

Volumetric and shear strain localization throughout triaxial compression experiments on rocks

J. McBeck¹, Y. Ben-Zion², and F. Renard^{1,3}

¹Njord Centre, Department of Geosciences, University of Oslo, Oslo, Norway.

²Department of Earth Sciences and Southern California Earthquake Center, University of Southern California, Los Angeles, CA, USA.

³University Grenoble Alpes, University Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France.

Corresponding author: J. McBeck, j.a.mcbeck@geo.uio.no

Highlights

- We track strain localization in twelve X-ray tomography triaxial compression experiments.
- The vast majority of the experiments experience strain localization toward brittle failure.
- The maximum strain localization occurs on average at 90% of the failure stress.
- The volumetric (dominantly dilative) strain localizes more than the deviatoric (shear) strain.

Abstract

Deformation localization is a widely observed, but rarely quantified process in the crust. Recent observations suggest that the localization of seismicity and fracture networks can help identify the approach to catastrophic failure. Here, we quantify the localization processes of the volumetric and deviatoric strain components in twelve triaxial compression experiments imaged with X-ray tomography. We capture three-dimensional images of the rock cores during triaxial compressing toward failure, and then calculate the local strain components using digital volume correlation. The divergence and curl of the incremental displacement vector field provide the volumetric and deviatoric components of the strain field. We quantify localization using the proportion of the rock occupied by high magnitudes of the volumetric and deviatoric strains, and the Gini coefficient of these high magnitude strains, which measures the deviation from a uniform process. We find that the vast majority, but not all, of the experiments experience strain localization toward failure. The rocks typically experience their maximum degree of strain localization not immediately preceding failure, but on average at 90% of the failure stress. The volumetric strain tends to localize more than the deviatoric strain. These observations support using the localization of the volumetric strain, along with the deviatoric strain, to identify the evolution of the precursory phase preceding earthquakes.

Key words

Localization; strain; triaxial compression; shear; volumetric; large earthquakes

1. Introduction

Recognizing precursory deformation signals that characterize the preparation phase leading to large failure events is a major goal in geosciences and geotechnical engineering. Recent analysis suggests that increasing localization and clustering of low magnitude seismicity may be a precursory geophysical activity that signals a forthcoming large earthquake (e.g., *Ben-Zion & Zaliapin*, 2020). The long-term localization of deformation and seismicity around and within large crustal fault zones are well-recognized phenomena (e.g., *Powers & Jordan*, 2010; *Tarayoun et al.*, 2019; *Mazzotti & Gueydan*, 2018; *Zeng et al.*,

56 2018; *Ben-Zion & Zaliapin*, 2019). Researchers tend to attribute the persistence of seismicity
57 and large-scale displacement along crustal fault zones to the weakness of these zones
58 relative to the surrounding crust. Thus, the evolving strength of the fault zone relative to the
59 crust is a key parameter that controls the localization of deformation.

60 Crustal faults lose their strength through a long-term evolution from complex fault
61 networks with distributed, isolated segments to more continuous structures (e.g., *Tchalenko*,
62 1970; *Ben-Zion & Sammis*, 2003). Numerical models and experiments have documented the
63 localization of strain and fault networks from distributed segments to through-going
64 structures (e.g., *Lyakhovsky & Ben-Zion*, 2009; *Autin et al.*, 2013; *Hatem et al.*, 2017). The
65 evolution toward localization around main faults requires that the rate of healing following
66 failure is slower than the rate of the ongoing loading (e.g., *Lyakhovsky et al.*, 2001; *Ben-*
67 *Zion*, 2008) so the fault zone remains weak relative to the host rock. Rapid healing can
68 prevent localization and lead to the continual generation of broadly distributed failure zones
69 (e.g., *Jamtveit et al.*, 2018). Partial healing of fault zones that remain weaker than the
70 surrounding crust produces cycles of delocalization in interseismic periods, and localization
71 preceding large earthquakes (*Ben-Zion & Zaliapin*, 2020). Here, and throughout the
72 manuscript the term delocalization refers to a decrease in the degree of localization.

73 On a smaller scale, laboratory observations show an early development of mode-I
74 fractures initially oriented parallel to the maximum compression direction, σ_1 , that coalesce
75 under increasing differential stress (*Brace et al.*, 1966; *Tapponnier & Brace*, 1976; *Peng &*
76 *Johnson*, 1972). Tracking the position of acoustic emissions during triaxial compression
77 reveals the localization of these emissions toward failure, and as the rock supports
78 diminishing axial stress (*Lockner et al.*, 1991). In some experiments, coalescence is such a
79 dominant process in fracture network development that the total number of individual
80 fractures decreases as the total volume of fractures increases (*McBeck et al.*, 2021). Fault
81 and fracture networks may coalesce and evolve to more localized distributions because this
82 reorganization can produce the most mechanically efficient system (e.g., *Cooke & Madden*,
83 2014; *McBeck et al.*, 2017; *Hatem et al.*, 2017). More continuous faults may concentrate
84 deformation on faults (slip) and reduce the magnitude of internal deformation of the host
85 rock to a greater extent than systems with many isolated, smaller faults. Thus, a more
86 localized fault network may also be the more efficient fault network.

87 The observations of localization in 1) nominally intact rocks from isolated mode-I
88 fractures to linked, through-going faults, 2) crustal fault networks from isolated to continuous
89 structures, and 3) seismicity preceding large earthquakes, suggest that tracking localization
90 of deformation may help indicate the timing of catastrophic failure. Indeed, machine learning
91 analyses suggest that statistics that describe the spatial distribution of localizing fracture
92 networks are critical for successfully predicting the timing of macroscopic failure in triaxial
93 compression experiments (*McBeck, Aiken, Mathiesen et al.*, 2020). Similarly, machine
94 learning analyses indicate that the spatial distribution of the fracture network controls
95 whether individual fractures grow (*McBeck et al.*, 2019). Thus, the spatial distribution of the
96 fracture network controls both local failure (individual fracture growth) and global failure
97 (system-size, catastrophic failure).

98 Additional experimental observations that can reveal localization during rock
99 deformation, and help predict the timing of failure, include the local strain fields captured
100 during triaxial compression experiments imaged with X-ray tomography. In these
101 experiments, researchers acquire three-dimensional images of rock cores during triaxial
102 compression. The images enable calculating the evolving local strain tensor throughout the
103 rocks using digital volume correlation analysis (e.g., *Charalampidou et al.*, 2011; *Ji et al.*,
104 2015; *McBeck et al.*, 2018; *Shahin et al.*, 2019; *Stamati et al.*, 2019; *Heap et al.*, 2020; *Mao*
105 *et al.*, 2021; *Baud et al.*, 2021). Using such time series of strain fields, machine learning
106 analyses indicate that the intermediate values of the dilative strain can predict the timing of
107 system-scale failure in these experiments (*McBeck, Aiken, Ben-Zion et al.*, 2020). Thus, the
108 magnitude of the dilative strain helps signal imminent system-scale failure in these
109 experiments.

In the present study, we analyze the evolving strain localization to constrain the reliability of this process when identifying the proximity of catastrophic failure. If the localization of the strain field is not relatively systematic toward failure, then this process may be a poor predictor of the proximity of failure. We quantify strain localization in twelve triaxial compression experiments imaged with X-ray tomography, including experiments on Fountainebleau sandstone, Mount Etna basalt, monzonite, Westerly granite, Green River shale, and Andstrude limestone (**Table 1**). We track localization using the proportion of the rock volume that is occupied by relatively high magnitudes of the strain components, including the volumetric (dilative) and deviatoric (shear) strain, and the Gini coefficient derived from the Receiver Operating Characteristic framework (e.g., *Ben-Zion & Zaliapin*, 2020). When the proportion of the rock volume occupied by high strain values decreases, or the Gini coefficient increases, the rock experiences higher degree of strain localization. We compare the maximum observed localization (i.e., minimum proportion of volume occupied by high magnitude strains and maximum Gini coefficient) of both strain components throughout twelve experiments.

In a previous analysis using the same set of experiments analyzed here, we examined how four strain components, the contraction, dilation, left-lateral shear strain, and right-lateral shear strain, interacted with each other (*McBeck, Ben-Zion et al.*, 2020). To quantify the localization of the complete strain population of each component, this previous work calculated the volume of rock occupied by each of the strain components, including both lower and higher magnitude strains. In the experiments, the dilative strain occupies larger volumes with increasing differential stress, while the contractive strain occupies smaller volumes. In contrast, the left- and right-lateral shear strains do not tend to occupy larger and larger volumes. This result occurs because of the competition between dilation and contraction, and the dominance of dilation under higher differential stress. In contrast, the left-lateral shear strain does not consistently dominate the right-lateral shear strain, or vice versa.

The analysis of the present work is motivated by the observations of localizing seismicity before major earthquakes in southern and Baja California (e.g., *Ben-Zion & Zaliapin*, 2020). Following these field results, we examine the localization of the largest magnitudes of the strain components, rather than the complete strain populations. Moreover, we compare the localization of the volumetric component, including both the dilation and contraction, to that associated with the deviatoric component. This analysis thus benefits from the fact that comparing the localization properties of the volumetric and deviatoric components of the strain field is not obscured by the increasing volume fraction of dilation.

The results of the present work indicate that the volumetric strain, as measured with the absolute value of the divergence of the incremental displacement vector field calculated from DVC, localizes more than the deviatoric strain, as measured with the absolute value of the curl of the incremental displacement vector field. We compare the timing of when each experiment achieves its maximum localization. We find that the vast majority of the experiments experience maximum localization beyond 75% of the failure stress, however, less than half of the experiments experience their maximum localization immediately preceding failure. In contrast to the idea that increasing localization will drive more localization, the rocks do not experience a continual increase in localization throughout the experiments. We compare the change in the magnitude of localization throughout each experiment using the difference between the maximum and minimum localization in each experiment, along with the difference between the localization observed in the strain fields immediately preceding failure and at the onset of loading. The results show that >80% of the experiments host strain fields that increase in localization toward failure. Consistent with the greater magnitudes of localization of the volumetric strain, the volumetric strain also experiences the greatest increases in localization from the onset of loading to failure, and from the maximum to minimum observed localization. This analysis thus reveals two key findings: 1) rocks do not tend to experience their maximum strain localization immediately preceding failure, but on average near 90% of the failure stress, and 2) the volumetric strain

164 tends to localize more than deviatoric strain in terms of both the absolute minimum and the
165 change in localization.

