WAPD-T-3094

CONF-G0249- -

[N

RECFIVED
JAN 16 1995
PRECONDITIONED GRADIENT METHODS FOR S LINEAR SYSTEMS
FOR 'VERY LARGE' STRUCTURAL .

l. K Abu-Shumays, D. N. Hutula, J. J. Haan and G. T. Myers

December 1995

DE-AC11-93PN38195

NOTICE

This report was prepared as an account of work sponsored by the United States Government.
Neither the United States, nor the United States Depariment of Energy, nor any of thelr employees,
nor any of thelr contractors, subcontractors, or thelr employees, makes any warranty, express or
implied, or assumes any legal {lability or responsibllity for the accuracy, completeness or useful-
ness of any information, apparatus, product or process disclosed, or represents that its use would
not infringe privately owned rights.

BETTIS ATOMIC POWER LABORATORY WEST MIFFLIN, PENNSYLVANIA 15122

Operated for the U. S. Department of Energy
by WESTINGHOUSE ELECTRIC CORPORATION

[3_!§TR£BUTION OF THIS DOCUMENT 15 UNLB4TED

DISTRIBUTION 07 Tt e 1 e O M Uﬁg\& g (Eﬂ E E%

WAPD-T-3094

Preconditioned Gradient Methods for Sparse Linear Systems for
'Very Large' Structural Problems

I. K. Abu-Shumays, D. N. Hutula, J. J. Haan, and G. T. Myers

ABSTRACT

This paper deals with background and practical experience with preconditioned gradient methods
for sparse linear systems for ‘very large' structural problems.

The competitive advantage of applying preconditioned conjugate gradient methods to the solution
of very large sparse linear systems which arise in structural problems is demonstrated. Such
systems, while being symmetric positive definite, are typically not diagonally dominant and are
based on applications of the finite element method over irregular (unstructured) mesh
subdivisions. In addition, such very large systems are often ill-conditioned. As a
consequence, attempts prior to 1990 to apply iterative gradient methods to structural problems
were marginally successful and these methods were viewed in the non-academic world as inferior
to direct solution methods. This is due in part to the advanced state-of-the-art of direct solution
methods. lterative methods were previously applied to much smaller structural problems and the
speed advantage as compared to direct methods was not consistently realized.

The conjugate gradient method with diagonal preconditioning (CG/D) is demonstrated to
substantially increase the size of structural problems that can be analyzed, significantly reduce
computer storage requirements, and cut computing cost; thus allowing for much more detailed
modeling and increased engineering efficiency. For one case for a structural system with 396,087
unknowns, the conjugate gradient method with diagonal preconditioning is demonstrated to be a
factor of sixty faster than the direct method. For certain problems, however, the number of
iterations required by the CG/D method is excessive and improved methods are needed.

A stand-alone iterative solver research computer program was developed to evaluate the merits of
various matrix preconditioners. A matrix preconditioner based on a shifted incomplete Cholesky
factorization algorithm was demonstrated to be superior to other choices. The stand-alone
program incorporates an effective data management strategy which utilizes disk and solid state
auxiliary computer storage devices to make it possible to efficiently solve excessively large
structural problems on state-of-the-art vector and parallel computers.

The background of gradient methods, algorithms for their implementation, and practical
experience in their applications to structural problems are presented.

1. Introduction

Application of the finite element method to structural problems of general interest typically yields
linear systems of equations with between 100,000 and 6 million unknowns or degrees of freedom.
The limitation on the size is dictated by the computer resources available. The coefficient matrix
A typically has up to 243 non-zero elements in each row and each column for 20 node brick
elements. One undesirable feature of the system of equations of interest is the fact that the
elements of A can vary widely in magnitude and the matrix A is often mathematically ill-
conditioned. Thus care should be exercised in the selection of solution methods.

Until recently, the structural community employed highly efficient direct methods for solving sparse
linear systems corresponding to large three-dimensional structural problems. The direct method
developed by Dr. D. N. Hutula, while requiring extensive computer storage is extremely efficient
and runs essentially at optimum speed of the Cray Y-MP and C-90 supercomputers.

A team was formed at Bettis in the Fall of 1990 to investigate and implement iterative methods for
the solution of structural problems which are one or two orders of magnitude larger than is
possible by direct methods.

There is extensive experience in applying iterative methods to coupled systems of diffusion type
elliptic partial differential equations and to fiuid flow problems. The elliptic diffusion systems of
interest are typically modeled over a mesh structure which is rectangular in logical space and the
corresponding systems of linear equations are symmetric positive definite (i.e., possess real and
positive eigenvalues) and are in addition diagonally dominant. Preconditioned conjugate gradient
iterative methods [1,7] have been demonstrated to be very effective for such problems. The main
idea of a preconditioning method is first to obtain a matrix which is relatively easy to invert and is
a good approximation to the coefficient matrix of the system under consideration, and second, to
apply this as a splitting matrix or preconditioner to construct fast converging conjugate gradient
polynomial iterative solution methods.

This paper summarizes our success in adapting preconditioned conjugate gradient methods to
structural problems. Success with iterative methods for structural problems has been achieved in
spite of the fact that the corresponding systems of equations lack nice mathematical properties.

To date, work on iterative solvers at Bettis has involved four phases. In the first phase, the Bettis
team developed and tested the effectiveness of several new and old variations of preconditioned
conjugate gradient and conjugate residual iterative methods in stand-alone computer programs.
The initial test computer programs were for problems that fit in the central memory of the Cray
Y-MP and Cray C-90 supercomputers. The diagonally scaled conjugate gradient (CG/D), and
conjugate residual (CR/D) methods in particular, were identified as the methods of choice for
exceedingly large problems. The preconditioned conjugate gradient method with a preconditioner
based on shifted Cholesky incomplete factorization (PCG/IF) has been identified as the method of
choice for moderate and very large size structural problems. This method was first conceived by
Manteuffe! [9] and variations on it were later introduced by the present authors and others. A
generalization of this method is discussed below.

The diagonally scaled conjugate gradient (CG/D) method was implemented in a special stand-
alone computer program which utilizes disks and solid state auxiliary storage devices to handle
problem sizes too large to fit in the central memory of Cray computers, and was demonstrated to
cut computer storage requirements by an order of magnitude as compared to the direct method

previously in use. The initial implementation was not optimal, but was intended to demonstrate
the effectiveness of the method when applied to practical models of structural problems. For a
section of a multiple-connected structure with 396,087 degrees of freedom (unknowns), the
simplest diagonally scaled conjugate gradient iterative method reduced the storage required by a
factor of 48 and the solution time of 22.5 hours to 2.5 hours on the Cray Y-MP vector
supercomputer. For other test problem configurations, solution time and storage space reductions
were not as large, but in all cases storage space reduction varied between one and three orders
of magnitude, thus allowing much larger models to be developed. Allowing models containing
greater detail also improves the user understanding of the results.

In the second phase, D. N. Hutula implemented an element-by-element (EBE) scheme to the
diagonally scaled conjugate gradient and conjugate residual methods. The main idea is to avoid
explicitly constructing the coefficient matrices of the systems to be solved and instead perform the
needed computation by repeatedly assembling the contributions of individual structural elements.
Since individual elements are independent of each other, the computations were highly
vectorized, increasing the speed of the calculations. As a consequence, the current EBE
implementation of the iterative solver requires a factor of 20 less computer storage and runs four
times faster than the stand-alone solver. The EBE iterative solver was applied to the 396,087
degree of freedom problem which required 22.5 hours to run on the Cray Y-MP computer using
the direct method. The storage requirements for this problem were reduced to under three million
locations, a factor of over 1000, and the computing time was reduced to less than one-half hour,
a factor of over 60.

