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Abstract

Global gyrokinetic simulations with Kkinetic electrons for collisionless damping of zonal flows
in LHD and W7-X stellarators show that the helical components of the equilibrium magnetic
field responsible for helically trapped particles have significant impacts on zonal flow.
Kinetic electrons reduce zonal flow residue and increase the frequency of low frequency
oscillation (LFO). The LFO is induced by dominant helical harmonics of magnetic field
strength. Furthermore, linear toroidal coupling of multiple toroidal n-harmonics barely affects
the zonal flows, but can generate long wavelength toroidal harmonics with the same toroidal

number as the helical magnetic field.

Keywords: term, term, term

1. Introduction

The reduction of neoclassical transport in the W7-X stellarator
thanks to its quasi-isodynamic design [1] and the finding of an
optimized operation regime in the LHD stellarator [2] have
shifted research interest from neoclassical to turbulent
transport. Recent experiments in the W7-X have shown that a
significant amount of transport may be driven by
microturbulence [3,4,5]. The role of spontaneously generated
zonal flows in regulating the microturbulence has been
extensively studied in axisymmetric tokamaks [6,7,8]. Zonal
flows have also been shown to regulate ion temperature
gradient (ITG) turbulence in the LHD and W7-X stellarators
in recent global simulations [9]. Therefore, it is important to
understand the dynamics of zonal flow and its impact on the
microturbulence in the stellarators.

In the past decades, the advances of both analytical theory and
gyrokinetic simulations have provided insights of the
dynamics of the zonal flows, which are subjected to
collisionless damping by transit time magnetic pumping
effects in tokamaks. Rosenbluth-Hinton [10] showed that an
initial zonal density perturbation is not fully damped, which
results in a residual level due to the neoclassical polarization
mostly contributed by toroidally-trapped ions. Xiao-Catto and
Wang-Hahm extended the Rosenbluth-Hinton calculations by
including shaping effects [11] and dependence on zonal flow

radial wavelength [12,13]. Sugama-Watanabe showed that a
residue can survive in the optimized helical configurations
with reduced neoclassical transport [14,15]. A low frequency
oscillation (LFO) of the zonal flows was found to be induced
by the radial drift of helically trapped particles [16,17] in the
stellarators. The LFO frequency is much smaller than the
geodesic acoustic mode (GAM) [18] and has been
experimentally observed in the TJ-11 stellarator [19].

After earlier work by flux-tube GKV [14] simulations of a
simplified LHD-like equilibrium, gyrokinetic simulations of
collisionless damping of zonal flows in stellarators have been
extended to more realistic equilibrium: LHD [17,20,21], W7-
X [17] and TJ-1I [22] using global EUTERPE and GT5D
codes and flux-tube GENE and GKV codes. Kinetic electrons
were found to have little effects on the zonal flow residual
level in the tokamaks from the global GTC simulations [23]
but can reduce the residual level in the stellarators from the
CAS3D-K calculations and GENE and GKV simulations
[21,24].

Despite this progress, important physics of the zonal flow
dynamics in the stellarators has not been well studied. First,
zonal flows in the stellarators can linearly couple with other
toroidal harmonics with n # 0, unlike in the axisymmetric
tokamaks. What are the effects of this linear toroidal coupling
on the dynamics of zonal flow and other toroidal harmonics?
Secondly, the number of helically-trapped particles could be
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much more than that of toroidally-trapped particles in some
stellarators such as the W7-X. What are the effects of these
helically-trapped particles on the zonal flow dynamics?
Global simulation is needed to study these unexplored physics
since helically-trapped particles may reside in different
magnetic field lines and may drift far away across magnetic
surfaces. While the effects of a helical magnetic field on the
zonal flow damping have been analyzed theoretically in
Ref.[14-17], by some simulations with adiabatic electrons
[17,20,22,25-31] and by flux-tube simulations with kinetic
electrons [21,24], the impact of (helically-trapped) kinetic
electrons is not yet fully understood.

