Version of Record: https://www.sciencedirect.com/science/article/pii/S1364032121009114
Manuscript_8e54b4d44eb059193ca59b912192469d

Stochastic Pre-Event Preparation for Enhancing
Resilience of Distribution Systems

Qianzhi Zhang®* Zhaoyu Wang?®, Shanshan MaP, Anmar Arif®

@Department of Electrical and Computer Engineering, Iowa State University, Ames, IA
50011, USA
bSchool of Electrical, Computer and Energy Engineering, Arizona State University,
Tempe, AZ 85287, USA
¢Department of Electrical Engineering, King Saud University, Riyadh 11451, Saudi
Arabia

Abstract

Extreme weather events are the common causes for power supply interrup-
tions and power outages in electrical distribution systems. Improving the
distribution system and enhancing its resilience is becoming crucial due to
the increased frequency of extreme weather events. Preparation and alloca-
tion of multiple flexible resources, such as mobile resources, fuel resources,
and labor resources before extreme weather events can mitigate the effects
of extreme weather events and enhance the resilience of power distribution
systems. In this paper, a two-stage stochastic mixed-integer linear program-
ming (SMILP) is proposed to optimize the preparation and resource allo-
cation process for upcoming extreme weather events, which leads to faster
and more efficient post-event restoration. The objective of the proposed

two-stage SMILP is to maximize the served load and minimize the operat-
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ing cost of flexible resources. The first stage in the optimization problem
selects the amounts and locations of different resources. The second stage
considers the operational constraints of the distribution system and repair
crew scheduling constraints. The proposed stochastic pre-event preparation
model is solved by a scenario decomposition method, Progressive Hedging
(PH), to ease the computational complexity introduced by a large number
of scenarios. Furthermore, to show the impact of solar photovoltaic (PV)
generation on system resilience, three types of PV systems are considered
during a power outage and the resilience improvements with different PV
penetration levels are compared. Numerical results from simulations on a
large-scale (more than 10,000 nodes) distribution feeder have been used to

validate the effectiveness and scalability of the proposed method.

Highlights:

e The power distribution systems are vulnerable to extreme weather

events.

e Proactive preparation and resource allocation in distribution systems
can mitigate the negative impacts of extreme weather events and en-

hance the power system’s resilience.

e A two-stage SMILP is proposed for upcoming extreme weather events,
where the first stage determines the optimal positions and numbers of
flexible resources and the second stage considers the network opera-

tional constraints and repair crew scheduling constraints.

e To fully consider the impacts of PV on system resilience, three types



of PV systems are considered during a power outage, including grid-
following PV system, hybrid on-grid/off-grid PV system, and grid-
forming PV system. The resilience improvements with different PV

penetration levels are also compared.
e A large-scale (more than 10,000 nodes) distribution feeder is used to
verify the scalability of the proposed proactive preparation model.
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1. Introduction

In recent years, the relationship between climate change, extreme weather
events, and power outages have become the focus of discussion worldwide
[1, 2]. The aging infrastructure of the electric grid combined with the increase
in severe weather events have highlighted the harsh reality of how vulnerable
the distribution grid is. For example, high temperatures from heatwaves will
limit the amount of energy that can be transferred [3], lightning strikes cause
faults on the lines [4], and the high winds from storms may damage overhead
lines [5]. In the U.S., extreme weather events have caused 50% to 60% of the
power interruptions [6] and $20 to $55 billion annual economic losses [7]. To
mitigate the impacts of extreme weather events on electric infrastructures
and power grids, extensive efforts have been devoted toward proposing the
concept of resilience. In [8], resilience was defined as a property of systems
representing their response to and recovery from low probability and high
impact events. The measurements of system resilience are disciplined into
ecological resilience [9], psychological resilience [10], risk management [11],
and energy security [12].

About 90% of weather-related power interruptions and outages are led by
failures in distribution systems [13]. Various resilience-enhancing strategies
have been studied in distribution systems [14], such as the long-term plan-
ning, the pre-event preparation, and the post-event restoration. The long-
term planning provides utility companies the actionable resilience-enhanced
methods to upgrade infrastructures in the long-term [15]. For example, the
optimal line hardening strategies against extreme weather-related hazards

are developed to physically improve electric infrastructure and enhance the
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long-term resilience of the distribution system in [16, 17, 18, 19]. The post-
event restoration is used by utility companies to prioritize service restoration
efforts, schedule repair crews and manage network reconfiguration after the
extreme weather events [20]. For example, the dynamic formation of micro-
grids (MGs) and optimal coordination between multiple MGs are considered
to restore the critical loads and services during power outages in [21, 22, 23].
In this paper, we focus on the pre-event preparation, which helps utility
companies to prepare resources in advance and mitigate the upcoming ex-
treme weather events. The pre-event preparation can not only avoid high
investment cost in long-term planning, but also efficiently reduce the outage
duration in post-even restoration.