166 **2. Methods**

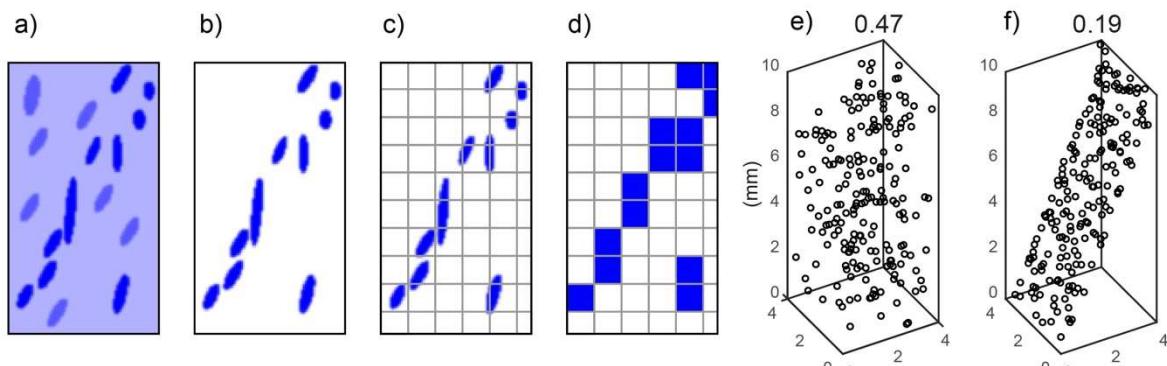
167 **2.1. Experimental conditions**

170 Previous studies describe the conditions of the analyzed experiments (e.g., *Renard et al., 2017, 2018; Renard, McBeck, Cordonnier et al., 2019; Renard, McBeck, Kandula et al., 2019; McBeck et al., 2019; McBeck et al., 2018*), so we only summarize the pertinent details here. We deform two cores of six types of rocks, including Fontainebleau sandstone, Mount Etna basalt, monzonite, Westerly granite, Green River shale and Anstrude limestone (**Table 1**). The rock cores are 1 cm tall and 4-5 mm wide cylinders (**Table 1**). We core the shale parallel to bedding.

177 We triaxially compress the rock cores on beamline ID19 at the European
178 Synchrotron and Radiation Facility inside the Hades apparatus (*Renard et al., 2016*), while
179 acquiring tomograms. The tomograms provide three-dimensional fields of linear attenuation
180 coefficients, indicative of X-ray energy and local density. We apply confining stresses of 5-35
181 MPa (**Table 1**) and increase the axial stress in steps of 0.5-5 MPa until the sample fails in a
182 sudden stress drop. After each stress step, we acquire a tomogram within two minutes. The
183 high quality of the tomograms, including the lack of significant blurring, indicates that the
184 rocks do not deform during scan acquisition.

rock type	experiment number	confining stress (MPa)	sample diameter (mm)	# of X-ray tomograms
Fontainebleau sandstone	#1	20	5	184
	#2	10	5	47
Mount Etna basalt	#1	10	4	32
	#2	10	4	36
monzonite	#4	35	4	65
	#5	25	4	80
Westerly granite	#2	5	4	30
	#4	10	4	66
Green River shale	#2	20	5	60
	#3	20	5	61
Anstrude limestone	#2	20	5	41
	#5	5	5	26

186
187 **Table 1.** Rock types, applied confining stress, diameter of rock cylinders, and numbers of X-
188 ray tomograms acquired in twelve rock deformation experiments.


189
190 **2.2. Digital volume correlation analysis**

192 We use the code TomoWarp2 (*Tudisco et al., 2017*) to perform the digital volume
193 correlation analysis. This analysis searches for similar patterns of voxels in pairs of
194 tomograms, or other three-dimensional images, and then calculates the displacement vector
195 that best maps one set of voxels to the other (e.g., *Charalampidou et al., 2011; Ji et al., 2015; McBeck et al., 2018; Shahin et al., 2019; Stamatil et al., 2019; Heap et al., 2020; Mao et al., 2021; Baud et al., 2021*). In TomoWarp2, the node spacing determines the spatial
196 resolution and the correlation window size determines the size of the volume used to identify
197 similar patterns of voxels. Using a node spacing of 20 voxels (0.13 mm) and correlation
198 window size of 10 voxels (65 μm) produces a good spatial resolution and reasonable levels
199
200

of signal to noise. *McBeck et al.* (2018) describe the influence of varying these parameters on the calculated displacement fields.

Following the approach of our previous analyses (e.g., *McBeck et al.*, 2018), we subdivide each experiment into approximately eight to ten equal increments of macroscopic axial contraction, and then perform DVC on the resulting pairs of tomograms. Thus, we calculate the incremental displacement field between each tomogram pair. To compare the varying evolution of the volumetric and deviatoric components of the strain field, we calculate the divergence (volumetric, contractive and dilative) and curl (deviatoric, shear) of the displacement fields. The divergence fields thus include both contractive and dilative strains. With increasing differential stress, a larger volume of the rock experiences dilation and a smaller volume experiences contraction in these experiments (*McBeck, Ben-Zion et al.*, 2020). The deviatoric component of the strain tensor may be represented with different metrics, such as the Von Mises strain. We follow the approach of the geodetic community (e.g., *Bennett et al.*, 2003; *Bos et al.*, 2003) by decomposing the strain tensor into its volumetric and deviatoric components using the divergence and the curl. The curl indicates the rotation of a field, and thus captures the influence of the six shear strain components of the three-dimensional strain tensor. In two-dimensions, the curl is equal to the shear strain.

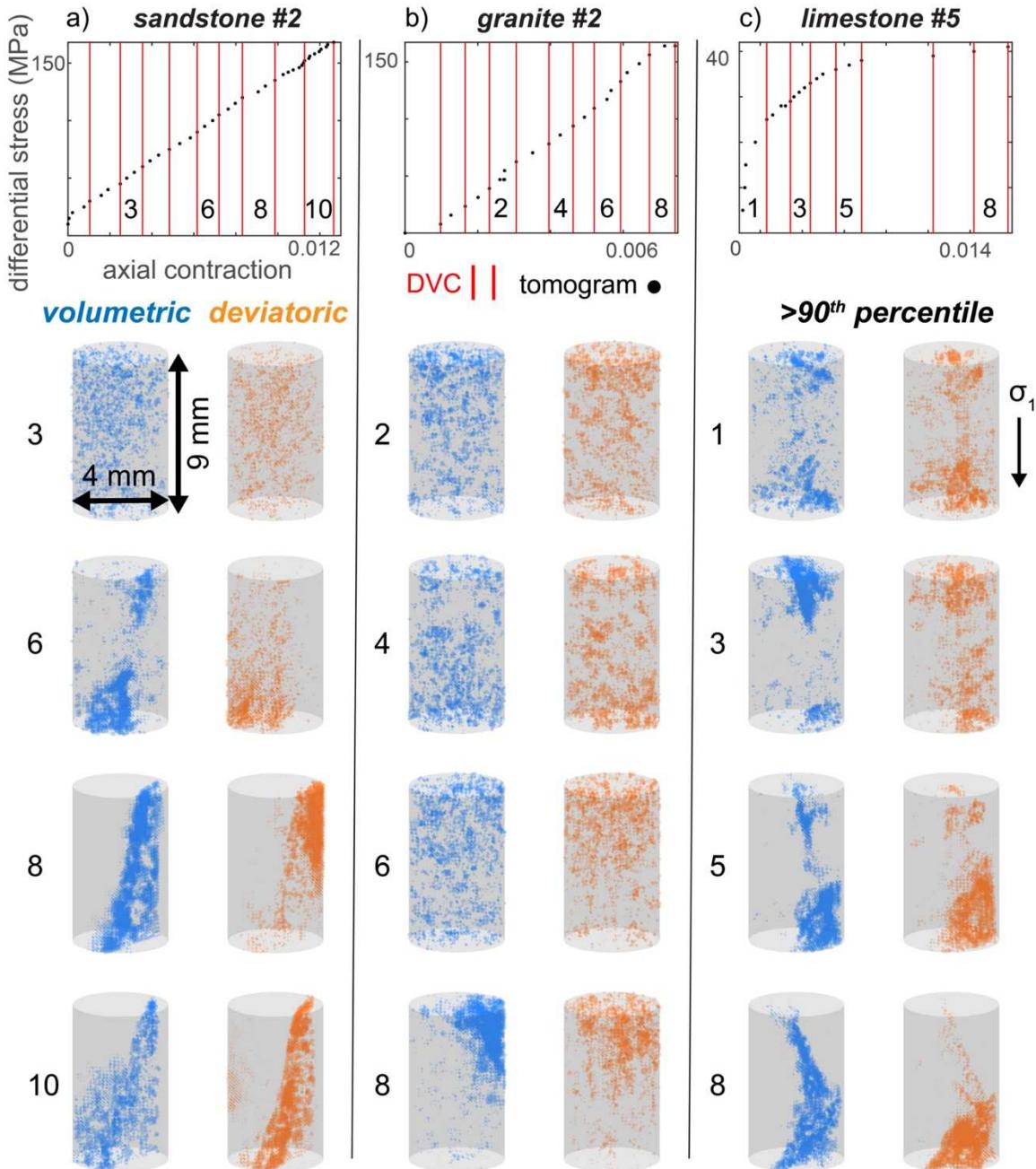
To ensure that the magnitude of macroscopic strain done between scan acquisitions does not strongly influence the calculated incremental strains, we divide the incremental divergence and curl values by the macroscopic axial contraction done during the given scan acquisition. Thus, the DVC analysis provides a time series of the incremental normalized divergence and curl fields throughout the rock at eight to ten unique time steps in each experiment with a spatial resolution of 0.13 mm.

Figure 1. An illustration of the method of calculating the proportion of volume occupied by high magnitudes of strain. The DVC analysis provides a discretized field of continuous strain values at a spatial resolution of 0.13 mm (a). To quantify spatial localization, we first extract the high magnitudes of strain, using a range of percentile thresholds (b). Then, we subdivide the strain field into cubes with side lengths of 0.25 mm, 0.5 mm, or 1 mm (c). Finally, we identify the cubes that host high magnitudes of strain (d). We then calculate the proportion of the rock occupied by the high strain values using the grid of cubes, i.e., the volume of blue cubes divided by the total volume. In this synthetic example with a grid spacing of 1 mm (e-f), the more distributed strain field produces a volume proportion of 0.47, while the more localized strain field produces a volume proportion of 0.19. Thus, when the high strain magnitudes are spread diffusely throughout the system (e), the resulting volume proportion is higher than when the high strains are localized along a plane (f).