The Cray Y-MP being used has eight central processing units (8 CPUs), 64 Megawords (Mw) of

~ central memory and a clock cycle time of approximately 6 nanoseconds (ns). The Cray C-90 has
16 CPUs, 256 Mw of central memory and a clock cycle time of approximately 4 ns. Each Cray
has a 512 Megawords solid state storage device (SSD) and a number of disks for auxiliary
storage. The data transfer rates are approximately (a) 1,000 Megabytes (MB) per second
between SSD and central memory on the Cray Y-MP, (b) 1900 MB per second between SSD and
central memory on the Cray C-90, (c) 12 MB per second between disks and central memory on
the Cray Y-MP and (d) 20 MB per second between disks and central memory on the Cray C-90.
It is very essential for efficiency consideration to be able to overlap data transfer with
computations. The programs implemented in this work ars designed for a single CPU and allow
for utilizing SSD and up to six distinct disks. Opening files on distinct disks and transferring data
to and from SSD and from these disks simultaneously makes it possible to substantially increase
the effective data transfer rate. As a consequence, the program implemented for both the direct
method and the EBE iterative method run for large problems at the rate of between 800 and 900
MFLOP (Million Floating Point Operations Per Second) for large problems on the Cray C-90. This
compares very well with the theoretical speed of a little over 1,000 MFLOPS.

In the third phase, D. N. Hutula and B. E. Wiancko developed an elegant partitioning scheme and
constructed a parallel version of the element-by-element iterative solver suitable for the Intel
iPSC/860 massively parallel computer with 64 processors each having 64 megabytes of memory.
Substantial reductions in computer storage requirements'and in running time have been achieved
for the parallel version over the iterative serial version of the program. Problems with up to three
million finite elements and 36 million degrees of freedom are possible on the intel computer and
speeds comparable to those of a Cray-C90 have been achieved with 64 processors on the
iPSC/860 machine. Their program was also adapted to run on an intel Paragon, though the
Paragon had less memory than the iPSC/860. :

In spite of the successes with the diagonally preconditioned conjugate gradient solvers, the
underlying method requires too many iterative steps for solution convergence for certain
problems, such as continuum element representation of shell problems. Consequently, in the
fourth phase, the authors searched for improved iterative solvers suitable for difficult problems
which arise in several structural applications.

The effectiveness of the preconditioned conjugate gradient (PCG) method with shifted Cholesky
incomplete factorization (IF) preconditioners was first demonstrated for solving difficult problems
which are small enough to fit in the central memory of the current generation of Cray
supercomputers. |In the Fall of 1992, an extended version of this PCG/IF method was then
implemented in the stand-alone computer program which utilizes auxiliary storage. Numerical
tests summarized below demonstrate that the PCG/IF method can result in a factor of 2.5 or more
reduction in computing cost over the diagonally preconditioned conjugate gradient CG/D method.
The PCG/IF method requires 50% more computer storage than the CG/D method, and its initial
implementation in the stand-alone program assumes that the coefficient matrix for the system of
equations for a structural model is assembled in advance. An element-by-element analogue of
the PCG/IF method is needed for practical application.

2. Preconditioned Conjugate Gradient Methods
Consider the linear system
Ax = b, @1)

where the coefficient matrix A is symmetric positive definite (SPD). It can be easily shown that
solving the system (2.1) when A is SPD is equivalent to minimizing

f(x) = -;—x TAx - x b, .E(x) = (x-%)' A(x-X), 2.2)

where f(x) is .a quadratic functional and E(x) is an error function. Here X denotes the exact

solution of Eq. (2.1) and the superscript T denotes transpose. Note that the negative of the
gradient of the functional f(x) is nothing but the residual r, and is given by

-Vi(x) < b-Ax = r. @2.3)

Any iterative method in which each successive approximation x,,, is computed such that the
increment x,,, - X, is a linear combination of the gradient vectors (the residuals) taken at previous
approximations is called a gradient method [7,8].

The objective of preconditioning is to consider, in place of the system Eq. (2.1), the modified
system

Q'ax =Q, 29)

where QA has a better condition number than the original matrix A. The closer Q is to
approximating A, the more clustered the eigenvalues of QA are around unity, which leads to

-4-

improved convergence of gradient methods. Thus the main idea of preconditioning is first to
obtain a matrix Q which is relatively easy to-invert and is a good approximation to the coefficient
matrix of the system under consideration, and second to apply this as a splitting matrix or
preconditioner to construct faster converging conjugate gradient methods. The conjugate gradient
algorithm for solving the linear systems (2.1) and (2.4) where A and Q are SPD matrices, is as
follows:

Algorithm 1:
(@) Select initial guess: x,,
Construct residual: r, =b - Ax,
Select a preconditioner: Q
(b) lterate: k=0, 1,2, ..., until convergence
Construct pseudoresidual §,, A-conjugate direction vectors p,, and update the solution -
and the corresponding residual as follows:
3, =Q'r,
Bo=0, Br = B 1By i)y k21,
Po = 0o Pe=0c+ BuPry k=1,
ay = (8 /(P APY;
Xis1 = Xy + X Py
Mo = T~ 0 AP
The iterative steps are stopped when a convergence test such as

Ir_ L/ Ibl, < EPS, (2.5)

is satisfied.

In Algorithm 1, the expression (u, v) stands for the vector inner product (u, v) = u'v. A similar
-algorithm, omitted for brevity, holds for the conjugate residual method.

The various steps in the conjugate gradient and residual algorithms involve (i) matrix-vector
multiplications, (ii) solution of the pseudoresidual equation based on the preconditioning matrix Q
and the residual right-hand side, and (iii) inner products and linear combinations of vectors. ltem
(iii) is straightforward and can be highly vectorized (paralielized based on strip-mining techniques).
The other items will be discussed below.

2a. Error Measures

The simplest and most widely used error measure and stopping criterion is the ratio of the
spectral norm (2-norm) in Eq. (2.5) which can also be written as

-5-

RES = RES(n) = |r |./]b]. < EPS. 2.6
ale/ 198, ‘ (2.6)

Note that the preferred initial guess for the solution in Algorithm 1 is x, = 0 and the corresponding
residual is given by r, = Ax, - b = b, the right-hand side of Eq. (2.1) under consideration. The
iteration counters n for RES in (2.6) and for other error measures may be omitted for brevity.
This measure can be rendered more conservative as indicated below.

For basic iterative methods (the conjugate gradient method being an acceleration technique of
such a basic method [1,7])

X 4= Gxn + kK, (2.7)

a distinction is made between the difference between two successive solutions

6 =x _-x, (2.8)
and the exact error at step n

€ =Xx-X, . (2.9)

where x is the exact solution. Note from (2.7) - (2.9) that subtracting Eq. (2.7) from the
corresponding expression X = Gx + k for the exact solution yields

€ . =Ge. (2.10)

n+1 n

It follows that

8 =x -X=Xx -X+XxX-X
n n+1 n n+1 n

=-€ +€ =-Ge +e =(I-G)e. (2.11)
n+ n n n n
Thus the exact error at step n is given in terms of the corresponding difference between
successive solutions by
1yt
€ = (1-G) an. (2.12)

If p(G) is the spectral radius for the iteration matrix G, then

- 1 :
10-G)f = ———. 2.13)
1 - p(G)
where | - | is a suitable norm. A good estimate of the norm of the exact error is then
15 1 18 | 18 |
le] - : i . (2.14)

o " 71-p(G) 1 - Eror Reduction 1 - 18 I/18_ I’

Equation (2.14) can be used as a basis to establish realistic error measures. The first attempt is
to divide the measure in Eq. (2.6) by "one minus the error reduction." Unfortunately, the observed
behavior of error reduction estimates is not monotonically decreasing at every step of a conjugate
gradient or residual method. Thus local error reduction measures are not very meaningful. A
reasonable approach is to estimate the error reduction based on the last k iterations. A
conservative approach is to estimate the error reduction based on all the iterations. Itis easy to
see that this approach is conservative based on the observation that the convergence behavior of
gradient methods, while fluctuating, in general improves as the iterations proceed.