There are existing studies that have investigated pre-event preparation
and resource allocation problems for the resilience enhancement of electric
distribution systems. In [24, 25, 26|, pre-event resource management in MGs
and pre-event operation strategies in distribution systems are considered to
enhance system resilience during extreme events. In [27], the position and
number of depots are determined, and the available resources are managed
at the pre-event stage. In [20], repair crews are pre-allocated to depots and
integrated with the restoration process for enhancing the response after a dis-
aster. A two-stage stochastic model is developed in [28] to determine staging
locations and allocate repair crews for disaster preparation while consider-
ing distribution system operation and crew routing constraints. In [29], the
authors developed a stochastic model for optimizing pre-event operation ac-
tions. The study optimized the topology of the network and the position of

crews for upcoming disturbances. In [30] and [31], a two-stage framework
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is developed to position mobile emergency generators (MEGs) for pre- and
post-disasters. Mobile energy storage devices (MESs) are investigated in [32]
and [33] for the resilience enhancement of power distribution systems. How-
ever, there are limitations in the above studies on pre-event preparation and
resource allocation. These limitations are described in the following:

(1) Pre-event allocation of various flexible resources: In practice, pre-
event preparation includes allocating various flexible resources, such as MEGs,
MESs, fuel resources for diesel generators, and repair crews. The optimal al-
location of those flexible resources can help utilities to achieve faster and more
efficient post-event power restoration. However, previous studies mainly fo-
cused on allocating specific flexible resources, rather than formulating a com-
plete optimization problem to pre-allocate various flexible resources together.

(2) Impacts of solar PV power on system resilience: Due to intermit-
tent characteristic of traditional distributed energy resources (DERs), such
as solar power, PV systems are not considered as a reliable resilient solution
[34]. However, the distributed nature of PV power can contribute to a more
resilient power system [35]. In practice, PV systems can be coupled with
energy storage technologies to enable grid-supporting capability [36], con-
tinuous operation during outages [37, 38], and economic operation [39, 40].
Different types of PV systems and the impacts of different PV penetration
levels on system resilience are ignored in most existing research works.

(3) Scalability of the solution algorithm: On one side, the stochastic pre-
event preparation model may suffer from computational inefficiency due to
a large number of scenarios; on the other side, a limited number of scenarios

may influence the stability and quality of the solutions. Therefore, the trade-
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off between computation time and solution accuracy needs to be studied for
stochastic pre-event preparation methods. In addition, a large-scale system
is needed to verify the scalability of solution algorithms.

To address these challenges, a two-stage stochastic mixed-integer lin-
ear program (SMILP) is proposed for pre-event preparation with the pre-
allocation of mobile resources, fuel resources and labor resources. Further-
more, the proposed pre-event preparation model considers different types of
PV systems and facilitates the benefits of leveraging high PV penetration
for improving the resilience of distribution grids. In this paper, resilience
improvement is quantified by the increased served load and reduced out-
age duration. To deal with the massive computation burden, the proposed
two-stage stochastic pre-event preparation problem is solved by a scenario
decomposition method, Progressive Hedging (PH) [41], while maintaining the
accuracy and stability of the solution [42]. Also, the quality of the solution
is validated by the multiple replication procedure (MRP) [43]. The main

contribution of this paper is three-folded:

e A two-stage SMILP model is proposed for pre-event preparation for up-
coming extreme weather events, where the first stage allocates MEGs,
MESs, fuel, and repair crews. The second stage considers distribution

system operation and repair crew scheduling constraints.

e The proposed pre-event preparation model considers three types of PV
systems during a power outage, including grid-following PV system,
hybrid on-grid/off-grid PV system and grid-forming PV system. The
improvements of resilience and the reduction of outage duration with

different PV penetration levels are also presented.
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e The proposed solution algorithm is tested through a solution validation
method to show its quality. In addition, a large-scale system, consist-
ing of more than 10,000 nodes, is used to verify the scalability of the

proposed pre-event preparation model.

The remainder of the paper is organized as follows: Section 2 describes
the proposed two-stage SMILP for pre-event preparation and resource alloca-
tion. Section 3 presents the PH solution algorithm, convergence analysis and
solution validation. Case study and results discussion are given in Section 4.

Conclusions are provided in Section 5.

2. Two-stage Stochastic Pre-event Preparation Model

The general framework of the proposed two-stage stochastic pre-event
preparation model is shown in Figure 1. Damage scenarios of extreme weather
events are generated based on the following information: (1) identification
of extreme weather events, such as flood, hurricane and winter storm; (2)
extreme weather event data and metric; (3) fragility model of test systems,
which describes the behavior of components under extreme weather events;
(4) damage status of components in test systems subject to specific extreme
weather events. To approximate the impact of extreme weather events to grid
infrastructures, damage scenarios can be generated by mapping the weather
data set to the failure probability of grid infrastructures. The Monte Carlo
sampling technique can be used to generate a manageable number of scenar-

ios. Adopted from [44], for wind speed w(t), the related failure probability
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Scenario generation Two-stage stochastic pre-event preparation model

Objective:
maximize served load and minimize operation costs

s o]
D LT

e Pre-allocation of fuel to
generators

e Pre-position of repair

crews to depots

e Pre-position and number
of MEGs and MESs

Monte Carlo sampling
method

e Operation of different
types of PV systems

e Schedule of repair crews

e Dispatch of DGs, MEGs
and MESs

e Network reconfiguration

Figure 1: The proposed two-stage stochastic pre-event preparation model.

prij(w(t)) of overhead line ij can be formulated as follows:

o) =1 =TT (1= mto) TT (- pato)) 1)

k=1

where p, (w(t)) and ps.(w(t)) are the failure probability of pole k at line
17 and the failure probability of conductor k£ between two poles, respectively.
m represents the number of distribution poles supporting line ij and n rep-
resents the number of conductor wires between two adjacent poles at line
ij, respectively. In equations (2) and (3), p;, (w(t)) and pser(w(t)) can be

expressed as follows:

p (w(t)) = [m(%)] (2)
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prea(w(®) = (1= pu) max (ppus(w(®), apa(w(®))  (3)

where ® is the operator of the log-normal cumulative distribution function
(CDF). mg and &g are the median capacity and the logarithmic standard
deviation of intensity measurement, respectively; pr., x(w(t)) represents the
direct wind-induced failure probability of conductor k and pg,.x(w(t)) rep-
resents the fallen tree-induced failure probability of conductor k. p, is
the probability that conductor £ is underground, which is more invulner-
able to extreme weather events. « represents the mean probability of tree-
induced damage for overhead conductors. More details of weather forecasting
methodologies, line fragility models and scenario generation can be found in
[45].

