

1 **Resilience in soil bacterial communities of the boreal forest from one to five years after**
2 **wildfire across a severity gradient**

3
4 Thea Whitman^a*, Jamie Wootton^{a,b}, Miranda Sikora^a, Dana B. Johnson^a, Ellen Whitman^c
5

6 a. Department of Soil Science, University of Wisconsin-Madison, 1525 Observatory Dr.,
7 Madison, WI, USA

8 b. Department of Forest and Rangeland Stewardship, Colorado State University, 1001 Amy Van
9 Dyken Way, Fort Collins, CO, 80521, USA

10 c. Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada, 5320-122
11 Street, Edmonton, AB, T6H 3S5, Canada

12 * Corresponding author: twhitman@wisc.edu; 608.263.4947
13

14 **Abstract**

15 Wildfires can represent a major disturbance to ecosystems, including soil microbial communities
16 belowground. Furthermore, fire regimes are changing in many parts of the world, altering and
17 often increasing fire severity, frequency, and size. The boreal forest and taiga plains ecoregions
18 of northern Canada are characterized by naturally-occurring stand-replacing wildfires on a 40-
19 350 year basis. We previously studied the effects of wildfire on soil microbial communities one
20 year post-fire across 40 sites, spanning a range of burn severity. Here, we return to the same sites
21 five years post-fire to test a series of hypotheses about the effects of fire on bacterial community
22 composition. We ask questions on two themes: which factors control bacterial community
23 composition during post-fire recovery, and how does the importance of different fire-responsive
24 traits change during post-fire recovery? We find the following: (1a) Five years post-fire,
25 vegetation community, moisture regime, pH, total carbon, texture, and burned/unburned all
26 remained significant predictors of bacterial community composition with similar predictive value
27 (R^2). (1b and 1c) Bacterial communities became more similar to unburned sites five years post-
28 fire, across the range of severity, suggesting resilience, while general structure of co-occurrence
29 networks remained similar one and five years post-fire. (2a) Fast growth potential, as estimated
30 using predicted 16S rRNA copy numbers, was no longer significantly correlated with burn
31 severity five years post-fire, indicating the importance of this trait for structuring bacterial
32 community composition may be limited to relatively short timescales. (2b) Many taxa that were
33 enriched in burned sites one year post-fire remained enriched five years post-fire, although the
34 degree to which they were enriched generally decreased. Specific taxa of interest from the genera
35 *Massilia*, *Blastococcus*, and *Arthrobacter* all remained significantly enriched, suggesting that
36 they may have traits that allow them to continue to flourish in the post-fire environment, such as
37 tolerance to increased pH or ability to degrade pyrogenic organic matter. This hypothesis-based
38 work expands our understanding of the post-fire recovery of soil bacterial communities and
39 raises new hypotheses to test in future studies.

40
41 **Keywords**

42 Resilience, boreal forest, wildfire, burn severity, bacterial and archaeal communities

43 **1. Introduction**

44

45 Wildfires burn an estimated 300-400 million ha of land globally each year (Lierop et al., 2015),
46 releasing CO₂ emissions equivalent to roughly half those of fossil fuels (Bowman et al., 2009).
47 Belowground, the biogeochemical aftermath of wildfire continues long after the burn: in boreal
48 and temperate forest fires, it takes on the order of one hundred years for soil C and N stocks to
49 recover (Nave et al., 2011; Mack et al., 2021), and large pulses of mineral N are often released in
50 the months following fire (Wan et al., 2001). These dynamics are mediated by surviving and
51 recolonizing soil microbes (Smithwick et al., 2005), which also interact with plant recolonization
52 post-fire (Knelman et al., 2015). Understanding how wildfires affect soil microbial processes and
53 ecosystem responses to disturbance will require an understanding of not only which microbes
54 respond to fires, but, more importantly, why they do so. For fungi, response to fire has been
55 studied scientifically for over a century (Boudier, 1877; Seaver, 1909), and human knowledge of
56 certain “pyrophilous” fungi, such as certain morels, is likely ancient (Anderson and Lake, 2013).
57 For plants, fire ecology frameworks are richly developed and well-established (Cooper, 1961).
58 However, our understanding of how bacteria respond to fires is only beginning to emerge.

59

60 Fires can directly reduce total soil microbial biomass and often result in changes to community
61 composition and decreased microbial diversity (Dooley and Treseder, 2011; Pressler et al., 2018;
62 Certini et al., 2021). It can take years to observe resilience within soil microbial communities
63 after a disturbance (considering resilience as a return to similar pre-burn community
64 composition) (Allison and Martiny, 2008), and may not be achieved for decades after wildfires
65 (Dooley and Treseder, 2011; Holden and Treseder, 2013; Köster et al., 2014). As Shade et al.
66 (2012) note, time and spatial scale affect whether a given disturbance might be considered a
67 “pulse” or a “press” disturbance (*sensu* Bender et al. (1984)). Wildfires, at the spatial and
68 temporal scales that are relevant to soil microbes, could perhaps be categorized as hybrid pulse /
69 press disturbances (Bender et al., 1984). The immediate effects of wildfire – death via
70 combustion and high temperatures – are a classical pulse disturbance, but the subsequent shifts in
71 soil conditions, such as loss of the organic (O) horizon, transformation of organic matter, or
72 increase in pH, persist, eliciting a press disturbance. Fire severity would moderate the effect of
73 each of these types of disturbances on soil microbes, with both expected to intensify with

74 increasing severity. In the case of high severity forest fires, where the O horizons can be
75 completely combusted, a long time before recovery is unsurprising – the habitat of O horizon-
76 dwelling microbes has literally been destroyed, and so it is reasonable to expect that a full return
77 to the community's previous state would require the re-accumulation of this organic horizon,
78 which can take decades (Lecomte et al., 2006; Andrieux et al., 2018). In mineral soil horizons,
79 the habitat itself (i.e., mineral particles) partly remains, but can be severely altered by high
80 temperatures and elemental transformations (e.g., organic matter combustion, pyrogenic organic
81 matter production, volatilization of some elements, and deposition of others) (Certini, 2005).
82 Given the strong role that fire-affected soil properties such as pH and organic matter content play
83 in structuring microbial community composition (Bahram et al., 2018; Delgado-Baquerizo et al.,
84 2018), it is also not surprising that a return to pre-fire soil microbial community compositions
85 might occur on timescales at least as long as those required for key community-structuring soil
86 properties to return to their pre-fire state. We observed similarly strong linkages when examining
87 wildfire effects on soil microbial community composition along a gradient of fire severity
88 (Whitman et al., 2019).

89

90 Fire severity (sometimes called burn severity) can be quantified or estimated using a range of
91 different metrics, depending on the ecosystem, study questions, and management goals, but we
92 will use the term fire severity here *sensu* Keeley (2009) – *i.e.*, degree of loss of organic matter
93 above- and belowground. Fire severity relates to both fire intensity (energy released during the
94 fire) and the degree of ecological impact from the fire. Fire severity varies across ecosystems –
95 e.g., frequent, lower-severity fires characteristic of grasslands of the Midwest United States vs.
96 less frequent higher-severity fires characteristic of boreal forests of northern Canada. Fire
97 severity is also heterogeneous across the landscape within a single fire (Holden et al., 2016). A
98 number of recent studies have quantified the effects of wildfires on soil bacterial communities
99 across a range of fire severity (Weber et al., 2014; Holden et al., 2016; Brown et al., 2019;
100 Lucas-Borja et al., 2019; Whitman et al., 2019; Adkins et al., 2020; Miera et al., 2020), often
101 observing greater changes in microbial community composition with increasing severity.
102 However, most of these studies consider relatively short timescales (3 years or less) and/or single
103 timepoints, which does not allow us to follow the recovery of communities over longer periods
104 of time. While chronosequence-based studies have indicated the range of timescales required for

105 community composition and soil microbial functions to return to pre-burned states (Sun et al.,
106 2015, 2016; Pérez-Valera et al., 2018, 2020; Zhou et al., 2020), there are notable assumptions
107 required for and limitations to space-for-time study designs. More importantly, quantitatively
108 assessing burn severity at time of fire in a chronosequence study can be difficult, since most
109 sites, by definition, are somewhere along a trajectory of recovery, and post-hoc assessments of
110 burn severity are difficult. Thus, as noted by Pérez-Valera et al. (2020), the question of the
111 degree to which fire severity affects bacterial community resilience remains to be thoroughly
112 investigated. A need for long-term post-fire soil biological community monitoring is also
113 highlighted by Certini et al. (2021), as a key way to better understand the specific ecology of
114 individual fire-responsive taxa.

115
116 Although the field is currently in a nascent stage compared to plant ecology and perhaps even
117 fungal ecology, we are beginning to gain a sense for the fire ecology of specific soil bacteria
118 beyond observed changes at the whole-community level. Support for the importance of certain
119 “pyrophilous” organisms and their associated traits is beginning to emerge. For example, some
120 taxa from the genus *Arthrobacter* increase in relative abundance by orders of magnitude after
121 wildfires across different ecosystems (Weber et al., 2014; Fernández-González et al., 2017;
122 Whitman et al., 2019; Miera et al., 2020). We can propose characteristics that may help promote
123 these positive fire responders, such as spore-forming capabilities possibly supporting fire
124 survival (Mongodin et al., 2006), the ability to grow quickly post-fire (Nemergut et al., 2016;
125 Whitman et al., 2019), or the capacity to mineralize fire-altered organic matter (Westerberg et
126 al., 2000). These and other pyrophilous traits may map on to equivalent plant traits in some cases
127 – e.g., bacteria that survive fires via spores or other means represent an analogue to plant seed
128 banks, where rapid regeneration or resprouting post-fire can strongly influence subsequent
129 communities (Johnstone et al., 2016) – and not in other cases – e.g., the ability to use pyrogenic
130 organic matter (PyOM) as a C source does not have a clear analogue in plants. It is important to
131 note these inferences often remain somewhat speculative, however, since conclusively
132 demonstrating functions or traits from amplicon sequencing data – currently the most common
133 method of community characterization – is problematic. Additionally, the relative importance of
134 each of these traits would be expected to vary over time as post-fire succession proceeds. As
135 with whole-community metrics, most of what we have inferred about fire ecology for individual

136 bacterial taxa is again based on short term and/or single timepoint studies. In the current study,
137 we seek to determine how wildfires affect soil bacterial communities and individual taxa over
138 time, with an emphasis on how fire severity affects community resilience and the relative
139 importance of putative pyrophilous traits.

140
141 We investigate these questions in an ongoing field study of the widespread wildfires in the boreal
142 forest of northern Canada in 2014, including 40 sites distributed across a range of burn severities
143 and vegetation communities, where we have sampled organic and top mineral soil horizons one
144 year and five years post-fire. We had a series of specific questions and hypotheses that we set out
145 to test, informed by our findings from one year after the burns (reported in Whitman et al.
146 (2019)):

147
148 *Theme 1. Which factors control bacterial community composition during post-fire recovery?*
149 1a. Do the fundamental factors structuring bacterial community composition shortly after a fire
150 remain the same five years post-fire? Specifically, how will significant predictors of community
151 composition and the co-occurrence network change between one and five years post-fire? First,
152 we predicted that the same significant (non-fire) predictors of bacterial community composition
153 (vegetation community, moisture regime, pH, total C, and texture) would remain the same, five
154 years post-fire, without substantial changes in their predictive value (as measured by R^2).
155 Second, we predicted that the general structure of the co-occurrence network (as measured by
156 which taxa positively or negatively co-occur) would be preserved, because the same factors that
157 make taxa occur at the same sites or different sites would remain constant. However, as burned
158 sites begin to return to their pre-burn states, we also anticipated that we might detect fewer
159 significant nodes (taxa) and connections (positive or negative co-occurrences) within the
160 network, as significant co-occurrences will be harder to detect if community composition is more
161 similar across the full dataset.