Note for example that RES in Eq. (2.6) represents the net change in the spectral norm of the
residual achieved in n iterations. The average per iteration

Average Change per lteration = (RES)"", (2.15)

can be used as an estimate of the error reduction. Thus a new extrapolated measure of the error
based on Eq. (2.6) is '

ERES = RES/(1 - RES™) = (ir I/IbL)/[1 - (|rnlzl|b|2)""]. (2.16)

The authors derived several other error measures in place of the residual in Eq. (2.6) based

on the minimization properties in Eq. (2.2). Extrapolated forms of the various measures, as in Eq.
(2.16) were also derived. Extensive testing indicated that the behavior of the new error measures
is very similar to that for the residual and its extrapolated form in Eqs. (2.6) and (2.16).
Furthermore, among these measures, the ERES extrapolated residual error measure of Eq. (2.16)
is conservative and appears to be the most appropriate for practical applications. Thus other
error measures are omitted for brevity. .

2.b. Stopping Criteria for Structural Analysis Accuracy

The residual and extrapolated residuals in the previous subsection are by no means true
measures for the exact errors. The system of linear equations (2.1) of primary interest here is
derived from finite element modeling of structural problems. The unknowns in the vector X
represent displacements at various nodes. Subsequent structural analysis requires the evaluation

-7-

of stresses which are linear combinations of derivatives of displacement vectors. Thus we are not
only interested in measuring the error of the solution but also the error in the derivative of the
solution to ensure accuracy for subsequent structural analysis applications.

The approach adopted here is to select a convenient error measure for displacements, such as
the residual measure RES, and implement the following algorithm:

() lterate until RES < 10°
Construct derivatives of the solution for displacements to evaluate corresponding predictions
of stress components.

(i) Continue iterations until RES is reduced by an additional order of magnitude (factor of 10).
(i) Re-evaluate stress components.
Update maximum stress vector.
Evaluate maximum change in stress over all stress vectors which are larger than 10™ times
maximum stress vector, '
(iv) Check convergence. Return to step (i) if:
(@) The maximum change in stress is larger than a user specified tolerance, and
(b) The total number of iterations is less than a prespecified value, and
(c) The remaining computing time is sufficient.
(v) Save the latest solution and additional information to allow restart and continuation.
The nice feature about iterative methods is the fact that a user can specify a given solution

accuracy, obtain intermediate results, and if desirable, change the accuracy requirement and,
continue by restarting the iterative process from where it stopped.

3. Assembled Matrix Storage and Matrix-Vector Mutltiplications

The system of equations corresponding to the structural problems of interest are large, sparse,
symmetric, and do not have any regular pattern. Several possible common data structures for
storing the corresponding coefficient matrices are summarized in [6,8] and are used in a variety of
available sparse system solution packages. Of these, (a) the symmetric form of compressed
sparse row/column storage, and (b) a modified form of the “Jagged Diagonal" storage format [6]
were adopted and tested. In the compressed sparse row format, the non-zero elements in the
upper part of the coefficient matrix A are ordered by rows and stored consecutively in a single
array and their corresponding column locations are also stored in a single array

A(k), JAKk), k=1,.., NELT, A (3.1)

where NELT is the total number of non-zero elements in the upper triangular part (including the
diagonal) of A. An array

IA()), §=1,.., N, 1AN) = NELT, (3.2)

-8-

where N is the order of the matrix (number of degrees of freedom) is selected as a pointer to the
location of the ith diagonal elements of A.

An example of the compressed sparse row storage format is shown for a model 20 by 20 SPD
matrix in Figure 1.

The Jagged Diagonal storage format is described in detail by Gregoire [6]. The main idea is to
perform a permutation

A = PAPT, 3-3)

where P is an orthogonal permutation matrix chosen so that the rows of A are ordered by a
decreasing number of non-zero elements per row. The resulting Jagged Diagonal storage of A
then makes it possible to achieve a very high degree of vectorization of matrix-vector
multiplications. The vector length for the matrix-vector multiplications is initially N and decreases
monotonically. - :

For the structural problems of interest to us, each row or column of a coefficient matrix can
typically have up to 243 non-zero elements, and each row in the top triangular part of the
coefficient matrix A typically has an average of between 50 and 100 non-zero elements. As a
consequence, matrix-vector multiplication based on the compressed sparse row storage is
predominantly vectorizable with a variable vector length. Since the average vector length is
typically over 50, this is viewed as a decent vector length for supercomputers such as the Cray
Y-MP and C-90.

For problems which fit in the central memory of a supercomputer, a variant of the Jagged
Diagonal storage which takes advantage of matrix symmetry is the preferred choice [6,8]. For.the
large size of structural problems of interest to us (300,000 to several million unknowns), numerical
tests carried out indicated that the cost of the permutation in (3.3) needed to construct the Jagged
Diagonals is too high and is not covered by the slight gain in the speed of the matrix-vector
multiplications. As a consequence, the compressed sparse row storage was adopted for our -
initial numerical studies.

One other matrix storage strategy was later tested. We introduced and successfully applied a
"Block Jagged Diagonal" storage algorithm which takes advantage of matrix symmetry to cut in
half the storage and data transfer requirements. In place of a single permutation, as in Eq. (3.3),
it is desirable to carry out separate permutations

T
A, =PAP
= PP_swPAP P P

o o' 1 1?

(3.9)

1 2 3 ¢ 5 6 72 8 9 10 11 12 13 14 15 16 17 18 19_£
8 -1 -1 -1
-1 8 -1 -1 -1 -1

-1 8 -1 -1

-1 -1 8 -1

.
“ w - A W e W N
U
-

-

U
-

-
o

-1 -1 -1 -1 8 -1
-1

-
-
|
-
o«

-
[~ N
U
-
o
U
-

-1 -1 8 -1
-1 8 -1
-1 8 -1
8 -1
-1 8 -1
-1 8 -1
s -1
-1 -1 8

[-
W @ N A W -
U
-
U
-

N
=]

Coefficient Array

A(k)= [(8,-1,-1,-1, 81-11"11-11 -1, 8,-1, -ll 81“11 8,-1,8,
-1, 81-11 8,-1,8,-1, 81‘11 81"’11 8,-1, 8/"'11 8,-1, 8:
-1,8,-1,8,-1,8,-1,8,-1, 8]

Column Array

J(k)= [1,2,10,20,2,3,6,10,13,3,4,10,4,5,5,6,6,7,7,8,8,
9,9,10,10,11,11,12,12,13,13,14,14,15,15,16,16,17,
17,18,18,19,19,20,20]

Row Ending Index Array
I(k)= (4,9,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,
. 42,44,45]

Figure 1. Sample 20 by 20 Sparse Symmetric Matrix and the
Three Arrays Used for its Condensed Row Storage