As shown in Figure 1, the proposed SMILP pre-event preparation model
has two stages: (i) Flexible resources are pre-allocated for upcoming ex-
treme weather events in the first stage, including the optimal decisions of
pre-position and number of MEGs, MESs and repair crews to depots, and
allocation of available fuel to generators. (ii) The second stage determines the
optimal hourly operation of the distribution systems and assigns repair crews
to the damaged components after the extreme weather events. Constraints
in the second stage include unbalanced optimal power flow constraints, net-
work reconfiguration and isolation constraints, and repair crew scheduling

constraints.

2.1. Objective Function

The objective function (4) is set to minimize operating cost and maximize

the served loads. There are three unit cost coefficients in the objective, unit
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cost of fuel consumption C¥ (L/kWh), unit cost of switching operation CSW
($), and unit cost of load shedding CP at bus i ($/kWh). The objective is

formulated as follows:

min Z Pr(s) (CFTF Z Z Z P@%,t,s + OV Z Z Vijt,s
Vs

vt V¢ Vi vVt VEeQsw

ISP - i), (4)
Vi Vo Vi

where Pr(s) is the probability of occurrence for scenario s. Based on the total
number of scenarios N, Pr(s) can be calculated as 1/|N,|. 7" is the rate
between fuel consumption and energy output of generators. The unit of ¥ is
L/kW h, which represents the fuel consumption in L per energy generation
in kKWh. Pﬁb’t’s is the active power output for fuel-based generator at bus i,
phase ¢, time ¢, and scenario s. Binary variable v;;, ; represents the status
of each switch, if a switch on line 75 is operated at time ¢, and scenario s,

then v;;+s = 1. The binary variable y; ; s represents the status of load at bus

1, time ¢, and scenario s. If the demand df, bt is served, then y;; s = 1.

2.2. First stage Constraints
The first stage constraints revolve around pre-allocating four important
resources that will be utilized after an extreme event: (i) MEGs, (ii) MESs,

(iii) fuel and (iv) repair crews.

2.2.1. Mobile Resources Allocation Constraints
Mobile resources can be used to restore energy for isolated areas that
are not damaged, and to restore critical loads. In addition, fuel manage-

ment is important after an extreme event to operate emergency generators.
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Distributing fuel after an extreme event may be difficult due to road condi-
tions. As for repair crews, pre-assigning them to different locations provides
a faster and more organized response. The constraints for allocating the

mobile resources are modeled as follows:

Z n;\/[EG _ NMEG (5>
VieQenN

Z n?/IES — NMES (6)
VieQon

MG | MBS < MU i ) (7)

where binary variables nM¥¢ and M5 equal 1 if a MEG or MES are allocated
to bus 4, respectively. The set (cn represents the set of candidate buses
for MEGs and MESs. Constraints (5) and (6) indicates that the number
of installed MEGs and MESs are equal to the number of available devices
(NMEG and NMES) In this work, it assumes that each bus can only have a

limited number of mobile units NMY, which is enforced by (7).

2.2.2. Fuel Resources Allocation Constraints

Define the set Qg = Qg U Qcn, where Qgq is the set of buses that have
fuel-based emergency generators. The fuel allocated to g must be limited
to the available amount of fuel. The fuel allocation constraints are presented

as follows:
Z n?uel < NFuel (8)

VieQgag

FiG < nfuel < F’Z-max,Vi c QG (9)
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Constraint (8) limits the total amount of allocated fuel to the available

Fuel
7

amount of fuel (NT) where nl is the amount of fuel allocated to the
generator at bus i. In this work, it assumes that not all the available fuel
needs to be allocated. Constraint (9) limits the amount of fuel on each site,
where FE is the amount of fuel already present for the generator at bus
1, and F"* represents the maximum capacity of fuel at bus i. Note that
the aim of fuel allocation is to decide how much fuel should be allocated to
the generators, which have defined locations in the system. Therefore, the
logistic process of transferring the fuel to the generators is not considered in

this paper, as this problem can be solved as a separate problem.

2.2.3. Repair Crew Allocation Constraints

To allocate the repair crews, our model divides the network into different
regions (dr. Each region will be assigned with different crews, who will con-
duct the repairs in that region. Note that the buses in a single region should
be relatively close to each other. These regions should be determined based
on the physical distances between the buses. Then the crews are allocated
to the regions, where the crews would be stationed at a depot. Therefore,
the distance is not explicitly considered in the mathematical model, but it is
considered in the preprocessing step of determining the regions.

Constraint (10) states that the total crews deployed to all regions is equal
to the number of available crews. This constraint can be relaxed by replacing
the equality with an inequality if some crews are required on standby. This
work assumes that all available crews will be deployed. Constraint (11) sets

a minimum and maximum number of crews that can be stationed in each
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individual region.