Most of the previous gyrokinetic simulations of
microturbulence in stellarators have been local flux-tube
simulations which have provided useful insights of turbulent
transport. However, the flux-tube simulation [32] makes the
usual assumptions of the ballooning mode representation
including an axisymmetric equilibrium (i.e. every field line is
equivalent), a radially translational symmetry (i.e. high-n
ballooning mode approximation), and a finite magnetic shear
(i.e., out-going boundary condition along the magnetic field
line) [33]. These assumptions are, in general, not valid in the
3D geometry of the stellarators. In fact, recent local and global
simulations with adiabatic electrons of zonal flow damping in
the HSX and NCSX quasi-symmetric stellarators [30] and the
W7-X and LHD optimized stellarators [31] confirm that
different flux-tubes produce different zonal flow dynamics in
general, and that only some aspects of the zonal flow
dynamics in a specific geometry can be recovered from some
flux-tube simulations using adequately long parallel flux-
tubes. Recently, global gyrokinetic simulations of
microturbulence using adiabatic electrons in stellarators have
been performed by the EUTERPE[34], GTC[9], XGC-S[35]
and GENE-3D[36]. Global simulations are necessary to
include the effects of the 3D magnetic field such as the secular
radial drift of helically-trapped particles, radial turbulence
spreading, linear toroidal coupling of multiple-n toroidal
harmonics (i.e., localization of eigenmodes to discrete
magnetic field lines), and the linear toroidal coupling between
zonal flows and low-n harmonics [9].

In this paper, we study the collisionless damping of zonal
flows in the LHD and W7-X stellarators using the global GTC
simulations with Kkinetic electrons. Simulation results show
that the helical components of the magnetic field responsible
for helically-trapped particles reduce the residue level [24] and
that kinetic electrons increase the LFO frequency. The LFO
is induced by the dominant helical harmonics of the
equilibrium magnetic field strength. Furthermore, linear
toroidal coupling barely affects the zonal flows, but can
generate low-n toroidal harmonics with the same toroidal
number as the dominant helical component of the equilibrium
magnetic field.

The rest of the paper is organized as follows. In Sec.2 global
GTC simulation models for the stellarators are described.
Simulation results of collisionless damping of zonal flow are
presented in Sec.3 for the LHD stellarator and in Sec.4 for the
W?7-X stellarator. Finally, conclusions are given in Sec.5.

2. Implementation of the global gyrokinetic
simulation model

2.1. Implementation of the model

The numerical simulations presented in this paper are
performed using the GTC [6], which is well-benchmarked and
extensively utilized for simulations of microturbulence,
Alfven eigenmodes, MHD instabilities and neoclassical
transport. The code has recently been upgraded for
simulations of Alfvén instabilities in the LHD [37],
microturbulence in the W7-X and LHD [9], neoclassical and
turbulent transport in the W7-X [38], microturbulence in the
DIlI-D tokamak with 3D resonant magnetic perturbations
(RMP) [39] and effects of magnetic islands on neoclassical
bootstrap current [40] and microturbulence [41]. GTC has also
been used to simulate collisionless and collisional damping of
the zonal flows in the axisymmetric tokamak and their effects
on the turbulent transport [6,42,43].

The main goal of this work is to show the effect of kinetic
electrons in the zonal flow damping. First, we will perform
simulations with “adiabatic” electrons, that is, the electron
response is assumed to be zero to the zonal (flux-surface
averaged) component of the electrostatic potential, but
adiabatic to the non-zonal components. Then the results will
be compared with simulations with kinetic electrons solving
the drift kinetic equation [44], where the electron response to
the zonal component may not be negligible due to helically-
trapped electrons. The gyrokinetic model is described in
Sec.2.2.

One important feature of the GTC is that the turbulence mesh
used for representing all turbulence quantities (e.g., perturbed
density, electrostatic potential, etc.) is a global field-aligned
mesh in the real space coordinates [45,46], which achieves the
maximal numerical efficiency without making the usual
approximation in the ballooning mode coordinates. This
turbulence mesh only needs a small number of parallel grid
points to resolve drift-wave eigenmode structures, which are
elongated in the parallel direction.

The equilibria of the LHD and W7-X, taken from Refs. [47]
and [9], are calculated by the ideal MHD equilibrium code
VMEC [48]. VMEC equilibrium data (magnetic field, metric
tensor, etc.) are provided by a Fourier series in poloidal and
toroidal direction on a discrete radial mesh. The equilibrium
data are then transformed to the Boozer coordinates as a
Fourier series in the toroidal direction on a discrete 2D mesh
on the poloidal plane. Finally, GTC uses a 3D quadratic spline
function defined on an equilibrium mesh to represent these
equilibrium quantities for better computational efficiency.
Due to the toroidal variations of equilibrium quantities in the
stellarator, the number of toroidal grid points in the
equilibrium mesh is typically larger than that of the parallel
grid points in the turbulence mesh.