-10 -

where each permutation | only reorders the matrix elements corresponding to a preselected set (a
window or a partition of diagonal elements of appropriate size) of unknowns. With this approach,
the need to cycle through the matrix numerous times to construct the required Jagged Diagonals
(which can be very costly for very large problems) is eliminated. Here only segmental Jagged
Diagonals are constructed in such a way as to achieve reasonable vector length appropriate for
the computer being utilized. Such an approach would also be appropriate for parallel processing
where each processor deals with a distinct segment of the matrix under consideration:

4. Choice of Preconditioners

The convergence properties and computational efficiency of the conjugate gradient and residual
methods depend critically on the choice of a matrix preconditioner Q. The matrix Q should have
the same order as A but must be easier to invert than A. It is preferable to select Q to be a good
approximation to A. The following choices or preconditioned conjugate gradient methods were
tested:

I, where | is the identity matrix,

D, where D is the diagonal part of A,

the tridiagonal part of A,

a block diagonal part of A (For initial testing, only diagonal blocks of a preselected size
were permitted),

(UT + d) d* (d + U), where A = U" + U + D, D is a diagonal matrix and U is a strictly
upper diagonal matrix, and d is selected such that D = Diagonal (d + u'd'v),

(U" + D) D" (D + U), the SSOR symmetric successive overrelaxation iteration matrix
with the overrelaxation parameter ® = 1. Here again, A = U +U+D,whereDis a
diagonal matrix and U is a strictly upper diagonal matrix,

Q based on incomplete Cholesky factorizations with generation dependent, level
dependent or magnitude dependent zero fill-in (typically referred to as ICCG(j), etc.)

O 0 PPLOO

Additional comments on some of the methods outlined above and considered in the present study
are now in order.

() The implementation of the CG/D and CR/D methods with preconditioner Q = D, the

diagonal matrix equal to the diagonal part of A, is simplified by multiplying the system (2.1) by
D2 and changing variables to transform it as follcws

D "AD 2D "x = D b, @.1)

A=k A=-D"AD™ £-D"x, k=D"b. @.2)

Note that each diagonal element of Ais unity and the corresponding preconditioner for the CG/D
or CR/D method applied to the system Ax = k of Eq. (4.2) is the identity matrix @ =1. As a
consequence, operations by the preconditioners as in-Algorithm 1 are eliminated.

@) Various forms of the incomplete Cholesky factorization are obtained as follows. The
Cholesky factorization of the SPD matrix A of (2.1) is of the form

-11-

A = UTDU, 4.3)

where D is a diagonal matrix, U is a unit upper triangular matrix, and U is the transpose of U and
is a lower triangular matrix. The elements of D and U are given in terms of the elements of A by
the expressions

1-1

d(-D,) = a, - kz; u: d., i=1..N, 4.4)
-1
u, = (a, - k)_',: U dVd, Q=041 L, N (4.5)

Direct solution methods are often based on algorithms suitable for the factorization in Egs.
(4.3)-(4.5). For sparse matrices, typically the matrix U is much more dense than the upper
triangular part of A (numerous non-zero elements of U correspond to zero elements of A —
referred to as zero fill-in) and storage may become a problem for very large systems. Incomplete
factorization is based on the assumption, valid for certain idealized situations, that the dominant
part of U is that part which corresponds to the non-zero part of A. Thus reasonable
approximations to A can be obtained from (4.3) - (4.5) by, for example, imposing a sparsity
pattern on U and not computing or storing elements beyond a desired sparsity structure. The
sparsity structure selected for U can be identical to that of the upper part of A or can be a little
larger in order to improve the approximation. The sparsity structure may also be based on the
magnitudes of elements of U, thus certain elements in (4.5) smaller in magnitude than a
prescribed value would not be stored nor used in subsequent computations. The use of
incomplete Cholesky factorization with varying degrees of zero fill-in to construct preconditioners
for iterative methods was demonstrated to be very effective in accelerating convergence and
significantly reducing computational cost.

(ili) The special case of incomplete Cholesky factorization with no zero fill-in is of
considerable interest. Here, the expressions in Eqgs. (4.4) and (4.5) for elements of U
corresponding to the zero elements cf A are ignored altogether and not computed or stored. The
preconditioner

Q=UDU ~ A, (4.6)

in this case can be computed based on Eqs. (4.4) and (4.5) as described above. Since U is
restricted to have a structuré identical to the non-zero structure of the upper triangular part of A,
only an array

UK. k=1, .., NELT, @.7)

is needed for its compressed sparse row storage. The arrays JA(K), IA(i) in Egs. (8.1) and (3.2)
used to identify row and column locations of elements A(k) of A can also be used together with
Eq. (4.7) to completely describe U.

The construction of U can be achieved one row at a time as follows: (a) non-zero elements ay,
j = 1in Eqgs. (4.4) and (4.5) for a fixed i are mapped into a work array; (b) the contributions from
previous rows of U are subtracted from the work array in accordance with Egs. (4.4) and (4.5);
and (c) the work array elements of U corresponding to non-zero a; elements of A are extracted.

-12-

A problem with the special case with no fill-in is the fact that some diagonal elements of the
matrix D in the incomplete factorization may turn out to be negative, which in general would cause
the preconditioned conjugate gradient method with the preconditioner Q = U™DU to become very
slow or to diverge. Several approaches are reported in the open literature to remedy the
situation, including replacing each diagonal element by its absolute value(see for example
[1,7.8]). An approach to introduce a diagonal shift discussed in [9] was rediscovered by the

- present authors and by others, was implemented in the present work and was found to very
effective. The idea is to increase each diagonal element of the initial matrix, for the purpose of
the incomplete factorization only, by between 1% and 7%. Increasing the diagonal elements
increases the numerical stability of the incomplete factorization algorithm and the chance to obtain
a SPD preconditioner. A modification of the approach to dynamically increase diagonal elements
within windows of the matrix and to do so only when negative diagonal elements are encountered
‘was also developed and implemented. Here, if a diagonal element of the factorization is found to
be zero or negative, all rows of the incomplete factor U contributing to it are recomputed with the
diagonal parts of A multiplied by y where y = 1.02, 1.04, . . ., or is an input value to be
increased incrementally to ensure a positive definite factorization. However, increasing the
diagonal elements leads to a preconditioner which is a poorer approximation to the initial matrix.

The new modified incomplete Cholesky factorization with no zero fill-in involves replacing a; in Eq.
(4.4) for d; by the product v, a; to get

i-1

2 V
d (= D.) =y_a, - %::1, utd, i=1,.,N (4.8)

The parameters y,, are required to be greater than or equal to one (Y, = 1), and be monotone
increasing as a function of m (y,,,; = ¥,) and of i. The first value v, is selected in a narrow range
around 1, say 1 < ¥, < 1.05. The values y,, are to be determined dynamically during the
incomplete factorization procedure. The idea is to take advantage of the fact that increasing the
diagonal elements of the original SPD matrix (increasing diagonal dominance) improves the
condition of the matrix [decreases the ratio of the largest eigenvalue divided by the smallest
eigenvalue] and adds to the numerical stability of Cholesky factorizations. However, increasing
the diagonal elements leads to a preconditioner which is a poorer approximation to the initial
matrix.

The preferred algorithm for modifying the incomplete Cholesky factorization with no zero fill-in is
as follows: :

Algorithm 2:

(a) Set m = 1 and select y, and an increment Ay for modifying the v, parameter. The
default value preferred here is v, = 1, unless the analyst suspects in advance that the
standard incomplete factorization is inappropriate. The choice Ay = 0.05 is a reasonable
choice, but larger or smaller values may be selected. The incomplete Cholesky
factorization is started in accordance with any suitable standard procedure based on Egs.
(4.4) and (4.5) for u; and d; given above.