Z ngrew _ NCrew (1())

V'I‘GQR
NCrew,min < Crew < NCrew,max Ve 0 11
r >N, = 4V y VI € 3R ( )

where n™" is the number of repair crews in region r and NV is the total

number of crews. The number of repair crews is limited in each region, using
NCrew:min and NErew:max - depending on the size and capacity of the staging
locations.

After allocating the fuel in the first stage, each generator can be operated
in the second stage based on how much fuel is available. Similarly, once the
pre-position decisions of mobile resources and repair crews are obtained in

the first stage, the second stage can decide the mobile resource operation and

repair schedule.

2.3. Second stage Constraints

In the second stage of the proposed pre-event preparation model, the
constraints of PV systems and repair crew dispatch are mainly discussed. The
model also considers unbalanced power flow constraints, voltage constraints,

and network reconfiguration constraints [43, 46].

2.3.1. PV System Constraints

To thoroughly investigate the impact of PV systems on system resilience,
three types of PV systems are considered with different operation modes in
the second stage [43], Qpy = Q5,UQE,UQS,,. The main differences between
those three types of PV systems are their different behaviors during an out-

age: (i) Type 1: on-grid PV with grid-following operation mode (QSy,), where
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the PV will be switched off and disconnected during an outage. (ii) Type 2:
hybrid on-grid/off-grid PV + energy storage system (ESS) (QL,), where the
PV system operates on-grid in normal condition or off-grid during an outage
(serves local load only). (iii) Type 3: grid-forming PV 4+ ESS with grid-
forming capability (5,), this system can restore part of the network that is
not damaged if the fault is isolated. There are several benefits of considering
different types of PV systems during a power outage. For example, this kind
of model is more like a real-world application with multiple PV systems. In
addition, the PV systems are mostly considered as power supply resources in
previous research works, while the grid-forming and black-start capability of
PV systems during outages shall also be explored and discussed. The output

power of the PV systems is determined using the following equations:

L.
PV Tit,s rate . G
L.
PV Ti,t,s rate - G
0 S P)i,qb,t,s S Xit,s 1000W/m2PZ 7VZ € QPV7 (bat? S (13>
(]Di},;},/t,s)Q + ( }'::;)/,t,s)Q S (SFV)2>VZ € QPV/QS\h ¢7 t> S (14>
<‘P'LP,)(;{t,s)2 + (QE(Xt,s)Q S Xi,t,s(SZ‘PV)27Vi E QSVa 7ta S (15)

The PV active power output P}, . depends on the solar cell rating ca-
pacity P™¢ and the solar irradiance I,,,  [47]. The active power outputs of
Type 2 Q8 and Type 3 QS PVs can be determined in (12), while the active
power outputs of Type 1 QS,, PVs is calculated in (13). The binary variable
Xits = 0 if bus 7 is not energized at time ¢ and scenario s. Using advanced

PV smart inverters [48], the PVs can provide reactive power support Ec\b/,t,s’
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which is constrained by the capacity SV in (14) and (15). During an outage,
on-grid PVs are disconnected and the on-site load is not served by the PVs,
therefore, constraints (13) and (15) are multiplied by x;.s. PV systems of
types QS and QF; can disconnect from the grid and serve the on-site load.

An example network with a damaged line is given in Figure 2, where the
network is divided into three islands due to the damaged line. The grid-
forming sources in 25y, U Q¢ has the black start capability and can restore
the network. While PV system in types QS or QB can connect to the grid
only after the PV bus is energized. Island A has a grid-forming generator,
therefore, a microgrid is created and the PV system can participate. Island
B must be isolated because of the damaged line. Island C does not have any
grid-forming generators; hence, it will not be active and the grid-tied PV will

be disconnected.

Grid-forming generator Open switch Damaged line
e ! ,/
K *' ’/

SR B (R R (N BN

.......

Island A Island B @\ Island C

. i

Figure 2: A single line diagram of an example network with one damaged line.

To determine the connection status of the PV systems, a virtual network
is designed in parallel to the distribution network. The example network
shown in Figure 2 is transformed into a virtual network shown in Figure
3. To identify if an island network can be energized and restored by grid-

forming sources QS U Qg, a virtual network is built with virtual sources,
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Virtual source/generator Virtual load

. .
* Energized

Figure 3: A virtual network created for the example network in Figure 2.

virtual flows, and virtual loads. Each grid-forming generator is replaced by
a virtual source with infinite capacity. Other power sources without grid-
forming capability (e.g., grid-tied PVs) are removed. The virtual loads with
magnitude of 1 replace the actual loads. The virtual network scheme is

modeled using constraints (16)-(20).

