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Abstract

Extreme weather events are the common causes for power supply interrup-

tions and power outages in electrical distribution systems. Improving the

distribution system and enhancing its resilience is becoming crucial due to

the increased frequency of extreme weather events. Preparation and alloca-

tion of multiple flexible resources, such as mobile resources, fuel resources,

and labor resources before extreme weather events can mitigate the effects

of extreme weather events and enhance the resilience of power distribution

systems. In this paper, a two-stage stochastic mixed-integer linear program-

ming (SMILP) is proposed to optimize the preparation and resource allo-

cation process for upcoming extreme weather events, which leads to faster

and more efficient post-event restoration. The objective of the proposed

two-stage SMILP is to maximize the served load and minimize the operat-
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ing cost of flexible resources. The first stage in the optimization problem

selects the amounts and locations of different resources. The second stage

considers the operational constraints of the distribution system and repair

crew scheduling constraints. The proposed stochastic pre-event preparation

model is solved by a scenario decomposition method, Progressive Hedging

(PH), to ease the computational complexity introduced by a large number

of scenarios. Furthermore, to show the impact of solar photovoltaic (PV)

generation on system resilience, three types of PV systems are considered

during a power outage and the resilience improvements with different PV

penetration levels are compared. Numerical results from simulations on a

large-scale (more than 10,000 nodes) distribution feeder have been used to

validate the effectiveness and scalability of the proposed method.

Highlights:

• The power distribution systems are vulnerable to extreme weather

events.

• Proactive preparation and resource allocation in distribution systems

can mitigate the negative impacts of extreme weather events and en-

hance the power system’s resilience.

• A two-stage SMILP is proposed for upcoming extreme weather events,

where the first stage determines the optimal positions and numbers of

flexible resources and the second stage considers the network opera-

tional constraints and repair crew scheduling constraints.

• To fully consider the impacts of PV on system resilience, three types
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of PV systems are considered during a power outage, including grid-

following PV system, hybrid on-grid/off-grid PV system, and grid-

forming PV system. The resilience improvements with different PV

penetration levels are also compared.

• A large-scale (more than 10,000 nodes) distribution feeder is used to

verify the scalability of the proposed proactive preparation model.

Keywords

Extreme weather events, Pre-event preparation, PV penetration, Re-

silience, Resource allocation, Two-stage stochastic model
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Notations

List of abbreviations

CI Confidence interval

DERs Distributed energy resources

DGs Distributed generators

EF Extensive form

ESS Energy storage system

MEGs Mobile emergency generators
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MESs Mobile storage devices

MRP Multiple replication procedure

PH Progressive hedging

PV Photovoltaic generation

SOC State of charge

SMILP Stochastic mixed-integer linear programming

Indexes

i, j Index of bus

ij, k Index of line

l Index of network loop

s Index of scenario

t Index of time instant

Sets

ΩB Set of line switches

ΩCN Set of candidate buses for MEGs and MESs

ΩDL Set of damaged lines

ΩEG Set of buses that have fuel-based emergency generators

ΩES Set of buses with ESSs

ΩESC Set of buses with all types of storage units
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ΩG Set of generators

ΩK Set of lines

Ωloop Set of network loops

ΩN Set of buses

ΩR Set of network regions

ΩPV Set of PV systems

ΩG
PV Set of grid-following PV systems

ΩH
PV Set of hybrid on-grid/off-grid PV systems

ΩC
PV Set of grid-forming PV systems

Parameters

a, bs Coefficients associated with the compact first stage

variable x and compact second stage variable ys

CF Unit cost of fuel consumption of generators (L/kWh)

CSW Unit cost of line switches ($)

CD
i Unit cost of load shedding ($/kWh)

dp
i,φ,t Active power demand for bus i, phase φ and time t

ECap
i Maximum capacity of ESSs in bus i

ESOC,max
i , ESOC,min

i Maximum and minimum permissible range of SOC in

bus i
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PCh,max
i , PDis,max

i Maximum charging and discharging powers of the bat-

tery at bus i

PK,max
k , QK,max

k Active/reactive power flow limits

PG,max
i , QG,max

i Active/reactive power output limits of generator

PPV
i,φ,t,s Active power output of PV systems

P rate
i Rate capacity of PV systems

pl,ij(w(t)) Failure probability of the overhead line ij with wind

speed w at time t

plk(w(t)) Failure probability of the pole k with wind speed w at

time t

pfc,k(w(t)) Failure probability of conductor k between two poles

with wind speed w at time t

pfw,k(w(t)) Direct wind-induced failure probability of conductor k

with wind speed w at time t

pftr,k(w(t)) Fallen tree-induced failure probability of conductor k

with wind speed w at time t

pu Probability that conductor k is underground

Pr(s) Probability of occurrence for scenario s

pij,φ Phases of line ij

QESS,max
i Maximum limit of reactive power output of ESS

w(t) Wind speed at time t
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m Number of distribution poles supporting line