When simulating the collisionless damping of the zonal
flow in this work, equilibrium density and temperature
profiles for both ions and electrons are assumed to be uniform
with T, = T; to avoid complications of pressure gradients.
Simulations are performed in a narrow radial domain so the
rotational transform and aspect ratio have little variations
within the simulation domain. An initial ion gyrocenter
density perturbation is imposed as a sinusoidal function with
only radial variations. Zonal flows with various radial
wavenumber k, are simulated. To avoid undesirable effects
from the radial boundaries, the perturbation amplitude is
enclosed within a Gaussian function so the perturbation is
maximum in the center of the radial domain and weak near the
boundaries. We analyze the temporal evolution and relaxation
of the zonal flows in the simulations. In particular we focus on
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the zonal electrostatic potential {(¢) where the brackets
indicate a flux-surface average. In all the simulations
presented in this paper, time is given in units of R,/c;where
R,is the major radius, ¢; = /T, /m;, and m; the ion mass. In
the LHD, the magnetic axis is always located in the same
location in the poloidal plane for any toroidal angle so R, isa
constant. However, in the W7-X the location of the magnetic
axis varies along the toroidal direction so we take an
“averaged” R.

2.2. Gyrokinetic simulation model

We perform GTC linear electrostatic simulations to study
collisionless damping of zonal flows in the stellarators. lon
dynamics is described by the collisionless gyrokinetic
equation [49,50]

f X, wyy,t) =

where

0 6
4]

X=v||b+UE+vd
and

*

1B

The f(X,u, vy, t) is the distribution function with X the
gyrocenter, | the magnetic moment and v, the parallel
velocity. B is the equilibrium magnetic field, B* = B +
%be, b=B/B and vy and v, are the E X B drift

velocity and magnetic drift velocity, respectively. ¢ is the
perturbed electrostatic potential, Z is the ion charge and m its
mass. The perturbed potential is decomposed into zonal and
non-zonal components ¢p={(¢p) + 8¢, where (¢) is the flux-
surface averaged zonal mode.

In this work, in order to reduce particle nose, we use the §f
method [51] for the ion species. The ion gyrocenter
distribution function f = f, + §f is separated into an
equilibrium part f; and a perturbed part §f. Eq.[1] may be
written as Lf = 0 and the propagator L can be decomposed
into equilibrium Lo and perturbed SL parts. So

a 1 B*
Ly = at+(”ub+vd) V-—F" (MVB)a (2)

Uy

and

*

1B
SL=vp - V———(ZVg)— 6v" 3)

The equilibrium drstrlbutlon function satisfies Ly f, = 050 f;
is the neoclassical solution (however f,is approximated to a
local Maxwellian in our simulations). This way the perturbed
distribution function can be calculated as (L, + 6L) 8f =
—06Lf,. We define the particle weightas w = §f/f, so
Vfo L2 Z B v 9fo

fo  mfy B dyy

EW—(l—W) Vg -

(4)

We use the electrostatic hybrid model [44] for the
electron species. The electron drift kinetic equation can be
written as Lf, = 0 where the electron distribution function
can be described as the sum

fo = foe + £ + 8h,

The equilibrium distribution satisfies L, fy, = 0. The lowest
order perturbed distribution is adiabatic response 6fe(°) =

e(5¢
fOe

adrabatrc response 8h,. The non-zonal potential ¢ can also
be expanded order by order 8¢ = §¢p©@ + 5™ . The
gyrokinetic Poisson equation for the non-zonal component in

and the higher order perturbed distribution is non-
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the lowest order §¢(® becomes
(T+1)esp©® re&ﬁ(o) 87 — (67;)

T, T, ny ®)
where T = T, /T;, n,is the equrlrbrlum electron density, tilde
represent double-gyroaveraging and 67; = [ §fd3v.

The non-adiabatic electron particle weight is defined as
w, = 6h,/f,, which is governed by

esp(®
dwe _ <1 7L ) —vgVinfoe |y, — 6t( )
AWwe _ (1 _ —w,
dt foe

Te
—(vq + 8vg) - V(e(¢>)

The non-zonal potential with the first order correction

becomes

(6)

eE5¢’/Te = eequ(O)/Te — L«Sne) (7)
ny
with 6n, = [ 8h,d3v. Eq 6 and 7 can be repeated to reach

higher order in the expansion. After a converge test, we found
that a second order expansion is sufficient for this work.
Finally, the zonal component of the potential is calculated
from

e((p) = ($) _ (57;) — (on,)

Te ny

(8)

3. Collisionless damping of zonal flow in LHD

3.1. Zonal flow damping in LHD with adiabatic
electrons

First, we analyze the zonal flow damping in the LHD,
which is a heliotron with a helical pole number of I=2. Its main
helical field has the m=2 poloidal and n=10 toroidal number.
The flux surface shapes also vary along the toroidal direction.
The model equilibrium used in the present simulations
corresponds to the outward-shifted configuration.