Z Ujsyt,s"_ Z Ulfc,t,s:Xi,t,s‘i‘ Z v]fg’t?S,Vi,t,s (16)

VieQS, UQa VkeQxk (-19) VkeQK (i,.)
—(uprs) M < v,fﬁt,s < (upps) M, VEk € Qx,t, s (17)
0< v,fm < (nMEC 4 nMESYM Vi € Qe t, s (18)
Xits = Yins: Vi € On/{Q5y UQpy UQght, s (19)
Xis 100+ 0" >y Vi€ Qen,ty s (20)

A power balance equation is added for each virtual bus, which means that
if the virtual load at a bus is served, then that bus is energized. Therefore,

for islands without grid-forming generators, all buses will be de-energized as
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the virtual loads in the island cannot be served. Constraint (16) is the node

S is connected to

balance constraint for the virtual network. Virtual source v
buses with power sources that have the capability to restore the system. The
variable vl represents the virtual flow on line & and each bus is given a load of
1 that is multiplied by x;. Therefore, x; = 1 (bus i is energized) if the virtual
load can be served by a virtual source and 0 (bus i is de-energized) otherwise.
The virtual flow is limited by (17). The limits are multiplied by the status
of the line (ug; ) so that the virtual flow is 0 if a line is disconnected. The
virtual source can be used only if a generator is installed, as enforced by (18).
Define Qy as the set of all buses. If bus 7 is de-energized, then the load must

be shed (19), unless bus ¢ has a local power source with disconnect switch.

Constraint (20) is similar to (19) but with the presence of mobile sources.

2.3.2. Repair Crews Constraints

The second stage of the proposed pre-event model assigns repair crews to
damaged components that are in the area at where the crews are positioned.
Note that the travel time is neglected in this study, as the travel distances
between components in the same area is assumed to be small. An example for
crew assignment is given in Figure 4, where two working areas are assigned
for the crews. In this example, four damaged lines in Area 1 will be repaired
by crews 1-3, while crews 4 and 5 are responsible for the two damaged lines

in Area 2. The repair crews constraints can be presented as follows:

g Zkt,s S ngrewa VT, ta S (21>
VEEQDL(s)
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Z Zk,t,s S TIQS,Vk € QDL(S)7 S (22>

Vit
1 t—1 1 t—1
" E Zprs — L+ €< ups < T E Zk:,T,ka € QDL(s)y t,s (23)

ks r=1 kys r=1
2 H |
i 23 31 i E Sﬁl i
! 2 = B i i 4@ ﬁ%/ i
21 29 i | 46 1
l ¢ 2 03 a5 6 7 v 1l 3§ 36 37 38 39 40 41 I B
[ 3¢& I o S T 3E I a1
| 2 14-—:;—206—;7 33 ! 35 5 !
2 B 34 I bl
) 25 o i
i Area1 3 %ﬁ O @ o> i i Area2 A

Figure 4: A crew assignment example with 2 depots and 5 crews.

where 25, s is a binary variable, z;;s = 1 means that line k is being re-
paired at time ¢ on scenario s, and {pr) is the set of damaged lines on sce-
nario s. Constraint (21) limits the number of repairs being conducted in each
area according to the number of crews nS™" available. Constraint (22) defines
the repair time for each damaged line. The line status ug, s equals 0 until
the repair process is conducted for 7} time periods. Based on constraint
(23), let Ty, = 3, zrts = {0,0,1,1,1,0,0}, then uy;, = {0,0,0,0,0,1,1}.
For example, when ¢ = 6 and ¢ = 0.001, then constraint (23) becomes

0.668 < upgs < 1, therefore, upgs = 1.

2.3.83. Network Operational Constraints

The next set of constraints are related to the operation of distribution sys-
tems, including unbalanced power flow equations, radiality constraints, fuel
consumption, and energy storage constraints. The unbalanced distribution

system constraints are given below:

25



K K PV
Z Pb,gb,t,s - Z Pk,d),t s — 13 ¢ t,s + Pi,qﬁ,t,s
bEQK(’i,.) kEQK(.,i)

+ (P,¢>,t,3 - PinSt s) yi,t,sdzlij),t? VZ7 ¢) l,s

G
Z Qbgrts — Z Qhois = Qg + Qigrs

beQk (4,.) keQk (.,i)
+ QBN — iesd?, Vi, b, s
U s P < PE L S i P VE € QL 8, 8
Ukt sQK L Q}f@;,ts < Uk,t,s@?’maxaVk‘ € Ok, ¢, t, s
0< PG, < PE™ Vi€ Qpa, 6., s
0<Q%,, <QF™™ Vi€ Qpg, ¢y, s
0< PG, <nMECPE™ Vi€ Qoy, 6,1, 5
0< Qz(,}qb,ts < nMEGQG V€ Qen, O, t, S

Ui7¢,t73 o UJ Pit,s > 2(RZJPJ o,t,s + XZ] ij, ¢>,t,s)

+ (uk‘,t,s +pij,¢> - 2)Ma Vk7 Z] € QK7 ¢7 t> S

U7¢7t,5 - Yiots < Q(RlJPZI]{qﬁts + Xl] U,qﬁts)
+ (2 — Ukts — pzy,¢)M7 Vka Z.] € QK? ¢7 ta S

Xi,t,sUimm S Ui,gb,t,s S Xi,t,sUiInaxa\v/iu (bat? S
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Z Ukts < [Qpay|—1, V1 € Qoop, t, 5 (35)

ke

Constraints (24) and (25) are nodal power balance constraints of active
and reactive powers, where Pf]{ 1.5 and Qg s.t.s are active and reactive power
flows, and Pfd)’t’s and Qz%,t,s are the power outputs of the generators. The
active charging/discharging and reactive power outputs of energy storage
systems are denoted by PC}, |, PPF, and QFS5 . Constraints (26)-(27) rep-
resent the active and reactive power limits of the lines, where the limits
(P,f A and Qf’max) are multiplied by the line status binary variable wuy ; s.
Therefore, if a line is disconnected or damaged, power cannot flow through
it. Constraints (28)-(29) limit the output of the generators to PC™ and

7

QE™™  Similarly, the output of the MEGs is limited in (30)-(31) if an MEG
is installed (nMEC = 1).