mR Median capacity of conductor

NMEG Number of available MEGs

NMES Number of available MESs

NMU
i Number of mobile units

NFuel
i Amount of available fuel

NCrew Total number of crews.

NCrew,min
r , NCrew,max

r Minimum and maximum number of available repair

crews

NFuel
i Amount of available fuel

n Number of conductor wires between two adjacent poles

R̂ij, X̂ij Unbalanced three-phase resistance matrix and reac-

tance matrix of line ij

rF Rate between fuel consumption and power output of

generators (L/kWh)

SPV
i PV capacity

Iri,t,s Solar irradiance

Umin
i , Umax

i Maximum and minimum limits of squared voltage

α Average tree-induced damage probability of overhead

conductor
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ξR Logarithmic standard deviation of intensity measure-

ment

ηCh, ηDis ESS charging and discharging efficiencies

τ Iteration number for PH

ρ Penalty factor for PH

ε Termination threshold for PH

Continuous Variables

ESOC
i,t,s State of charge (SOC) of ESSs for bus i, time t and

scenario s

Fi,s Total fuel consumption of generators

PK
ij,φ,t,s, Q

K
ij,φ,t,s Active/reactive power flows for line ij, phase φ, time

t and scenario s

PG
i,φ,t,s, Q

G
i,φ,t,s Active/reactive power outputs for fuel-based generator

for bus i, phase φ, time t and scenario s

PCh
i,φ,t,s, P

Dis
i,φ,t,s Active charging/discharging power output of ESS for

bus i, phase φ, time t of scenario s

QESS
i,φ,t,s Reactive power output of ESS for bus i, phase φ, time

t and scenario s

QPV
i,φ,t,s Reactive power output of PV for bus i, phase φ, time

t and scenario s

nFuel
i Amount of fuel allocated to the generator for bus i
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nCrew
r Number of repair crews for region r

Ui,φ,t,s Square of voltage magnitude for bus i, phase φ, time t

and scenario s

vS Virtual source

vf
k Virtual flow for line k

x, ys Compact first stage and second stage variables

x̄ Expected value of first stage variable

Discrete Variables

hi,t,s Binary variable indicating if ESS is charging/discharging

(1) or not (0) for bus i, phase φ, time t and scenario s

nMEG
i , nMES

i Binary variable indicating if an MEG or MES is allo-

cated (1) or not allocated (0) to bus i

uk,t,s Binary variable indicating if line k is energized (1) or

not (0) for time t and scenario s

yi,t,s Binary variable indicating if load is restored (1) or not

(0) for bus i, phase φ, time t and scenario s

zk,t,s Binary variable indicating if line k is being repaired

(1) or not (0) for time t and scenario s

γij,t,s Binary variable indicating if switch is closed (1) or not

(2) for line ij, phase φ, time t and scenario s

χi,t,s Binary variable indicating if bus i is energized (1) or

not (0) for time t and scenario s
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1. Introduction

In recent years, the relationship between climate change, extreme weather

events, and power outages have become the focus of discussion worldwide

[1, 2]. The aging infrastructure of the electric grid combined with the increase

in severe weather events have highlighted the harsh reality of how vulnerable

the distribution grid is. For example, high temperatures from heatwaves will

limit the amount of energy that can be transferred [3], lightning strikes cause

faults on the lines [4], and the high winds from storms may damage overhead

lines [5]. In the U.S., extreme weather events have caused 50% to 60% of the

power interruptions [6] and $20 to $55 billion annual economic losses [7]. To

mitigate the impacts of extreme weather events on electric infrastructures

and power grids, extensive efforts have been devoted toward proposing the

concept of resilience. In [8], resilience was defined as a property of systems

representing their response to and recovery from low probability and high

impact events. The measurements of system resilience are disciplined into

ecological resilience [9], psychological resilience [10], risk management [11],

and energy security [12].