The LHD has a number of field periods Ng=10, i.e., all
equilibrium quantities including magnetic field and metric
tensors are symmetric under a 0.2n rotation in the toroidal
direction. That periodicity allows us to simulate one-tenth of
the torus to capture the dynamics of the zonal flows. Full torus
simulations give similar results at a higher computational cost.
To ensure the toroidal periodicity in a global field-aligned
mesh, we shift the grid points in the poloidal direction by an
angle A6 = 27/ (qNy, ) after a toroidal circuit when only one
field period is simulated. The LHD equilibrium quantities are
represented on the equilibrium mesh in GTC, where the radial,
poloidal, and toroidal grid numbers are, respectively, 200, 799,
and 27 over one field period (i.e., one-tenth of the torus).

The radial domain in the current simulations is restricted
from ¢ = 0.13y, to Y = 0.23y, (where v, is the poloidal
flux at the last closed flux surface) and the diagnostics are
done on the ¥ = 0.18y, flux surface where the rotational
transform is ¢ = 0.42 and the local inverse aspect ratio is € =
r/Ry =~ 0.05. All m poloidal and n toroidal harmonics of the
equilibrium are included in the simulations unless it is
explicitly stated. Based on convergence studies, we simulate
60 particles per cell in the turbulence mesh with 120 radial
grid points, 270 poloidal grid points and 9 parallel grid points
over one-tenth of the torus. Only n=0 harmonic is retained in
these simulations in Sec 3.1, 3.2 and 3.3. The toroidal coupling
with n#£0 harmonics is analyzed in Sec.3.4
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-0.2]
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Time(Rg/cs)

Fig.1: Time history of zonal potential in LHD for various
radial wavenumbers k_p;.

Figure 1 shows the time evolution of flux-surface average
electrostatic potential (¢) (normalized by its initial value)
after an initial zonal gyrocenter density perturbation is
imposed in GTC simulations with adiabatic electrons for
different k,.p; values where p; is the ion gyroradius. The
zonal potential oscillates with a GAM frequency, which is
damped by collisionless magnetic pumping effects on a fast
time scale in the order of ion transit time. The zonal flow
residue then reaches a quasi-steady state level, which could be
further damped on a much longer time scale by toroidal or
poloidal viscosity.

0.20

— k0 =0.07

| —= kp;=0.12

: —— kpi=0.20
0.15 ! i

— kpi=0.56

Spectrum
o
=
o

w (cs/Ro)

Fig.2: Time frequency spectrum of zonal flows shown in Fig.1.
Vertical red dashed line indicates theoretical GAM frequency.

In Fig.2 we show the frequency spectrum of the zonal
potential from Fourier transform of the time history data
shown in Fig.1. The vertical red dashed line in Fig. 2 indicates
the theoretical GAM frequency [15]. The zonal flow with a
long wavelength (k,p; = 0.07) exhibits two distinct
frequencies: a larger and wider peak of the GAM frequency at
w =~ 2.5¢c5/R,, and a smaller and narrower peak with a lower
frequency w = 0.3¢5/R, . The low frequency oscillation
(LFO) has been predicted by analytic theory and observed in
earlier simulations by the EUTERPE and GENE codes [17].
GAM is observed in all cases but LFO is only visible for long
wavelength modes(k,.p; < 0.12).

3.2. Effects of kinetic electrons
To study kinetic electron effects on the collisionless damping

of zonal flows, we perform a series of GTC simulations with
kinetic electrons. Figure 3 shows a comparison between a

simulation with adiabatic electrons (red dashed line) and
kinetic electrons (green solid line) for a long wavelength
k,p; = 0.08. The time evolution of the zonal potential shows
a quite similar behavior. The frequency spectrum of the zonal
potential (inset plot in Fig.3) shows that the GAM frequency
is the same but the LFO increases from ~0.3c¢,/R, to
~0.45 ¢, /R, by the kinetic electrons. Furthermore, the kinetic
electrons enhance the damping of the GAM and LFO.

1.0 0.20
0.8 LHD £0.15
2
0.6 g ool , !
D oos Y
_. 04
;S; 0.00 1 2 3 4 5

0.2 w (cs/Ra)

00 - W oy~
-0.2 —— Kinetic elect.
_04 === Adiabatic elect.

0 10 20 30 40 50

Time(Rp/cs)
Fig.3: Time history of zonal electrostatic potential with initial
k.p; = 0.08 for simulations with adiabatic electrons (red
dashed line) and kinetic electrons (solid green line). Inset plot:
frequency spectrum of zonal potential.

Kinetic electrons also affect the quasi-steady state residual
level of the zonal electrostatic potential. In Fig.4 we plot the
residual level from simulations with adiabatic or kinetic
electrons for various k,.p; values. The analytical expression
by Wang-Hahm[13] for the residual level for the axisymmetric
tokamak is also plotted as a reference. The simulated residual
levels are obtained by a temporal average over a time long
enough (4t =30R,/cs) once the GAM oscillation
amplitude diminishes. The error bars correspond to one
standard deviation of that temporal average. The results show
that the residual level increases as k,.p; increases [15,17,20].
Finally, simulations with kinetic electrons show that electron
kinetic effects significantly reduce the residual level [21].