Constraints (32) and (33) calculate the voltage difference along line k
between bus ¢ and bus j, where U, 4. is the square of voltage magnitude of
bus i. The big-M method is used to relax constraints (32) and (33), if lines
are damaged or disconnected. Rij and Xij are the unbalanced three-phase
resistance matrix and reactance matrix of line ¢j, which can be referred
to [48]. The vector p;; 4 represents the phases of line ij. Constraint (34)
guarantees that the voltage is limited within a specified region (U™" and
Ura), and is set to 0 if the bus is in an outage area. Constraint (35) can
guarantee the radiality network during the network reconfiguration. This
model assumes that all the possible loops can be identified by the depth-first

search method. The set of loops are given by ()., and the set of switches

in loop [ is given by Q). For each fuel-based generator, the total fuel
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Fuel ;

consumption Fj ; is limited by the available fuel resources n; " in constraint

(36), as follows:
ZS _rfzszb,t,s — fu617Vi € QG7¢7ta3 (36)
Vi

The operation constraints for ESSs and MESs include the change in state
of charge (SOC), charging and discharging limits, and reactive power limits.

Let Qgg be the set of buses with ESSs, and Qrsc = Qrs U Qon.

SOC SOC
E; Ezt 1 s+

2,t,8
P.Ch DlS i <37>
At(Zw iuint,a10h — 2w Digt /1D ),Vi € Qpsc, 9,1, 8

EC
EPOOM < BFOC < EPOOM Vi € Qpge, t, s (38)
0< PO, < hig POV Vi € Qpsc, 0,1, (39)
0 < PP < (1= higs) PV Vi € Qpsc, ¢, 5 (40)
—QPPPM < QS < QPSP Vi € Qpg, .t (41)
0 < PO, | < pMPS PO i e Qo 6t s (42)
0 < PP, < nMPSPPS™ i € Qon, 6,1, 5 (43)

MESQESS ,max < QE,)QSSS]&S < ?AESQ?S&maX,Vi c QCN, qf),t, s (44)

Constraint (37) calculates the state of charge (SOC) of ESSs (EPPS).

EZC P is the maximum capacity of the storage system. To ensure safe ESS

operation, the SOC and charging (P}, ) and discharging (P} ,) power
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of ESSs are constrained as shown in (38)-(40). Here, EYOC™™  EFOCmax
P and PP define the permissible range of SOC, and maximum
charging and discharging power, respectively. In constraints (39)-(40), the
binary variable h;;, indicates that ESSs cannot charge and discharge at
the same time instant. The ESS charging and discharging efficiency are
represented by ncy, and np;s, respectively. The reactive power of ESS, qubsts,
is kept within maximum limit, QF°®™ through constraint (41). For MES
units, the constraints (42)-(43) are presented so that if nMES = 0, the output
power is 0 at bus 7. The same method is applied for the reactive power in

(44).

3. Solution Algorithm

When the number of scenarios is finite, a two-stage stochastic problem
can be modeled as a single-stage large linear programming model, where
each constraint in the problem is duplicated for each realization of the ran-
dom data. As discussed before, the Monte Carlo sampling technique can
be used to generate a manageable number of scenarios for problems where
the number of realizations is too large or infinite. In this work, the scenario
decomposing method PH is used to solve the proposed two-stage stochastic

pre-event preparation problem.

3.1. Two-stage Progressive Hedging Algorithm
The proposed two-stage stochastic pre-event preparation model (4)-(44)

can be compactly reformulated as follows:

¢ =mina’z + Z Pr(s)bly, (45)

x,Y:
° Vs
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sit. (z,ys) € Qs, Vs (46)

In objective (45), the vectors a and b, include the coefficients related
with the compact first stage variable x and compact second stage variable
ys, respectively. The compact constraint (46) can ensure the feasibility for so-
lutions from each subproblem and scenario. When the the non-anticipativity
of the first stage variables is relaxed, then the PH algorithm decomposes the
extensive form (EF) (45)-(46) into scenario-based subproblems. Therefore,
the proposed stochastic pre-event preparation problem with the total num-
ber S of scenarios can be decomposed into S subproblems. In Algorithm
1, the proposed stochastic pre-event preparation problem is solved by PH
algorithm. In Step 1, we initialize the problem. In Step 2-3, the subproblems
with individual scenarios are solved. In Step 4, we obtain the expected value
x of the first stage solution by aggregating the solutions from Steps 2-3. Step
5 calculates the value of the multiplier ns. In Step 8, the subproblems are
solved by augmenting two terms: one linear term, which is proportional to
the multiplier 77~!; one squared two norm term of the difference between x
and 777!, which is penalized by rho. Steps 9-10 are similar as Steps 4-5. The
algorithm terminates once all first stage decisions z, converge to a common Z.
Note that the two-stage model has been reformulated to a single-level prob-
lem for each individual scenario. In Algorithm 1, 7 is the iteration number,

p is a penalty factor and e is the threshold value for termination.

3.2. Convergence Analysis and Solution Validation

As shown in Algorithm 1, the convergence metric ¢g” for the progressive

hedging algorithm at each iteration 7 is expressed as the deviation from the
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Algorithm 1 PH Algorithm for Solving Stochastic Pre-event Preparation
Problem

Initialization: the iteration 7.