About 90% of weather-related power interruptions and outages are led by

failures in distribution systems [13]. Various resilience-enhancing strategies

have been studied in distribution systems [14], such as the long-term plan-

ning, the pre-event preparation, and the post-event restoration. The long-

term planning provides utility companies the actionable resilience-enhanced

methods to upgrade infrastructures in the long-term [15]. For example, the

optimal line hardening strategies against extreme weather-related hazards

are developed to physically improve electric infrastructure and enhance the
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long-term resilience of the distribution system in [16, 17, 18, 19]. The post-

event restoration is used by utility companies to prioritize service restoration

efforts, schedule repair crews and manage network reconfiguration after the

extreme weather events [20]. For example, the dynamic formation of micro-

grids (MGs) and optimal coordination between multiple MGs are considered

to restore the critical loads and services during power outages in [21, 22, 23].

In this paper, we focus on the pre-event preparation, which helps utility

companies to prepare resources in advance and mitigate the upcoming ex-

treme weather events. The pre-event preparation can not only avoid high

investment cost in long-term planning, but also efficiently reduce the outage

duration in post-even restoration.

There are existing studies that have investigated pre-event preparation

and resource allocation problems for the resilience enhancement of electric

distribution systems. In [24, 25, 26], pre-event resource management in MGs

and pre-event operation strategies in distribution systems are considered to

enhance system resilience during extreme events. In [27], the position and

number of depots are determined, and the available resources are managed

at the pre-event stage. In [20], repair crews are pre-allocated to depots and

integrated with the restoration process for enhancing the response after a dis-

aster. A two-stage stochastic model is developed in [28] to determine staging

locations and allocate repair crews for disaster preparation while consider-

ing distribution system operation and crew routing constraints. In [29], the

authors developed a stochastic model for optimizing pre-event operation ac-

tions. The study optimized the topology of the network and the position of

crews for upcoming disturbances. In [30] and [31], a two-stage framework

11



is developed to position mobile emergency generators (MEGs) for pre- and

post-disasters. Mobile energy storage devices (MESs) are investigated in [32]

and [33] for the resilience enhancement of power distribution systems. How-

ever, there are limitations in the above studies on pre-event preparation and

resource allocation. These limitations are described in the following:

(1) Pre-event allocation of various flexible resources: In practice, pre-

event preparation includes allocating various flexible resources, such as MEGs,

MESs, fuel resources for diesel generators, and repair crews. The optimal al-

location of those flexible resources can help utilities to achieve faster and more

efficient post-event power restoration. However, previous studies mainly fo-

cused on allocating specific flexible resources, rather than formulating a com-

plete optimization problem to pre-allocate various flexible resources together.

(2) Impacts of solar PV power on system resilience: Due to intermit-

tent characteristic of traditional distributed energy resources (DERs), such

as solar power, PV systems are not considered as a reliable resilient solution

[34]. However, the distributed nature of PV power can contribute to a more

resilient power system [35]. In practice, PV systems can be coupled with

energy storage technologies to enable grid-supporting capability [36], con-

tinuous operation during outages [37, 38], and economic operation [39, 40].

Different types of PV systems and the impacts of different PV penetration

levels on system resilience are ignored in most existing research works.

(3) Scalability of the solution algorithm: On one side, the stochastic pre-

event preparation model may suffer from computational inefficiency due to

a large number of scenarios; on the other side, a limited number of scenarios

may influence the stability and quality of the solutions. Therefore, the trade-
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off between computation time and solution accuracy needs to be studied for

stochastic pre-event preparation methods. In addition, a large-scale system

is needed to verify the scalability of solution algorithms.

To address these challenges, a two-stage stochastic mixed-integer lin-

ear program (SMILP) is proposed for pre-event preparation with the pre-

allocation of mobile resources, fuel resources and labor resources. Further-

more, the proposed pre-event preparation model considers different types of

PV systems and facilitates the benefits of leveraging high PV penetration

for improving the resilience of distribution grids. In this paper, resilience

improvement is quantified by the increased served load and reduced out-

age duration. To deal with the massive computation burden, the proposed

two-stage stochastic pre-event preparation problem is solved by a scenario

decomposition method, Progressive Hedging (PH) [41], while maintaining the

accuracy and stability of the solution [42]. Also, the quality of the solution

is validated by the multiple replication procedure (MRP) [43]. The main

contribution of this paper is three-folded:

• A two-stage SMILP model is proposed for pre-event preparation for up-

coming extreme weather events, where the first stage allocates MEGs,

MESs, fuel, and repair crews. The second stage considers distribution

system operation and repair crew scheduling constraints.