(b) Once a diagonal element d; is computed, its sign is checked. If d;is found to be positive,
the incomplete Cholesky factorization procedure continues. If d; is found to be zero or

-13 -

negative, then the following actions are taken: (i) the value of m is increased by one and
Ynis setto v, = v,, + Ay, (i) the first row ¢ (the row with the smallest row index ¢) which
makes a direct non-zero contribution to d, as given in Eq. (4.4) is identified, (iii) the
modified incomplete Cholesky factorization is restarted at row ¢ (i is reset equal to 9) using
the last modified parameter y,,.

(¢) One should guard against unreasonable cost of the factorization but check to ensure that
m remains smaller or equal to some preselected upper limit M (say M = 10 for illustration).
If in step (b), a value of m larger than M is detected, the modified incomplete Cholesky
factorization should be restarted with a choice of a larger initial value ¥, or should be
abandoned and the user should be advised to apply the preconditioned conjugate gradient
method with diagonal scaling.

The above algorithm was implemented and tested for small size systems and was found to be
very effective. In fact, the standard incomplete Cholesky factorization with no zero fill-in failed to
produce an SPD preconditioner for several structural problems and the modified algorithm proved
to be very successful. For simplicity, the initial implementation in a stand-alone iterative solver
research computer program designed for large problems which require auxiliary storage was
restricted to M = m = 1, a single shift as in [9].

5. Initial Numerical Results for Problems which fit in computer central memory

The initial implementation of the conjugate gradient and residual methods was done for problems
which fit in the central memory of the Cray Y-MP and Cray C-90 supercomputers and was based
on storage of the upper triangular part of the matrix A by the compressed sparse row storage
scheme presented in Section 3 above. The stored part of A includes the diagonal part D and the
strictly upper triangular part U of A = UT + D + U required for the preconditioners

Q-=(UT+d)d" @+ U, 6.1)

Q-2 W' lD) D™’ (lD + U). 5.2)
2-0 ® ®

The diagonal matrix d and its inverse d™ can be constructed by a simple recurrence relation by
requiring the diagonal elements of the preconditioner Q of Eq. (5.1) to coincide with the
corresponding diagonal elements of A. Note that Q in (5.2) is the standard SSOR preconditioner.

In addition to the storage of A and of D™ or d”, the first set of preconditioned conjugate gradient
and residual methods considered requires storage of between 5 and 7 vectors, each of length N,
needed in order to carry out the various steps in Algorithm 1 and in an analogous algorithm for
the conjugate residual method.

Nine structural problems were considered in this study. Representative samples are given in

Figure 2 and Table | presented at the end of this paper. Extensive numerical testing, results
omitted for brevity, indicate the foilowing:

-14 -

(i) Consistent with experience at Bettis and elsewhere [1,7,8], the diagonally preconditioned
conjugate gradient and residual methods CG/D and CR/D are superior to the standard conjugate
gradient and residual methods.

(i) The diagonally scaled conjugate residual CR/D method is slightly, but not significantly,
better than the diagonally scaled conjugate gradient CG/D method. These methods are much
better than direct method for a large class of problems and are the methods of choice for
extremely large systems. This is because they require the least computer storage and data
transfer and are robust methods. The CG/D method is preferred in this work to the CR/D method
because of difficulties we have had in adapting SSOR preconditioners to the conjugate residual
method.

(i) The conjugate gradient method with a preconditioner based on a block diagonal rather
than strictly diagonal part of A was found not to be competitive for structural problems of interest
and is not treated further here. The same was observed for the conjugate gradient method with a
preconditioner based on the tridiagonal part of A.

(iv) The conjugate gradient method with SSOR preconditioning is competitive with the
diagonally scaled method for problems which fit in computer central memory, especially if
diagonal scaling is also applied to eliminate computations involving the diagonal elements. For
problems which require auxiliary storage, the SSOR preconditioning requires three times as much
data transfer as the diagonally scaled CG/D case, which would prove costly for the present
generation of supercomputers and consequently reduce the effectiveness of this method.

(v) Several alternative formulations of the incomplete Cholesky conjugate gradient method
with various degrees of fill-in, ICCG()), i=1,2,..., were tested for problems which fit in the central
memory of the Cray Y-MP and C-90 computers. Indeed the choice of preconditioners based on
incomplete Cholesky factorization is superior to the choice of diagonal scaling or preconditioners
based on SSOR relaxation methods. Furthermore, these results support the assertion that the
conjugate gradient method with incomplete Cholesky preconditioners is in general competitive
with direct solution methods for small and medium size problems and is superior for very large
structural problems. The conjugate gradient method with incomplete Cholesky preconditioners
requires more computer storage than other methods considered, but much less storage than
direct methods. Specifically the incomplete Cholesky with zero fill-in preconditioned conjugate
gradient method requires approximately 50% more computer storage than the diagonally scaled
CG/D conjugate gradient method.

(vi) The initial applicafion to a generic container head structural problem of both the ICCG(0)
methods with no zero fill-in, and the equivalent CG/IF conjugate gradient method with shifted
Cholesky incomplete factorization but with zero shift, failed. The suitability of the ICCG(1) method
with one generation fill-in to successfully run this problem in computer central memory was
demonstrated. This problem required over 48 million words of central memory on the Cray Y-MP.
The ICCG(1) method converged in 69 iterations, required 54.7 seconds to solve, and confirmed
the effectiveness of the method. The direct method for this problem consumed 526 seconds.

(vi) The ICCG(j) option exhibits the same behavior for structural problems as observed for the
diffusion problems. Typically saturation occurs early for very smalli=1 or 2. While the number
of iterations decreases as i increases, the cost per iteration increases and significantly reduces
any overall benefit. The reduced system conjugate gradient methods with preconditioners based
on incomplete odd-even cyclic reduction were demonstrated in {1] to be very effective for diffusion

-15 -

problems. In addition, typically saturation takes hold as the number of incomplete odd-even cyclic
reduction steps increases (the degree of zero fill-in increases). Fortunately however, we have
recently demonstrated that the application of row sum correction (requiring the preconditioner to
produce the solution in one iterative step whenever the exact solution is flat, a constant) is very
effective for diffusion type problems as it improves convergence rate and delays the appearance
of saturation. On the other hand unfortunately, our initial experience indicates that row-sum
correction does not appear to work for structural problems, possibly due to the fact that the
property of diagonal dominance is typically lost.

(viii) Application of a shift is very effective for producing reasonably good incomplete Cholesky
preconditioners for the conjugate gradient method. The CG/IF method with a shift is of special
interest as it allows reasonable storage economy and much improved computational efficiency. In
particular the link list technique implemented in Fortran in our CG/IF programs and in Cray
Assembly Language (CAL) in the Cray SITRSOL PCG/IC(0) solver option [8] is very effective for
incomplete factorization.

(ix) Matrix storage based Jagged Diagonals with or without utilizing matrix symmetry leads to
high vector length and is to be preferred for problems which fit in computer central memory. Our
initial tests indicate that constructing the Jagged Diagonals can be very costly for very large
problems where auxiliary storage is necessatry.

The initial implementation of the PCG/IF method is not optimal but is sufficient to demonstrate
relative merits of this method for solving structural problems as compared to other methods.