2.3. Quantifying localization

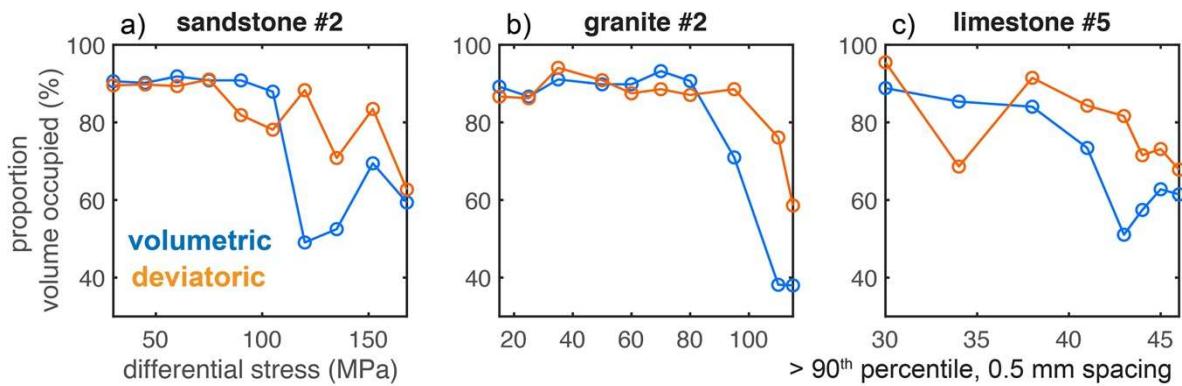
To quantify localization using the time series of incremental divergence and curl fields, we follow the approach of *Ben-Zion & Zaliapin* (2020). We track the volume of rock occupied by high magnitudes of local strain, and we calculate the Gini coefficient. The Gini coefficient measures the inequality in a population, and thus can indicate the dispersion or localization of a population (e.g., *Gini*, 1921). We measure the Gini coefficient as twice the

246 area between the Receiver Operating Characteristic curve and the diagonal line that is
247 indicative of a uniform distribution (**Figure S1**).


248 Whereas *Ben-Zion & Zaliapin* (2020) calculated the fractional area of a grid of 2D
249 cells occupied by seismicity in southern and Baja California, we identify the fractional volume
250 of a grid of cubes occupied by high magnitudes of (incremental) divergence and curl at each
251 time step of each experiment (**Figure 1**). This approach requires selecting two parameters:
252 the size of the cubes and the threshold used to select the high magnitudes of the strain. We
253 vary the size of the cubes from 0.25-1 mm, and the threshold from 70-90th percentile. We
254 tested thresholds of these larger percentiles because the largest local strains have the
255 strongest influence on the global strain field, and thus on the localization properties. We
256 tested cube sizes with a minimum length scale of 0.25 mm because this value is twice the
257 spatial resolution of the DVC analysis. If we use a cube size equal to the spatial resolution of
258 the DVC analysis, the volume of rock occupied by strain values above a given percentile
259 would remain constant throughout the experiment. We show that varying these parameters
260 does not influence the central conclusions of the analysis (**Section 3.3, Figure S2**). To
261 quantify localization, we 1) extract the absolute value (magnitude) of the incremental
262 divergence and curl fields that are above a given percentile threshold in a particular time
263 step, 2) count the number of cubes that these high strains occupy, and 3) divide this number
264 by the total number of cubes in the rock (**Figure 1**). We then report this proportion as a
265 percentage. We also show that using the Gini coefficient to quantify localization produces
266 the same central results as the analysis performed using the proportion of volume occupied
267 by high magnitudes of strain (**Figure S2**).

268 Thus, we use the incremental strain done between scan acquisitions to quantify the
269 spatial localization of the strain field. This process is analogous to the method by which
270 seismologists track the localization of seismicity (e.g., *Ben-Zion & Zaliapin*, 2020). In both
271 analyses, we extract the incremental deformation (strain or seismicity) done within a certain
272 time interval. Thus, following this approach, we describe decreases in the spatial localization
273 of the incremental deformation as delocalization, and identify the time when the high
274 incremental strains are the most localized as the timing of maximum localization.

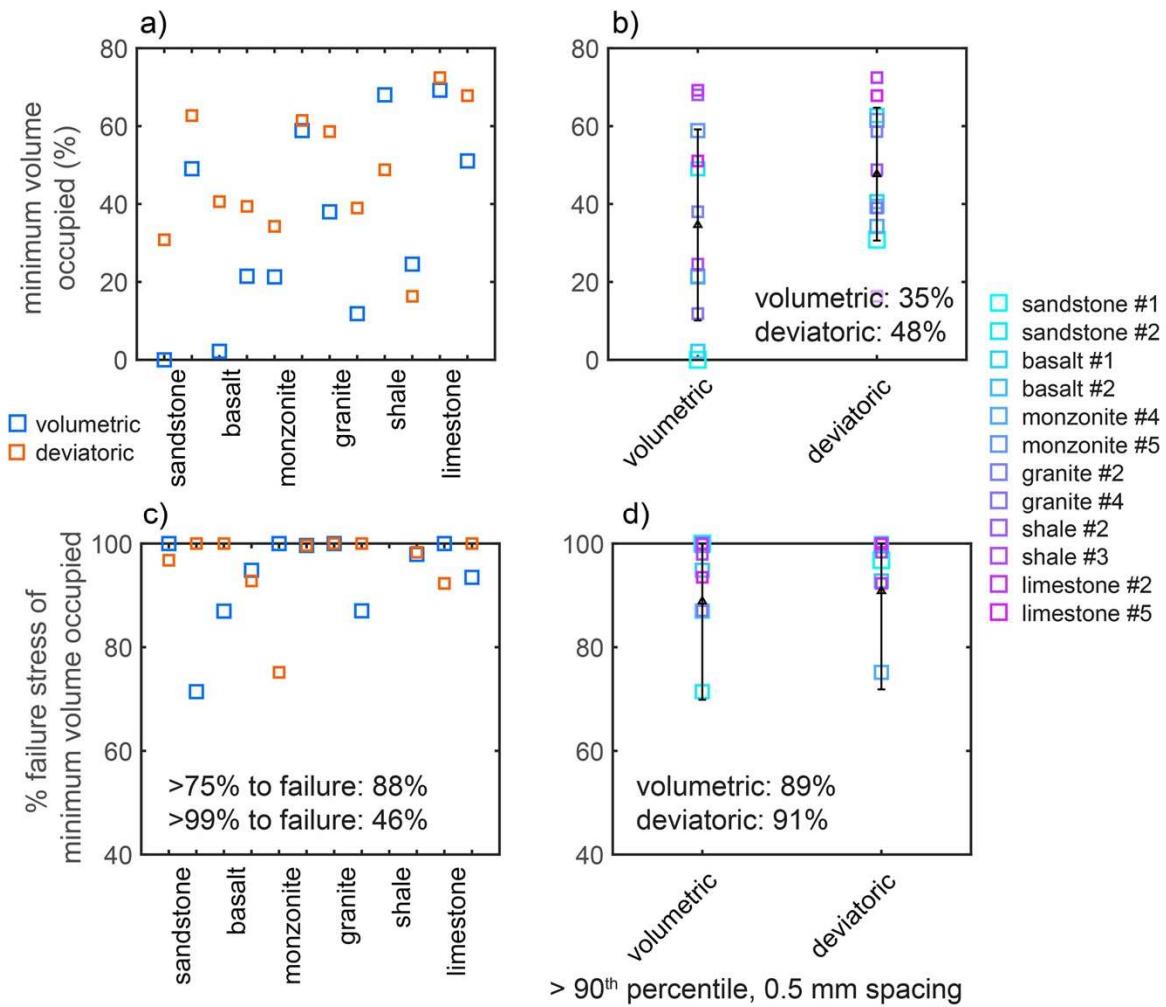
275 3. Results


276 3.1. Qualitative observations of strain localization

277 In the time series of strain fields captured during triaxial compression, we observe
278 qualitatively that the high magnitudes of incremental strains appear to localize with
279 increasing differential stress. Under low differential stress, the high magnitudes (>90th
280 percentile) of the strain fields appear diffusely distributed throughout the rock core (**Figure**
281 2). Under higher differential stress, they appear to localize or cluster. Based on visual
282 inspection and qualitative comparison, some of the strain fields appear more localized than
283 others. For example, the strain fields observed in the granite experiment immediately
284 preceding failure (stress step #8 in **Figure 2b**) appear more localized than those observed in
285 the sandstone experiment immediately preceding failure (stress step #10 in **Figure 2a**). In
286 addition, the degree of localization of the volumetric and deviatoric strain fields appear to
287 differ at a given time in a particular experiment. For example, the volumetric strain field in the
288 granite experiment immediately preceding failure appears more localized than the deviatoric
289 strain field at this time step. In the subsequent sections, we test these qualitative
290 observations by quantifying the localization of the high magnitudes of the volumetric and
291 deviatoric strains.

312 volume occupied by high magnitudes of strain in a grid with a spacing of 0.5 mm. In a
 313 subsequent section, we show that the chosen threshold and grid spacing do not significantly
 314 influence the central results.

315 The general trends of these evolutions show that the local incremental high strain
 316 values tend to occupy less space (i.e., localize) as the rocks approach failure (**Figure 3**).
 317 Here, we focus on three example experiments that show the range in localization behavior
 318 observed in all of the experiments. In some experiments, the strain fields systematically
 319 localize toward failure, such as the granite #2 experiment (**Figure 3b**). In other experiments,
 320 such as the sandstone #2 and limestone #5 experiments, the strain fields localize and then
 321 delocalize toward failure: decreasing and then increasing in the proportion of occupied
 322 volume. Thus, the maximum localization of the strain field (minimum proportion occupied)
 323 does not occur immediately preceding failure in the sandstone #2 and limestone #5
 324 experiments, but does occur at this critical time in the granite #2 experiment.
 325



326
 327 **Figure 3.** Evolutions of strain localization in three example experiments: a) sandstone #2, b)
 328 granite #2, and c) limestone #5. The blue and orange lines show the proportion of the
 329 volume occupied by high magnitudes (>90th percentile) of the volumetric and deviatoric
 330 strain, respectively, using a grid with 0.5 mm spacing.