• The proposed pre-event preparation model considers three types of PV

systems during a power outage, including grid-following PV system,

hybrid on-grid/off-grid PV system and grid-forming PV system. The

improvements of resilience and the reduction of outage duration with

different PV penetration levels are also presented.
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• The proposed solution algorithm is tested through a solution validation

method to show its quality. In addition, a large-scale system, consist-

ing of more than 10,000 nodes, is used to verify the scalability of the

proposed pre-event preparation model.

The remainder of the paper is organized as follows: Section 2 describes

the proposed two-stage SMILP for pre-event preparation and resource alloca-

tion. Section 3 presents the PH solution algorithm, convergence analysis and

solution validation. Case study and results discussion are given in Section 4.

Conclusions are provided in Section 5.

2. Two-stage Stochastic Pre-event Preparation Model

The general framework of the proposed two-stage stochastic pre-event

preparation model is shown in Figure 1. Damage scenarios of extreme weather

events are generated based on the following information: (1) identification

of extreme weather events, such as flood, hurricane and winter storm; (2)

extreme weather event data and metric; (3) fragility model of test systems,

which describes the behavior of components under extreme weather events;

(4) damage status of components in test systems subject to specific extreme

weather events. To approximate the impact of extreme weather events to grid

infrastructures, damage scenarios can be generated by mapping the weather

data set to the failure probability of grid infrastructures. The Monte Carlo

sampling technique can be used to generate a manageable number of scenar-

ios. Adopted from [44], for wind speed w(t), the related failure probability
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Scenario generation Two-stage stochastic pre-event preparation model

Objective: 

maximize served load and minimize operation costs 

 Pre-position and number 

of MEGs and MESs

 Pre-allocation of fuel to 

generators

 Pre-position of repair 

crews to depots

First stage: preparation of flexible resources

Fuel resourcesMobile resources Repair crews

Second stage: system operational constraints

PV connectivity and 

operational constraints

Network operational 

constraints

Resource 

constraints

 Operation of different 

types of PV systems

 Schedule of repair crews

 Dispatch of DGs, MEGs 

and MESs

 Network reconfiguration

Monte Carlo sampling 

method

Physical characteristic of distribution 

grid infrastructures

 Fragility model of distribution 

grid infrastructures

Damage scenario of distribution grid 

infrastructures for upcoming extreme 

weather events

Identification of extreme weather events

Extreme weather event data and metric

Figure 1: The proposed two-stage stochastic pre-event preparation model.

pl,ij(w(t)) of overhead line ij can be formulated as follows:

pl,ij(w(t)) = 1−
m∏
k=1

(
1− plk(w(t))

) n∏
k=1

(
1− pfc,k(w(t))

)
(1)

where plk(w(t)) and pfc,k(w(t)) are the failure probability of pole k at line

ij and the failure probability of conductor k between two poles, respectively.

m represents the number of distribution poles supporting line ij and n rep-

resents the number of conductor wires between two adjacent poles at line

ij, respectively. In equations (2) and (3), plk(w(t)) and pfc,k(w(t)) can be

expressed as follows:

plk(w(t)) = Φ
[

ln

(
w(t)/mR

ξR

)]
(2)
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pfc,k(w(t)) = (1− pu) max
(
pfw,k(w(t)), αpftr,k(w(t))

)
(3)

where Φ is the operator of the log-normal cumulative distribution function

(CDF). mR and ξR are the median capacity and the logarithmic standard

deviation of intensity measurement, respectively; pfw,k(w(t)) represents the

direct wind-induced failure probability of conductor k and pftr,k(w(t)) rep-

resents the fallen tree-induced failure probability of conductor k. pu is

the probability that conductor k is underground, which is more invulner-

able to extreme weather events. α represents the mean probability of tree-

induced damage for overhead conductors. More details of weather forecasting

methodologies, line fragility models and scenario generation can be found in

[45].