6. Implementation of the CG/D Method Utilizing Auxiliary Storage

The conjugate gradient method with diagonal scaling CG/D has the least storage requirements
among the methods considered. Consequently it is the method of choice for excessively large
problems where computer storage and data transfer costs are expected to be limiting. The CG/D
method was selected for initial implementation (a) in a stand alone program for solving linear
systems for structural problems and (b) as an integral part of a production quality structural
program. For the stand alone version, a separate program assembled the matrix for a structural
problem based on compressed sparse row storage format and stored it together with the
corresponding right-hand side in two or more files as needed to accommodate the problem size.
The stand alone program reads the files for the matrix and right-hand side, solves the system and
writes the results to a file which can be read by structural programs for further finite-element
analysis computations.

The stand alone program for the CG/D method was constructed based on the Bettis FTB file
management system routines and is designed to store the coefficient matrices in central memory,
on the solid state storage device (SSD) of the Cray Y-MP and C-90 computers, or on up to six
disks. For small size problems FTB files can also be restricted to reside in central memory.

The overhead due to FTB file storage and manipulation is around 15% for problems small enough
to fit in central memory, 23% to 33% for problems which fit in the SSD solid state storage device

and can be very excessive (factors of 3 to over 10 increase) for problems where the coefficient
matrix is stored on disks.

-16 -

To improve data transfer, the FTB-based CG/D program was designed to allow for storage of
each coefficient matrix in several files,. which could reside on user specified combinations of SSD
and distinct disks. The main idea, for example, of utilizing six disks, in place of say two disks, is
that the distinct files can be opened at the same time and thus in principle cut the net computing
overhead time for data transfer by a factor of 6. This factor of 6 is not achieved in practice. This
is understandable in a non-dedicated batch system since distinct jobs compete for the same disk
and SSD resources. Nonetheless, it is always advisable to split files and store them on distinct
devices in order to optimize computer utilization.

7. Element-by-Element (EBE) Implementation of the CG/D Method

The most effective implementation of the conjugate gradient method with diagonal scaling, both in
terms of storage requirements and calculational speed, appears to be an implementation where
the matrix-vector multiplication is performed element-by-element without explicitly calculating or
storing the stiffness matrix [3,5]. The implementation possesses the following advantages:

() The stifiness matrix does not have to be calculated and assembled. The important point
here is that it does not have to be assembled. For a large structure where the matrix will not fit in
central memory, assembling the matrix is a difficult task because random access into the sparse
matrix data structure is necessary to perform the assembly process. The structural problems of
interest would typically have between a few millions and several hundreds of millions of non-zero
elements (N = 50,000 to 6 million, NELT « 60N to 120N).

(i) The stifiness matrix does not have to be stored. It is only necessary to store a much
smaller amount of data from which the required calculations can be performed. This provides a
storage advantage and also contributes to increased efficiency because of reduced data transfer
between central memory and external storage devices.

(iii) The required calculations can be highly vectorized and performed at near optimum speed
on the Cray computer. This advantage is partially offset by the need to do more calculations than
that required for an assembled matrix scheme. However, since the calculations can be performed
faster, the net result is an increase in speed.

(iv) The method is amenable to parallel processing because the individual element
contributions can be computed independently; each processor can handle its share of the
elements.

(v) Strains and stresses are computed as a by-product of the procedure and are available for
use in evaluating stopping criteria as described in Section 2b.

A preferred approach to performing the element-by-element matrix-vector multiplication is based
on recognizing that even the element stiffness matrix is actually not needed explicitly; rather, only
the vector resuiting from the matrix-vector multiplication is the required end product and this resuit
< vector can be computed without explicitly forming the element stiffness matrix. The procedure is
outlined briefly below.

The element stiffness matrix, K, is defined by the following volume integral:

K= [B T+C+B dV. 7.1)

-17 -

B is the spatially varying matrix which transforms the nodal displacement vector, u, into the strain
vector, e=B*u. C is the (possibly spatially varying) material stiffness matrix which fransforms the

strain vector into the stress vector, s=C*e. The matrix-vector product, K*u, can be computed by

the following steps:

()e=B*, (9s=Cte, (3)f=B™s, (4)Ktus= [rav. (7.2)

The integral in step 4 is, of course, computed numerically in the usual way. This defines the
essence of the method implemented in our program.

8. Implementation of the CG/IF Method Utilizing Auxiliary Storage

The initial implementation of the shifted Cholesky factorization in the stand-alone iterative solver
research computer program which utilizes auxiliary storage was completed in the fall of 1992.
The goal at the time was to select algorithms that are simple to program quickly. No attempt was
made to vectorize and optimize the construction of the preconditioner.

The Bettis FTB system subroutines are used in the stand-alone computer program to handle data
transfer between the central memory of a Cray computer and associated auxiliary SSD solid state
and disk storage devices. For efficient data transfer, the storage required for the arrays A(k), and
JA(K) is divided into a small number of equal size sets; each set corresponds to non-zero
elements in a subset of consecutive rows in the upper triangular part of A. Again, central
memory, SSD and up to six distinct disks are utilized for efficient data storage.

J. J. Haan developed a modified link list technique suitable for constructing the above shifted
Cholesky incomplete factorization matrix preconditioner and implemented it in the stand-alone
research computer program which utilizes auxiliary storage. The algorithm implemented enables
the construction and storage of the array in Egs. (4.5)-(4.8) while reading and storing the arrays
for the Matrix A in Eqs. (3.1),(3.2). The algorithm is illustrated in Figure 3. A summary follows.

A new link-list procedure was developed to overcome potential difficulties with incomplete
Cholesky factorization of very large systems. The main idea is to create tempoerary active storage
in the central memory of the computer being used (or on a fast access device), to copy, store and
be able to efficiently retrieve so-called active elements of U. Precisely, once an element u; in row
i and column j (j>i) is constructed based on the above equations for the incomplete Cholesky
factorizations, this element is copied into the temporary active storage space, and indices
identifying it are defined. When required for subsequent computation, the element u; is retrieved
not from the separate external storage allocated to U, but from the temporary active storage
space. Once the element d; = D; of the diagonal matrix D is computed, all elements u; for i<j are
purged from the temporary active storage space since such elements are not needed for
subsequent computations. This purging process of elements no longer needed for the
factorization frees space for subsequent use and provides for efficient utilization of computer
storage. We recall for clarity that u; = 1 for all j and these diagonal elements need not be
computed or stored.

-18 -

AUU
o¥. .

In core linked list
A Al 6 & 6E, -7 G
AA F| 6. :3G6 o L6
DA AA PN 6 & L6 6 .. g .| Previously read elements of A, and
D A F B - -
D f previously computed elements of U
DA Fi Now out of buffers
D A F|
D :
D} : L
AcdiveRow = E € C & Elements of é currently in-core in
E B BB - BBB buffers. Recently computed elements
E g BB B B B g B of U not yet written to external storage.
E B "~ BB
E B B B BB
VE B BB B | Elementsof 4 yetto beread
E BB Now out of core
EB B
E B B
EB B -
E B
E B
E B
E
A Off diagonal elements of the factored matrix previously computed
and no longer required for subsequent factorization.
B . Off diagonal elements of the unfactored matrix in buffers or yet to
be read.
Cc Off diagonal elements of the active row, to be added to the linked
list storage following factorization of the current active row.
D Factored diagonal elements. The inverses of these elements are
_ stored in central memory in a separate vector.
E Diagonal Elements of the un-factored matrix. These elements are
available in central memory in a separate vector.
F Elements released from the linked list storage before factorization
of the current active row.
Linked List:

G&H&l Off diagonal elements previously read and required to factor rows
yet to be read. These elements are stored in central memory in a
linked list.

