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ABSTRACT: Accurate prediction of adsorption energies on

heterogeneous catalyst surfaces is crucial to predicting reactivity Adsorbate in Gas

R

413

and screening materials. Adsorption linear scaling relations have (G2
been developed extensively but often lack accuracy and apply to / Single-Atom Alloys
one adsorbate and a single binding site type at a time. These facts

Transfer Learning 8

undermine their ability to predict structure sensitivity and optimal

catalyst structure. Using machine learning on nearly 300 density ”“» %
functional theory calculations, we demonstrate that generalized adsorption site

coordination number scaling relations hold well for oxygen- and

high-valency carbon-binding species but fail for others. We reveal

that the valency and the electronic coupling of a species with the surface, along with the site type and its coordination environment,
are critical for small species adsorption. The model simultaneously predicts the adsorption energy and preferred site and significantly
outperforms linear scalings in accuracy. It can expose the structure sensitivity of chemical reactions and enable enhanced catalyst
activity via engineering particle shape and facet defects. The generality of our methodology is validated by training the model with
transition metal data and transferring it to predict adsorption energies on single-atom alloys.

H INTRODUCTION describe structure sensitivity and identify optimal facets, defects,
and nanoparticle shapes.” However, the extendibility of the

Adsorption is fundamental to the performance and reaction
GCN model to other species of interest in heterogeneous

pathways of surface-catalyzed reactions. Despite the rapid

development of surface science techniques and theoretical catalysis has remained elusive. The physical understanding of
methods, such as density functional theory (DFT), screening the scalings is also limited, preventing the transferability to other
the adsorption energies on many materials remains a formidable species and fftalysts. Based on a simple physical model with two
task. Streamlining this search can be achieved using descriptor- descriptors, " the orbital-wise coordination number has also
based energy scaling relations.' > Specifically, the pioneering been proposed to predict the CO and O adsorption energies on
work of Nerskov and co-workers describes the adsorption Au surfaces. Despite advancing scaling relations, their accuracy
energies of partially hydrogenated species AH, using the atomic and applicability are limited.'””> More accurate approaches
adsorption energy of A, e.g., the C* adsorption energy as a beyond a single descriptor are required.

descriptor for CH,*.* Electronic descriptors,” such as the d- Machine learning (ML) promises to rapidly predict adsorbate
band center’™® and the upper edge of the d-band,” have binding on multiple adsorption sites of metal surfaces.'®™>* It
successfully elucidated the trends in adsorption across transition could capture the adsorbate/surface nonlinear interactions and
metals. Such linear scalings have transformed our ability to serve as a high-precision alternative to first-principles model-
develop microkinetic models and predict better materials for ing.* Its usefulness requires easily computable electronic and
given chemistry. However, these descriptors lack a direct link to geometric descriptors.' >~ Takigawa et al.”® developed an
the structural features of the active site. This fact severely limits ML model with 12 readily available descriptors to predict

their applicability in identifying the optimal active site and
predicting the structure sensitivity of chemical reactions. As a
result, engineering the catalyst structure and the active site has
remained elusive. Furthermore, these scalings are accurate only
when the adsorbates are placed on the same site type; yet, the
most stable site changes among surfaces, making the accuracy of
the scalings poor. Calle-Vallejo et al. proposed the generalized
coordination number (GCN) descriptor model to predict
adsorbate binding energies of small oxygen- and hydrogen-
containing species on different facets of Pt relevant to the oxygen
reduction reaction.'’”"* This vital development allows us to

adsorption energies of CH,-related species on Cu alloys, with a
root-mean-squared error (RMSE) <0.3 eV. Praveen and Comas-
Vives”® demonstrated a simple ML algorithm predicting the
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Figure 1. Binding energies vs GCN (generalized coordination number). (a) CH,* species; (b) OxHy* species; and (c) COxHy* species. Regression

coefficients R? are given in Table S3.

binding energies with a mean absolute error (MAE) of 0.17 eV.
Despite promising results, small DFT data and a lack of physical
interpretations undermine several ML models.

Here, we combine DFT and ML to establish two models for
predicting the adsorption energies of various species on Pt
extended surfaces. First, we build a linear scaling GCN model for
several species binding through C or O. We demonstrate that
unlike the O-binding species in prior work,'”"" the GCN model
is generally inaccurate in describing the structure sensitivity of
C-binding species. We accurately predict the oxygen- and
carbon-binding species using a minimalistic ML model with
descriptors free of DFT calculations involving the valency,
molecular weight, number of bonds formed (features of the
adsorbate), and the site type and GCN (features of the catalyst
structure/active site). By accurately predicting adsorption
energies of single-atom alloys using literature transition metal
data, we demonstrate the transferability of our model even with
such simple descriptors. We discuss the unifying aspects of this
model for predicting many small adsorbates and including
several site types, a challenge in conventional scaling relations,
and its potential prediction of structure sensitivity of surface
reactions and enhanced catalytic performance via particle
engineering.