For each individual scenario s € .S, solve.

2 = argmin, {a"z + 0Ty, : (2,,) € Q).

2 =" s Pr(s)xgﬂ.

ngT) = p(ng) —z(7),

T:=717+ 1L

For each individual scenario s € .S, solve.

27 = argmin, {7z + by, + 07 Vo + 2|2l — 20|12 (2, 1.) € Q..
=3 s Pr(S)ng).

) =+ p(al” - 20).

Lif Y. Pr(s)||at” — 27| < ¢ then

Go to Step 5.

: else

terminate.

. end if

—_

e e e
P S ol

mean summed across all first stage variables z4(7) and the average value of

the first stage variable z7 as follows:

g =Y Pr(s)|a,(r) - 77| (47)
seS

Since the solution is obtained using a limited number of damage scenar-
ios, the quality of the solution requires verification. Adopted from [49], the
MRP can be applied to repeat generating S scenarios and solving the pro-
posed model for S times. Then the confidence interval (CI) is constructed to
calculate the optimality gap. The detailed steps in MRP are shown in Algo-
rithm 2, where G,,(n,) is the gap estimate and s%(n,) is the sample variance.

Numerical results for the convergence analysis and solution validation of the
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Algorithm 2 Multiple Replication Procedure

1: Initialization: Set o € (0, 1) (e.g., a = 0.05), sample size n, replication
size ny and a candidate solution z € X.

2: For k =1,2,...,n,.

3: Sample i.i.d. observations (¥, (*2, ..., (** from the distribution of (.
4: Solve (SP,) using ¢*,¢*2, ..., (" to obtain z**.

5: Calculate G (%) = n~" Y0 (f(&,¢M) — f(ayr, ¢)).

6: End for.

7. Calculate gap estimate G, (n,) := nig Sore, GE(7).

8: Calculate sample variance s%(ng) := ﬁ 22 (GE(2) — Gu(ny))?.

9: Let € :=t,,1.a56(ng)/\/Mg-

10: Obtain one-sided CI on [0, G, (ny) + €,].

11: Output: Approximate (1 — «) as the level confidence interval on ;.

test case are given in the next section.

4. Case Study

This section uses a large-scale system as a test case to verify the scalability
and effectiveness of the two-stage stochastic pre-event preparation model.
This large-scale system consists of 3 existing test systems, EPRI ckt5, ckt7
systems [50], and TEEE 8500 bus system [51], Following the suggestions from
[15], the unit costs in the simulation are CP = 14$/kW h for load shedding at
all buses, C5W = 8§ for each line switch, C¥ = 1$/L and r¥ = 0.3L/kWh for
fuel consumption of generators. The Pyomo and Gurobi mixed-integer solver
[52] are used to solve the proposed stochastic model. All experiments are
implemented on the Iowa State University Condo cluster, whose individual
blade consists of two 2.6 GHz 8-Core Intel E5-2640 v3 processors and 128
GB of RAM.
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4.1. Pre-event Preparation Results

This case study include 9 depots that are hosting a total of 27 crews,
9 dispatchable DGs, 8 MEGs, 3 MESs, 123 switches, 5 small PVs, 15 large
PVs, and 12 ESSs. The active and reactive power capacities of the 9 DGs are
300 kW and 250 kVAr. The active power capacity of small PVs ranges from
11 kW to 22 kW. The active power capacity of large PVs is 500 kW. The 12
ESSs are rated at 500 kW / 3500 kWh. The pre-event preparation model of
the large-scale system is solved in 10.2 hours with 10 damage scenarios. The
locations of MEGs, MESs, and number of crews are shown in Figure 5. 27
crews are allocated to 9 different depots. The value inside the crew depot in
Figure 5 represents the number of crews assigned to that depot. Areas with
a large number of crews indicate that the lines in the area have high damage

probabilities.
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Figure 5: Resource allocation of large-system with the proposed model.

As discussed in Section 3.2, the convergence metric can be used to eval-
uate the convergence speed of the proposed model. At the same time, the
computational speed with and without a soft-start solution are compared.
In this paper, a soft-start solution means that the previously computed so-
lution in other instances will be used as the starting point. The comparison
result is shown in Figure 6. If the convergence metric reaches the convergence
threshold of 0.01, the algorithm will stop and obtain the optimal solution.
The instance with a soft-start solution converges at 57 iterations and takes
10.2 hours. The case without a soft-start solution converges after 100 itera-

tions and takes 24.3 hours. To test the solution quality with MRP, based on
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the limited number of generated damage scenarios, the one-sided CI of the
obtained solution is [0,12.48%]. This small gap indicates that the damage

scenarios are representative and the solution is stable with high quality.
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Figure 6: The convergence metric comparison with and without soft-start solutions.

To evaluate the performance of the developed pre-event preparation model,
the model is compared to a base model. The base case is generated by the
following steps: (i) one MEG is pre-positioned at each substation. (ii) Extra
MEGs are pre-positioned at high-priority loads. (iii) PV and ESS are not
considered. (iv) Fuel is allocated to the MEGs such that the MEGs can op-
erate for at least 24 hours. (v) Crews are allocated evenly between depots.
In this work, the average outage duration is calculated by dividing the sum
of outage duration for the loads by the total number of loads. To compare

the proposed model and the base model, a random scenario is generated and
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test the response of the system. The generated scenario has 103 damaged
lines, which are aggregated to 34 damaged areas in Figure 7. Each circle
represents the repair time needed for the specific damaged area considering

all the aggregated damaged lines.