162
163 1b. Do the effects of fire on bacterial community composition decrease between one and five
164 years post-fire? Specifically, will whether sites were burned or not remain a significant predictor
165 of community composition after controlling for the non-fire predictors above by including them
166 in the statistical model? We predicted that burned/unburned would remain a significant predictor

167 five years post-fire, without substantial changes in its predictive value (as measured by R^2).
168 Although the predictive power of burned/unburned could decrease as communities begin to
169 recover from burning, chronosequence studies have observed that soil bacterial community
170 composition can take decades to return to their pre-burned states (Sun et al., 2015; Pérez-Valera
171 et al., 2018, 2020; Zhou et al., 2020), which is relevant given the long historical stand-replacing
172 fire return interval in this region (40–350 years (Boulanger et al., 2012)). Additionally, certain
173 effects of the fire on soil bacterial communities – particularly those mediated by changes to
174 vegetation as it follows successional trajectories (Hart et al., 2005) – might accumulate, rather
175 than diminish, over time, adding to the rationale for our prediction.

176
177 1c. Do shifts in bacterial community composition between one and five years post-fire suggest
178 resilience? Specifically, will sites that were more severely burned remain more dissimilar from
179 unburned sites, five years post-fire? While we predicted that the overarching predictive factors of
180 community composition would remain similar (1a and 1b), we predicted that the relationship
181 between burn severity and community dissimilarity from unburned sites would remain
182 significant, but become weaker with time – *i.e.*, burned sites would all become more similar to
183 unburned sites, exhibiting resilience, with larger shifts toward recovery (shifts toward unburned
184 community composition) in the more severely burned sites. Our rationale was that high severity
185 burns are part of the historical fire regime in this region, so communities subjected to high
186 severity burns would also exhibit resilience over some timescale. Since communities from higher
187 severity burns were more dissimilar from unburned communities one year after the fire, some
188 processes such as recolonization from nearby unburned communities or less-affected subsoils
189 might have greater effects on community composition.

190
191 *Theme 2. How does the importance of different fire-responsive traits change during post-fire*
192 *recovery?*

193 2a. Does the importance of fast growth diminish between one and five years post-fire?
194 Specifically, will weighted mean predicted rRNA gene copy number (a proxy for potential for
195 fast growth (Klappenbach et al., 2000; Roller et al., 2016)) remain significantly and positively
196 correlated with burn severity, five years post-fire? We predicted that potential for fast growth
197 would remain an important factor in structuring the community, although the relationship

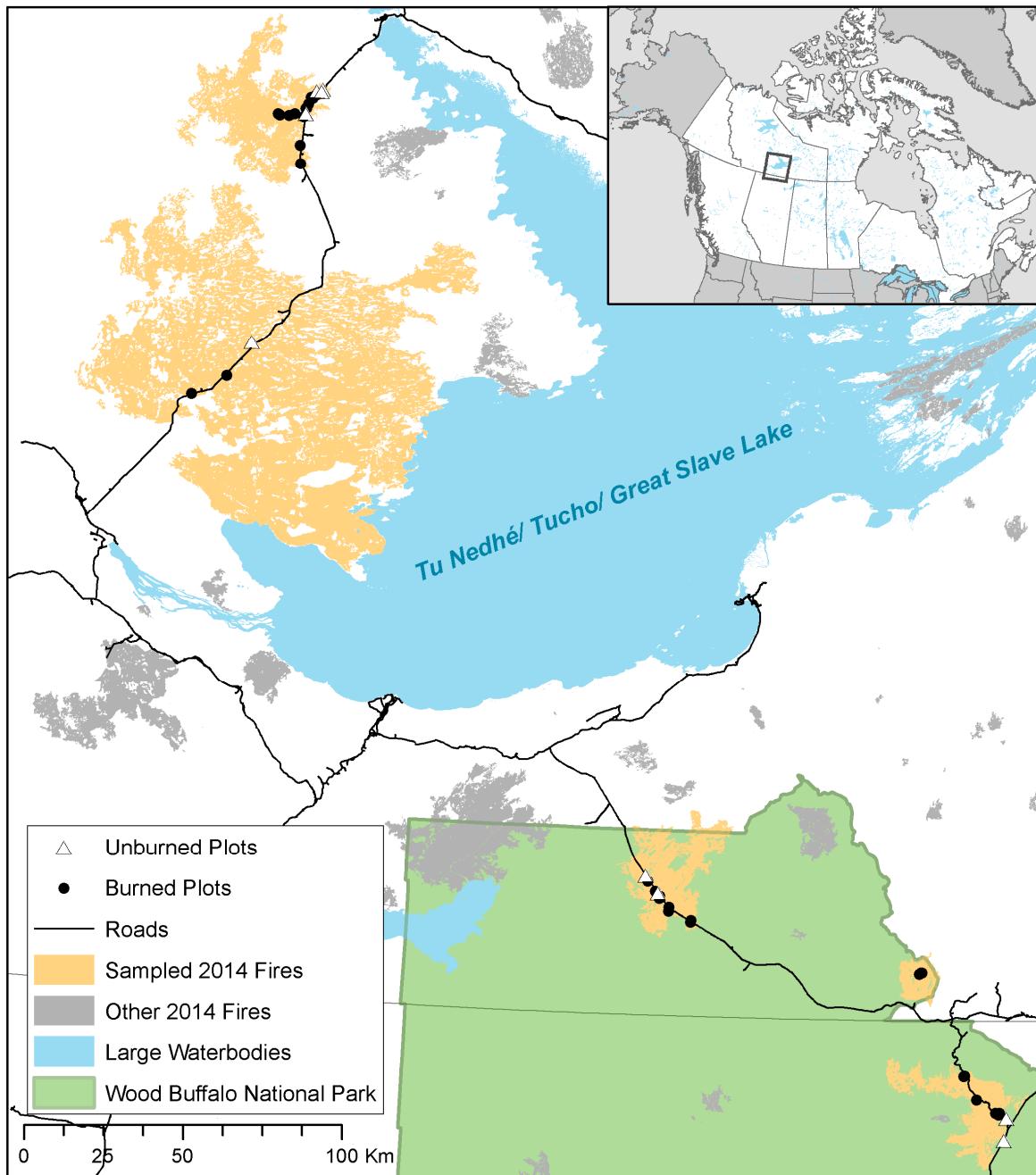
198 between rRNA gene copy number and burn severity would be weaker. This is based on the
199 assumption that community-structuring processes other than fast growth would have emerged
200 after five years and would be consistent with the results from Nemerugut et al. (2016).

201
202 2b. Do short-term post-fire responders continue to dominate the community five years post-fire?
203 Specifically, will the same taxa remain enriched in burned sites, and to what degree? We
204 predicted that there would be a similar total number of fire-enriched taxa, but that these taxa
205 would include some novel responders while excluding some of the taxa that were fire-enriched
206 one year post-fire, and that the degree of enrichment would be lower overall, as the community
207 as a whole begins to return to its unburned state. More specifically, we predicted that
208 *Blastococcus*, a strong fire responder identified in numerous ecosystems (Fernández-González et
209 al., 2017; Whitman et al., 2019) and enriched at sites from this same region that had undergone
210 short-interval reburns (Woolet et al., *in review*), might be a canonical short-term “pyrophile”,
211 and thus might be less enriched in burned sites five years post-fire. Conversely, we predicted that
212 previously identified burn responders *Arthrobacter* and *Massilia* operational taxonomic units
213 (OTUs) (Whitman et al., 2019), which have putative abilities to decompose polycyclic aromatic
214 hydrocarbons (Westerberg et al., 2000; Liu et al., 2014) such as those that form during fires and
215 persist over super-decadal timescales (Czimczik and Masiello, 2007), would remain similarly
216 enriched in burned sites five years post-fire.

217

218 **2. Methods**

219


220 *2.1 Study region and site selection*

221

222 Our study region is in the southern half of the boreal and taiga plains ecoregions of northwestern
223 Canada (northern Alberta and the southern Northwest Territories). The study region has long,
224 cold winters and short, hot summers, with mean annual temperatures between -4.3°C and -1.8°C
225 and annual precipitation ranging from 300 to 360 mm (ESWG, 1995; Wang et al., 2012). The
226 region’s fire regime is characterized by infrequent stand-replacing fires every 40-350 years on
227 average (Boulanger et al., 2012) and, due to its small and dispersed population, fires are often
228 managed with little suppression and control, when appropriate. 2014 was an exceptional year for

229 wildfires in the region (Whitman et al., 2018b), and offered an opportunity to study wildfires
230 across a range of vegetation communities and burn severities. We selected 40 sites in the
231 Northwest Territories and northern Alberta (Wood Buffalo National Park), Canada, and sampled
232 them one year post-fire, in 2015, and again five years post-fire, in 2019 (Figure 1). The fires and
233 the drivers of burn severity are described in detail in Whitman et al. (2018b), their effects on
234 understory vegetation are described in detail in Whitman et al. (2018a), and their one-year effects
235 on soil microbial communities are described in detail in Whitman et al. (2019). This study builds
236 on the Whitman et al. (2019) dataset to compare bacterial and archaeal community response one
237 year vs. five years post-fire.

238
239 The six wildfires in this study were very large (14,000 to 700,000 ha). The soils in these regions
240 are mostly classified as Typic Mesisols (21 sites), Orthic Gleysols (6 sites), or Orthic Gray
241 Luvisols (10 sites) (Soil Landscapes of Canada map v.3.2). They span a wide range of soil
242 properties, with pH values ranging from 3.2 (treed wetlands) to 8.1 (uplands with calcareous
243 soil), total C ranging from 0.5% (mineral horizon) to 52% (organic horizon), and a wide range of
244 soil textures. Vegetation communities were classified as jack pine-dominated (*Pinus banksiana*
245 Lamb.) uplands, black spruce-dominated (*Picea mariana* (Mill.)) uplands, a mix of upland
246 coniferous and broadleaf trees, or treed wetlands (Beckingham and Archibald, 1996).

247

248 Figure 1. Study region of northern Alberta and the Northwest Territories, Canada, including
 249 Wood Buffalo National Park (WBNP – green shading). Closed circles indicate burned plots,
 250 open circles indicate unburned plots, yellow shapes indicate sampled fires, and grey shapes
 251 indicate other 2014 fires in the region. Inset indicates relative location within Canada.

252

253 *2.2 Site assessment methodologies*

254

255 Sites were selected and characterized as described in detail by Whitman et al. (2018a; 2018b).
256 Briefly, field sites were selected to represent the local range of burn severity and vegetation
257 communities, resulting in a total of 31 burned field sites across three vegetation communities
258 (pine, spruce, and mixedwood). We selected an additional 9 control sites (not burned within the
259 last 38 years before sampling, mean time since fire 95 years; “unburned”), chosen to reflect the
260 range of vegetation communities sampled in the burned plots, for a total of 40 sites. These
261 represent 40 of the 62 original sites (we retained treed wetland sites but did not include open
262 wetlands in this re-analysis, and some sites were not accessible five years post-fire due to a lack
263 of helicopter access, active fires, or closed roads). At each site, one year post-fire, we established
264 a 30 × 30 m square plot with 10 × 10 m subplots at the four corners. We assessed burn severity
265 in the four subplots using burn severity index (BSI (Loboda et al., 2013); described in detail in
266 Whitman et al. (2018a)). We returned to sites five years post-fire to re-assess vegetation
267 composition (Dawe et al. *in review*) and sample soils.

