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1 Introduction

In recent years, actual and potential contamination of air, soil and groundwater by organic
compounds has become a field of increasing environmental interest in Germany. The main
concern is the huge number of abandoned landfill sites, where organic liquids often infiltrate
the unsaturated zone. Since non-aqueous phase liquids (NAPLs) - for example mineral oil or
chlorinated hydrocarbons - are rather immobile if the NAPL-content of the soil is less than
10 %, contaminant spills with NAPL remain long term contaminant sources. They dissolve
in groundwater and evaporate into the soil gas, and will be transported by diffusion into
the atmosphere. For remediation the traditional "pump and treat” methods are inefficient
because NAPL solubility in groundwater is'small and because sorption and vaporization of

the contaminant can be rate-limited processes.

With the aim of developing remediation technologies, the experimental VEGAS research fa-
cility for subsurface remediation [1] was built at the Institute of Hydraulic Engineering at the
University of Stuttgart/Germany. The objective of VEGAS is to test and optimize existing
techniques and to develop new approaches for in-situ remediation of contaminated aquifers
and soils. VEGAS focusses on methods for determining the mobility of contaminants in the
subsurface and for improving the assessment of contaminated sites. Furthermore, methods
for determining the overall mass and distribution of contaminants in the subsurface, and
techniques for identifying physical and chemical subsurface properties are to be developed
and improved as well. This includes further development of finite element techniques for

simulating 3-phase fluid and heat flow [2)].
2 Aim

One of the ongoing studies in VEGAS is called "thermally enhanced soil vapor extraction”
and concerns soil venting, which is an established technology for the remediation of organic
contaminants in the vadose zone. Concurrent injection of heat may improve the effectiveness
of soil venting by enhancing some physical processes, e.g. increasing NAPL vapor pressure

and decreasing capillary forces. The aim of the present study is to develop a better un-




derstanding of the physical processes in existing thermally enhanced methods. Numerical
modeling is used to explore effects of steam and hot air injection into homogeneous and
heterogeneous soils. Subsequently it is planned to conduct laboratory experiments to inves-
tigate the remediation of contaminated soils on different scales. A bench scale experiment
(Height="74cm, Length=135cm, Width=10cm) will lead through two-dimensional prestudies
to a three-dimensional technical-scale experiment in the VEGAS-container (Height=450cm,
Length=590cm, Width=600cm). Numerical models are used to provide a quantitative de-
scription of the relevant processes and mechanisms, and to aid in the design and analysis of

the experiments.

For a better design of the.experiments, numerical modeling was chosen as a tool to predict
steam and hot air flow patterns for different injection scenarios. For this purpose the Integral-
Finite-Difference simulator TOUGH2/T2VOC [3], [4], [5] was applied at Lawrence Berkeley
Laboratory to various flow scenarios. TOUGH2/T2VOC is a version of the general-purpose
multiphase fluid and heat flow simulator TOUGH2 that was specifically designed for 3-
component, 3-phase flows of water, air and NAPL. A detailed discussion of physical processes
modeled and mathematical and numerical methods used is given in the indicated references.

The results of exploratory calculations are presented in this report.

3 Setup of the numerical examples

The flow system modeled is a two-dimensional rectangular container, placed vertically, which
has three inlet and three outlet openings for the injection and withdrawal of fluids. The
system was assufned 74 cm in height, 135 cm long, 10 cm thick, and the discretization is shown
in Fig. 1. The figure shows lines connecting nodal points. Each of the six openings involves
two adjacent nodes marked by arrows. No-flow boundary conditions are applied everywhere,
except at the inlet and outlet ports. The investigations considered a homogeneous sand with
and without a finer, less permeable sand lens, together with injection of steam only and

steam with dry air with different spatial arrangements.



QOO " T T T T Ty Ty T T LT

o

N

14]
i

Vert. Distance in [m]

o

[4)]

o
1

-0.75

| Y S S Y Y ST S S RS

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Horiz. Distance in [m]

Figure 1: Discretization of container

The temperature of the injected fluids was always 100° C. As initial condition the sand

was always at residual water saturation of S,; = 0.2, whereas in the sand lens S,; = 0.3.

Initial gas pressure was 101330 Pa and was maintained constant at the outlet ports. Initial

temperature was at T' = 10 ° C. Table 1 shows the different scenarios. The first three scenarios

use homogeneous sand with an isotropic permeability of 5 - 10~'®m2? while in the fourth

scenario a rectangular fine sand lens with a 50 times lower permeability was included. The

Table 1: description of different scenarios

Scenario | homogeneous (h) / [ permeability [m?] | injection rate [g/s]
inhomogeneous (i) | sand 1 | sand 2 |steam | dry air
1 h 5-1010 - 6.0(2) -
2 h 5-1071° - 6.0(2) 3.0t
3 h 5.10710 - 2.0 1.0
4 1 5-1071° [ 1-.10-* | 6.0(¢) 3.0(2)
sand grain parameters (constant for all scenarios):
density : 2243 [ 25
specific heat : 900 [ kg'{ C]

thermal conductivity (dry/saturated); 1.0/2.5 [%]

(a): total rate was equally partitioned among the three inlet ports



porosity was kept constant at 0.3 in all runs. Figure 2 shows the van Genuchten capillary
pressure — saturation relationships used in the simulations. The parameters are: n = 1.8416
and o = 0.001614 for the coarse sand and o = 0.0002283 for the fine sand. In Fig. 3 the
relative permeability—saturation relationships for the wetting and non-wetting phase are
shown. For the liquid phase a van Genuchten function was chosen whereas for the gas phase

a Corey relationship seemed to be more realistic.