H Non-zero elements above the diagonal element which identify

rows that contribute to the factorization of the active row. -

Off diagonal elements needed to factor the current active row.

Figure 3. Incompleie Cholesky Factorization:
Large System Storage Scheme

-19 -

A reasonable approach for accomplishing the incomplete Cholesky factorization is to construct the
elements of U one row at a time starting from the first row and proceeding in ascending order to

“the last row. One arrangement followed here is to link together elements in the active storage
space which lie along the same column of U (u; with fixed j and varying i). Since the entries of
the elements of the matrix U into active storage occur as each element of U is calculated,
necessarily in this case, the row ordenng in the link-list is monotonic. As a consequence, the
summations in the above expressions for u; and d; can be efficiently calculated by traversing the
active element storage list. Elements of non-con’mbu’ung rows are also ignored in this process,
reducing the need to check that U element products will have a non-zero contribution to
subsequent elements.

Different means exist for creating the needed temporary active storage and implementing the
above procedure. The approach implemented here creates an index vector to indicate whether or
not a column j of the matrix U has active elements in temporary active storage locations. For
example, a value of the jth element of the index vector of zero would indicate that there are no
active elements stored for row j. A value of the jth element of the index vector different from zero
would imply that one or more active elements u; exist and would indicate (point to) the location of
the last (or first) such elements in temporary storage (last element here means the element u;
with the largest row number i). The temporary storage associated with an element u; also
provides the value of the row index i and the location of the next successive element in column j,
if such an element exists.

9. Numerical Experiments with the CG/IF Method

The stand-alone research computer program which utilizes auxiliary storage was applied to solve
the representative set of five structural problems listed in Table I. This set is a subset of the nine
problems we considered. A sample of the corresponding structures is shown in Figure 2.

The linear system correspondmg to each of the problems listed in Table | was solved on the Cray
Y-MP and the Cray C-90 using both the CG/D the CG/IF optlons Timing results are listed in
Tables Il and lll. Residual error norms “ ./ 1b 1, are shown in figure 4 both as a function of
iteration and as a function of net CPU (Central Processmg Unit) compute time on the Cray C-90.
Tables Il and Ill and Figure 4 and other results omitted indicate the following:

() The cost of the shifted Cholesky incomplete factorization as currently implemented is
relatively high. This is due to the fact that the authors did not vectorize the factorization
algorithm during the initial implementation. Proper vectorization should cut the cost of the
incomplete factorization by a factor of two to ten or more.

(i) - The cost per iteration step for the PCG/IF method is a factor of between 2 to 3 larger than
the corresponding cost for the CG/D method. The number of iterations needed for
convergence for the PCG/IF method is reduced by a factor of eight or more for the largest
problems as compared to the CG/D method. The net results summarized in the last two
columns of Table Il indicate that the PCG/IF method is a factor of between 1.6 and 4.4
more efficient in terms of iteration time, and a factor of between 1.3 and 3.7 more efficient in
terms of total computing cost than the CG/D method.

(i) The most significant result is the fact that the PCG/IF method is much more efficient than
the CG/D method for difficult problems such as shell problems. Table Il shows that the
CG/D method as implemented in the stand-alone research program is approximately a factor

-20-

of 2 less efficient for Problem 9 than the direct method. Table ill shows that the PCG/IF
method is a factor of 3.4 to 4.4 faster for Problem 9 than the CG/D method, and about a
factor of two faster than the direct method for this difficult problem.

10. Block Jagged Diagonal Data Structure

The block jagged diagonal matrix structure is a generalization of the jagged diagonal structure
introduced by J. P. Gregoire [6,8] to speed up matrix-vector multiplications. The original scheme
[6,8] constructs jagged diagonals for an entire sparse matrix and is very effective for matrix-vector
multiplications only for systems small enough to fit in the central memory of the computer being
used. Construction of jagged diagonals for an entire sparse matrix is very costly to implement for
systems large enough to require auxiliary storage.

Jagged diagonals can be constructed in a straightforward manner for blocks of a very large .
matrix. Thus, a preferred approach for carrying out matrix-vector multiplications in situations
where the matrix is too large to fit in a central memory of the computer being used, involves
modifying the jagged diagonal algorithm of Gregoire and Heroux and others [6,8] as follows. In
order to take advantage of symmetry, the upper part of the coefficient matrix A is subdivided into
sets of rows. The subdivisions are such that the non-zero elements in each set should easily fit
in the central memory of the computer being utilized. The non-zero elements in each set are
reordered into distinct non-overlapping subsets where no two elements of a subset lie along the
same row or column of the matrix. The maximum number of subsets of a given set is given by
the maximum number of non-zero elements in any row of the matrix A that lies in that set.
Pointers to the locations of non-zero elements of A are also kept. For a given subset, since the
eleménts lie on distinct rows and distinct columns of the matrix A, construction of the contributions
of these elements to matrix-vector multiplication are vectorizable with variable vector length less
than or equal to the number of elements in the subset. Clearly, the larger the set size, the larger
the sizes of the subsets and the larger the average vector length to be expected. The subsets
may also be ordered with a monotonically decreasing or increasing number of elements in each of
them. It is to be understood that the ordering described above for a set of rows of the upper
triangular part of A, can equally well be applied to the columns of the lower triangular part of A.
When A is symmetric, only the lower part or upper part needs to be considered. The above
ordering scheme can also be applied to matrices which are not symmetric.

The construction and application of block jagged diagonal structure was not actually implemented
for the CG/D and G/IF methods for large problems which reguire auxiliary storage. lts effect
however was simulated for matrix-vector multiplications for a large set of contrived matrices. The
matrices were chosen to represent varying degrees of sparsity with pattems that are typical for
structural systems. The timings indicate that implementation of the block jagged diagonal scheme
could cut the cost of the CG/D solver by a factor of two and cut the cost of the CG/IF solver by
over 25 percent. N

11. SUﬁlmag and Conclusions

Suitability of preconditioned conjugate gradient and residual methods with alternative choices of
preconditioner for solving very large structural problems was demonstrated. For excessively large
problems where computer storage and data transfer requirements are limiting, the CG/D
diagonally scaled conjugate gradient and residual methods are the methods of choice. The
diagonally scaled conjugate gradient method was implemented in a stand-alone program which

-21-

utilizes the Bettis FTB system routines to manage several distinct disk and solid state storage
devices. The CG/D method was also implemented based on an element-by-element scheme for
accomplishing matrix-vector multiplications.

The conjugate gradient method with preconditioners based on incomplete Cholesky factorization
with zero fill-in (i.e., with a sparsity pattern identical to that of the linear system to be soived) and
with a possible shift of origin to ensure numerical stability was shown to be suitable for moderate
and large structural problems.

The work described above demonstrated that the PCG/IF preconditioned conjugate.gradient
method with preconditioners based on shifted Cholesky incomplete factorization with no zero fill-in
is a very competitive method for solving large linear systems which arise in structural applications.
This method is especially appropriate for difficult problems such as shell problems for which the
CG/D methods require excessively large numbers of iterative steps for convergence.

The current implementation of the PCG/IF method in the stand-alone research program is not
optimal. In particular, the scheme for accomplishing the incomplete factorization has not been
vectorized. Vectorization should cut the factorization cost by a factor of two to ten or more. The
matrix-vector multiplications as implemented for the PCG/IF and CG/D methods are also not
optimal. For solutions on vector machines, a preferred approach for carrying out matrix-vector
muitiplications in situations where the matrix is too large to fit in central memory of the computer
being used, involves modifying the jagged diagonal algorithm of Gregoire and Heroux and others
[6, 9] as described in Section 10.