B METHODS

DFT Settings. DFT calculations were carried out using the
Vienna ab initio Simulation Packageso’31 (VASP) and the
Atomic Simulation Environment (ASE).** We used the
projector augmented-wave (PAW) method®® to describe the
electron-ion interactions and the Revised Perdew—Burke—
Erzerhof (RPBE) generalized gradient approximation (GGA)
exchange—correlation functional.** The Kohn—Sham one-
electron valence states were expanded in plane-wave basis sets
with cutoff energy up to 400 eV. The Fermi population of the
Kohn—Sham state was calculated with a Gaussian width of 0.1
eV, and all of the potential energies were extrapolated to 0 K.
The convergence criterion for the self-consistent electronic
minimization was set to 107 eV, and the k-point sampling was 3
X 3 X 1. At least 20 A of vacuum was added vertically between
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repeated images, and dipole moment corrections were applied to
avoid unphysical periodic interactions.

All metal atoms in the two topmost layers of the slabs, the
metal adatoms, and the adsorbates were allowed to relax in all
directions until the maximum force on any atom was below 0.02
eV/A. On each facet, we allowed surface species to fully relax on
all possible adsorption sites (top, bridge, and hollow) and
binding modes (monodentate, bidentate). The binding energy
of species A was calculated as Epg = Epx — Ej(g) — Ex, where * is
an adsorption site and A and A* are the gas-phase and adsorbed
states of a given species. The gas-phase species energies were
calculated in cubic boxes of 20 A X 20 A X 20 A, and no entropy
or zero-point energy corrections were added to those values.
Spin polarization was considered when calculating gas-phase
energies. Only electronic energies were considered in this work.
Zero-point energy corrections could be included easily in the
future using frequency correlations with the coordination
numbers.*

Adsorbates and Metal Surfaces. The adsorbates studied
in this work included CH,, (x = 0—4), OH, (x = 0-2), O,, H,
CO, CO,, COH, CHO, COOH, and CHOO. These are critical
intermediates in many important catalytic reactions, such as the
water—gas shift reaction (WGSR) ,% steam and dry reforming of
methane,”® methane total and partial oxidation reactions,
Fischer—Tropsch synthesis,””** and methanation reaction.”
We chose the low-index surfaces (111), (100), and (110), the
(211), (221), and (322) stepped surfaces, and surfaces with n
metal adatoms, denoted as nAD@mk], where m, k, and [ are the
Miller indices of a plane.

For a given surface atom, the GCN from Calle-Vallejo et
al.'”'" is the sum of weights of its nearest neighbors obtained by
dividing their own usual coordination number CN with that of
the bulk. We summarized all facets and the corresponding
GCNes for all possible adsorption sites in Table S1.

Machine Learning (ML) Algorithms. In developing the
machine learning algorithms, we included all possible adsorption
sites (top, bridge, three-fold, and four-fold hollow) on each
surface for adsorbates and stable configurations. Overall, the
data set included a total of 295 DFT calculations.

https://doi.org/10.1021/acs.jcim.2c00872
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The complete data set is provided as a Supplementary File.
We used the scikit-learn program40 to train, cross-validate, and
test all of the machine learning algorithms. Then, 80% of the data
was randomly selected and used to train the model, while the
remaining 20% was used to test the model performance. K-fold
cross-validation (k = 10) was used to compare different model
performances. The XGBoost regressor' "> based on tree
ensembles was used, and the hyperparameters were tuned
using the GridSearchCV. The hyperparameters in all of the ML
algorithms and the tuning process are described in Table S6.
Feature importance analysis was performed using the TreeEx-
plainer method and SHAP values developed by Lee et al.** for
interpreting the impact of having a certain value for a given
feature. The correlation heat map was constructed using the
Seaborn package.

B RESULTS AND DISCUSSION

Structure Scaling Relations. Selected Pt surfaces are
shown in Figure S1. Adsorption sites include various terraces,
edges, and metal adatoms, spanning a broad range of GCN
between 2.5 and 7.5 (see Table S1), sufficient to typify the
heterogeneity of a real catalyst. 295 DFT calculations are done,
but only the binding energies on the most favorable adsorption
site are plotted against the GCN in Figure 1. The difference
between DFT calculations and experimental values** is much
smaller than the energy variation across surfaces and materials,
indicating the accuracy of our DFT results. The preferred
adsorption sites of all species are listed in Table S2. The
maximum difference in the binding energy of an adsorbate
among surfaces is an excellent proxy of structure sensitivity. The
binding energies of CH,* and CO,* are smaller than 0.25 eV on
all surfaces, indicating physisorption. The binding energies of
CH;*, CH*, CHO*, and COOH* vary less than 0.4 eV,
implying low to modest structure sensitivity.