268

269 At each plot, we took soil cores (5.5 cm diameter, 13.5 cm depth) at three locations. The
270 sampling scheme was modified between sampling years in order to optimize efficient
271 representation of site characteristics, including vegetation: at one year post-fire, samples were
272 taken at plot centre, 7 m SW of centre, and 7 m NE of centre, and at five years post-fire, samples
273 were taken at plot centre, 17.5 m N of centre, and 17.5 m S of centre (these changes are not
274 expected to affect our central findings, as indicated by comparing unburned sites between years).
275 Soil cores were gently extruded and separated into organic (O) horizons (where present) and
276 mineral (M) horizons (where present in the top 13.5 cm of soil profile). Where mineral horizons
277 were present, one year post-fire, they were sampled to whatever depth represented the bottom of
278 the 13.5 cm core. Five years post-fire, we modified the protocol so a consistent depth (5 cm) was
279 sampled for mineral soils. Although the two years’ sampling approaches would have rarely or
280 never included different genetic soil horizons, this would undoubtedly affect certain soil
281 properties that vary with depth. However, we do not expect that this methodological change is
282 driving any of our key findings, as indicated by broad similarities in data between sampling years
283 and similar patterns observed in the O horizon samples, for which the protocol remained
284 consistent between years. The three samples were combined by horizon at each site and mixed

285 gently by hand in a bag. From these site-level samples, sub-samples were collected for microbial
286 community analysis and stored in LifeGuard Soil Preservation solution (QIAGEN, Germantown,
287 MD) in a 5 mL tube (Eppendorf, Hamburg, Germany). Tubes were kept as cold as possible while
288 in the field (usually for less than 8 h, but up to 2 days for remote sites) and then stored frozen.
289 The remaining soil samples were air-dried and analyzed for pH (1:2 soil:DI water for mineral
290 samples; 1:5 soil:DI water for organic samples) and total C (combustion analysis). Soil texture
291 was only measured one year post-fire (Whitman et al., 2019).

292

293 *2.3 DNA extraction, amplification, and sequencing*

294

295 DNA extractions were performed for each sample (71 soil samples total), with two blank
296 extractions for every 24 samples (identical methods but using empty tubes, half of which were
297 sequenced), using a DNeasy PowerLyzer PowerSoil DNA extraction kit (QIAGEN,
298 Germantown, MD) following manufacturer's instructions. (For the one year post-fire samples,
299 duplicate DNA extractions were performed and sequenced. Duplicates were highly similar, so
300 single extractions were performed for the five years post-fire samples.) Extracted DNA was
301 amplified in triplicate PCR, targeting the 16S rRNA gene v4 region (henceforth, "16S") with
302 515f and 806r primers (Walters et al., 2015) with barcodes and Illumina sequencing adapters
303 added as per (Kozich et al., 2013) (all primers in Supplemental Table S1). The PCR amplicon
304 triplicates were pooled, purified and normalized using a SequalPrep Normalization Plate (96) Kit
305 (ThermoFisher Scientific, Waltham, MA). Samples, including blanks, were pooled and library
306 cleanup was performed using a Wizard SV Gel and PCR Clean-Up System A9282 (Promega,
307 Madison, WI). The pooled library was submitted to the UW Madison Biotechnology Center
308 (UW-Madison, WI) for 2x250 paired end (PE) Illumina MiSeq sequencing for the 16S
309 amplicons.

310

311 *2.4 Sequence data processing and taxonomic assignments*

312

313 We quality-filtered and trimmed, dereplicated, learned errors, determined OTUs, and removed
314 chimeras from 16S reads using dada2 (Callahan et al., 2016) as implemented in R. These
315 sequence processing steps were performed on the UW-Madison Centre for High Throughput

316 Computing cluster (Madison, WI). Taxonomy was assigned to the 16S reads using a QIIME2
317 (Bolyen et al., 2019) scikit-learn feature classifier (Bokulich et al., 2018) trained on the 515f-
318 806r region of the 99% ID OTUs from the Silva 119 database (Pruesse et al., 2007; Quast et al.,
319 2013; Yilmaz et al., 2013). Our primers target domain *Archaea* as well as domain *Bacteria*, but
320 archaea made up only a small fraction of all sequences (mean across samples <0.1%), so for
321 simplicity, we use the term “bacteria” throughout, rather than “bacteria and archaea”. We
322 predicted 16S rRNA gene copy numbers using the ribosomal RNA operon database (rrnDB)
323 (Stoddard et al., 2015). Because the OTU clustering algorithm can distinguish taxa that differ by
324 a single nucleotide and we used identical sequencing and bioinformatics protocols between the
325 two years, we were able to merge the two datasets for concurrent analysis where necessary.
326 Where we compare five-year data to our one year post-fire dataset, we do all analyses with only
327 the sites that were included in both years of sampling, so minor differences (but no qualitative
328 differences) are to be expected between the one-year data presented here and in the original
329 paper (Whitman et al., 2019).

330

331 *2.5 Co-occurrence networks*

332

333 To determine which OTUs co-occurred across samples, we used a network analysis approach as
334 in Whitman et al. (2019), following Connor et al. (2017) to avoid false positives and establish
335 conservative network cutoff parameters. After simulating a null model network to choose an
336 appropriate rho value, we determined a consensus network by adding random tie-breaking noise
337 to the matrix 1000 times, selecting only the co-occurrences that occurred in 95% of the 1000
338 replications. We determined standard network characterization metrics (Guimera and Amaral,
339 2005; Oleson et al., 2010; Zhou et al., 2010; Deng et al., 2012; Shi et al., 2016), including
340 modularity using random walks, and plotted the network using *igraph* R package (Csardi and
341 Nepusz, 2019). We created networks independently for each year of data. We also note that it is
342 important to limit interpretation of co-occurrence networks, recognizing that co-occurrences do
343 not necessarily represent ecological interactions, such as competition, mutualisms, or predation –
344 rather, they simply indicate whether two organisms tend to co-occur in the same environments.

345

346 *2.6 Statistical analyses*

347

348 All analyses and plotting were done with R (Team, 2022) in RStudio, using packages *phyloseq*
349 (McMurdie and Holmes, 2013), *dplyr* (Wickham et al., 2021), and *ggplot2* (Wickham, 2016).

350

351 To determine whether the same site and soil sample parameters remained significant predictors
352 of community composition five years post-fire, we ran a permutational multivariate ANOVA
353 (PERMANOVA) on Bray-Curtis dissimilarities (Bray and Curtis, 1957) with Hellinger-
354 transformed relative abundances using the *vegan* package in R (Oksanen et al., 2021), reporting
355 R² and p-values for each year's dataset.

356

357 To determine whether burned communities were more similar to unburned communities five
358 years post-fire *vs.* one year post-fire, we compared Bray-Curtis dissimilarities on Hellinger-
359 transformed relative abundances between the two years using a Mann-Whitney U test (because
360 dissimilarities one year post-fire were not normally distributed). We plotted the dissimilarities
361 using non-metric multidimensional scaling (NMDS). To determine whether community
362 composition of severely burned sites changed more between one and five years post-fire, we
363 tested whether Bray-Curtis dissimilarities on Hellinger-transformed relative abundances for
364 paired one-year and five-year samples from the same site were significantly correlated with burn
365 severity index using a Kruskal-Wallis test.

366

367 In order to identify which OTUs were significantly enriched (“positive response”) or depleted
368 (“negative response”) in burned plots (*vs.* unburned plots) for each year individually, we used
369 metagenomeSeq (Paulson et al., 2013), after controlling for (including as variables) vegetation
370 community (categorical variable), pH (continuous variable), and %C (continuous variable),
371 resulting in an estimate of the log₂-fold change in the abundance of each OTU in burned *vs.*
372 unburned plots, across samples. To determine whether the magnitude of positive or negative
373 responses to fire decreased five years post-fire, we compared the log₂-fold change for taxa that
374 responded significantly and in the same direction both years using a Mann-Whitney U test, since
375 data were non-normally distributed.

376

377 We calculated the abundance-weighted mean predicted copy number for each sample using the
378 approach of Nemerugut et al. (2016). We note that this approach is limited in that taxa without
379 representatives in the rRNA gene copy number database will not be represented. We also stress
380 that, while rRNA gene copy number is often correlated with early-successional communities or
381 fast-growing taxa, there are, of course, numerous factors that would also be expected to control
382 fast growth potential, not least of which would be environmental conditions. To determine
383 whether weighted mean predicted rRNA gene copy number was significantly different five years
384 vs. one year post-fire, we used a paired Wilcoxon signed rank test, since data were not normally
385 distributed (Shapiro-Wilk test, $p < 0.05$). We also tested whether weighted mean predicted rRNA
386 gene copy number was still significantly correlated with burn severity five years post-fire using a
387 Kruskal-Wallis test.

388

389 **3. Results**

390

391 *3.1 Theme 1. Microbial community composition*

392 Five years post-fire, vegetation community, moisture regime, pH, total C, texture as measured in
393 2015, and burned/unburned all remained significant predictors of microbial community
394 composition with similar predictive value (R^2) (Table 1), although the R^2 for burned/unburned
395 decreased from 0.07 to 0.04, and vegetation community R^2 increased from 0.07 to 0.10.

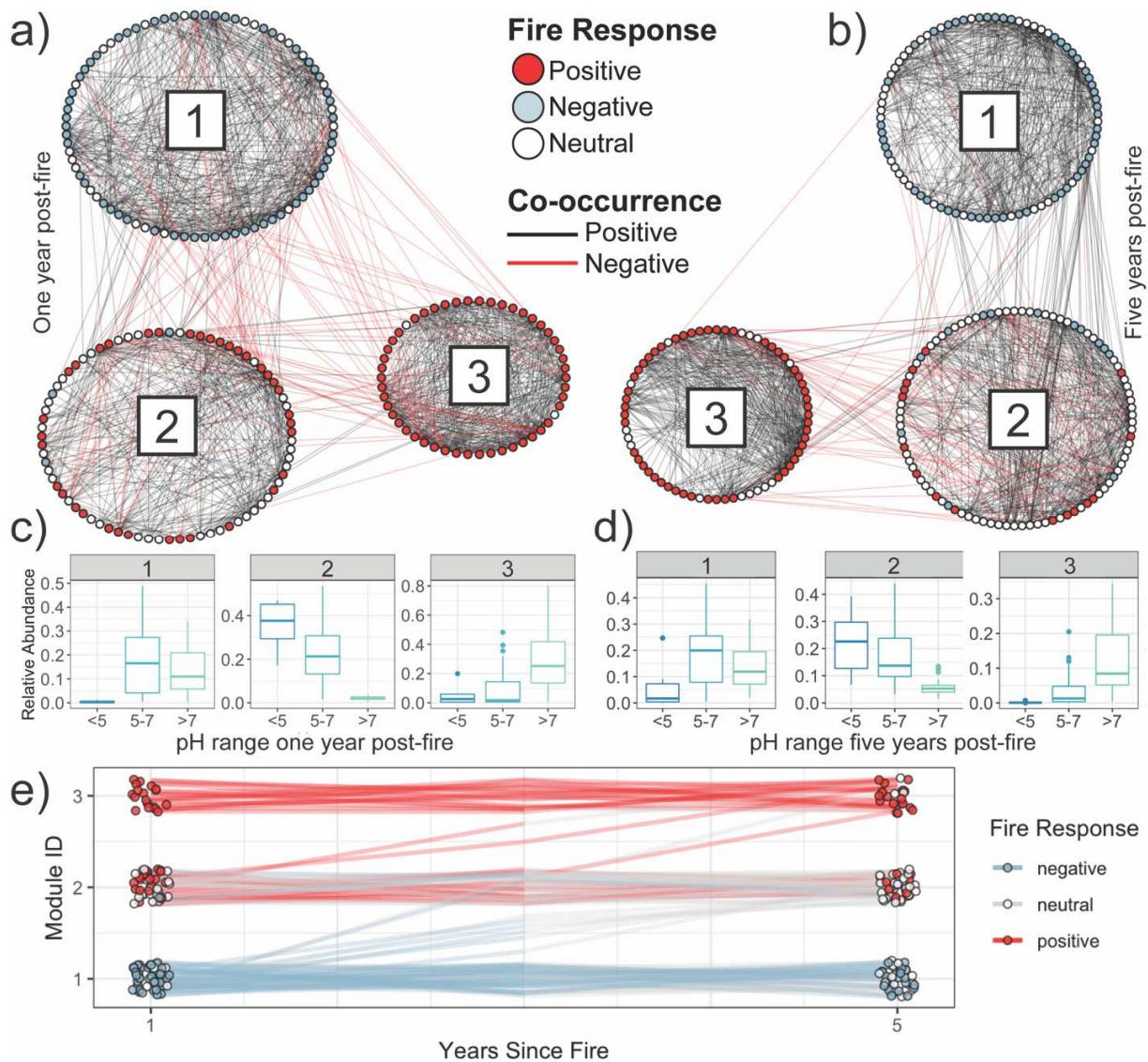
396

Table 1. PERMANOVA results one year (2015) and five years

(2019) post-fire. Parameters are listed in order of inclusion in
model.

