helical components of the 3D magnetic 
field 

To verify that the helically-trapped particles induce the LFO, 

we now analyze the effects of the three dimensional 

equilibrium on the collisionless damping of the zonal flow in 

the W7-X stellarator. The main components of the magnetic 

field strength in the W7-X equilibrium used in this work are 

the 𝐵0,5, 𝐵1,5 and the (much weaker) axisymmetric 𝐵1,0 

𝐵0,0 > 𝐵0,5 > 𝐵1,5 ≫ 𝐵1,0. 

Several GTC simulations with adiabatic electrons are 

performed by including various 3D equilibrium effects 

besides the axysimmetric (n=0) component. Four cases are 

simulated by incorporating various non-axisymmetric 

components: (a) the full equilibrium including all toroidal 

harmonics n (b) only the n=5 harmonic of the B (c) only the 

n=5 harmonic of the metric tensor g and (d) only the n=0 

axisymmetric equilibrium (i.e.no 3D effects). All m poloidal 

harmonics of the perturbed electrostatic potential were kept in 

the simulation. Figure 12 shows the time history of zonal 

potential (normalized to its initial value) using these four 

equilibria. The simulation results show that when the n=5 

harmonics of the magnetic field B5 is included, the LFO can 

be observed. These harmonics include the 𝐵0,5  and 𝐵1,5 , 

which are the main non-axisymmetric components. On the 

other hand, in the simulation with only the axisymmetric 

equilibrium (in the magnetic field and metric tensor) there is 

no LFO or GAM oscillations. The effect of the n=5 harmonics 

in the metric tensor is not important for the LFO and GAM 

and only modifies the residual level of the zonal flow. Note 

that the GAM is always strongly damped in W7-X due to the 

rotational transform being close to unity. The residual level 

appears to be larger in the simulations without the n=5 

components in the magnetic field (the Rosenbluth-Hinton 

theoretical value is approximately 0.14) probably due to the 

shaping effect [11]. In further simulations with kinetic 

electrons, without the main helical component in the 

equilibrium, the electrons are no longer helically-trapped and 

their response is negligible as in the tokamak case. Hence, the 

axisymmetric case (d) in Fig.12 shows same response with 

either adiabatic or kinetic electrons.  
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Figure 12: Time history of zonal potentials from GTC 

simulations incorporating various non-axisymmetric 

components of magnetic field and metric tensor in W7-X. 

4.4 Effects of linear toroidal coupling 

 

Fig.13: Time history of zonal electrostatic potentials 

(normalized by their initial values) in the W7-X from 

simulations filtering out all n harmonics except for the n=0 

(green solid line) or the n=0 and n=5 (red dashed line) 

harmonics. 

Figure 13 shows the time history of two different simulations 

with adiabatic electrons with the same initial zonal mode in 

the W7-X for a low 𝑘𝑟𝜌𝑖. The electrostatic potential has been 

filtered to allow only the n=0 harmonic or both the n=0 and 

n=5 harmonics. Due to the dominant non-axisymmetric n=5 

harmonics in the magnetic field of the W7-X, the n=0 zonal 

mode can linearly couple with the n=5 components of the 

electrostatic potential.  The simulation results show little 

effect of the linear toroidal coupling of the zonal mode to the 

non-zonal harmonic on the zonal flow dynamics. 

On the other hand, the linear toroidal coupling has a 

significant impact on the generation of low-n harmonics. 

Figure 14 shows the time evolution of various non-zonal 

components normalized to the initial zonal potential. The 

axisymmetric component 𝜙1,0 is the most dominant non-zonal 

component generated by the coupling despite the fact that the 

𝐵1,0 component is much smaller than the non-axisymmetric 

𝐵0,5  and 𝐵1,5  components. The non-axisymmetric 𝜙0,5  and 

𝜙1,5, generated due to the n=5 harmonics of the magnetic field, 

are significantly smaller than the axisymmetric n=0 

component. Note that these low-n harmonics can enhance the 

inverse cascade of the toroidal spectrum from high to low n 

harmonics in turbulence simulations [9]. 

 

Fig.14:  Time evolution of different non-zonal components of 

electrostatic potentials  𝜙𝑚,𝑛  (normalized by their initial 

values) from W7-X simulations. 

5. Conclusions 

Global GTC simulations with kinetic electrons of collisionless 

damping of zonal flows in the LHD and W7-X stellarators 

have been carried out. The kinetic electrons reduce the zonal 

flow residue [24] and increase the frequency of the low 

frequency oscillations (LFO). Simulation results show that the 

main non-axisymmetric harmonics of the magnetic field 

strength (n=10 in the LHD and n=5 in the W7-X) induce the 

LFO. The LFO is strongly damped, and becomes invisible, for 

large zonal flow wavenumbers, e.g.,  𝑘𝑟𝜌𝑖 ≳ 0.12 in the LHD 

and 𝑘𝑟𝜌𝑖 ≳ 0.15 in the W7-X.  

Furthermore, the linear toroidal coupling of multiple toroidal 

n-harmonics has been analyzed. Zonal flows appear to be not 

affected by coupling with n>0 non-zonal components. On the 

other hand, a coupling between zonal flows and the non-zonal 

n≠0 components of the magnetic field generates low-n 

harmonics in the electrostatic potential, which is a new physics 

absent in the tokamaks. These low-n harmonics can act as 

quasi-modes, which enhance the inverse cascade from high-n 

unstable harmonics to low-n harmonics [9]. 

In the future, we plan to perform global gyrokinetic 

simulations of collisional damping of zonal flows in the W7-

X and LHD. The collisions could increase the zonal flow 

damping and lead to an increase in turbulent transport [42,43]. 
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