0.10

—a— Adiabatic elect. ,/
—e— Kinetic elect.
0.081 ---- Theory (axisym.)

0.02

0% o1 02 03 04 05
kpi
Fig.4: Residual level of zonal potential as a function of radial
wavenumber k,.p;.

3.3 Effects of the helical components of the 3D magnetic
field

The zonal flows in the stellarators exhibit, not only the
GAM frequency (as in the tokamaks), but also a characteristic
LFO, which has been predicted theoretically [17] to be
induced by helically trapped particles. In the LHD model
equilibrium used in this work, the main helical magnetic field
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is the B(p—7 =10y COMponent which is comparable to the B; o
component responsible for the GAM oscillation in both
tokamaks and stellarators.

To verify that the main helical magnetic field component
causes the LFO, we perform several controlled simulations
with adiabatic electrons by selectively including various 3D
equilibrium effects. The equilibrium magnetic field and metric
tensor can be represented as a summation of the toroidal
harmonic n. Therefore, the equilibrium in GTC simulations
can include some or all of the n harmonics for either the
magnetic field or the metric tensor. Because of the stellarator
symmetry of the LHD (N#=10), we focus on the effect of the
dominant n=10 harmonics, which are responsible for the
helically-trapped particles.

1.00 0.075
LHD Residual
0.75
0.50
§ 0.25 ]
0.00| § 4
\ —— Full equilibrium
—0.25 —:= Bo,Buo 9o
— Bo go, 910
- \
0.501 v === Bo do

0 2 4 6 8 10 12 14
Time(Ro/cs)

Fig. 5: Time history of zonal potential from simulations with
various magnetic field and metric tensor components.
Subscript of B and g represents the toroidal harmonic n. Inset
figure indicates residual levels for all simulations.

We perform four simulations by selectively including various
helical components besides the axisymmetric (n=0)
component of the equilibrium: (a) the full 3D equilibrium
including all toroidal harmonics n, (b) only the n=10
harmonics in the magnetic field, (c) only the n=10 harmonic
in the metric tensor g, and (d) no 3D effects, i.e., only the
axisymmetric (n=0) harmonic in both magnetic field and
metric tensor. Note that the equilibria (b) and (c) may not be
self-consistent because the Jacobian depends on magnetic
field strength in the Boozer coordinates. All m poloidal
harmonics of the perturbed electrostatic potential were kept in
the simulation. Figure 5 shows that including the n=0 and 10
harmonics in the B field but only the n=0 harmonic of the
metric tensor recovers a similar result as the full equilibrium
simulation. The frequency spectrum (not shown here) shows
that the LFO is only visible if the n=10 magnetic field By is
included in the simulation. On the other hand, the GAM
frequency is clearly visible in all the four simulations. This
means that the main helical component Bio of the magnetic
field generates the LFO, but not the GAM which is induced by
the n=0 axisymmetric component Bo. Furthermore, both the
B1o and the gio components enhance the damping of the GAM
oscillation, as predicted by analytic theory [15]. Finally, the
main helical component B, of the magnetic field reduces the
residual level as shown in the inset panel of Fig.5. The residual
levels for the axisymmetric magnetic field (c) and (d) show a
value above the Rosenbluth-Hinton residual level which is
roughly ~0.02. Such high value could be caused by the
equilibrium shape [11].

3.4 Effects of linear toroidal coupling

AUTHOR SUBMITTED MANUSCRIPT - NF-104819.R2

In our previous simulations [9], a linear toroidal coupling of
zonal flows with n>0 harmonics was suggested to explain the
effects of the zonal flows on the nonlinear spectrum of the ITG
turbulence. The effect is caused by the toroidal variation of the
magnetic field in the stellarators, which is dominated by the
n=10 harmonic in the LHD. Here, we carry out linear
simulations with adiabatic electrons of the zonal flow damping
in the LHD to analyze that mechanism.

1.0

— n=0
-=-- n=0,10

0.6

—~ 04
0.2

0.0 —

-0.2

-0.4

0 5 10 15 20 25
Time(Ro/cs)

Fig. 6: Time history of zonal electrostatic potential from
simulations keeping only zonal mode (green solid line) or both
zonal mode and n=10 toroidal harmonic (red dashed line).