In scenario 1 steam was injected at a rate of 2g/s in each of the three inlet ports, while in
the other scenarios steam (2g/s) and dry air (1g/s) were co-injected. In scenario 3 the fluids

were injected in the lowest inlet port only.
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4 Discussion of the model results
4.1 Scenario 1

In the first scenario the system under investigation was a homogeneous sand, and steam at T
= 100 ° C was injected in all three inlet ports. One purpose was to determine how strong the
influence of gravity would be, and whether an almost vertical condensation front would be
generated. The results show that at an injection rate of 6 g/s the condensation front moves
rather slowly (see Fig. 4), so that condensed hot water can flow downward under gravity
and accumulate at the bottom, where after 328 seconds a small region with 100 % liquid
saturation has already formed. The condensate is sucked laterally by capillary force into
residually saturated regions, causing a rise in temperature there (see Fig. 5). Thus, the system
shows a strongly two-dimensional flow behaviour. To diminish generation of condensate and
to fry and achieve a more vertical displacement front, dry air was co-injected with vapor in

all of the following scenarios.
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Figure 5: Scenario 1: temperature after 328 sec.




4.2 Scenario 2

In this scenario the same parameters were used as in scenario 1 except that dry air was
injected at a rate of 3 g/s additionally to the steam (rate: 6 g/s), equally partitioned among
the three inlet ports. The results after 270 seconds show a much faster movement of the
saturation and temperature fronts (compare Figs. 6 and 7 with Figs. 4 and 5). This arises
because 50 % more mass than in scenario 1 was injected, and because the introduction of dry
air effectively suppresses steam condensation. Also, the temperature and saturation fronts
are almost vertical in shape now. Behind the condensation front, some condensed water
driven by gravity accumulates, as can be seen by looking at the shape of the left 0.4 and the
0.45 liquid saturation isolines. Between 0.2m and 0.7m downstream from the left boundary,
a large region with more than 40 % liquid saturation has formed. The main reason for this is
that the gas phase consists of more dry air now and is capable of taking up more vapor than
in scenario 1. Fig. 8 shows that the pattern of air mass fraction in the gas phase is strongly

correlated with the temperature distribution. The influence of the gas phase pressure is small.
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4.3 Scenario 3

For remediation operations in the vadose zone it is generally desirable to avoid any downward
movement of contaminants. The second scenario avoided the strong downflow of water seen
in scenario 1. Here we attempt to achieve a generally upward displacement, by injecting only
in the lowest inlet port. The results show a radial condensation front, but water still tends to
flow downward in most of the swept region (see Figs. 9 and 10). A more effective approach
may be to inject the hot air at a lower elevation than the steam. This will be tried in future

studies. The temperature field (Fig. 11) would tend to drive volatile contaminants upward.
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4.4 Scenario 4

Finally the influence of a fine sand lens, rectangular in shape with 50 times lower permeability,
was investigated. The modified discretization takes into account a finer resolution around the
lens for a better representation of steeper gradients and is shown in Fig. 12. The results after
190 seconds show much of the gas phase flow bypassing the region of lower permeability (Fig.
13). Liquid saturation rises from initial 30 % up to 60 % in the left part of the lens and up to
45 % at the right end (see Fig. 14). This is because higher capillary pressure in the lens sucks
in the condensing hot water at the arrival of the condensation front. This process of entering
of condensed water into the lens continues as the front passes by the upper and lower bounds
of the lens. The temperature and heat flux distribution (see Fig. 15) show that there is a
very small heat flux in the lens which leads to a temperature of only 20 degree Celsius in the
center, whereas at the outer bounds the temperature has reached approximately 90 degrees.
The otherwise nearly vertical lines of equal temperature and liquid saturation are affected
by a retardation effect caused by the lens. Behind the right-hand side of the lens the upper
and lower streamtubes passing by the upper and lower edges of the lens approach each other
while carrying hot fluid (see Figs. 13 - 15). There is almost no downstream flux out of the
lens so the fluid of the just-mentioned streamtubes has to heat up the region behind the
lens. Those streamtubes become larger in cross-sectional area behind the lens, leading to a

reduced fluid velocity and the retardation effect seen in Figs. 13 - 15.

Figure 12: Discretization of the system with finer resolution around the fine sand lens
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These results lead to the following considerations. If a contaminant would be at irreducible
saturation in the low-permeability lens and a remediation process using steam and/or hot
air injection is planned, it could be useful to continue with injection until the temperature
everywhere in the lens is high enough to evaporate the contaminant into the gas phase.
To avoid condensation of the contaminant vapor in cooler regions, additional soil vapor

extraction would help to accelerate the remediation by inducing a gas pressure gradient.

5 Conclusions

Results of exploratory numerical simulation studies using TOUGH2/T2VOC were presented
for steam and hot air injection. In four different scenarios, the influence of injection of
steam only and steam together with air, the influence of injection at various locations,
and the influence of a low-permeability lens were investigated. The results furthered the

understanding of the governing processes and their interaction under different conditions.

The configurations used here were limited to purely two-dimensional flow fields. The implied
assumption that there is no energy exchange across the vertical boundaries of the system
may be difficult to realize in experimental practice. Heater tapes may be applied to achieve
a simultaneous heating of the container walls with the moving condensation front in space

and time, and prevent the flow field from becoming three-dimensional.
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