331
 332 This quantification of the localization (**Figure 3**) enables directly comparing the
 333 magnitude of strain localization in the volumetric and deviatoric strain components. In all
 334 three experiments, the high magnitudes of the deviatoric strain occupy more volume than
 335 the high magnitudes of the volumetric strain immediately preceding failure. The difference
 336 between the proportion occupied by the volumetric and deviatoric strain immediately
 337 preceding failure is the largest in the granite #2 experiment, 20%, and smallest in the
 338 sandstone #2 experiment, 2%. Thus, the volumetric strain is more localized immediately
 339 preceding failure than the deviatoric strains in these experiments. In the subsequent
 340 sections, we compare these results in all twelve experiments, including the timing and
 341 magnitude of the maximum localization of the volumetric and deviatoric strains.

342 3.3. Maximum localization during triaxial compression

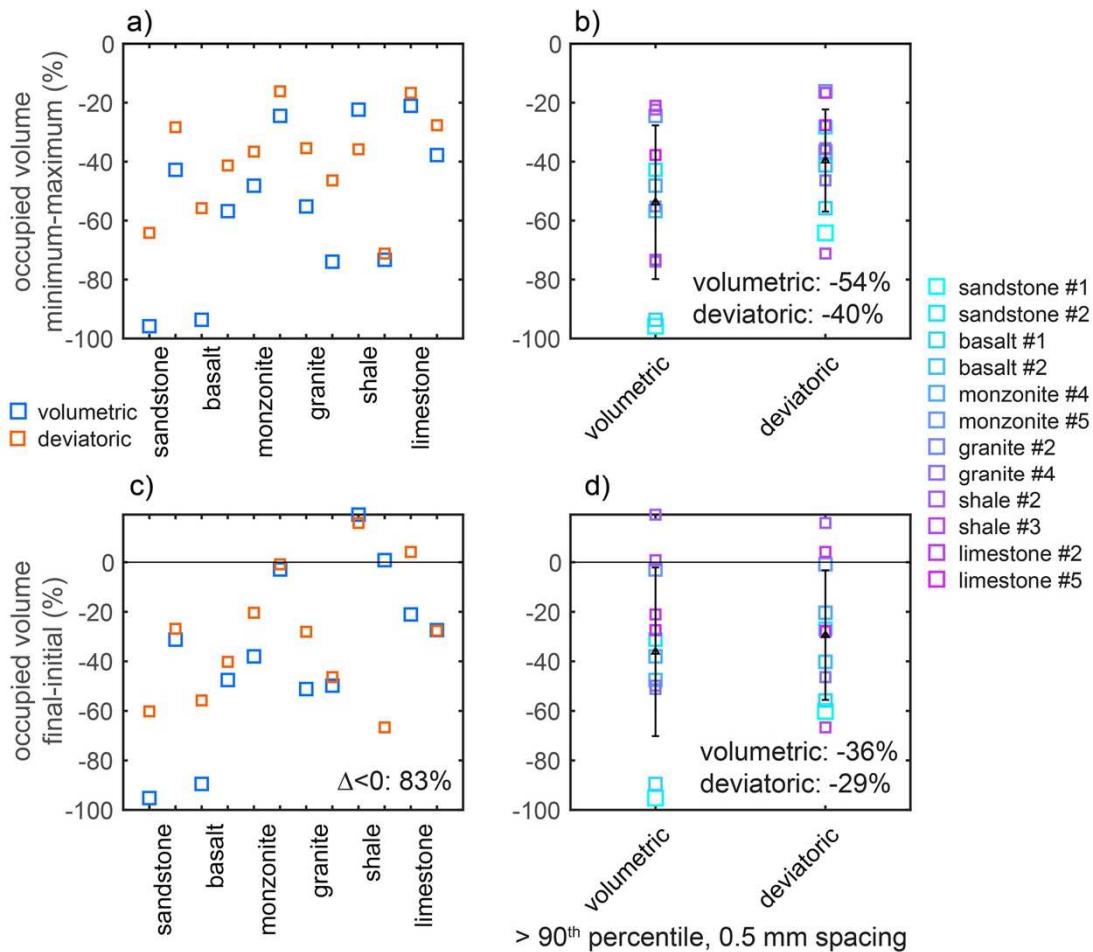
343
 344 The example evolutions (**Figure 3**) highlight two key aspects of strain localization on
 345 which we now focus in greater depth as we analyze the twelve experiments. First, we
 346 identify the minimum proportion of the rock volume occupied by the high magnitudes of
 347 strain throughout all the experiments, for both the volumetric and deviatoric strain
 348 components (**Figure 4**). Then, we compare the magnitude of the greatest localization
 349 achieved by the volumetric and deviatoric strains, and examine the timing of when the rocks
 350 experienced this maximum localization.

353
354 **Figure 4.** Minimum volume occupied by high magnitude strains in all experiments (a-b), and
355 timing of the maximum localization (c-d). a, c) Data organized by experiment. Each rock type
356 label corresponds to data from two experiments. b, d) Data organized by strain component.
357 c-d) The timing of maximum localization is shown by the percent of the differential stress at
358 failure of the strain field, i.e., 100% is at failure. b) The black symbols show the mean \pm one
359 standard deviation of the minimum proportion achieved for each strain component across all
360 the experiments. The numbers in the lower right corner list the means of the minimum
361 proportion: 35% for the volumetric strain and 48% for the deviatoric strain. c) The
362 percentages at the bottom of the plot show the proportion of the measurements (two strain
363 components for each of the twelve experiments) that achieve their maximum localization
364 >75% of the failure stress (88%) and >99% of the failure stress (46%). d) The black symbols
365 show the mean \pm one standard deviation of the timing of maximum localization for each
366 strain component. The numbers in the lower left corner list the means of this timing: 89% for
367 the volumetric and 91% for the deviatoric.

368
369 **Figure 4a** shows the minimum proportion of rock volume occupied throughout each
370 experiment, and thus the maximum localization achieved by each experiment. The results
371 indicate that the rock type does not exert a clear influence on the maximum localization
372 achieved in each experiment. For example, the two sandstone experiments are among the
373 experiments that experience the weakest and strongest localization, from about 60% of the
374 minimum proportion occupied to near 0%. Similarly, the two shale experiments exhibit a
375 wide range of the maximum achieved localization.

376 **Figure 4b** compares the minimum proportion of rock volume occupied by the high
377 magnitudes of the volumetric strain to the high magnitudes of the deviatoric strain. This
378 comparison indicates that the volumetric strain achieves lower proportions than the

379 deviatoric strain, and thus greater localization. The average of the minimum proportion
380 occupied across all of the experiments is 35% for the volumetric strain, and 48% for the
381 deviatoric strain (**Figure 4b**). In addition, ten of the twelve experiments host volumetric strain
382 fields that localize more than the deviatoric strain: only the two shale experiments show the
383 opposite trend. Thus, the volumetric strain tends to achieve greater localization throughout
384 the experiments than the deviatoric strain.

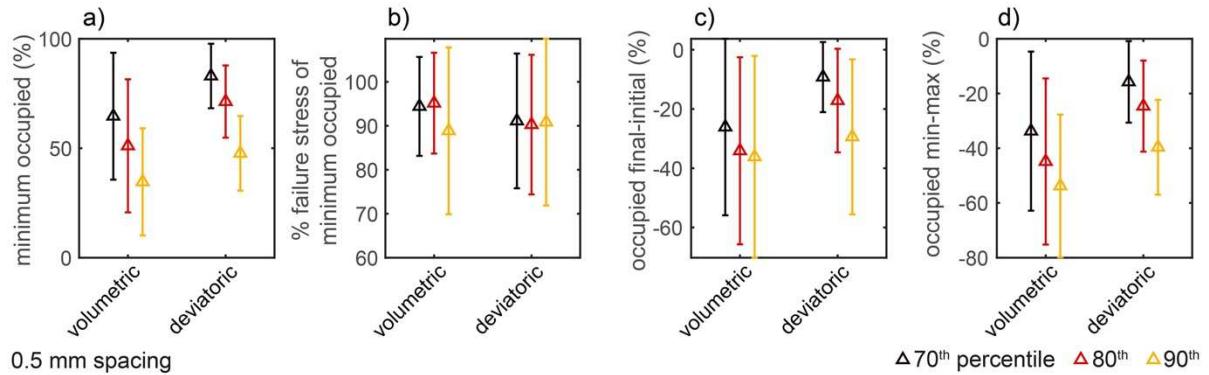

385 Next, we examine the timing of when the rocks experience their maximum
386 localization (**Figure 4c-d**). We use the differential stress exerted on the rock as a proxy for
387 time, and report the percent of the failure stress of the differential stress at the time when we
388 acquired the second tomogram used in the DVC calculation that hosts the maximum
389 localization. We find that 88% of the experiments achieve their maximum localization at
390 >75% of the failure stress (**Figure 4c**). However, only 46% of the experiments achieve their
391 maximum localization at >99% of the failure stress, immediately preceding failure. Thus, the
392 vast majority of the experiments experience their maximum localization in the final stages of
393 the experiment, but less than half of the experiments experience their maximum localization
394 immediately preceding failure. Comparing the difference between the timing of maximum
395 localization of the volumetric and deviatoric strains indicates that the rocks experience the
396 maximum localization of the volumetric strain at similar times as the deviatoric strain (**Figure**
397 **4d**). The mean of the timing of maximum localization of the volumetric and deviatoric strain
398 across all of the experiments only differ by 2%, from 89-91%. Thus, both strain components
399 experience their maximum localization not immediately preceding failure, but within about
400 10% of the failure stress on average.

401 3.4. Change in localization throughout triaxial compression

402 Next, we examine how the magnitude of localization changes throughout each
403 experiment (**Figure 5**). We track this change with the difference between the minimum and
404 maximum proportion of the rock volume occupied throughout the full experiment, and the
405 difference between the proportion of the rock volume occupied in the final (preceding failure)
406 and initial (at the onset of loading) strain fields.

407 Using the difference between the proportion of volume occupied by high magnitude
408 strains at the final and initial stage, most of the experiments experience localization. In
409 particular, 83% of the measurements of the combination of experiments and strain
410 components, have a negative difference in the proportion occupied between the final and
411 initial stages, indicating that the proportion was smaller at the end of the experiment than at
412 the beginning (**Figure 5c**). The exceptions to this trend, in which the strain field delocalizes
413 from the onset of loading to immediately preceding failure, include both strain components in
414 the shale #2 experiment, the volumetric strain in the shale #3 experiment, and the deviatoric
415 strain in the limestone #2 experiment. Thus, the rock types that experience delocalization
416 tend to be those that experience more ductile or plastic processes: the shale and limestone.
417 Similarly, the rock types that experience the greatest increases in localization tend to be
418 those that are dominated by brittle processes: sandstone and basalt.