Figure 6 shows the time history of the zonal electrostatic
potential from two simulations of an initial zonal mode with a
radial wavenumber k,.p; = 0.07. The electrostatic potential
has been filtered to allow only the n=0 harmonic or both the
n=0 and n=10 harmonics. The zonal mode (dominated by the
n=0 harmonic) can linearly couple to the n=10 harmonic of
the perturbed electrostatic potential due to the dominant
helical component (n=10) of the equilibrium magnetic field in
the LHD. The simulation results show that linear toroidal
coupling of the zonal mode to the n>0 harmonics has little
effects on the collisionless damping of the long wavelength
zonal flow.

However, the zonal mode can generate low-n harmonics by
the linear toroidal coupling. Figure 7 shows the time evolution
of the amplitudes of various non-zonal components of the
electrostatic potential normalized by the initial zonal mode
amplitude. Besides the flux-surface averaged zonal mode, the
axisymmetric component ¢,,,_; ,—o IS the largest component
followed by the second harmonic ¢,,. The largest non-
axisymmetric components, n=10, are much smaller than the
axisymmetric n=0 components. These results are compared
with the components of the equilibrium magnetic field that
induces these linear couplings. In the flux-surface of interest,
the main harmonics of the magnetic field strength are

Boo > Bio > By10 > Byi10 > B30 > By

The largest harmonic after the B, , is the B, o. Similarly, the
electrostatic potential ¢, , is also the largest harmonic after
the zonal mode ¢,,. This characteristic is also typical in
axisymmetric tokamaks where there is a strong coupling
between ¢, and ¢, o due to the B, . Similarly, the ¢, is
generated mostly due to the B, , component.
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The helical components with n#0, for example, ¢, 1, and
@110, Of the electrostatic potential are also generated due to
the n=10 harmonics of the magnetic field (B, 14, By 10) -
However, the ordering of the magnitudes for these potential
harmonics does not exactly match the ordering of the
magnitudes for the magnetic field harmonics. The toroidal
coupling seems to be relatively weaker than the poloidal
coupling. In spite of the fact that the amplitudes of these ¢, 14
and ¢, 4, helical harmonics are much smaller than the
axisymmetric harmonics ¢, o and ¢, o, the low-n harmonics
can act as quasi-modes to enhance the inverse cascade of the
toroidal spectrum from the high-n unstable harmonics to the
low-n damped harmonics [9].

0.051
— ¢1,0
0.04 LHD (k-p; =0.07) -== ¢1,10
...... ¢2,U
0.03 — ¢'2.10
=
£
=0.02,
0.01+
0.00~ -~ A -
0 2 4 6 8 10 12 14
Time(Ro/Cs)

Fig. 7: Time history of various non-zonal components of
perturbed electrostatic potential ¢.

4. Collisionless damping of zonal flows in W7-X

4.1. Zonal flow damping in W7-X with adiabatic
electrons

A similar analysis of the collisionless damping of zonal flow
is performed now for the W7-X stellarator. The magnetic field
in the W7-X exhibits a strong variation along the toroidal
direction peaking at the inner corners of the pentagon. In each
field period the poloidal cross section shape considerably
changes so the magnetic axis shows a helical structure. The
rotational transform has little variation along the radial
direction, i.e., the magnetic shear is weak. In this work, we use
the high mirror magnetic configuration equilibrium which
leads to a higher fraction of trapped particles than other
configurations.

The W7-X has Ng,=5 field periods so equilibrium quantities
are symmetric after a 0.4z rotation in the toroidal direction. In
a similar way as we did in Sec.3, the dynamics of zonal flows
can be simulated using one-fifth of the torus taking advantage
of that symmetry. The equilibrium quantities are represented
on the equilibrium mesh, where the radial, poloidal, and
toroidal grid numbers are, respectively, 200, 799, and 27 over
one field period (i.e., one-fifth of the torus).

Radial simulation domain is restricted from ¢ = 0.441, to
1 = 0.541, and the diagnostics presented here are done on
the ¥ = 0.50v, flux surface where the rotational transform is
t = 0.90 and the inverse aspect ratio is € ~ 0.06. Based on
convergency studies, we simulate 80 particles per cell in the
turbulence mesh with 120 radial grid points, 300 poloidal grid
points and 9 grid points in the parallel direction. Only the n=0

harmonic is retained in the simulations in Sec 4.1, 4.2 and 4.3.
The toroidal coupling with #n#0 harmonics is analyzed in
Sec.4.4

1.0 -—- kp; =0.05
0.8 W7-X — k,—p,‘=0.07
-—— kp0;=0.16
0.6 * — kp;=0.36
s 0.4 S kipi=0.50
T N
00 N\ T N5
-0.2
‘\';!
0 20 40 60 80 100

Time(Ro/cs)

Fig. 8: Time history of zonal electrostatic potential
(normalized to its initial value) in W7-X from GTC
simulations for various radial wavenumbers k,.p;.