The statistics of linear regressions of GCN vs binding energies
is summarized in Table S3. The binding energies of C*, O,%,
O%*, H,0%, and CHOO¥* correlate well with the GCN (R*> >
0.7); CH* and OH* correlate with the GCN to an extent. No
good correlations exist for the CH;*, CH,*, H*, CO*, COH*,
CHO*, and COOH* binding energies. Overall, GCN correlates
well with the binding energies of species binding on the surface
via an O atom (O,*, O*, H,0%, OH*, CHOO*). Our findings
are consistent with those of Calle-Vallejo et al.,"" who reported
GCN as a good descriptor of oxygen-containing species (O,
O*, H,0*, OH*, OOH*, H,0,*), with the OH* correlation
having the lowest R” The results expose that, unlike the O-
binding species studied before, the GCN model does not apply
to some C-binding species.

The intercept and the slope indicate the adsorption strength
and structure sensitivity, respectively. C* and O* have the
largest intercepts and the strongest binding energies, consistent
with their large valency. The slopes and bond order conservation
arguments indicate that C* and O,* are the most structure-
sensitive (slopes of 0.33 and 0.27, respectively), followed by
CHOO*, O*, and OH* (slopes larger than 0.1). The results
indicate that oxygen-binding species, e.g.,, alcohols, ethers,
carbonyl-containing compounds, acids, etc., are structure-
sensitive. In stark contrast, C-binding species, such as those
found in methane activation and hydrogenolysis of larger
hydrocarbons, are relatively structure-insensitive. Among the
latter species, C* is the only strongly structure-sensitive species.
Since C* can lead to coke, we may expect coking to be structure-
sensitive.
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We rationalize the regression results through the adsorption-
site-type sensitivity and the electronic interaction of the metal
atom(s) with the central atom. We take CH* as an illustrative
example of the former. CH*’s most favorable adsorption site is
the hollow site (the linear regression results are plotted in Figure
S2). An R? of 0.46 shows a weak correlation between the binding
energy and GCN, possibly due to the freedom of the adsorption
configuration on hollow sites. If CH* were on a top site, it would
have weaker binding but an excellent R* of 0.9S. On-top binding
gives excellent correlations but the other-site-type binding does
not; mixed site types break these correlations. When all of the Pt
surface adsorption sites are considered, the GCN model does
not hold even for O* (see Figure S3), consistent with the
findings of the Koyama group.”> The ability to account for the
site type is essential for accurate scalings. For the latter, we chose
the CH,* and O* adsorption on Pt (100) for illustration. CH,*
and O* both adsorb on a bridge site and have a valency of two.
Bader charges (Table S4) indicate that the interacting Pt surface
atoms transfer 0.08 electrons to CH,* but 0.28 ™ to O* upon
adsorption. The more extensive charge transfer to O* manifests
a much stronger surface—adsorbate interaction. As the
adsorbate varies, the electronic communication with the metal
atom(s) is altered, rendering a pure GCN scaling relation
inaccurate.

These findings shed light on the limitations of the GCN
geometric descriptor model. GCN works well when the species
adsorbs on the top site and/or strongly interacts with the metal
surface. Using the most stable binding site leads to omitting a
large set of valuable data and an inability to describe the actual
site of adsorbates. To overcome these limitations, we turn to
ML.

Featurization and Correlations. The choice of features is
crucial for the predictive performance of the ML model. Inspired
by previous studies,*”*” eight geometric and electronic features
of free adsorbates and bare metal surfaces (see Table 1) were

Table 1. Features Used in Machine Learning (ML) Models”

abbreviation feature name

category

free adsorbate valency adsorbate valency

number of bonds of the ME in the
molecule

bond_count

Chi_ME electronegativity of ME
Chi_ NN electronegativity of the nearest neighbor
atom of the ME
mass molecular weight of the adsorbate
adsorption site  n_metal number of metal atoms composing the site
CN coordination number of the site
GCN generalized coordination number of the

site

“ME Represents the Main Element Directly Bonded to the Metal
Surface.

selected. No features related to metal properties were included
in this model since all binding energies were calculated on Pt
(for an extension, see below). All descriptor values can be
obtained without any DFT calculations (see Table SS). One set
of features includes the adsorbate valency of the main element
(ME)* directly bonded to the metal surface, the number of
bonds of the ME in the molecule (single, double, or triple bonds
are differentiated), the electronegativity of the ME and its
nearest neighbor in the molecule, and the molecular weight of
the adsorbate. A second set includes the GCN, the coordination

https://doi.org/10.1021/acs.jcim.2c00872
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descriptions.

numbers averaged over the site ensemble,*” and the number of
metal atoms composing the adsorption site.