419 Both of the metrics of the change in localization indicate that the volumetric strains
420 tend to localize more than the deviatoric strains. In particular, the mean of the difference
421 between the minimum and maximum proportion occupied across all experiments is -54% for
422 the volumetric strain and -40% for the deviatoric strain (**Figure 5b**). In addition, all of the
423 experiments except the shale #2 experiment show greater increases in localization for the
424 volumetric strain than the deviatoric strain. Similarly, the mean of the change in the
425 proportion occupied from the initial to the final stage across all the experiments is -36% for
426 the volumetric strain and -29% for the deviatoric strain. Of the experiments in which both
427 strain components localize, all but one (limestone #5) show greater localization from the
428 initial to final stage of the volumetric strain than the deviatoric strain. The exceptional
429 limestone #5 experiment shows about equal degrees of localization in the strain
430 components. Thus, the increase in the localization of the volumetric strain generally tends to
431 exceed the increase of the deviatoric strain.

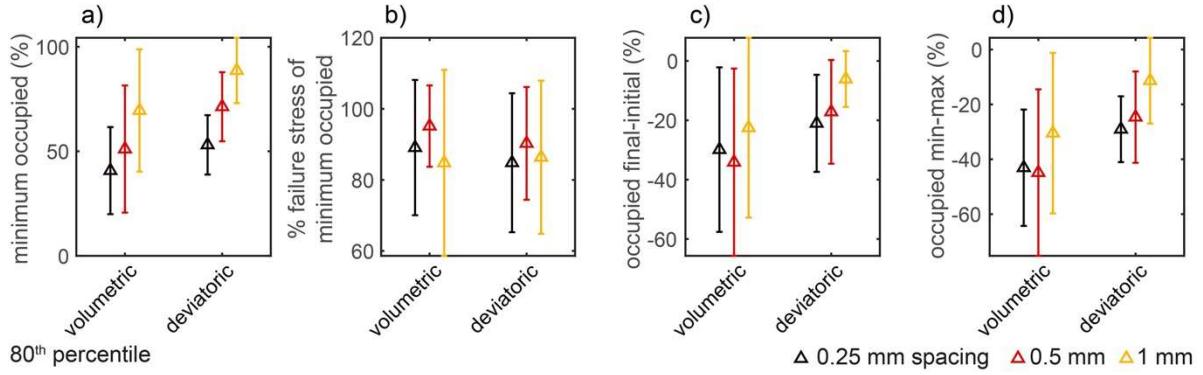

436 **Figure 5.** Difference in localization through time: a-b) difference between the minimum and
 437 maximum proportion of the rock volume occupied, c-d) difference between the proportion of
 438 the rock volume occupied in the final (preceding failure) and initial (at the onset of loading)
 439 strain fields. a, c) Data organized by experiment. Each rock type label corresponds to data
 440 from two experiments. b, d) Data organized by strain component. b, d) The black symbols
 441 show the mean \pm one standard deviation of the difference in the proportion occupied for the
 442 volumetric and deviatoric strain components, and the text lists the means. b) The mean of
 443 the greatest decrease in the proportion of volume occupied across all the experiments is -
 444 54% for the volumetric strain and -40% for the deviatoric strain. d) The mean of the change
 445 in the proportion occupied from the initial to the final stage across all the experiments is -
 446 36% for the volumetric strain and -29% for the deviatoric strain. c) The percentage in the
 447 bottom right corner shows the percentage of measurements in which the change in the
 448 proportion of the volume occupied is negative, and thus the experiments that experience
 449 localization.

3.5. Sensitivity of the results to the parameters

The results depend to some extent on the chosen threshold to select the high magnitudes of strain, and the spacing of the grid used to calculate the proportion of the occupied volume. First, we examine how the results change as we change the threshold, and keep the grid spacing constant (**Figure 6**). Increasing the threshold from the 70th to 90th percentile reduces the mean minimum proportion of rock occupied by the high strain component (**Figure 6a**). This trend is expected as higher percentile thresholds lead to lower numbers of high magnitude strains. For each threshold, the volumetric strain achieves lower

460 minimum occupied proportions than the deviatoric strain. Thus, this central conclusion
 461 remains consistent with these varying thresholds.

462 Changing the threshold does not strongly influence the identified timing of the
 463 maximum localization (**Figure 6b**), producing similar timings for the volumetric and deviatoric
 464 strain. Increasing the threshold increases the negative difference between the proportion
 465 occupied in the final and initial stages, and difference between the minimum and maximum
 466 localization (**Figure 6c-d**). This trend is expected as higher percentile thresholds lead to
 467 lower numbers of high strain magnitudes. For both metrics of the change in localization, the
 468 volumetric strain localizes more than the deviatoric strain for all of the examined thresholds.
 469 Thus, this central conclusion again remains consistent with these varying thresholds.



471
 472 **Figure 6.** The influence of percentile threshold used to identify the high strain values with
 473 constant grid spacing (0.5 mm) on a) the minimum proportion occupied, b) the timing when
 474 the minimum proportion is occupied, c) the difference between the proportion of the final and
 475 initial stage, and d) the difference between the minimum and maximum proportion occupied.
 476 Each value is the mean ± one standard deviation of the measurement across all the
 477 experiments.

478 Next, we examine the influence of the grid spacing with a constant threshold (**Figure**
 479 7). Increasing the grid spacing from 0.25 mm to 1 mm (e.g., **Figure 1**) increases the
 480 minimum proportion of rock volume occupied (**Figure 7a**). This trend is expected because
 481 larger grid sizes provide greater opportunity for high magnitudes of strain to fall within a
 482 particular cube. Thus, larger grid sizes are expected to produce lower resolution results, and
 483 an apparent delocalizing effect on the calculated minimum proportion of rock volume
 484 occupied by high magnitudes of strain. Nevertheless, for each examined grid spacing, the
 485 minimum proportion of the rock occupied by high magnitudes of volumetric strain is lower
 486 than the proportion occupied by the deviatoric strain. This trend supports the central
 487 observation that the volumetric strain localizes more than the deviatoric strain.

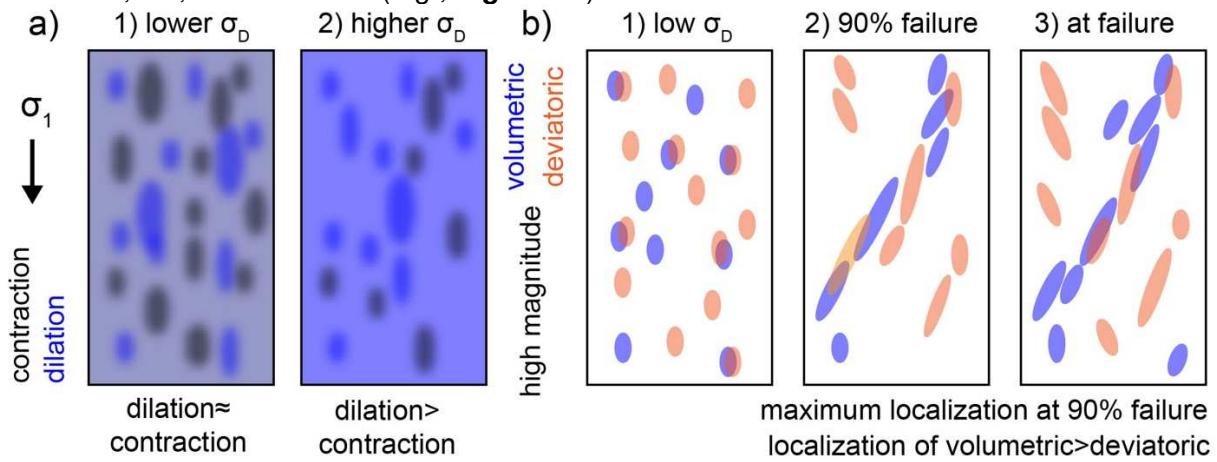
488 Increasing the grid spacing does not systematically influence the identified timing of
 489 the maximum localization (**Figure 7b**), producing similar timings of the volumetric and
 490 deviatoric strain. Increasing the grid spacing tends to decrease the (negative) difference
 491 between the proportion occupied in the final and initial stages, and difference between the
 492 minimum and maximum localization (**Figure 7c-d**). This trend is expected from the lower
 493 resolution, larger grid sizes. For both metrics of the change in localization, the volumetric
 494 strain localizes more than the deviatoric strain for all the examined grid sizes, supporting this
 495 central conclusion.

496

Figure 7. The influence of grid spacing with constant threshold (80th percentile) on a) the minimum proportion occupied, b) the timing when the minimum proportion is occupied, c) the difference between the proportion of the final and initial stage, and d) the difference between the minimum and maximum proportion occupied. Each value is the mean \pm one standard deviation of the measurement across all the experiments.

In order to test the robustness of these conclusions, we also track localization using the Gini coefficient. This coefficient measures the inequality in a distribution of values (e.g., *Gini*, 1921). The central results of the analysis shown in depth here do not vary when we use the Gini coefficient to track localization (**Figure S2**). In particular, using the Gini coefficient of the high magnitudes of strain and the proportion of the rock volume occupied by this strain, we observe that 1) the volumetric strain localizes more than the deviatoric strain, 2) the majority of the experiments localize from the onset of loading to immediately preceding failure, and 3) the experiments achieve their maximum localization not at failure, but on average near 90% of the failure stress.

4. Discussion


4.1. Timing of maximum localization

In twelve triaxial compression experiments imaged with X-ray tomography, we observe that the local incremental strain fields tend to localize from the onset of loading to immediately preceding failure in qualitative representations of the data (**Figure 2**), and in our localization statistics (**Figure 3**, **Figure S2**). Using a 90th percentile threshold to select the high magnitudes of strain, and 0.5 mm grid spacing to calculate the proportion of the rock volume occupied by these high magnitudes, 83% of the strain components measured in each experiment show localization from the initial to final stage of the experiment (**Figure 5**).

If strain localization follows a systematic evolution, steadily increasing toward system-scale failure, we would expect the highest degree of localization just before failure. To test this idea, we identified the differential stress at which the rocks achieve the largest degree of strain localization (**Figure 4**). We observe that contrary to this expectation, some rocks do not achieve their maximum strain localization immediately preceding failure, but on average near 90% of the failure stress. For the majority of experiments ($>50\%$), the rocks experience episodes of localization and delocalization that cause the maximum strain localization to occur near 90% of the failure stress (**Figure 5**). Thus, the strain fields tend to localize with the greatest magnitude following yielding, but before the final system-size failure (e.g., **Figure 8b**). After 90% of the failure stress on average, the strain field delocalizes to some extent before the rock macroscopically fails.