Parameter	R²		p-value	
	<i>2015</i>	<i>2019</i>	<i>2015</i>	<i>2019</i>
Vegetation Community	0.07	0.10	0.001	0.001
Moisture Regime	0.02	0.02	0.002	0.030
pH	0.10	0.10	0.001	0.001
Total C (%)	0.04	0.05	0.001	0.001
Sand (%) (in 2015)	0.03	0.02	0.002	0.023
Burned / Unburned	0.07	0.04	0.001	0.001

Residuals	0.67	0.68
-----------	------	------



397

398 Five years post-fire, the overall structure of the co-occurrence network remained broadly similar
399 (Figures 2a and 2b; Supplemental Table S2). Numerous taxa and co-occurrences were detected
400 in both timepoints: 151 out of 237 total taxa (nodes) in the network one year post-fire were also
401 included in the network five years post-fire (which has 350 total taxa), and 299 out of 1283 edges
402 and their directionality (positive or negative co-occurrences) were maintained. While most pairs
403 of taxa maintained their same co-occurrence patterns (positive or negative in both years), we did
404 see a subset of taxa that shifted from positive co-occurrence to negative co-occurrence (7 pairs,
405 or 21% of sign flips), or vice versa (27 pairs, or 79% of sign flips).

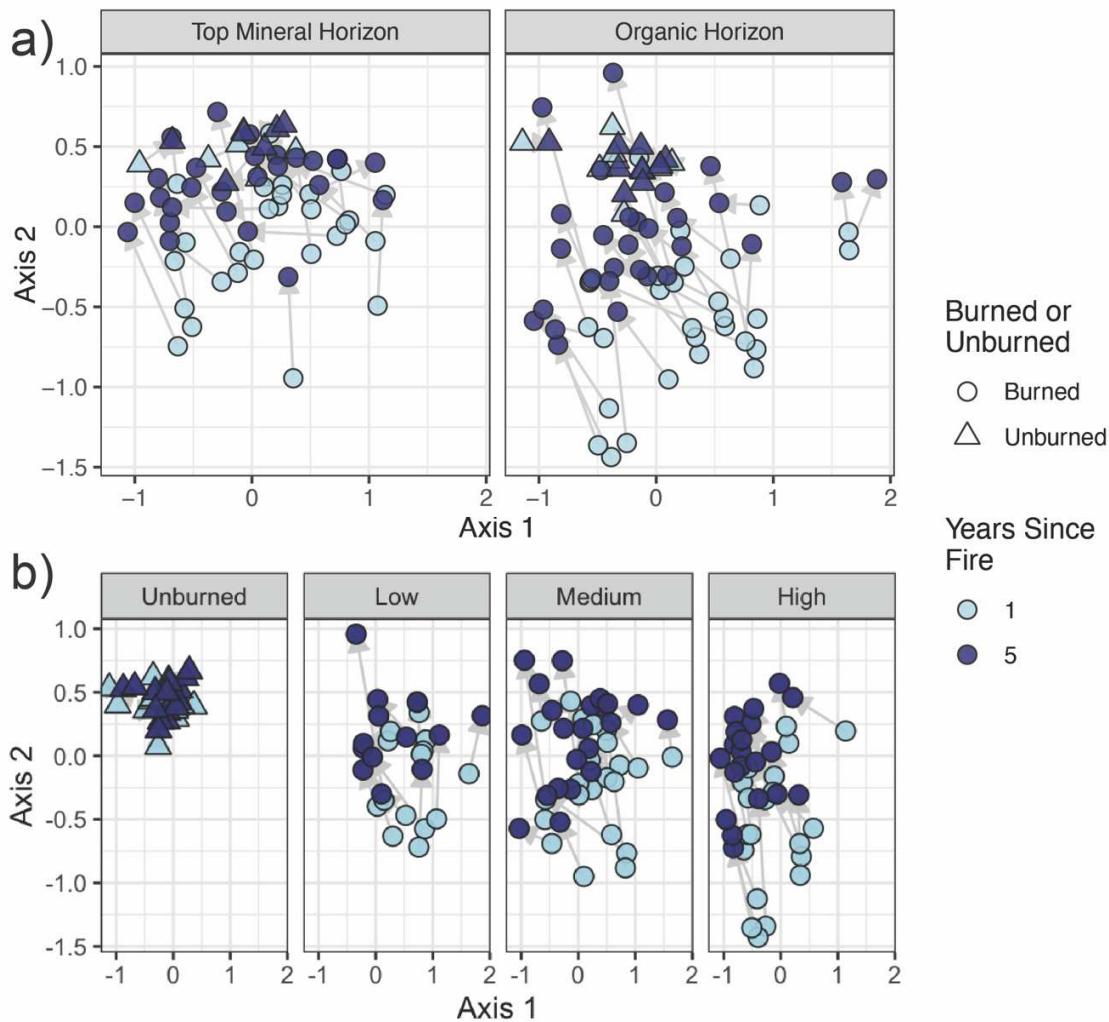
406

407

408

409 Figure 2. (a and b) The three largest modules of bacterial co-occurrence networks one year (a)
 410 and five years (b) post-fire. Each node represents an individual operational taxonomic unit
 411 (OTU). OTUs joined by edges represent significant co-occurrences (black) or co-exclusions
 412 (red). OTUs are clustered into modules of co-occurring taxa, with only the three most abundant
 413 modules for each year represented in the figures. OTUs are coloured by response to fire as
 414 determined by differential abundance (negative = blue, neutral or not identified = white, positive
 415 = red). (c and d) Relative abundance of taxa from a given module across sites within a given pH
 416 range, for networks created one year (c) and five years (d) post-fire. (e) Module composition in
 417 co-occurrence networks generated independently one year and five years post-fire. Each point
 418 represents a single OTU and is coloured by its response to fire within a given year (negative =

419 blue, neutral or not identified = white, positive = red). The same OTU in the two different years
420 is joined by a line, which is also split-coloured by the fire response for the two years. Only OTUs
421 that were present both years in the three most abundant modules are represented.


422

423 The same taxa tended to co-occur and cluster into equivalent modules in both years (Figures 2c,
424 2d, and 2e; Supplemental Figure S1). One year post-fire, the three dominant modules were
425 characterized by taxa mostly negatively associated with fire (Module 1), taxa mostly positively
426 associated with fire and lower pH (Module 2), and taxa almost all positively associated with fire
427 and higher pH (Module 3). Five years post-fire, taxa from the previous fire-responsive, high pH
428 Module 3 tended to remain clustered, with mostly fire-responsive taxa, although the module now
429 contains taxa that are abundant at sites with a broader range of pH values. Taxa from the
430 moderately fire-responsive, low pH Module 2 were associated primarily with new Module 2, and
431 were less likely to be identified as being enriched at burned sites. Many taxa within the negative
432 fire responder Module 1 remained in the new negative fire responder Module 1.

433

434 Five years post-fire, bacterial and archaeal communities in burned sites had become more similar
435 to those of unburned sites than they were one year post-fire (Figure 3a; Mann-Whitney U test,
436 $p < 0.0001$). The degree to which they became more similar was not different across severity
437 levels (Figure 3b; Kruskal-Wallis test, $p = 0.19$).

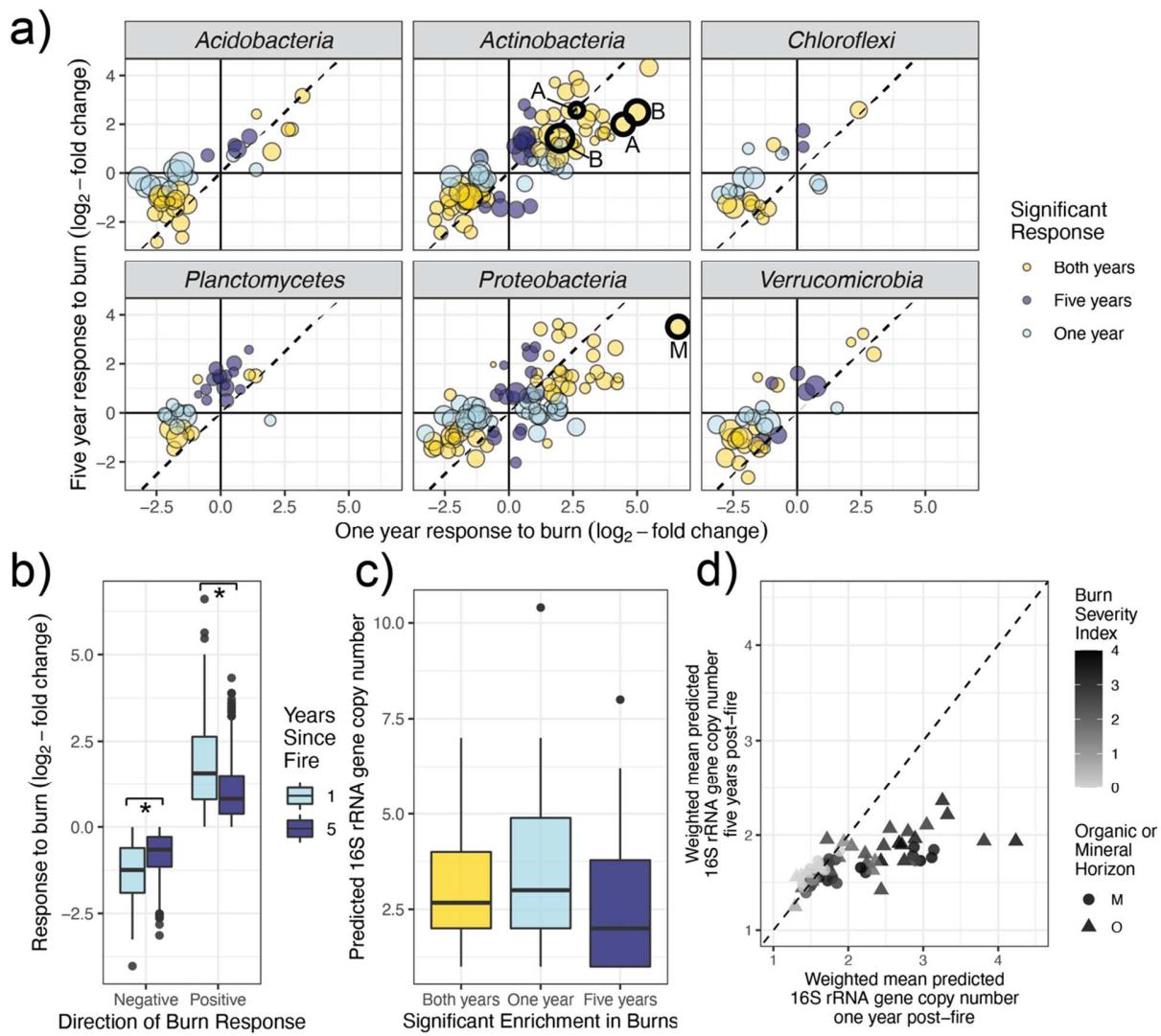
438

439

440 Figure 3. Non-Metric Multidimensional Scaling (NMDS) plots of Bray-Curtis dissimilarities
 441 between communities on Hellinger-transformed relative abundances ($k=3$, stress=0.12). Plots are
 442 faceted to illustrate trends, but the panels all draw from the same ordination. Each point
 443 represents a single community. Circles represent burned sites, while triangles represent unburned
 444 sites, pale blue points were sampled one year post-fire, while dark blue points were sampled five
 445 years post-fire, and light grey arrows link the same site between years. (a) Illustrating mineral
 446 (M) and organic (O) horizons. (b) Illustrating burn severity categories.

447

448 *3.2 Theme 2. Fire-responsive taxa and traits*


449 Five years post-fire, weighted mean predicted rRNA gene copy number declined significantly
450 (paired t-test, $p<0.0001$; Figure 4d), and was no longer positively correlated with burn severity
451 index (Kruskal-Wallis test, $p=0.23$).