Figure 8 shows the results from GTC simulations of the
collisionless damping of the zonal electrostatic potential in the
W7-X with adiabatic electrons for different values of initial
wavenumber k,.. An oscillatory response is clearly observed
for low values of k,, but for values k,p; > 0.15 such
oscillations are mostly damped. Frequency spectrum of these
oscillations is shown in Fig.9. The LFO frequency around
0.18¢,/R,is very prominent for low values of k, but not
visible for k,p; = 0.15. The GAM oscillation is not visible
due to the strong Landau damping for the low safety factor
q = 1/1~1.1 [15] [17]. This large GAM damping was also
observed in EUTERPE simulations of the TJ-1I and W7-X
stellarators [17,22]. LFO frequency obtained by GTC
(~0.18¢,/R,) agrees reasonably with the value ~0.15¢;/R,
obtained by Monreal et al. (see Fig.12 in Ref.[29]) using
CAS3D-K and EUTERPE.

—— Kkpi=0.05
—— k0i=0.07
-— kpi=0.16
—— ki =0.36

S —— ki =0.50

=

(@]

L]

o

v :

0870 05 1.0 15 2.0

w (¢s/Ro)

Fig.9: Frequency spectrum of zonal potential shown in Fig.8.
Vertical dashed line indicates GAM frequency.

4.2. Effects of kinetic electrons

To study the kinetic electron effects on the zonal flow
damping, a set of GTC simulations of with Kkinetic electrons
are carried out. Figure 10 shows the time history of the
normalized flux-surface averaged electrostatic potential for a
short (blue) and long (red) wavelengths with adiabatic (dashed

Page 6 of 9
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lines) and kinetic (solid lines) electrons. For long wavelength
zonal modes, the LFO is observed in both simulations but the
electron Kkinetic effects increase the frequency from
~0.18¢,/R, to ~0.25¢,/R,. For shorter wavelength zonal
modes, the LFO is completely damped but the residual level
of the simulation with kinetic electrons is lower.

1.0 --- Adiabatic kp; = 0.05
0.8 W7-X  —— Kinetic k;p;=0.05
--- Adiab k,p;=0.50
0.6 —— Kinetic kyp; = 0.50
—~ 0.4 -
R L T il D
0.2
0.0 AN X
-0.2
-0.4
0 20 40 60 80 100
Time(Ro/cs)

Fig.10: Time history of zonal potential (normalized to its
initial value) in W7-X from GTC simulations with adiabatic
electrons (dashed lines) and kinetic electrons (solid lines) for
different values of k,.p;.

The slow damping of the LFO in the W7-X for long
wavelength zonal modes requires a much longer simulation
time to determine its residual level, which is a quasi-steady
state due to the weaker toroidal viscosity on a longer time
scale. To obtain the residual level, we fit the zonal mode
amplitude to the following time-dependent function

co + cre™ 2t cos(cst + ¢y)

where c, is the residual value. Figure 11 shows the residual
level from simulations with adiabatic and kinetic electrons for
different values of k,p;. As a reference, a dashed line
illustrates the analytical expression by Wang-Hahm [13]
assuming an axisymmetric device with the inverse aspect ratio
of | By 5l/|Bo,o|l- We use the ratio of |B, s|/|B, ol as the effective
inverse aspect ratio in Fig.11 because it determines the
variations of the magnetic field. In tokamaks, the ratio of
| B1 0l/|Bo,0| corresponds to the aspect ratio. Similar to the LHD,
the residual value increases for shorter radial wavelength
zonal mode. Kinetic electrons significantly reduce the residual
level. The residual values and scaling from GTC simulations
agree qualitatively with previously results by Monreal et al
(see Fig.9 in Ref[24]), which used a different W7-X
configuration.
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0.30
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k-pi

Figure 11: Zonal flow residual level as a function of radial
wavenumber k,.p;.

4.3 Effects of the helical components of the 3D magnetic
field

To verify that the helically-trapped particles induce the LFO,
we now analyze the effects of the three dimensional
equilibrium on the collisionless damping of the zonal flow in
the W7-X stellarator. The main components of the magnetic
field strength in the W7-X equilibrium used in this work are
the By 5, By 5 and the (much weaker) axisymmetric B ,