These results agree with observations of localizing seismicity prior to $M>7$ earthquakes in southern and Baja California between 1983-2019. *Ben-Zion & Zaliapin* (2020) tracked the proportion of the area occupied by low magnitude seismicity prior to the 1992 Landers, 1999 Hector Mine, 2010 El Mayor-Cucapah and 2019 Ridgecrest earthquakes. They observed that the proportion of area occupied by low magnitude

543 seismicity decreased prior to all four large earthquakes (*Ben-Zion & Zaliapin*, 2020; Figures
 544 7 and 9). For the Landers, Hector Mine and El Mayor-Cucapah earthquakes, the low
 545 magnitude seismicity occupied the smallest fractional area 2-3 years before the large
 546 events, and then delocalized in the last few months before the mainshocks. For the
 547 Ridgecrest earthquake, the observed localization process continued until the time of the
 548 large earthquake. These trends partially depend on the parameters used in the analysis
 549 (*Ben-Zion & Zaliapin*, 2020). However, varying the parameters does not change the
 550 observation that the maximum localization occurs earlier than immediately before most of
 551 the examined $M>7$ earthquakes. The evolution of localization and subsequent delocalization
 552 just prior to large failure for some earthquakes is consistent with our experimental
 553 observations: while 88% of the experiments achieve their maximum localization at >75% of
 554 the failure stress, only 46% of the experiments experience their maximum localization at
 555 >99% of the failure stress. The delocalization immediately preceding some large
 556 earthquakes and system-size failure in the laboratory experiments may arise because of the
 557 stress transfer produced by progressively larger events approaching catastrophic failure. As
 558 larger and larger events develop, their perturbation of the stress field may bring larger and
 559 larger volumes of rock closer to failure, and thus promote failure away from largest
 560 structures, i.e., delocalization (e.g., **Figure 8b**).

561
 562 **Figure 8.** Summary of observations of a) strain accumulation from previous analyses on the
 563 experiments analyzed here (*McBeck, Ben-Zion, et al.*, 2020), and b) strain localization from
 564 the present analysis. a) Competition between dilation and contraction. Under lower
 565 differential stress, the volume of rock that undergoes dilation is similar to the volume that
 566 undergoes contraction. Under higher differential stress, the rock experiences a higher
 567 volume fraction of dilation than contraction. In contrast to the evolution of the volumetric
 568 strains, the shear strain components do not evolve to favor one sense of shear rather than
 569 the other. Instead, the rock experiences similar volumes of left-lateral and right-lateral shear
 570 strain throughout loading. b) Localization behavior of high magnitude strains observed in
 571 experiments. The volumetric and deviatoric strains localize toward failure in the majority of
 572 the experiments. The maximum localization occurs near 90% of the failure stress (#2), rather
 573 than immediately preceding failure (#3). The volumetric strain localizes more than the
 574 deviatoric strain.

575 Additional geophysical observations that span the 20th century similarly support the
 576 idea that localization of seismicity precedes large earthquakes. *Zeng et al.* (2018) tracked
 577 the spatial distribution of $M\geq 4$ seismicity throughout California and Nevada. From 1933-
 578 1980, the seismicity was broadly distributed, and few high magnitude earthquakes occurred
 579 in this region. Following the 1980s, seismicity began to localize around the main fault
 580 systems, and several $M>7$ earthquakes occurred. *Zeng et al.* (2018) attribute these cycles of
 581 delocalization and localization to the stress reduction that occurs after large earthquakes
 582 and the resulting stress shadow. They postulate that the 1906 $M7.8$ San Francisco
 583 earthquake and 1857 $M7.9$ Fort Tejon earthquake reduced stresses in the region. These

585 stress reductions allowed the seismicity to remain diffusely distributed for several decades.
586 Then, as tectonic loading reduced the stress shadow, the main fault system entered a new
587 phase of localization in the late 1980s that led to larger earthquakes.

588 Following yielding and near 90% of the failure stress in our experiments, fracture growth
589 and coalescence and subsequent opening and slip along these fractures, may provide
590 temporary stress shadows within the rock core. Deformation within the rock may relieve the
591 accumulated stresses prior to the final macroscopic failure event to a sufficient extent to
592 promote delocalization. The stress transfers from the large failures in the localizing zone
593 could induce failure outside the localization zone, thereby triggering delocalization. The
594 competition between weakening in failing zones leading to localization, and factors that
595 produce partial delocalization, may explain why about half of the experiments show
596 delocalization just prior to failure, while the other experiments show maximum localization
597 immediately preceding failure. In particular, the loading rate, fracture propagation rate, and
598 coalescence rate in the experiments may have been sufficiently slow to allow the
599 development of stress shadows between yielding and failure in some experiments, leading
600 to delocalization; while in the other experiments, these rates may have been high enough to
601 produce continuous localization until macroscopic failure.

602 4.2. Greater localization of volumetric strain than deviatoric strain

603 Laboratory observations show that dilation is a general phenomenon in low porosity
604 crystalline rocks during triaxial compression (e.g., *Bridgman*, 1949; *Brace et al.*, 1966;
605 *Paterson & Wong*, 2005; *Jaeger et al.*, 2009). These observations indicate that the
606 macroscopic dilation of low porosity rocks subjected to increasing differential stress arises
607 from the opening and propagation of fractures aligned parallel to the maximum compression
608 direction. The contribution of dilation to the microscopic failure process has been difficult to
609 directly compare to the contribution of shear deformation. Polarity and moment tensor
610 inversions of acoustic emissions can constrain the relative contribution of the seismic tensile
611 and shear deformation events (e.g., *Stanchits et al.*, 2006; *Graham et al.*, 2010). Although
612 some analyses have observed the localization of acoustic emissions toward macroscopic
613 failure (e.g., *Lockner et al.*, 1991; *Lockner & Byerlee*, 1977), to our knowledge such analyses
614 have yet to quantify the localization of the shear and tensile-dominated acoustic emissions.

615 Comparing the degree of localization of the volumetric and deviatoric strains in our
616 data show that the volumetric strain localizes to a greater extent than the deviatoric strain
617 (**Figure 4**, **Figure 5**, **Figure 8**). In a previous analysis on the same set of experiments, we
618 examined how four strain components, the contraction, dilation, left-lateral and right-lateral
619 shear strain, measured with the divergence and curl, interacted with each other (*McBeck,*
620 *Ben-Zion et al.*, 2020). This work found that the dilative strains occupy larger volumes and
621 the contractive strains occupy smaller volumes with loading (e.g., **Figure 8a**). In contrast,
622 the left- and right-lateral shear strain do not tend to occupy increasingly large volumes. This
623 result occurs because the rocks experience increasing volume fractions of dilation, rather
624 than contraction throughout loading. The shear strain, in contrast, does not experience a
625 similar evolution in which one of the components systematically increases in volume while
626 the other decreases. In the present work, we examine the localization of the largest
627 magnitudes of the strain populations. Instead of examining the localization properties of the
628 dilation and contraction separately, we compare the localization of the complete volumetric
629 component to the deviatoric component. While the previous work found that the dilative
630 strains dominate an increasingly larger volume of the system with loading, producing smaller
631 and smaller volumes that experience contraction (e.g., **Figure 8a**), the present work finds
632 that the high magnitudes of the volumetric strain localize to a greater extent than the high
633 magnitudes of the deviatoric strains (e.g., **Figure 8b**).

634 Thus, the localization of the high magnitudes of the volumetric strain may better
635 indicate the onset of the precursory phase preceding large earthquakes than the deviatoric
636 strain. This implication depends on the ability of triaxial compression experiments to produce
637 processes that occur in the crust preceding earthquakes. Earthquakes generally occur on

640 preexisting faults that have experienced some degree of healing. Thus, the process leading
641 to large earthquakes may require the breakage of some cohesive fault material or rock
642 preceding aseismic or seismic slip, similar to these triaxial compression experiments on rock
643 cores. However, the localization processes leading to large earthquakes in the crust may
644 differ from macroscopic failure in these experiments because the rock cores do not include a
645 healed fault zone with a lower strength and stiffness than the surrounding host rock. Such a
646 fault zone would likely influence strain localization to a degree that depends on the ratio of
647 the fault strength and stiffness to the host rock. For example, relatively strong and stiff fault
648 zones with mechanical properties similar to the host rock may not exert a significant
649 influence on strain localization. Differences in the strain localization process between the
650 laboratory and the crust may also arise if the spatial scale influences this process. If the
651 inferences from these experiments apply to crustal earthquakes, these results highlight the
652 importance of monitoring changes of volumetric strain in crustal data, as well as the more
653 prevalent monitoring of the deviatoric strain. Because the volumetric strain around large
654 faults is associated with a shorter wavelength than the deviatoric strain (Lyakhovsky & Ben-
655 Zion, 2020), monitoring the evolution of volumetric strain may require near-fault data.

656 The degree to which each strain component locally weakens the rock may control the
657 observed difference in localization. Tensile deformation may produce a larger decrease in
658 the local strength than shear deformation, even if the shear deformation initially hosts a
659 tensile component, i.e., the deformation is mixed mode. Evidence for the greater influence of
660 tensile deformation on macroscopic strength than shear deformation includes laboratory
661 observations that show that jointed rocks tend to fail at lower stresses than fractured rocks
662 (e.g., Barton, 2013). In addition, the damage parameter, D , in continuum damage mechanics
663 models depends on the density and geometry of cracks and pores (e.g., Kachanov, 1986),
664 suggesting that the mechanical strength of a rock is closely tied to the fracture density, and
665 thus effective rock density and elastic moduli.

666 On a microscopic scale, if a fracture opens, slides and then closes, the resulting local
667 decrease in strength would be less than if a fracture remains open. A fracture that opens
668 and then slides may be more likely to close than a fracture that opens without additional
669 sliding. Assuming a fracture is optimally oriented for sliding following the Coulomb criterion,
670 inclined to σ_1 , the orientation of the principal stresses acts to close the fracture once it stops
671 sliding. In contrast, if the fracture is more optimally oriented for tensile failure, with σ_1 parallel
672 to the fracture, then this stress state is less conducive to fracture closing than when the
673 fracture is inclined to σ_1 . Thus, tensile deformation may weaken rocks to a greater extent
674 than shear deformation because open fractures may remain open while sliding fractures
675 may close, producing a greater decrease in local density at open fractures.