452

453 Five years post-fire, we found more enriched (339 vs. 197 one year post-fire) and a similar
454 number of depleted taxa (245 vs. 214 one year post-fire) in burned vs. unburned sites.

455 Responsive taxa generally had similar responses for both years (Figure 4a, yellow points;
456 Supplemental tables S3 and S4), although the responses of individual taxa were also generally
457 muted (less positive or less negative) five years after the fire, compared to one year post-fire
458 (Figure 4b; Mann-Whitney U tests, $p=0.009$ for positive responders, $p<0.0001$ for negative
459 responders), and there were numerous individual exceptions, where taxa were enriched or
460 depleted five years post-fire but not one year post-fire (Figure 4a, dark blue points), or were
461 enriched or depleted one year post-fire, but not four years later (Figure 4a, light blue points). The
462 three taxa for which we had specific hypotheses – *Arthrobacter*, *Massilia*, and *Blastococcus*
463 (heavy black outlines in Figure 4a) – were significantly enriched in burned sites both years. Taxa
464 that were enriched in burned sites one, five, or both years post-fire did not have significantly
465 different predicted rRNA gene copy numbers (Figure 4c; Mann-Whitney U test, $p=0.53$).

466

467

468 Figure 4. (a) Log₂-fold change in burned vs. unburned sites one year post fire (x-axis) vs. five
 469 years post-fire (y-axis) for significant responders in selected phyla. Dashed line represents 1:1.
 470 Each point represents a single operational taxonomic unit (OTU). Points are scaled by their mean
 471 relative abundance five years post-fire. Points are coloured by whether the response was
 472 significant in a given year – yellow indicates significance both years, dark blue represents
 473 significant response only five years after fire, and light blue represents significant response only
 474 one year after fire. Taxa of interest from the genera *Massilia* (M), *Blastococcus* (B), and
 475 *Arthrobacter* (A) have thicker outlines. (b) Response to fire from positive and negative
 476 responders one year after fire (light blue) and five years after fire (dark blue). (c) Predicted 16S
 477 rRNA gene copy number for OTUs classified as positive fire-responders one, five, or both years
 478 after fire. (d) Weighted mean predicted 16S rRNA gene copy number one year post-fire vs. five

479 years post-fire. Points are shaded by burn severity index, with triangles indicating organic
480 horizons (O) and circles indicating mineral horizons (M). Dashed line indicates 1:1 ratio.

481

482 **4. Discussion**

483

484 *4.1 Theme 1. Similar factors control bacterial community composition between one and five 485 years after fire*

486 Consistent with our expectations, we found that the same predictors of bacterial community
487 composition remained significant (Table 1), with similar or even identical R^2 values for most of
488 them (pH, sand % as measured in 2015, C %, and moisture regime, but not burned/unburned,
489 which we discuss in detail later). The exception was the vegetation community, for which R^2
490 increased. The increase in the predictive power of vegetation community between one and five
491 years post-fire is consistent with some of the ideas presented in Hart et al. (2005): this system has
492 a relatively long natural fire-return interval, which would indicate that the vegetation-mediated
493 impact of fire on microbial communities may be more driven by specific vegetation composition
494 than nutrient mineralization, particularly over the long term. The importance of the vegetation
495 community in determining the characteristics and regeneration rate of depleted or even
496 completely combusted O horizons would increase over time as this process takes place. As
497 enumerated by Hart et al. (2005), after a wildfire, different plant communities may have different
498 effects on (1) resource inputs via net primary productivity, (2) competition for nutrients, (3)
499 nutrient chemistry, and (4) specific mutualisms (or other ecological interactions), all with
500 implications for the post-fire microbial community. Because vegetation community composition
501 was affected by fire at many of these sites (Whitman et al., 2018a), this would be an important
502 factor to consider.

503

504 These findings are also consistent with our second prediction – the general structure of the co-
505 occurrence network remained very similar (Figure 2). Since the factors that structure microbial
506 communities remained constant, then it is reasonable to expect that these same factors are likely
507 still determining which taxa positively or negatively co-occur, resulting in similar co-occurrence
508 networks. We noted with interest the degree to which the networks remained similar. The
509 recreation of this very similar network using all new samples from the same sites, four years

510 after the first sampling, is encouraging, in that it indicates that the methods used to construct the
511 network are robust, and may further strengthen our confidence that its structure is meaningful,
512 rather than statistical noise. That is, the ecological niches of the bacteria observed in this study
513 appear to be broadly consistent for the first several years after fire, in that they still tend to occur
514 in similar environments.

515

516 Beyond broad network similarity, we had predicted that the five years post-fire network might
517 have fewer nodes and connections, since we had expected that all sites might begin to converge
518 back to their original unburned composition, thereby decreasing dissimilarity within the dataset
519 and decreasing our ability to detect significant co-occurrences. Although we did see burned sites
520 become more similar to unburned sites five years post-fire, this prediction was not borne out – in
521 fact, the five-year network had more nodes and edges than the one-year network. On the one
522 hand, this could suggest that either the co-occurrences and co-exclusions are sufficiently robust
523 that they remained detectable, even as sites began to return to their pre-burned state. On the other
524 hand, this could be due to the emergence of (*i.e.*, ability to detect) new co-occurrences and co-
525 exclusions in the later dataset. The reality is likely a combination of both factors. We do observe
526 that almost a quarter of the co-occurrences (edges) were consistent between both years,
527 supporting the first explanation. However, we also observed the emergence of new co-
528 occurrences. This could occur as new ecological niches are (re-)formed as the soil system
529 recovers post-burn, or as new taxa arrive or increase in abundance at the sites, whether from *in*
530 *situ* recovery, or due to dispersal from elsewhere (*e.g.*, from lower soil horizons, adjacent sites,
531 or airborne particulates (Kobziar et al., 2018)).

532

533 While we correctly predicted that burned/unburned would remain a significant explanatory factor
534 for bacterial community composition, counter to our expectations, the R^2 of burned/unburned for
535 predicting bacterial composition decreased from 0.07 to 0.04 (Table 1) between one and five
536 years post-fire. Even though we did expect to see evidence for resilience (1c), based on
537 chronosequence studies, we had predicted that the four additional years of recovery captured in
538 this study would not meaningfully decrease the predictive power of the burn. Our expectation
539 was that some of the fire-induced changes would take time to emerge, particularly those
540 mediated by vegetation, so burned/unburned would remain an important predictor. However, it

541 seems from our findings that while this effect does seem to be occurring, it may be manifesting
542 as an increased influence of vegetation community (R^2 of vegetation community as a predictor in
543 the PERMANOVA increased), rather than a continued influence of simply whether or not a site
544 was burned.

545

546 At the whole-community level, we generally observed resilience to fire – *i.e.*, five years post-
547 fire, communities in burned sites resembled those of unburned sites significantly more than they
548 did one year after the fires (Figure 3a). Furthermore, even severely burned sites recovered as
549 much as low-severity sites did (Figure 3b). That said, the effects of burning remain clearly
550 evident, as would be predicted from chronosequence studies (Sun et al., 2015; Dove and Hart,
551 2017). Some of these differences are likely to persist for many years because the soil
552 environment, in some sites, remains effectively gone – for example, at sites where the O horizon
553 has largely been combusted. We might expect that the return of the bacterial community to these
554 sites would mirror the redevelopment of the O horizon over time. Other soil properties that were
555 affected by fire may also return to pre-burn conditions relatively slowly. For example, pH is
556 often significantly increased in the O horizon (Xu et al., 2022) and can remain altered at burned
557 sites for decades after wildfires (Dymov et al., 2018). Since pH is one of the strongest predictors
558 of microbial community composition in this and other studies (Ramirez et al., 2014; Bahram et
559 al., 2018), it is reasonable to expect that some of the effects of the burns will remain detectable
560 over the same timescales that pH remains significantly altered. While significant differences
561 remain, for reasons such as those just discussed, the broad trend is one of recovery. This may be
562 due to at least two factors. First, some soil properties generally return to their previous state
563 relatively quickly after fires, such as mineral nitrogen pools (Certini, 2005). Second, the return or
564 recolonization of locally-depleted microbial taxa may occur relatively rapidly, whether through
565 dispersal from less-burned patches aboveground or from less-affected soils below the surface,
566 where temperatures from even extreme burns may not reach lethal levels (Pingree and Kobziar,
567 2019). Overall, our findings suggest that the bacterial community is on a resilient trajectory,
568 following the wide range of burns considered in this study, which includes high severity burns
569 typical of the historical fire regime in this region. However, it is important to note that these fire
570 regimes are characterized by patchiness and spatial variability of fire occurrence and severities
571 (Coop et al., 2020). Depending on the relative importance of post-fire recolonization

572 mechanisms, a shift toward more frequent or more severe wildfires could challenge the resilience
573 observed in this study. For example, if aboveground sources of microbes are more important for
574 recolonization, large or widespread fires could reduce the availability of recolonizing
575 populations, as is observed with the effects of high severity fires on refugia as a source of
576 recolonizing plant seeds (Coop et al., 2019, 2020). If belowground sources are more important
577 for recolonization, fires that reach higher temperatures, resulting in microbial mortality within
578 deeper soil horizons, could also reduce the availability of recolonizing populations, as is
579 observed with the effects of high severity fires on vegetative banks as a source of recolonizing
580 plant materials (Lee, 2004). Thus, the relative importance of *in situ* recovery of surviving taxa
581 and recolonization of burned soils from both above and below for structuring post-fire
582 communities is an area ripe for future investigation. Research on ectomycorrhizal soil fungi after
583 wildfires has indicated that much of post-fire colonization occurs from taxa present in the soil,
584 rather than those dispersed aerially from unburned stands (BAAR et al., 1999; Peay et al., 2009;
585 Glassman et al., 2016). Expanding such work to soil bacterial communities and with an emphasis
586 on differences in wildfire severity would be of interest.

587

588 4.2 *Theme 2. The importance of different fire-responsive traits changes during post-fire recovery*

589

590 Five years post-fire, predicted fast growth potential was no longer an important factor structuring
591 bacterial communities (Figure 4d). Despite a strong positive correlation with burn severity one
592 year post-fire, at the five-year timepoint, weighted mean predicted rRNA copy number declined
593 significantly overall and was no longer significantly correlated with burn severity. While we had
594 predicted a decline in the strength of this relationship, we had expected that it would remain
595 statistically significant, which was not the case. Our results are consistent with the observations
596 of Nemergut et al. (2016), who observed a significant decline in predicted mean rRNA gene
597 copy number between three months and just over two years post-fire. However, their research
598 was in a temperate ecosystem, while this study took place in the boreal forest. We had thought
599 that perhaps colder conditions overall might slow down the rate of succession as fast growers
600 became less dominant members of the community, but this does not seem to be the case.
601 Reconsidering this idea, it is conceivable that the cool boreal conditions actually decrease the
602 ecological value of fast growth potential, perhaps in favour of other microbial traits, such as

603 stress tolerance. In boreal environments, stress tolerance could be relevant for surviving the heat
604 of the fire, persisting under increased UV exposure (for microbes now at the exposed mineral
605 surface), and tolerating cold conditions. Studying how the timing of post-fire successional
606 trajectories varies for microbial communities across different biomes would be an interesting
607 future focus.

608

609 Although community-level predicted mean rRNA gene copy number decreased between one and
610 five years post-fire, we did not see a significant decrease in rRNA copy number among
611 responsive taxa between the two years (Figure 4c). This suggests that even though it is less
612 important at a whole-community level, the enriching effect of an early fast growth strategy may
613 persist for years after the fire for certain taxa. Alternately, it could indicate taxa that possess
614 multiple adaptive post-fire strategies – e.g., some fast-growing taxa might also be particularly
615 well adapted to post-fire environmental conditions.