BO‘O > BO'S > Bl's >> Bl,o-

Several GTC simulations with adiabatic electrons are
performed by including various 3D equilibrium effects
besides the axysimmetric (n=0) component. Four cases are
simulated by incorporating various non-axisymmetric
components: (a) the full equilibrium including all toroidal
harmonics n (b) only the n=5 harmonic of the B (c) only the
n=5 harmonic of the metric tensor g and (d) only the n=0
axisymmetric equilibrium (i.e.no 3D effects). All m poloidal
harmonics of the perturbed electrostatic potential were kept in
the simulation. Figure 12 shows the time history of zonal
potential (normalized to its initial value) using these four
equilibria. The simulation results show that when the n=5
harmonics of the magnetic field Bs is included, the LFO can
be observed. These harmonics include the Bys and Bj s,
which are the main non-axisymmetric components. On the
other hand, in the simulation with only the axisymmetric
equilibrium (in the magnetic field and metric tensor) there is
no LFO or GAM oscillations. The effect of the n=5 harmonics
in the metric tensor is not important for the LFO and GAM
and only modifies the residual level of the zonal flow. Note
that the GAM is always strongly damped in W7-X due to the
rotational transform being close to unity. The residual level
appears to be larger in the simulations without the n=5
components in the magnetic field (the Rosenbluth-Hinton
theoretical value is approximately 0.14) probably due to the
shaping effect [11]. In further simulations with Kkinetic
electrons, without the main helical component in the
equilibrium, the electrons are no longer helically-trapped and
their response is negligible as in the tokamak case. Hence, the
axisymmetric case (d) in Fig.12 shows same response with
either adiabatic or kinetic electrons.
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Figure 12: Time history of zonal potentials from GTC
simulations incorporating  various  non-axisymmetric
components of magnetic field and metric tensor in W7-X.

4.4 Effects of linear toroidal coupling

— n=0

0.8 W7-X (krp;=0.05) --- n=0,5

0 20 40 60 80 100
Time(Rp/Cs)

Fig.13: Time history of zonal electrostatic potentials
(normalized by their initial values) in the W7-X from
simulations filtering out all n harmonics except for the n=0
(green solid line) or the n=0 and n=5 (red dashed line)
harmonics.

Figure 13 shows the time history of two different simulations
with adiabatic electrons with the same initial zonal mode in
the W7-X for a low k,.p;. The electrostatic potential has been
filtered to allow only the n=0 harmonic or both the n=0 and
n=5 harmonics. Due to the dominant non-axisymmetric n=5
harmonics in the magnetic field of the W7-X, the n=0 zonal
mode can linearly couple with the n=5 components of the
electrostatic potential. The simulation results show little
effect of the linear toroidal coupling of the zonal mode to the
non-zonal harmonic on the zonal flow dynamics.

On the other hand, the linear toroidal coupling has a
significant impact on the generation of low-n harmonics.
Figure 14 shows the time evolution of various non-zonal
components normalized to the initial zonal potential. The
axisymmetric component ¢, , is the most dominant non-zonal
component generated by the coupling despite the fact that the
B; , component is much smaller than the non-axisymmetric
Bys and B, 5 components. The non-axisymmetric ¢, s and
¢ 5, generated due to the n=5 harmonics of the magnetic field,
are significantly smaller than the axisymmetric n=0
component. Note that these low-n harmonics can enhance the
inverse cascade of the toroidal spectrum from high to low n
harmonics in turbulence simulations [9].

0.006 === ¢o,5
0.005 W7-X (k,pi=0.05) A
0.004

s

EEO.U(B

0.002

0.001 [}

0,000 " R

0 20 40 60 80 100
Time(Rg/cs)

Fig.14: Time evolution of different non-zonal components of
electrostatic potentials ¢,,, (normalized by their initial
values) from W7-X simulations.

5. Conclusions

Global GTC simulations with kinetic electrons of collisionless
damping of zonal flows in the LHD and W7-X stellarators
have been carried out. The kinetic electrons reduce the zonal
flow residue [24] and increase the frequency of the low
frequency oscillations (LFO). Simulation results show that the
main non-axisymmetric harmonics of the magnetic field
strength (n=10 in the LHD and n=5 in the W7-X) induce the
LFO. The LFO is strongly damped, and becomes invisible, for
large zonal flow wavenumbers, e.g., k,p; = 0.12 in the LHD
and k,.p; = 0.15 in the W7-X.

Furthermore, the linear toroidal coupling of multiple toroidal
n-harmonics has been analyzed. Zonal flows appear to be not
affected by coupling with n>0 non-zonal components. On the
other hand, a coupling between zonal flows and the non-zonal
n#0 components of the magnetic field generates low-n
harmonics in the electrostatic potential, which is a new physics
absent in the tokamaks. These low-n harmonics can act as
quasi-modes, which enhance the inverse cascade from high-n
unstable harmonics to low-n harmonics [9].

In the future, we plan to perform global gyrokinetic
simulations of collisional damping of zonal flows in the W7-
X and LHD. The collisions could increase the zonal flow
damping and lead to an increase in turbulent transport [42,43].
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