The stand-alone research program as described above is useful for application to the solution of
very large linear systems where the system is already assembled.

D. N. Hutula convincingly demonstrated that an element-by-element implementation of the CG/D
method (a) can reduce computer storage requirements by a factor of 20 as compared to the initial
implementation in the stand-alone program, and (b) can improve vectorization of the CG/D
algorithm resulting in a factor of four reduction in computing cost. The present work
demonstrated that the PCG/IF method is superior to the CG/D method for numerous problems
when the full coefficient matrix is given. An element-by-element analog of the PCG/IF method
can prove to be very valuable, especially for problems where the CG/D method is costly and can
be expected to require numerous iterative steps for solution convergence.

A block jagged diagonal matrix representation was introduced as a generalization to the jagged
diagonal structure proposed by J. P. Gregoire [6,8] to speed up sparse matrix-vector
multiplications. The resulting speed increase for large problems which require auxiliary storage is
roughly two fold when compared to our current condensed sparse matrix-vector conjugate
gradient structural solver on the Cray Y-MP and C-90 computers.

Acknowledgements

We are grateful to Dr. M. Natelson, Manager of Reactor Technology, for his insight, and for
initiating, motivating, and supporting this work. He understood the effectiveness of iterative
methods for the solution of diffusion problems and realized the potential of these methods for

" applications to structural problems. He challenged us to investigate and implement these
methods and provided us with guidance, help, and support.

Itis a pleasure to also thank W. R. Cadwell, J.D. Dankosky, D.J. Falcione, L. A. Hageman,

C. Jeffrey, R. B. Smith, and E. A. Zanoni for numerous useful discussions and for their support
and encouragement during various stages of this work. '

REFERENCES

1. I. K. Abu-Shumays, "Incomplete Block Cyclic Reduction as a Preconditioner for Polynomial
iterative Methods," SIAM J. Sci. Stat. Comput., 11, 545-662, May 1990.

2. S. F. Ashby, "Polynomial Preconditioning for Conjugate Gradient Methods,” Ph.D. Thesis,
Department of Computer Science Report No. UIUCDCS-R-87-1355 (DOE/ER/25026-8)
University of lllinois at Urbana-Champaign, 1987.

- 8. G.F. Carey, E. Barragy, R. McLay, and M. Sharma, "Element by Element Vector and Parallel
Computations,” Communications in Applied Num. Meth., 4, 299-307, 1988.

4. P.Concus, G. H. Golub, and G. Meurant, "Block Preconditioning for the Conjugate Gradient
Method," SIAM J. Sci. Stat. Comput., §, 220-252, 1985.

5. J. Erhel, A. Traynard, and M. Vidrascuy, "An Element-by-Element Preconditioned Conjugate
Gradient Method Implemented on a Vector Computer, Practical Aspects and Experiences,"
Parallel Computing, 17, 1051-1065, 1991.

6. J. P. Gregoire, "Efficient Vectorization of the Conjugate Gradient Method,” in Science and
Engineering on Supercomputers, Computational Mechanics Publications, Southampton
Boston, Proceedings of the Fifth International Conference held in London, England,
October 22-24, 353-359, 1990.

7. L.A. Hageman and D. M. Young, Applied lterative Methods, Academic Press, New York,
1981. .

8. M. A. Heroux, P. Vu, C. W. Yang, "A Parallel Preconditioned Conjugate Gradient Package for
Solving Sparse Linear Systems on a Cray Y-MP," Applied Numerical Mathematics, 8, 1991.
See also Solvers for Sparse Linear Systems, Volume 3: UNICOS Math and Scientific Library
Reference Manual, Cray Research, Inc. Report SR-2081 6.0, 1991.

9. T. A. Manteuffel, "An Incomplete Factorization Technique for Positive Definite Linear
Systems," Math. Comp., 34, 473-497, 1980.

-923-

(¢) Thick Shell Problem 6

(b) Finite Element Mesh
Problem 5

(a) Coupled Shell Structure
Problem 2

Figure 2. Sample of the Structural Problems

10 g

0.1

0.01

0.001

0.0001

RES Error Norm

0.00001

0.000001

0.0000001

. 500 i 1000 1500 2000
Iterations

Figure 4a. Residual Error Norms for the CG/D and PCG/IF Methods

10

0.1

0.01

RES Error Norm
g &

0.00001

0.000001

0.0000001

Figure 4b.

for Problem 2 as a Function of lterations

L 1 1

0 50 100 . 150 200
Compute Time (Sec.)

Residual Error Norms for the CG/D and PCG/IF Methods for
Problem 2 as a Function of Net Cray C-20 CPU Compute Time

-95.

TABLE |
Sample Structural Problems

NELT
Non-zero
Problem N Degrees of Elements
No. Brief Description Freedom Stored
1. Generic Container Head 55,576 4,062,279
2. Coupled Shell Structure 46,737 928,204
3. Multiple-Connected Structure ’ 360,791 26,958,917
4, Section of Multiple-Connected Structure 396,087 29,498,463
5. Solid Structure with FE Mesh - 206,635 24,252,026
6. Thick Shell 267,036 21,174,531
TABLE Il
Cray Y-MP Run Time for the CG/D Method
with SSD for Auxiliary Matrix Storage and RES = 10°
N Solution Time

Problem Degrees of - -
Number Freedom Iterations Iterative Direct

1 55,576 823 393 sec. 526 sec.

2 46,737 : 1,500 280 sec. 238 sec.

3 360,791 8,671 7.6 hrs.® 6.7 hrs.

4 396,087 1,627 " 1.6 hrs. 22.5 hrs.

5 296,635 1,666 1.3 hrs. 5.7 hrs.

® Result from an early version of program. About 20% increase in efficiency has been achieved

since then.

-26 -

‘uospedwos Joj a1ay usnib s ‘() uj umoys 'uopeuswe|dwi @3 8y Joj 1500 Busndwiod TY10L Bujpuodsailod g
"pouIqLI0D SBW)} UORBZHOIOR) pUB JojsuBl} BleQ .

otv'e Wy uw g ujw ot uw oLl €0°} 12131 sy o'e Sy O'€ s61 000t __ 9 =
’ (Uw 9'9) __ o(383)
VA" 28't ujw 12 uuw 'L uw el S0l €02 uiw e ujw 2'0e sie 2991]
(uw £°6) , 1_ (363
(5)48° =100 4 uw G2 uw L'e ujwi 9t +0'L 681 ulw g Ui Le 8.¢ L29t 14
se'e or'y sIy 6°0 siy 2’0 5,08 goo'k | oze || swutie siy L'g soz | hi98 €
502 9e'2 sg8 sSL sg'2l g0’k | loe sogt sLL1 sg'e | Levl 2
_ v.ioL NO!LN10S aviol | Nowntos | WotoN | LdiHS | H3L __ 1oL | Nountos | on | wau || Waneoud
__ OlLVY 21/90d OL Q/90 411904 __ a0 |

G55a) STeUSHIPUGsI] UGREZIoRES MosejouD S1e[dluoou] Papius Unm pue (d/50) BUiieds
[EUCBEIC] UM SIOAJ0S BAREIo] (D) Usipedd ejebniucy Jo UosHEedWo) 06-0 RE1D

: I 3718vl

-27-