616

617 Our broad hypotheses about fire-responsive taxa were supported (Figures 4a and 4b). Five years
618 post-fire, many taxa remained enriched, some new taxa became enriched, and some taxa were no
619 longer enriched. We also found that 1.46% and 1.75% of all OTUs were enriched one and five
620 years post-fire, respectively, which was consistent with our prediction that a similar number
621 would remain enriched. These findings identify taxa with different timescales of response to fire.
622 Those that became newly enriched five years post-fire might include well-adapted but slow
623 growing taxa and taxa responding to emerging conditions, including taxa that were locally
624 depleted post-fire and needed to recolonize from above or below. Those that were only enriched
625 one year post-fire might indicate taxa that are more classically “ruderal” – quickly growing to
626 take advantage of freed-up niche space and readily available nutrients, but are out-competed as
627 resources become more scarce and competition pressure increases. Taxa enriched both years may
628 be particularly well-adapted to fire and might be more likely to possess multiple fire-adaptive
629 traits. Of the responsive taxa, responses tended to be largest one year post-fire (Figure 4b).
630 However, this was a relatively small decrease – there were still numerous taxa that were
631 markedly enriched (and depleted) compared to unburned sites five years post-fire.

632

633 Our fire-responders of interest (*Blastococcus*, *Arthrobacter*, and *Massilia*) all remained
634 significantly enriched five years post-fire (black circles in Figure 4a). While there were small
635 increases or decreases in the enrichment of each of these taxa, they generally remained enriched
636 to similar degrees. *E.g.*, while *Massilia* decreased in its relative enrichment, it remained one of
637 the most fire-enriched bacteria in the study. This was consistent with our hypothesis for
638 *Arthrobacter* and *Massilia*, and could support the idea that they possess traits that are adaptive to
639 conditions that persist in the post-fire environment (*e.g.*, changed pH or the presence of PyOM).
640 We had hypothesized that the response from *Blastococcus* might be comparatively short-lived,
641 which we did not observe. This suggests that these *Blastococcus* OTUs could either be remaining
642 enriched due to traits that allowed them to survive or proliferate shortly after the fires, or that
643 they may also have traits that allow them to flourish in the post-fire environment specifically
644 (*e.g.*, tolerance to increased pH or ability to degrade PyOM). These hypotheses would need to be
645 tested directly in future studies. Additionally, it would be interesting to compare the timescale of
646 response of these widespread fire-responsive taxa in other different ecosystems – what seems
647 like a persistent effect on *Blastococcus* in the boreal forest could be shorter-lived in warmer
648 systems with more active microbial communities.

649
650 We had expected that different traits would change in their relative importance over time since
651 fire. Immediately after fire, survival would be the most important, at least for high-severity burns
652 with significant mortality, while fast growth would emerge next as an important trait. Fast
653 growers might be partially seeded through fire survivors, but also via taxa that recolonize from
654 soils below that experienced sub-lethal temperatures, and from above, via dispersal. Over time,
655 the importance of both of these traits would fade, as the more important traits would be
656 adaptations to the post-fire environment, such as ability to grow at a higher pH or ability to
657 mineralize PyOM. Our data here did not allow us to test the first trait (fire survival). However,
658 they are consistent with a waning influence of the second (fast growth). The third “trait”
659 (adaptation to the post-fire environment) actually encompasses multiple traits.

660
661 Taxa that thrive under the chemical conditions that exist post-fire (and may or may not also be
662 fire survivors and fast growers) may dominate the community over longer timescales, to the
663 extent that those chemical conditions also persist over longer timescales. For example, chemical

664 conditions such as increased mineral N (often characterized as a pulse of NO_3^- followed by a
665 pulse of NH_4^+) may persist only for a few years, whereas other chemical conditions such as
666 increased pH may persist over intermediate timescales (Certini, 2005; Certini et al., 2021). The
667 ability to metabolize PyOM could remain relevant over long timescales, since PyOM tends to be
668 persistent. However, PyOM degradation might initially be an important trait as a method of
669 detoxification of the environment (removing toxic polycyclic aromatic hydrocarbons) (Hale et al.,
670 2012), with its relevance as a meaningful source of C emerging within some intermediate
671 timescale – *e.g.*, after easily mineralizable fire-liberated C in the environment is depleted, but
672 perhaps before abundant new C has been replenished by regenerating vegetation. Of the
673 numerous traits that may support adaptation to post-fire environments, ability to tolerate pH
674 shifts may be one of the most important ones. This is supported by the data illustrated in Figure
675 2, which identifies specific taxa in the co-occurrence network Module 3 that remain enriched in
676 burned sites both one and five years post-fire (Figure 2a and 2b), and tend to be more abundant
677 in sites with higher pH (Figure 2c and 2d). Furthermore, pH remains a strong predictor of
678 community composition both one and five years post-fire (Table 1).

679

680 Finally, it is essential to note that our ability to conclusively test for the presence and expression
681 of these traits remains limited given the techniques used here (amplicon sequencing amongst a
682 dearth of cultured isolates), and so our findings at this point should serve more as hypothesis
683 generators, to be tested using tools such as shotgun metagenomics, metatranscriptomics, and
684 metaproteomics (illuminating the presence of genes related to potential fire-related traits, their
685 expression, and translation into proteins, respectively), complemented by continued efforts to
686 isolate fire-responsive taxa and measure specific traits in the lab or field. Thoroughly
687 understanding the resilience of bacterial communities and their functions after wildfires will
688 ultimately encompass bacterial community ecology (Hawkes and Keitt, 2015), interactions with
689 plants and fungi, and further investigation of spatial and temporal dynamics, such as
690 recolonization from sub-soils or aerially deposited microbes (Kobziar et al., 2018). These
691 approaches will need to be considered across different ecosystems, fire regimes, and changing
692 climatic conditions.

693

694 **Acknowledgements**

695 Thanks to Marc-André Parisien, Mike D. Flannigan, Daniel K. Thompson, Denyse Dawe, and
696 Élyse Mathieu for their contributions in the field and/or to the original study design. This work
697 was supported by the Government of the Northwest Territories, which provided in-kind and
698 financial support for the field campaign that produced these data; Parks Canada Agency and Jean
699 Morin provided in-kind support during fieldwork; the U.S. Department of Energy helped support
700 T.W. and J.W. during data collection [DE-SC0016365; DE-SC0020351] and the U.S. National
701 Science Foundation helped support T.W. during data analysis [2045864].

702

703 **CRediT Author Statement**

704 **Thea Whitman:** Conceptualization, Methodology, Software, Formal Analysis, Investigation,
705 Resources, Writing – Original Draft, Visualization, Supervision, Project Administration, Funding
706 Acquisition; **Jamie Wootton:** Investigation, Writing – Review & Editing, Project Administration;
707 **Miranda Sikora:** Formal Analysis, Investigation, Writing – Review & Editing; **Dana Johnson:**
708 Investigation, Writing – Review & Editing; **Ellen Whitman:** Conceptualization, Methodology,
709 Investigation, Resources, Writing – Review & Editing, Visualization, Supervision, Project
710 Administration, Funding Acquisition

711

712 **Data Availability**

713 Code for data analysis is available at <https://github.com/TheaWhitman/WoodBuffalo1yr5yr>.
714 Sequence reads are deposited in the NCBI SRA for 2015 data (PRJNA564811) and 2019 data
715 (PRJNA825513, available 31 December 2022).

716

717 **References**

718

719 Adkins, J., Docherty, K.M., Gutknecht, J.L.M., Miesel, J.R., 2020. How do soil microbial
720 communities respond to fire in the intermediate term? Investigating direct and indirect effects
721 associated with fire occurrence and burn severity. *Science of The Total Environment* 745,
722 140957. doi:10.1016/j.scitotenv.2020.140957

723

724 Allison, S.D., Martiny, J.B.H., 2008. Colloquium paper: resistance, resilience, and redundancy in
725 microbial communities. *Proceedings of the National Academy of Sciences of the United
States of America* 105 Suppl 1, 11512–11519. doi:10.1073/pnas.0801925105

726

727 Anderson, M.K., Lake, F.K., 2013. California Indian Ethnomycology and Associated Forest
Management. *Journal of Ethnobiology* 33, 33–85. doi:10.2993/0278-0771-33.1.33

728 Andrieux, B., Beguin, J., Bergeron, Y., Grondin, P., Paré, D., 2018. Drivers of postfire soil
729 organic carbon accumulation in the boreal forest. *Global Change Biology* 24, 4797–4815.
730 doi:10.1111/gcb.14365

731 Baar, J., Horton, T.R., Kretzer, A.M., Bruns, T.D., 1999. Mycorrhizal colonization of *Pinus*
732 *muricata* from resistant propagules after a stand-replacing wildfire. *New Phytologist* 143,
733 409–418. doi:10.1046/j.1469-8137.1999.00452.x

734 Bahram, M., Hildebrand, F., Forslund, S.K., Anderson, J.L., Soudzilovskaia, N.A., Bodegom,
735 P.M., Bengtsson-Palme, J., Anslan, S., Coelho, L.P., Harend, H., Huerta-Cepas, J., Medema,
736 M.H., Maltz, M.R., Mundra, S., Olsson, P.A., Pent, M., Pöhlme, S., Sunagawa, S., Ryberg, M.,
737 Tedersoo, L., Bork, P., 2018. Structure and function of the global topsoil microbiome. *Nature*
738 320, 1. doi:10.1038/s41586-018-0386-6

739 Beckingham, J., Archibald, J., 1996. Field guide to ecosites of Northern Alberta. Natural
740 Resources Canada, Canadian Forest Service, Northern Forestry Centre.

741 Bender, E.A., Case, T.J., Gilpin, M.E., 1984. Perturbation Experiments in Community Ecology:
742 Theory and Practice. *Ecology* 65, 1–13.

743 Bokulich, N.A., Kaehler, B.D., Rideout, J.R., Dillon, M., Bolyen, E., Knight, R., Huttley, G.A.,
744 Caporaso, J.G., 2018. Optimizing taxonomic classification of marker-gene amplicon
745 sequences with QIIME 2's q2-feature-classifier plugin. *Microbiome* 6, 90.
746 doi:10.1186/s40168-018-0470-z

747 Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A.,
748 Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K.,
749 Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase,
750 J., Cope, E.K., Silva, R.D., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M.,
751 Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons,
752 S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H.,
753 Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L., Kaehler, B.D., Kang,
754 K.B., Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T., Kreps, J.,
755 Langille, M.G.I., Lee, J., Ley, R., Liu, Y.-X., Loftfield, E., Lozupone, C., Maher, M., Marotz,
756 C., Martin, B.D., McDonald, D., McIver, L.J., Melnik, A.V., Metcalf, J.L., Morgan, S.C.,
757 Morton, J.T., Naimay, A.T., Navas-Molina, J.A., Nothias, L.F., Orchania, S.B., Pearson, T.,
758 Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson,
759 M.S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R.,
760 Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-
761 Hasan, S., Hooft, J.J.J. van der, Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., Hippel, M.,
762 von, Walters, W., Wan, Y., Wang, M., Warren, J., Weber, K.C., Williamson, C.H.D., Willis,
763 A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y., Zhu, Q., Knight, R., Caporaso, J.G., 2019.
764 Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2.
765 *Nature Biotechnology* 37, 852–857. doi:10.1038/s41587-019-0209-9

766 Boudier, M., 1877. De Quelques Espèces Nouvelles De Champignons. Bulletin de la Société
767 Botanique de France 24, 307–312. doi:10.1080/00378941.1877.10830001

768 Boulanger, Y., Gautier, S., Burton, P.J., Vaillancourt, M.A., 2012. An alternative fire regime
769 zonation for Canada. International Journal of Wildland Fire 21, 1052–1064.