We analyze the correlation among all input features and also
with the binding energy of the adsorbates. The resulting heat
map is shown in Figure 2. Red (blue) represents direct (inverse)
correlation. The geometric descriptors GCN and CN are highly
correlated, as expected from the literature,*® and the electronic
descriptors of the adsorbate such as the valency, bond count and
chi NN are also correlated with each other. Notably, the

4364

adsorbate valency is inversely and most intensively correlated
with the binding energy, followed by the bond count and the
number of metal atoms of the adsorption site that characterize
the site type. The discovery of the correlation of the atom
valency with the binding strength follows the bond order
conservation principles and is a fundamental aspect of the
Norskov linear scaling relations but has not been discussed in
the context of geometric descriptor-based models. The type of
binding site is also fundamental to adsorption but has not been

https://doi.org/10.1021/acs.jcim.2c00872
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brought into the linear scaling relations, as far as we know, and
can be rationalized by bond order conservation principles.

To predict the binding energies accurately, we exploited
different machine learning algorithms*”*° and their optimal
model parameters (see Table S6). We tested linear, kernel, and
tree ensemble models, including multivariate linear regression
(MLR), support vector regression (SVR),”" kernel ridge
regression (KRR),"” random forest regression (RFR),>
extra tree regression (ETR),** and extreme gradient boosting
regression (XGBoost). Only simple regression models were
selected to ascertain interpretability. The root-mean-squared
error (RMSE) was chosen as a performance metric (Figure 3a
and Table S7). Unlike the GCN model applicable to a single
adsorbate on a single (preferably the top) site type, the ML
model can capture all adsorbates and types of adsorption sites at
once and is interpretable. It is trained and can provide the most
stable site of an adsorbate by comparing the energies for various
types; the site with the lowest adsorption energy is the most
stable.

The multivariate linear regression (MLR) model is the
simplest one, with the test set’s highest RMSE value of 0.51 eV.
The XGBoost regression algorithm performs the best, with an
RMSE of 0.18 €V for the test set. The performance of the SVR,
KRR, RFR, and ETR models is good, with the algorithms in the
same category, such as SVR and KRR, performing similarly. The
XGBoost model performance is depicted in a parity plot in
Figure 3b. Plots for the other models are shown in Figure S4.
Compared to a previous ML model that used DFT-calculated
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properties as descriptors with an RMSE of 0.4 eV,”* our model
shows a much lower error with simple descriptors. The accuracy
of our model is similar to a model proposed previously”® with an
RMSE of 0.24 eV, in which the features contained orbital
occupation energies that need expensive DFT calculations. Our
proposed descriptors are intrinsic properties of the free
adsorbates and can be easily and conveniently obtained for
applications.

Feature Importance Analysis. Exposing the critical
features controlling the binding energy is crucial. The XGBoost
model’s built-in feature analysis is known to be metrics-
dependent, and the results are shown in Figure SS5. To evaluate
the feature importance of the XGBoost model in a unified way,
the SHAP (SHapley Additive exPlanations) method proposed
by Lee et al.**" is applied. SHAP is a powerful Al technique
commonly used to interpret machine learning results based on
game theoretically optimal Shapley values. Figure 3¢,d shows the
feature importance and the effect of each feature on predicting
binding energies. The top three most important features all
correspond to the electronic properties of the adsorbate, with
the adsorbate valency being the dominant feature. Smaller values
of valency (well-coordinated) correspond to less negative
binding energies. Adsorbate molecular weight and the number
of formed bonds also affect the binding energies. The most
important features for predicting binding energies are electronic
properties, and the key geometric features are the type of
adsorption site and the GCN. Feature importance analysis for
other tested models is also performed, and the results are
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Figure 6. Model transferability in predicting adsorption energies of (a) single-atom alloys and (b) AB bimetallic alloys by training the transition metal

data.

consistent with the XGBoost model (see Figure S6). Adsorbate
valency is the key feature in all cases, followed by bond count,
molecular weight, and the type of the adsorption site.