Figure 7: Aggregated damaged areas.

The comparison between the base model and the proposed method is
shown in Figure. 8. In the base model, the total restored energy is 231,422.38
kWh and the average outage duration is 14.69 hours. In the proposed
method, the total restored energy is 291,727.48 kWh and the average out-
age duration is 11.28 hours. Therefore, approximately 20.67% more loads
are served by the proposed method and the outage duration decreased by

30.22%.
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Figure 8: Comparison between the base model and the proposed method.

4.2. Impacts of Solar PV on System Resilience

To show the advantages of the PV systems, the responses of the system
with the proposed pre-event preparation method and different PV penetra-
tion levels are tested. Three rated capacities of PV systems are considered:
(i) Capacity 1 PV, which represents residential PV panels and the rated ca-
pacity is assumed to be 6 kW; (ii) Capacity 2 PV, which represents mid-size
PV systems and the rated capacity is assumed to be 48 kW; (iii) Capacity
3 PV, which represents large utility PV farm and the rated capacity is as-
sumed to be 2000 kW. Based on the number of different types of PVs, 6
PV penetration levels are defined as 9%, 27%, 45%, 63%, 81%, and 99%.
The number of Capacity 1, 2, and 3 PVs for each PV penetration level is
summarized in Table 1. To better collaborate the setting of PV penetration,

the number of dispatchable DGs has been changed to 10 and the positions
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of those DGs have been changed accordingly.

Table 1: PV penetration levels and the number of PV systems with different rated capac-
ities

PV Penetration Capacity 1 Capacity 2 Capacity 3

Level PV PV PV

9% 3 1 1
27% 24 4 3
45% 40 7 3
63% 63 9 7
81% 72 12 9
99% 38 15 11

Based on the results of Figure. 9, it can be observed that different PV
penetration levels have different allocation results for the flexible resources,

including the positions of MEGs, MESs, and the number of repair crews.
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Figure 9: Pre-event resource allocation results with different PV penetration levels.
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Figure. 10 shows the percentage of power served during the event, and af-
ter the repair process starts. Table 2 and Table 3 compare the amount of load

served and average outage duration with different levels of PV penetration.
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Figure 10: Load served percentage comparison of the proposed model with various PV
penetration levels and the base model.

Based on the results from Figure. 10, Table 2, and Table 3, it can be
seen that the penetration of PV contributes to enhancing system resilience.
Approximately 31.13% more loads are served than the base model when
the proposed method with 99% PV penetration is used. Also, the average
outage duration decreased by 31.12%. However, compared with 81% PV
penetration level, the proposed method with 99% PV penetration does not

have significant improvement.
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Table 2: The amount of load served and resilience improvement with different PV pene-
tration levels

PV Penetration Load Served Resilience Improvement

Level (kWh) Percentage(%)
0 251,210.72 -

9% 318,668.37 26.85
27% 335,525.77 33.56
45% 336,710.74 34.04
63% 344,588.22 37.17
81% 360,668.04 43.57
99% 364,785.93 45.21

Table 3: The amount of average outage duration and outage decreased percentage with
different levels of PV penetration

PV Penetration Average Outage Outage Decreased

Level Duration (hour) Percentage(%)
0 14.69 -

9% 12.33 16.07
27% 11.72 20.22
45% 11.65 20.69
63% 11.21 23.69
81% 10.45 28.86
99% 10.12 31.11

5. Conclusion

Extreme weather events may severely impact the electric grid infrastruc-
tures, causing major damage and faults in the system. This leads to power

outages for an extended period. It is up to the electric utility to plan how
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to prepare for such an event and restore power to the customers after the
event. When an extreme weather event hits the distribution system, the
damaged network may hinder the physical delivery of mobile resources and
repair crews. In addition, without proper preparation, utilities will be over-
whelmed with the number of tasks that must be conducted, including as-
signing tasks to crews, managing crews coming from different areas, and
dispatching portable generators to supply critical customers. Therefore, to
achieve fast and efficient response, it is critical to pre-position crews, equip-
ment, and other resources before the severe event occurs. In this paper, a
two-stage stochastic pre-event preparation and resource allocation method is
proposed for upcoming extreme weather events, which enhances the system
resilience and enables more efficient post-event restoration. The proposed
pre-event method leverages the pre-allocation of mobile resources, fuel re-
sources, and labor resources. By considering different operation modes of
distributed PV systems, the proposed model also facilitates the benefits of
solar powers in the resilience improvement of distribution grids. According
to the case studies, the following observations are found: (i) Compared to
the base model without pre-event resource allocation, the proposed pre-event
preparation model can serve more loads and reduce the outage duration. (ii)
Based on the response of the system with different PV penetration levels, it
can be observed that the proposed pre-event preparation model with high
PV penetration can further improve system resilience and reduce the outage
duration. Therefore, PV systems can play a critical role in improving dis-
tribution grid resilience and further promote renewable energy deployment.

(iii) By considering the trade-off between solution accuracy and computation
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efficiency, the result of MRP indicates that the proposed model’s solutions
with a limited number of scenarios can be very stable and of high quality.
The scalability of the proposed pre-event preparation model is verified with
a large-scale system. The trade-off between the cost of pre-event resource
allocation and the risk associated with damage loss will be considered under

upcoming extreme weather events in future work.
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