676 Geologic evidence for this mechanical argument includes fractures that host minerals
677 that form in the presence of water and appear to have opened parallel to σ_1 , indicating that
678 these fractures opened and remained open as minerals crystallized inside of them, with
679 potentially repeated episodes of opening and closing (e.g., Fisher & Brantley, 1992; Robert
680 et al., 1995; Parnell et al., 2000; Hilgers & Urai, 2002). Additional evidence for this idea
681 arises from analytical formulations of the stress intensity factor surrounding a sliding fracture
682 with wing-cracks propagating at its tips, and the implications for the stability of this type of
683 fracture growth. Propagation tends to decrease the stress intensity factor at the tip of these
684 wing-cracks because they propagate further from the tensile stress concentration at the tip
685 of the sliding crack, and the normal traction acting on the wing-crack inhibits additional
686 propagation (Paterson & Wong, 2005 pg. 119-120). Both of these effects increase with wing-
687 crack length. Thus, unless a wing-crack begins to interact with a neighboring crack, it will
688 stop propagating under a given load. In contrast, the mode-I stress intensity factor increases
689 with fracture length. These arguments suggest that shear deformation may be more likely to
690 produce quasi-static crack growth than tensile deformation.

691 If a fracture dominated by tension tends to remain open more than a fracture
692 dominated by shear, then dilative deformation will likely locally weaken the rock to a greater
693 extent than shear deformation. This local weakening provides a positive feedback loop that
694 localizes deformation: tensile deformation opens fractures, the local surrounding rock

695 volume loses strength, and these conditions promote subsequent fracture nucleation,
696 propagation, and opening. Evidence for this idea includes the well-observed coupling
697 between 1) strain-weakening and localization, and 2) strain-hardening and delocalization
698 (e.g., *Rudnicki & Rice*, 1975). For example, when deformation band development reduces
699 the local porosity, it can increase the strength and stiffness of the host rock. This
700 strengthening promotes subsequent deformation adjacent to the existing deformation band,
701 rather than within it, because the higher porosity rock is weaker than the deformation band
702 (e.g., *Mair et al.*, 2000). Thus, deformation that increases the local porosity (i.e., tensile
703 dominated deformation) is likely to have a localizing influence, while deformation that
704 decreases the porosity is likely to delocalize subsequent deformation.

705 Shear zones provide additional evidence of strain-hardening coupled to distributed
706 deformation, and strain-weakening coupled to localized deformation. Similar to deformation
707 bands, strain-hardening produces widening shear zones, whereas strain-weakening
708 produces localizing shear zones (e.g., *Vitale & Mazzoli*, 2008). More generally, strain
709 weakening seems to be required for localization (e.g., *Tullis et al.*, 1982; *Hobbs et al.*, 1990).
710 For example, bifurcation analysis uses the phenomena of localization to predict the
711 conditions leading to macroscopic failure (e.g., *Rudnicki & Rice*, 1975). This theory aims to
712 describe the conditions under which a uniform deformation field bifurcates into two solutions,
713 or fields, that correspond to the localized deformation within a shear band, and the uniform
714 deformation outside the band. The constitutive equations that describe this theory depend
715 on the internal friction coefficient, a dilatancy factor, and a hardening modulus. The
716 hardening modulus is positive when the system is strain-hardening and negative when the
717 system is strain-weakening. Bifurcation analysis aims to find the critical hardening modulus
718 at the onset of shear localization. Thus, the weakening or hardening behavior of a material is
719 explicitly linked to the localization of deformation in this analysis. Therefore, deformation
720 (dilation) that weakens the rock to a greater extent than another type of deformation (shear)
721 is likely to produce greater localization than the other component. Thus, our experiments
722 support this inference from bifurcation theory.

723 5. Conclusions

724 We quantified the localization of the volumetric and deviatoric strain components
725 throughout twelve triaxial compression experiments imaged with X-ray tomography. We
726 observe that 83% of the measured strain component evolutions show localization from the
727 onset of loading to failure. Thus, although the vast majority of the experiments sustain strain
728 localization, not all of them show this signal. Thus, assuming that our laboratory
729 observations are relevant at the crustal scale, the localization of seismicity surrounding large
730 tectonic faults may not occur preceding all large earthquakes. For example, creeping faults
731 may generally localize strain, but also produce episodes of delocalization before moderate
732 and large events, such as the observed delocalization of seismicity preceding the M6
733 Parkfield 2004 earthquake (*Ben-Zion & Zaliapin*, 2020).

734 Although most experiments show localization from the onset of loading until failure,
735 the majority of the strain components do not achieve their maximum localization immediately
736 preceding failure. Instead, only 46% of the measurements achieve their maximum
737 localization in this final stage preceding failure. On average, the maximum localization
738 occurs at 90% of the failure stress. These observations agree with the localizing seismicity
739 observed before large earthquakes in southern and Baja California (*Ben-Zion & Zaliapin*,
740 2020): for some of the earthquakes with localizing seismicity, the system achieves its
741 maximum localization in the 1-2 years preceding the main event, and not immediately before
742 the event.

743 Tracking the maximum localization achieved by the volumetric and deviatoric strain
744 components, and how this localization evolves throughout loading, indicates that the
745 volumetric strain localizes to a greater extent than the deviatoric strain, and achieves greater
746 magnitudes of localization throughout loading. The volumetric strains may localize more than
747 the deviatoric strains because dilation may tend to weaken the local rock volume to a greater

750 extent than the shear strain. These observations support using localization of the volumetric
751 strain, rather than the deviatoric strain, to identify the onset of the precursory phase
752 preceding large earthquakes.

753
754 Acknowledgements

755
756 We acknowledge the European Synchrotron Radiation Facility for provision of synchrotron
757 radiation facilities (LTP ES-295). We would like to thank Benoît Cordonnier, Elodie Boller,
758 Paul Tafforeau, and Alexander Rack for assistance in using beamline ID19 and Sanchez
759 Technologies for building the deformation apparatus. The Norwegian Research Council
760 (grant 300435 to JAM) and U.S. Department of Energy (award DE-SC0016520 to YBZ)
761 funded this work. The experimental data (time series of X-ray tomograms) are available on
762 Norstore (project NS9073K). *Renard et al.* (2017), *Renard et al.* (2018), *Renard, McBeck,*
763 *Cordonnier et al.* (2019), *Renard, McBeck, Kandula et al.* (2019), *McBeck et al.* (2019),
764 *McBeck et al.* (2018), and *McBeck et al.* (2020) describe the sandstone, basalt, monzonite,
765 granite, shale, and limestone experiments, and how to access these data. We thank Editor
766 L. Chen and three anonymous reviewers for useful suggestions that helped us to improve
767 the manuscript.

768
769 References

770
771 Autin, J., Bellahsen, N., Leroy, S., Husson, L., Beslier, M. O., & d'Acremont, E. (2013). The
772 role of structural inheritance in oblique rifting: Insights from analogue models and application
773 to the Gulf of Aden. *Tectonophysics*, 607, 51-64.

774 Barton, N. (2013). Shear strength criteria for rock, rock joints, rockfill and rock masses:
775 Problems and some solutions. *Journal of Rock Mechanics and Geotechnical
776 Engineering*, 5(4), 249-261.

777 Baud, P., Hall, S., Heap, M. J., Ji, Y., & Wong, T. F. (2021). The Brittle-Ductile Transition in
778 Porous Limestone: Failure Mode, Constitutive Modeling of Inelastic Deformation and Strain
779 Localization. *Journal of Geophysical Research: Solid Earth*, 126(5), e2020JB021602.

780 Ben-Zion, Y. (2008). Collective behavior of earthquakes and faults: Continuum-discrete
781 transitions, progressive evolutionary changes, and different dynamic regimes. *Reviews of
782 Geophysics*, 46(4).

783 Ben-Zion, Y., & Sammis, C. G. (2003). Characterization of fault zones. *Pure and applied
784 geophysics*, 160(3), 677-715.

785 Ben-Zion, Y., & Zaliapin, I. (2019). Spatial variations of rock damage production by
786 earthquakes in southern California. *Earth and Planetary Science Letters*, 512, 184-193

787 Ben-Zion, Y., & Zaliapin, I. (2020). Localization and coalescence of seismicity before large
788 earthquakes. *Geophysical Journal International*, 223(1), 561-583.

789 Bennett, R. A., Wernicke, B. P., Niemi, N. A., Friedrich, A. M., and Davis, J. L. (2003),
790 Contemporary strain rates in the northern Basin and Range province from GPS data,
791 *Tectonics*, 22, 1008, doi:10.1029/2001TC001355, 2.

792 Bos, A. G., Spakman, W., and Nyst, M. C. J. (2003), Surface deformation and tectonic
793 setting of Taiwan inferred from a GPS velocity field, *J. Geophys. Res.*, 108, 2458,
794 doi:10.1029/2002JB002336, B10.

795 Brace, W., Paulding Jr, B. W., & Scholz, C. H. (1966). Dilatancy in the fracture of crystalline
796 rocks. *Journal of geophysical research*, 71(16), 3939-3953.

797 Bridgman, P. W. (1949). Volume changes in the plastic stages of simple compression.
798 *Journal of Applied Physics*, 20(12), 1241-1251.

799 Charalampidou, E. M., Hall, S. A., Stanchits, S., Lewis, H., & Viggiani, G. (2011).
800 Characterization of shear and compaction bands in a porous sandstone deformed under
801 triaxial compression. *Tectonophysics*, 503(1-2), 8-17.

802 Cooke, M. L., & Madden, E. H. (2014). Is the Earth lazy? A review of work minimization in
803 fault evolution. *Journal of Structural Geology*, 66, 334-346.

804 Fisher, D. M., & Brantley, S. L. (1992). Models of quartz overgrowth and vein formation:
805 deformation and episodic fluid flow in an ancient subduction zone. *Journal of Geophysical
806 Research: Solid Earth*, 97(B13), 20043-20061.

807 Graham, C. C., Stanchits, S., Main, I. G., & Dresen, G. (2010). Comparison of polarity and
808 moment tensor inversion methods for source analysis of acoustic emission data.
809 *International journal of rock mechanics and mining sciences* (Oxford, England: 1997), 47(1),
810 161.

811 Gini, C. (1921). Measurement of inequality of incomes. *The economic journal*, 31(121), 124-
812 126.

813 Hatem, A. E., Cooke, M. L., & Toeneboehn, K. (2017). Strain localization and evolving
814 kinematic efficiency of initiating strike-slip faults within wet kaolin experiments. *Journal of
815 Structural Geology*, 101, 96-108.