770 Bowman, D.M.J.S., Balch, J.K., Artaxo, P., Bond, W.J., Carlson, J.M., Cochrane, M.A.,
771 D'Antonio, C.M., DeFries, R.S., Doyle, J.C., Harrison, S.P., Johnston, F.H., Keeley, J.E.,
772 Krawchuk, M.A., Kull, C.A., Marston, J.B., Moritz, M.A., Prentice, I.C., Roos, C.I., Scott,
773 A.C., Swetnam, T.W., Werf, G.R. van der, Pyne, S.J., 2009. Fire in the Earth System. Science
774 324, 481–484. doi:10.1126/science.1163886

775 Bray, J.R., Curtis, J.T., 1957. An Ordination of the Upland Forest Communities of Southern
776 Wisconsin. Ecological Monographs 27, 325–349. doi:10.2307/1942268

777 Brown, S.P., Veach, A.M., Horton, J.L., Ford, E., Jumpponen, A., Baird, R., 2019. Context
778 dependent fungal and bacterial soil community shifts in response to recent wildfires in the
779 Southern Appalachian Mountains. Forest Ecology and Management 451, 117520.
780 doi:10.1016/j.foreco.2019.117520

781 Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016.
782 DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods 13,
783 581–583. doi:10.1038/nmeth.3869

784 Certini, G., 2005. Effects of fire on properties of forest soils: a review. Oecologia 143, 1–10.
785 doi:10.1007/s00442-004-1788-8

786 Certini, G., Moya, D., Lucas-Borja, M.E., Mastrolonardo, G., 2021. The impact of fire on soil-
787 dwelling biota: A review. Forest Ecology and Management 488, 118989.
788 doi:10.1016/j.foreco.2021.118989

789 Connor, N., Barberán, A., Clauzet, A., 2017. Using null models to infer microbial co-occurrence
790 networks. PLoS ONE 12, e0176751. doi:10.1371/journal.pone.0176751

791 Coop, J.D., DeLory, T.J., Downing, W.M., Haire, S.L., Krawchuk, M.A., Miller, C., Parisien,
792 M., Walker, R.B., 2019. Contributions of fire refugia to resilient ponderosa pine and dry
793 mixed-conifer forest landscapes. Ecosphere 10. doi:10.1002/ecs2.2809

794 Coop, J.D., Parks, S.A., Rumann, C.S.S., Crausbay, S.D., Higuera, P.E., Hurteau, M.D., Tepley,
795 A., Whitman, E., Assal, T., Collins, B.M., Davis, K.T., Dobrowski, S., Falk, D.A., Fornwalt,
796 P.J., Fulé, P.Z., Harvey, B.J., Kane, V.R., Littlefield, C.E., Margolis, E.Q., North, M.,
797 Parisien, M.-A., Prichard, S., Rodman, K.C., 2020. Wildfire-Driven Forest Conversion in
798 Western North American Landscapes. BioScience 46, 326–15. doi:10.1093/biosci/biaa061

799 Cooper, C.F., 1961. The Ecology of Fire 204, 150–163.

800 Csardi, G., Nepusz, T., 2019. The igraph software package for complex network research.
801 *InterJournal Complex Systems*, 1695.

802 Czimczik, C.I., Masiello, C.A., 2007. Controls on black carbon storage in soils. *Global*
803 *Biogeochemical Cycles* 21, GB3005. doi:10.1029/2006gb002798

804 Delgado-Baquerizo, M., Oliverio, A.M., Brewer, T.E., Benavent-González, A., Eldridge, D.J.,
805 Bardgett, R.D., Maestre, F.T., Singh, B.K., Fierer, N., 2018. A global atlas of the dominant
806 bacteria found in soil. *Science* 359, 320–325. doi:10.1126/science.aap9516

807 Deng, Y., Jiang, Y.-H., Yang, Y., He, Z., Luo, F., Zhou, J., 2012. Molecular ecological network
808 analyses. *Bmc Bioinformatics* 13. doi:10.1186/1471-2105-13-113

809 Dooley, S.R., Treseder, K.K., 2011. The effect of fire on microbial biomass: a meta-analysis of
810 field studies. *Biogeochemistry* 109, 49–61. doi:10.1007/s10533-011-9633-8

811 Dove, N.C., Hart, S.C., 2017. Fire Reduces Fungal Species Richness and In Situ Mycorrhizal
812 Colonization: A Meta-Analysis. *Fire Ecology* 13, 37–65. doi:10.4996/fireecology.130237746

813 Dymov, A., Abakumov, E., Bezkorovaynaya, I., Prokushkin, A., Kuzyakov, Y., Milanovsky, E.,
814 2018. Impact of forest fire on soil properties (review). *Theoretical and Applied Ecology* 827–
815 836.

816 ESWG, E.S.W.G., 1995. A National Ecological Framework for Canada. Agriculture and Agri-
817 Food Canada, Ottawa, Ontario/Hull, Quebec, Canada.

818 Fernández-González, A.J., Martínez-Hidalgo, P., Cobo-Díaz, J.F., Villadas, P.J., Martínez-
819 Molina, E., Toro, N., Tringe, S.G., Fernández-López, M., 2017. The rhizosphere microbiome
820 of burned holm-oak: potential role of the genus *Arthrobacter* in the recovery of burned soils.
821 *Scientific Reports* 7, 6008. doi:10.1038/s41598-017-06112-3

822 Glassman, S.I., Levine, C.R., DiRocco, A.M., Battles, J.J., Bruns, T.D., 2016. Ectomycorrhizal
823 fungal spore bank recovery after a severe forest fire: some like it hot. *The ISME Journal* 10,
824 1228–1239.

825 Guimera, R., Amaral, L., 2005. Functional cartography of complex metabolic networks. *Nature*
826 433, 895–900. doi:10.1038/nature03288

827 Hale, S.E., Lehmann, J., Rutherford, D., Zimmerman, A.R., Bachmann, R.T., Shitumbanuma, V.,
828 O'Toole, A., Sundqvist, K.L., Arp, H.P.H., Cornelissen, G., 2012. Quantifying the total and
829 bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. *Environmental*
830 *Science & Technology* 46, 2830–2838. doi:10.1021/es203984k

831 Hart, S.C., DeLuca, T.H., Newman, G.S., MacKenzie, M.D., Boyle, S.I., 2005. Post-fire
832 vegetative dynamics as drivers of microbial community structure and function in forest soils.
833 *Forest Ecology and Management* 220, 166–184. doi:10.1016/j.foreco.2005.08.012

834 Hawkes, C.V., Keitt, T.H., 2015. Resilience vs. historical contingency in microbial responses to
835 environmental change. *Ecology Letters* 18, 612–625. doi:10.1111/ele.12451

836 Holden, S.R., Rogers, B.M., Treseder, K.K., Randerson, J.T., 2016. Fire severity influences the
837 response of soil microbes to a boreal forest fire. *Environmental Research Letters* 11, 10.
838 doi:10.1088/1748-9326/11/3/035004

839 Holden, S.R., Treseder, K.K., 2013. A meta-analysis of soil microbial biomass responses to
840 forest disturbances. *Terrestrial Microbiology* 4, 1–17. doi:10.3389/fmicb.2013.00163

841 Johnstone, J.F., Allen, C.D., Franklin, J.F., Frelich, L.E., Harvey, B.J., Higuera, P.E., Mack,
842 M.C., Meentemeyer, R.K., Metz, M.R., Perry, G.L., Schoennagel, T., Turner, M.G., 2016.
843 Changing disturbance regimes, ecological memory, and forest resilience. *Frontiers in Ecology
844 and the Environment* 14, 369–378. doi:10.1002/fee.1311

845 Keeley, J.E., 2009. Fire intensity, fire severity and burn severity: a brief review and suggested
846 usage. *International Journal of Wildland Fire* 18, 116. doi:10.1071/wf07049

847 Klappenbach, J.A., Dunbar, J.M., Schmidt, T.M., 2000. rRNA Operon Copy Number Reflects
848 Ecological Strategies of Bacteria. *Applied and Environmental Microbiology* 66, 1328–1333.
849 doi:10.1128/aem.66.4.1328-1333.2000

850 Knelman, J.E., Graham, E.B., Trahan, N.A., Schmidt, S.K., Nemergut, D.R., 2015. Fire severity
851 shapes plant colonization effects on bacterial community structure, microbial biomass, and
852 soil enzyme activity in secondary succession of a burned forest. *Soil Biology and
853 Biochemistry* 90, 161–168. doi:10.1016/j.soilbio.2015.08.004

854 Kobziar, L.N., Pingree, M.R.A., Larson, H., Dreaden, T.J., Green, S., Smith, J.A., 2018.
855 Pyroaerobiology: the aerosolization and transport of viable microbial life by wildland fire.
856 *Ecosphere* 9, e02507-12. doi:10.1002/ecs2.2507

857 Köster, K., Berninger, F., Lindén, A., Köster, E., Pumpanen, J., 2014. Recovery in fungal
858 biomass is related to decrease in soil organic matter turnover time in a boreal fire
859 chronosequence. *Geoderma* 235–236, 74–82. doi:10.1016/j.geoderma.2014.07.001

860 Kozich, J.J., Westcott, S.L., Baxter, N.T., Highlander, S.K., Schloss, P.D., 2013. Development of
861 a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence
862 Data on the MiSeq Illumina Sequencing Platform. *Applied and Environmental Microbiology*
863 79, 5112–5120. doi:10.1128/aem.01043-13

864 Lecomte, N., Simard, M., Fenton, N., Bergeron, Y., 2006. Fire Severity and Long-term
865 Ecosystem Biomass Dynamics in Coniferous Boreal Forests of Eastern Canada. *Ecosystems*
866 9, 1215–1230. doi:10.1007/s10021-004-0168-x

867 Lee, P., 2004. The impact of burn intensity from wildfires on seed and vegetative banks, and
868 emergent understory in aspen-dominated boreal forests. *Canadian Journal of Botany* 82,
869 1468–1480. doi:10.1139/b04-108

870 Lierop, P. van, Lindquist, E., Sathyapala, S., Franceschini, G., 2015. Global forest area
871 disturbance from fire, insect pests, diseases and severe weather events. *Forest Ecology and*
872 *Management* 352, 78–88. doi:10.1016/j.foreco.2015.06.010

873 Liu, J., Liu, S., Sun, K., Sheng, Y., Gu, Y., Gao, Y., 2014. Colonization on Root Surface by a
874 Phenanthrene-Degrading Endophytic Bacterium and Its Application for Reducing Plant
875 Phenanthrene Contamination. *PLoS ONE* 9, e108249. doi:10.1371/journal.pone.0108249

876 Loboda, T.V., French, N.H.F., Hight-Harf, C., Jenkins, L., Miller, M.E., 2013. Mapping fire
877 extent and burn severity in Alaskan tussock tundra: An analysis of the spectral response of
878 tundra vegetation to wildland fire. *Remote Sensing of Environment* 134, 194–209.
879 doi:10.1016/j.rse.2013.03.003

880 Lucas-Borja, M.E., Miralles, I., Ortega, R., Plaza-Álvarez, P.A., Gonzalez-Romero, J., Sagra, J.,
881 Soriano-Rodríguez, M., Certini, G., Moya, D., Heras, J., 2019. Immediate fire-induced
882 changes in soil microbial community composition in an outdoor experimental controlled
883 system. *Science of The Total Environment* 696, 134033. doi:10.1016/j.scitotenv.2019.134033

884 Mack, M.C., Walker, X.J., Johnstone, J.F., Alexander, H.D., Melvin, A.M., Jean, M., Miller,
885 S.N., 2021. Carbon loss from boreal forest wildfires offset by increased dominance of
886 deciduous trees. *Science* 372, 280–283. doi:10.1126/science.abf3903

887 McMurdie, P.J., Holmes, S., 2013. phyloseq: An R Package for Reproducible Interactive
888 Analysis and Graphics of Microbiome Census Data. *PLoS ONE* 8, e61217.
889 doi:10.1371/journal.pone.0061217

890 Miera, L.E.S. de, Pinto, R., Gutierrez-Gonzalez, J.J., Calvo, L., Ansola, G., 2020. Wildfire
891 effects on diversity and composition in soil bacterial communities. *The Science of the Total*
892 *Environment* 726, 138636. doi:10.1016/j.scitotenv.2020.138636

893 Mongodin, E.F., Shapir, N., Daugherty, S.C., DeBoy, R.T., Emerson, J.B., Shvartzbeyn, A.,
894 Radune, D., Vamathevan, J., Riggs, F., Grinberg, V., Khouri, H., Wackett, L.P., Nelson, K.E.,
895 Sadowsky, M.J., 2006. Secrets of Soil Survival Revealed by the Genome Sequence of
896 *Arthrobacter aurescens* TC1. *PLOS Genetics* 2, e214. doi:10.1371/journal.pgen.0020214

897 Nave, L.E., Vance, E.D., Swanston, C.W., Curtis, P.S., 2011. Fire effects on temperate forest soil
898 C and N storage. *Ecological Applications* 21, 1189–1201. doi:10.1890/10-0660.1

899 Nemergut, D.R., Knelman, J.E., Ferrenberg, S., Bilinski, T., Melbourne, B., Jiang, L., Violle, C.,
900 Darcy, J.L., Prest, T., Schmidt, S.K., Townsend, A.R., 2016. Decreases in average bacterial
901 community rRNA operon copy number during succession. *The ISME Journal* 10, 1147–1156.
902 doi:10.1038/ismej.2015.191

903 Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., OHara, R.B., Simpson, G.L.,
904 Solymos, P., Stevens, M.H.H., Wagner, H., 2021. *vegan*: Community Ecology Package.