Transferability of ML Models. To test the transferability of
our selected descriptors and ML model, we extracted a
published data set of adsorption energies from Reuter et al.”’
Their data set contains the adsorption energies of six adsorbates
(C,CH, CO, H, O, OH) on fcc(111), (110), (100), and (211)
facets of nine transition metals (TMs), single-atom alloys
(SAA), and AB bimetallic alloys. This data set is internally
consistent, obtained using the same DFT setup, and thus it is an
ideal one to assess transferability. More details about the data set
are given in Supplementary Note S1. Because of varying the
metal in this data set, we augmented the previous features with
metal-related properties. Unlike prior work using the d-band
properties, our selected features do not need DFT calculations.
Using the filter-based feature selection method,*” the final
descriptor set includes five features for the metal (electro-
negativity (chi_metal), first ionization potential (IP), the
number of d electrons (n_d), electron affinity (EA), and the
atomic mass of the metal atom (mass_metal)), three for the
adsorption site (n_metal, GCN, CN) and two for the adsorbate
(valency and adsorbate mass). Detailed feature description can
be found in Table S8, and features for each metal are
summarized in Table S9. With the proposed ten descriptors,
we applied the XGBoost model to each data set. Each model’s
performance is shown in Figure 4.

The TMs model has the smallest test error with an RMSE of
0.17 eV. For SAA and AB bimetallics, the errors are slightly
larger than 0.20 eV. The TM model serves as a basic case, and its
corresponding feature importance analysis using SHAP is shown
in Figure 5. The most important feature is still the adsorbate
valency, consistent with our data set, indicating that it is a good
universal descriptor. The number of the metal d electrons and
the molecular weight of the adsorbate also play a vital role in
predicting the adsorption energies. Even with multiple metals in
the data set, two of the top three significant features are related
to the adsorbate properties, and the features related to the
geometric effects contribute less to predicting the adsorption
energies.

Unlike typical ML models that are trained and tested on the
same kind of data, a transferable model could predict a new
system. To achieve this, the descriptors need to be general. First,
we test the transferability of our methodology in predicting the
adsorption energies of SAAs by training a model on the TM data,
as shown in Figure 6a. All metal-related descriptors are
calculated as site-arithmetic mean values. The RMSE of the
TM-based model on the SAA set is 0.23 eV, close to a ML model
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trained on the SAA data set (0.21 eV in Figure 4b). Predicting
adsorption energies using the TM model for this unseen data set
is still good. The order of feature importance results (shown in
Figure S7) is the same as the TMs model, suggesting that for
SAAs, the dopant only has a subtle effect on the host, and the
electronic effect is highly localized on the adsorption site. Figure
6b shows the model transferability of the TM model to the AB
bimetallic alloys. The RMSE of the test AB set is 0.42 eV,
comparable to some previous ML models*® but larger than the
model built on the data set itself (0.24 eV in Figure 4c). The
results indicate that bimetallic alloys have relatively nonlocal
effects in adsorption compared to SAAs, and the adsorption sites
alone are insufficient to correlate very accurately the properties
of TMs with AB alloys. The model could be used more for
screening. Adding new descriptors or a few AB data points in the
training set would further improve the model performance.

B CONCLUSIONS

Adsorption energies are fundamental to all surface processes,
and their prediction has been central to modeling efforts and
impactful. We presented two adsorption energy models of small
species on metal surfaces based on nearly 300 DFT calculations.
The first is the traditional linear scaling relation, invoking the
generalized coordination number (GCN). It extends the original
model from oxygen-binding to carbon-binding species and other
selected adsorbates, such as CO, comprising the bulk of
chemicals and fuels. Surprisingly, while the model holds well
for the oxygen-binding species, it is generally inadequate for the
carbon-binding species. C* and O,* are the most structure-
sensitive species. Small species of hydrocarbons appear less
structure-sensitive than oxygenates. The correlations are
accurate when adsorption entails a single metal atom but not
as precise as the species become more dehydrogenated, leading
to bridge or hollow binding. We overcome the limitations of the
GCN model by building machine learning (ML) models with
readily available properties of the gas-phase species and
adsorption sites. The XGBoost model gives the lowest root-
mean-squared error (RMSE) of 0.18 eV. Analysis reveals the
essential features of adsorbates are the valency, the molecular
weight, and the number of formed bonds, and of the catalyst
active-center are the type and the generalized coordination
number. While the valency and GCN have been essential in the
published energy and structure scaling relations, respectively,
the new features discovered herein unify adsorption of all C and
O species, account for various and mixed site types rather than a
single site, and improve accuracy. The transferability of the
model is assessed, demonstrating its potential for predicting the
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adsorption on more complex materials. We anticipate these
models to advance catalytic science further.
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