816 Heap, M. J., Baud, P., McBeck, J. A., Renard, F., Carbillet, L., & Hall, S. A. (2020). Imaging
817 strain localisation in porous andesite using digital volume correlation. *Journal of Volcanology
818 and Geothermal Research*, 404, 107038.

819 Hilgers, C., & Urai, J. L. (2002). Microstructural observations on natural syntectonic fibrous
820 veins: implications for the growth process. *Tectonophysics*, 352(3-4), 257-274.

821 Hobbs, B. E., Mühlhaus, H. B., & Ord, A. (1990). Instability, softening and localization of
822 deformation. *Geological Society, London, Special Publications*, 54(1), 143-165.

823 Jaeger, J. C., Cook, N. G., & Zimmerman, R. (2009). *Fundamentals of rock mechanics*. John
824 Wiley & Sons.

825 Jamtveit, B., Ben-Zion, Y., Renard, F., & Austrheim, H. (2018). Earthquake-induced
826 transformation of the lower crust. *Nature*, 556(7702), 487-491.

827 Ji, Y., Hall, S. A., Baud, P., & Wong, T. F. (2015). Characterization of pore structure and
828 strain localization in Majella limestone by X-ray computed tomography and digital image
829 correlation. *Geophysical Journal International*, 200(2), 701-719.

830 Kachanov, L. (1986). *Introduction to continuum damage mechanics* (Vol. 10). Martinus Nijhoff
831 Publishers, Dordrecht, The Netherlands.

832 Lockner, D., & Byerlee, J. D. (1977). Hydrofracture in Weber sandstone at high confining
833 pressure and differential stress. *Journal of Geophysical research*, 82(14), 2018-2026.

834 Lockner, D., Byerlee, J. D., Kuksenko, V., Ponomarev, A., & Sidorin, A. (1991). Quasi-static
835 fault growth and shear fracture energy in granite. *Nature*, 350(6313), 39-42.

836 Lyakhovsky, V., & Ben-Zion, Y. (2009). Evolving geometrical and material properties of fault
837 zones in a damage rheology model. *Geochemistry, Geophysics, Geosystems*, 10(11).

838 Lyakhovsky, V., & Ben-Zion, Y. (2020). Isotropic seismic radiation from rock damage and
839 dilatancy. *Geophysical Journal International*, 222(1), 449-460.

840 Lyakhovsky, V., Ben-Zion, Y., & Agnon, A. (2001). Earthquake cycle, fault zones, and
841 seismicity patterns in a rheologically layered lithosphere. *Journal of Geophysical Research:
842 Solid Earth*, 106(B3), 4103-4120.

843 Mair, K., Main, I., & Elphick, S. (2000). Sequential growth of deformation bands in the
844 laboratory. *Journal of Structural Geology*, 22(1), 25-42.

845 Mao, L., Liu, H., Lei, Y., Wu, J., Ju, Y., & Chiang, F. P. (2021). Evaluation of Global and
846 Local Digital Volume Correlation for Measuring 3D Deformation in Rocks. *Rock Mechanics*
847 and Rock Engineering

848 Mazzotti, S., & Gueydan, F. (2018). Control of tectonic inheritance on continental intraplate
849 strain rate and seismicity. *Tectonophysics*, 746, 602-610.

850 McBeck, J. A., Aiken, J. M., Mathiesen, J., Ben-Zion, Y., & Renard, F. (2020). Deformation
851 precursors to catastrophic failure in rocks. *Geophysical Research Letters*, 47,
852 e2020GL090255.

853 McBeck, J., Aiken, J. M., Ben-Zion, Y., & Renard, F. (2020). Predicting the proximity to
854 macroscopic failure using local strain populations from dynamic in situ X-ray tomography
855 triaxial compression experiments on rocks. *Earth and Planetary Science Letters*, 543,
856 116344.

857 McBeck, J., Ben-Zion, Y., & Renard, F. (2020). The mixology of precursory strain partitioning
858 approaching brittle failure in rocks. *Geophysical Journal International*, 221(3), 1856-1872.

859 McBeck, J., Cooke, M., & Madden, E. (2017). Work optimization predicts the evolution of
860 extensional step overs within anisotropic host rock: Implications for the San Pablo Bay,
861 CA. *Tectonics*, 36(11), 2630-2646.

862 McBeck, J., Kandula, N., Aiken, J. M., Cordonnier, B., & Renard, F. (2019). Isolating the
863 factors that govern fracture development in rocks throughout dynamic in situ X-ray
864 tomography experiments. *Geophysical Research Letters*, 46(20), 11127-11135.

865 McBeck, J., Kobchenko, M., Hall, S. A., Tudisco, E., Cordonnier, B., Meakin, P., & Renard,
866 F. (2018). Investigating the onset of strain localization within anisotropic shale using digital
867 volume correlation of time-resolved X-ray microtomography images. *Journal of Geophysical*
868 *Research: Solid Earth*, 123(9), 7509-7528.

869 McBeck, J. A., Zhu, W., & Renard, F. (2021). The competition between fracture nucleation,
870 propagation, and coalescence in dry and water-saturated crystalline rock. *Solid Earth*, 12(2),
871 375-387.

872 Parnell, J., Honghan, C., Middleton, D., Haggan, T., & Carey, P. (2000). Significance of
873 fibrous mineral veins in hydrocarbon migration: fluid inclusion studies. *Journal of*
874 *Geochemical Exploration*, 69, 623-627.

875 Paterson, M. S., & Wong, T. F. (2005). Experimental rock deformation-the brittle field.
876 Springer Science & Business Media.

877 Peng, S. & Johnson, A.M. (1972). Crack growth and faulting in cylindrical specimens of
878 Chelmsford granite. *International Journal of Rock Mechanics and Mining Sciences &*
879 *Geomechanics Abstracts*, 9(1), 37-86.

880 Powers, P. M., & Jordan, T. H. (2010). Distribution of seismicity across strike-slip faults in
881 California. *Journal of Geophysical Research: Solid Earth*, 115(B5).

882 Renard, F., Cordonnier, B., Dysthe, D. K., Boller, E., Tafforeau, P., & Rack, A. (2016). A
883 deformation rig for synchrotron microtomography studies of geomaterials under conditions
884 down to 10 km depth in the Earth. *Journal of Synchrotron Radiation*, 23(4), 1030-1034.

885 Renard, F., Cordonnier, B., Kobchenko, M., Kandula, N., Weiss, J., & Zhu, W. (2017).
886 Microscale characterization of rupture nucleation unravels precursors to faulting in
887 rocks. *Earth and Planetary Science Letters*, 476, 69-78.

888 Renard, F., McBeck, J., Cordonnier, B., Zheng, X., Kandula, N., Sanchez, J. R., Kobchenko,
889 M., Noiri, C., Zhu, W., Meakin, P., Fusseis, F., & Dysthe, D. K. (2019). Dynamic in situ
890 three-dimensional imaging and digital volume correlation analysis to quantify strain

891 localization and fracture coalescence in sandstone. *Pure and Applied Geophysics*, 176(3),
892 1083-1115.

893 Renard, F., McBeck, J., Kandula, N., Cordonnier, B., Meakin, P., & Ben-Zion, Y. (2019).
894 Volumetric and shear processes in crystalline rock approaching faulting. *Proceedings of the*
895 *National Academy of Sciences*, 116(33), 16234-16239.

896 Renard, F., Weiss, J., Mathiesen, J., Ben-Zion, Y., Kandula, N., & Cordonnier, B. (2018).
897 Critical evolution of damage toward system-size failure in crystalline rock. *Journal of*
898 *Geophysical Research: Solid Earth*, 123(2), 1969-1986.

899 Robert, F., Boullier, A. M., & Firdaous, K. (1995). Gold-quartz veins in metamorphic terranes
900 and their bearing on the role of fluids in faulting. *Journal of Geophysical Research: Solid*
901 *Earth*, 100(B7), 12861-12879.

902 Rudnicki, J. W., & Rice, J. R. (1975). Conditions for the localization of deformation in
903 pressure-sensitive dilatant materials. *Journal of the Mechanics and Physics of Solids*, 23(6),
904 371-394.

905 Shahin, G., Papazoglou, A., Marinelli, F., & Buscarnera, G. (2019). Simulation of localized
906 compaction in Tuffeau de Maastricht based on evidence from X-ray tomography.
907 *International Journal of Rock Mechanics and Mining Sciences*, 121, 104039.

908 Stamati, O., Roubin, E., Andò, E., & Malecot, Y. (2019). Tensile failure of micro-concrete:
909 from mechanical tests to FE meso-model with the help of X-ray tomography. *Meccanica*,
910 54(4), 707-722.

911 Stanchits, S., Vinciguerra, S., & Dresen, G. (2006). Ultrasonic velocities, acoustic emission
912 characteristics and crack damage of basalt and granite. *Pure and Applied Geophysics*,
913 163(5), 975-994.

914 Tapponnier, P., & Brace, W.F. (1976). Development of stress-induced microcracks in
915 Westerly granite. *International Journal of Rock Mechanics and Mining Sciences &*
916 *Geomechanics Abstracts*, 13(4), 103-112. Pergamon.

917 Tarayoun, A., Mazzotti, S., & Gueydan, F. (2019). Quantitative impact of structural
918 inheritance on present-day deformation and seismicity concentration in intraplate
919 deformation zones. *Earth and Planetary Science Letters*, 518, 160-171.

920 Tchalenko, J. S. (1970). Similarities between shear zones of different magnitudes.
921 *Geological Society of America Bulletin*, 81(6), 1625-1640.

922 Tudisco, E., Andò, E., Cailletaud, R., & Hall, S. A. (2017). TomoWarp2: A local digital
923 volume correlation code. *SoftwareX*, 6, 267-270.

924 Tullis, J., Snock, A. W., & Todd, V. R. (1982). Significance and petrogenesis of mylonitic
925 rocks. *Geology*, 10(5), 227-230

926 Vitale, S., & Mazzoli, S. (2008). Heterogeneous shear zone evolution: the role of shear strain
927 hardening/softening. *Journal of Structural Geology*, 30(11), 1383-1395.

928 Zeng, Y., Petersen, M. D., & Shen, Z. K. (2018). Earthquake potential in California-Nevada
929 implied by correlation of strain rate and seismicity. *Geophysical Research Letters*, 45(4),
930 1778-1785.