905 Oleson, K.W., Lawrence, D.M., Bonan, G.B., Flanner, M.G., Kluzek, E., Lawrence, P.J., Levis,
906 S., Swenson, S.C., Thornton, P.E., Dai, A., Decker, M., Dickinson, R., Feddema, J., Heald,
907 C.L., Hoffman, F., Lamarque, J.-F., Mahowald, N., Niu, G.-Y., Qian, T., Randerson, J.,
908 Running, S., Sakaguchi, K., Slater, A., Stockli, R., Wang, A., Yang, Z.-L., Zeng, Xiaodong,
909 Zeng, Xubin, 2010. Technical Description of version 4.0 of the Community Land Model
910 (CLM) [WWW Document]. URL
911 http://www.cesm.ucar.edu/models/ccsm4.0/clm/CLM4_Tech_Note.pdf

912 Paulson, J.N., Stine, O.C., Bravo, H.C., Pop, M., 2013. Differential abundance analysis for
913 microbial marker-gene surveys. *Nature Methods* 10, 1200–1202. doi:10.1038/nmeth.2658

914 Peay, K.G., Garbelotto, M., Bruns, T.D., 2009. Spore heat resistance plays an important role in
915 disturbance-mediated assemblage shift of ectomycorrhizal fungi colonizing *Pinus muricata*
916 seedlings. *Journal of Ecology* 97, 537–547. doi:10.1111/j.1365-2745.2009.01489.x

917 Pérez-Valera, E., Verdú, M., Navarro-Cano, J.A., Goberna, M., 2020. Soil microbiome drives the
918 recovery of ecosystem functions after fire. *Soil Biology and Biochemistry* 149, 107948.
919 doi:10.1016/j.soilbio.2020.107948

920 Pérez-Valera, E., Verdú, M., Navarro-Cano, J.A., Goberna, M., 2018. Resilience to fire of
921 phylogenetic diversity across biological domains. *Molecular Ecology* 27, 2896–2908.
922 doi:10.1111/mec.14729

923 Pingree, M.R.A., Kobziar, L.N., 2019. The myth of the biological threshold: A review of
924 biological responses to soil heating associated with wildland fire. *Forest Ecology and*
925 *Management* 432, 1022–1029. doi:10.1016/j.foreco.2018.10.032

926 Pressler, Y., Moore, J.C., Cotrufo, M.F., 2018. Belowground community responses to fire: meta-
927 analysis reveals contrasting responses of soil microorganisms and mesofauna. *Oikos*.
928 doi:10.1111/oik.05738

929 Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W., Peplies, J., Glockner, F.O., 2007.
930 SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA
931 sequence data compatible with ARB. - PubMed - NCBI. *Nucleic Acids Research* 35, 7188–
932 7196.

933 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O.,
934 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-
935 based tools. *Nucleic Acids Research* 41, D590–D596. doi:10.1093/nar/gks1219

936 Ramirez, K.S., Leff, J.W., Barberan, A., Bates, S.T., Betley, J., Crowther, T.W., Kelly, E.F.,
937 Oldfield, E.E., Shaw, E.A., Steenbock, C., Bradford, M.A., Wall, D.H., Fierer, N., 2014.
938 Biogeographic patterns in below-ground diversity in New York City's Central Park are

939 similar to those observed globally. *Proceedings. Biological Sciences / The Royal Society* 281,
940 20141988–20141988. doi:10.1098/rspb.2014.1988

941 Roller, B.R.K., Stoddard, S.F., Schmidt, T.M., 2016. Exploiting rRNA Operon Copy Number to
942 Investigate Bacterial Reproductive Strategies. *Nature Microbiology* 1, 16160–16160.
943 doi:10.1038/nmicrobiol.2016.160

944 Seaver, F.J., 1909. Studies in Pyrophilous Fungi: I. The Occurrence and Cultivation of
945 *Pyronema*. *Mycologia* 1, 131–139. doi:10.2307/3753124

946 Shade, A., Peter, H., Allison, S.D., Baho, D.L., Berga, M., Bürgmann, H., Huber, D.H.,
947 Langenheder, S., Lennon, J.T., Martiny, J.B.H., Matulich, K.L., Schmidt, T.M., Handelsman,
948 J., 2012. Fundamentals of Microbial Community Resistance and Resilience. *Terrestrial
949 Microbiology* 3, 417. doi:10.3389/fmicb.2012.00417

950 Shi, S., Nuccio, E.E., Shi, Z.J., He, Z., Zhou, J., Firestone, M.K., 2016. The interconnected
951 rhizosphere: High network complexity dominates rhizosphere assemblages. *Ecology Letters*
952 19, 926–936. doi:10.1111/ele.12630

953 Smithwick, E.A.H., Turner, M.G., Metzger, K.L., Balser, T.C., 2005. Variation in NH₄⁺
954 mineralization and microbial communities with stand age in lodgepole pine (*Pinus contorta*)
955 forests, Yellowstone National Park (USA). *Soil Biology and Biochemistry* 37, 1546–1559.
956 doi:10.1016/j.soilbio.2005.01.016

957 Stoddard, S.F., Smith, B.J., Hein, R., Roller, B.R.K., Schmidt, T.M., 2015. rrnDB: improved
958 tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for
959 future development. *Nucleic Acids Research* 43, D593–D598. doi:10.1093/nar/gku1201

960 Sun, H., Santalahti, M., Pumpanen, J., Köster, K., Berninger, F., Raffaello, T., Asiegbu, F.O.,
961 Heinonsalo, J., 2016. Bacterial community structure and function shift across a northern
962 boreal forest fire chronosequence. *Scientific Reports* 6, 34. doi:10.1038/srep32411

963 Sun, H., Santalahti, M., Pumpanen, J., Köster, K., Berninger, F., Raffaello, T., Jumpponen, A.,
964 Asiegbu, F.O., Heinonsalo, J., 2015. Fungal Community Shifts in Structure and Function
965 across a Boreal Forest Fire Chronosequence. *Applied and Environmental Microbiology* 81,
966 7869–7880. doi:10.1128/aem.02063-15

967 Team, R.C., 2022. R: A language and environment for statistical computing.

968 Walters, W., Hyde, E.R., Berg-Lyons, D., Ackermann, G., Humphrey, G., Parada, A., Gilbert,
969 J.A., Jansson, J.K., Caporaso, J.G., Fuhrman, J.A., Apprill, A., Knight, R., 2015. Improved
970 Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker
971 Gene Primers for Microbial Community Surveys. *MSystems* 1, e00009-15.
972 doi:10.1128/msystems.00009-15

973 Wan, S., Hui, D., Luo, Y., 2001. Fire effects on nitrogen pools and dynamics in terrestrial
974 ecosystems: A meta-analysis. *Ecological Applications* 11, 1349–1365. doi:10.1890/1051-
975 0761(2001)011[1349:feonpa]2.0.co;2

976 Wang, T., Hamann, A., Spittlehouse, D.L., Murdock, T.Q., Wang, T., Hamann, A., Spittlehouse,
977 D.L., Murdock, T.Q., 2012. ClimateWNA—High-Resolution Spatial Climate Data for
978 Western North America. *Dx.Doi.Org* 51, 16–29. doi:10.1175/jamc-d-11-043.1

979 Weber, C.F., Lockhart, J.S., Charaska, E., Aho, K., Lohse, K.A., 2014. Bacterial composition of
980 soils in ponderosa pine and mixed conifer forests exposed to different wildfire burn severity.
981 *Soil Biology and Biochemistry* 69, 242–250. doi:10.1016/j.soilbio.2013.11.010

982 Westerberg, K., Elvang, A.M., Stackebrandt, E., Jansson, J.K., 2000. *Arthrobacter*
983 *chlorophenolicus* sp nov., a new species capable of degrading high concentrations of 4-
984 chlorophenol. *International Journal of Systematic and Evolutionary Microbiology* 50, 2083–
985 2092. doi:10.1099/00207713-50-6-2083

986 Whitman, E., Parisien, M.-A., Thompson, D., Flannigan, M., 2018a. Topoedaphic and Forest
987 Controls on Post-Fire Vegetation Assemblies Are Modified by Fire History and Burn Severity
988 in the Northwestern Canadian Boreal Forest. *Forests* 9, 151. doi:10.3390/f9030151

989 Whitman, E., Parisien, M.-A., Thompson, D.K., Hall, R.J., Skakun, R.S., Flannigan, M.D.,
990 2018b. Variability and drivers of burn severity in the northwestern Canadian boreal forest.
991 *Ecosphere* 9. doi:10.1002/ecs2.2128

992 Whitman, T., Whitman, E., Woolet, J., Flannigan, M.D., Thompson, D.K., Parisien, M.-A., 2019.
993 Soil Bacterial and Fungal Response to Wildfires in the Canadian Boreal Forest Across a Burn
994 Severity Gradient. *Soil Biology and Biochemistry* 138, 107571.

995 Wickham, H., 2016. *ggplot2: Elegant Graphics for Data Analysis*, Springer-Verlag New York.
996 Springer-Verlag New York.

997 Wickham, H., François, R., Henry, L., Müller, K., 2021. *dplyr: A Grammar of Data*
998 Manipulation.

999 Xu, S., Eisenhauer, N., Pellegrini, A.F.A., Wang, J., Certini, G., Guerra, C.A., Lai, D.Y.F., 2022.
1000 Fire frequency and type regulate the response of soil carbon cycling and storage to fire across
1001 soil depths and ecosystems: A meta-analysis. *Science of The Total Environment* 825, 153921.
1002 doi:10.1016/j.scitotenv.2022.153921

1003 Yilmaz, P., Parfrey, L.W., Yarza, P., Gerken, J., Pruesse, E., Quast, C., Schweer, T., Peplies, J.,
1004 Ludwig, W., Glöckner, F.O., 2013. The SILVA and “All-species Living Tree Project (LTP)”
1005 taxonomic frameworks. *Nucleic Acids Research* 42, D643–D648. doi:10.1093/nar/gkt1209

1006 Zhou, J., Deng, Y., Luo, F., He, Z., Tu, Q., Zhi, X., 2010. Functional Molecular Ecological
1007 Networks. *MBio* 1. doi:10.1128/mbio.00169-10

1008 Zhou, X., Sun, H., Sietiö, O.-M., Pumpanen, J., Heinonsalo, J., Köster, K., Berninger, F., 2020.
1009 Wildfire effects on soil bacterial community and its potential functions in a permafrost region
1010 of Canada. *Applied Soil Ecology* 156, 103713. doi:10.1016/j.apsoil.2020.103713

1011
1012 Additional References
1013
1014 Dawe, D., Parisien, M.-A., Van Dongen, A., Whitman, E. *Under review at Plant Ecology*. Initial
1015 Succession After Wildfire in Dry Boreal Forests of Northwestern North America. Preprint at
1016 <https://www.researchsquare.com/article/rs-1112059/v1>.
1017
1018 Woolet, J., Whitman, E., Parisien, M.-A., Thompson, D.K., Flannigan, M., Whitman, T. *Under*
1019 *review at FEMS Microbiology Ecology*. Short-interval reburns in the boreal forest alter soil
1020 bacterial communities compared to long-interval reburns, accompanied by pH shifts and poor
1021 conifer seedling establishment. Preprint on BiorXiv at (10.1101/2021.03.31.437944).