As shown in Figure 1, the proposed SMILP pre-event preparation model

has two stages: (i) Flexible resources are pre-allocated for upcoming ex-

treme weather events in the first stage, including the optimal decisions of

pre-position and number of MEGs, MESs and repair crews to depots, and

allocation of available fuel to generators. (ii) The second stage determines the

optimal hourly operation of the distribution systems and assigns repair crews

to the damaged components after the extreme weather events. Constraints

in the second stage include unbalanced optimal power flow constraints, net-

work reconfiguration and isolation constraints, and repair crew scheduling

constraints.

2.1. Objective Function

The objective function (4) is set to minimize operating cost and maximize

the served loads. There are three unit cost coefficients in the objective, unit
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cost of fuel consumption CF (L/kWh), unit cost of switching operation CSW

($), and unit cost of load shedding CD
i at bus i ($/kWh). The objective is

formulated as follows:

min
∑
∀s

Pr(s)
(
CFrF

∑
∀t

∑
∀φ

∑
∀i

PG
i,φ,t,s + CSW

∑
∀t

∑
∀k∈ΩSW

γij,t,s

+
∑
∀t

∑
∀φ

∑
∀i

CD
i (1− yi,t,s)dp

i,φ,t

)
(4)

where Pr(s) is the probability of occurrence for scenario s. Based on the total

number of scenarios Ns, Pr(s) can be calculated as 1/|Ns|. rF is the rate

between fuel consumption and energy output of generators. The unit of rF is

L/kWh, which represents the fuel consumption in L per energy generation

in kWh. PG
i,φ,t,s is the active power output for fuel-based generator at bus i,

phase φ, time t, and scenario s. Binary variable γij,t,s represents the status

of each switch, if a switch on line ij is operated at time t, and scenario s,

then γij,t,s = 1. The binary variable yi,t,s represents the status of load at bus

i, time t, and scenario s. If the demand dp
i,φ,t is served, then yi,t,s = 1.

2.2. First stage Constraints

The first stage constraints revolve around pre-allocating four important

resources that will be utilized after an extreme event: (i) MEGs, (ii) MESs,

(iii) fuel and (iv) repair crews.

2.2.1. Mobile Resources Allocation Constraints

Mobile resources can be used to restore energy for isolated areas that

are not damaged, and to restore critical loads. In addition, fuel manage-

ment is important after an extreme event to operate emergency generators.
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Distributing fuel after an extreme event may be difficult due to road condi-

tions. As for repair crews, pre-assigning them to different locations provides

a faster and more organized response. The constraints for allocating the

mobile resources are modeled as follows:

∑
∀i∈ΩCN

nMEG
i = NMEG (5)

∑
∀i∈ΩCN

nMES
i = NMES (6)

nMEG
i + nMES

i ≤ NMU
i ,∀i ∈ ΩCN (7)

where binary variables nMEG
i and nMES

i equal 1 if a MEG or MES are allocated

to bus i, respectively. The set ΩCN represents the set of candidate buses

for MEGs and MESs. Constraints (5) and (6) indicates that the number

of installed MEGs and MESs are equal to the number of available devices

(NMEG and NMES). In this work, it assumes that each bus can only have a

limited number of mobile units NMU
i , which is enforced by (7).

2.2.2. Fuel Resources Allocation Constraints

Define the set ΩG = ΩEG ∪ ΩCN, where ΩEG is the set of buses that have

fuel-based emergency generators. The fuel allocated to ΩG must be limited

to the available amount of fuel. The fuel allocation constraints are presented

as follows: ∑
∀i∈ΩG

nFuel
i ≤ NFuel (8)

FG
i ≤ nFuel

i ≤ Fmax
i , ∀i ∈ ΩG (9)
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Constraint (8) limits the total amount of allocated fuel to the available

amount of fuel (NFuel), where nFuel
i is the amount of fuel allocated to the

generator at bus i. In this work, it assumes that not all the available fuel

needs to be allocated. Constraint (9) limits the amount of fuel on each site,

where FG
i is the amount of fuel already present for the generator at bus

i, and Fmax
i represents the maximum capacity of fuel at bus i. Note that

the aim of fuel allocation is to decide how much fuel should be allocated to

the generators, which have defined locations in the system. Therefore, the

logistic process of transferring the fuel to the generators is not considered in

this paper, as this problem can be solved as a separate problem.

2.2.3. Repair Crew Allocation Constraints

To allocate the repair crews, our model divides the network into different

regions ΩR. Each region will be assigned with different crews, who will con-

duct the repairs in that region. Note that the buses in a single region should

be relatively close to each other. These regions should be determined based

on the physical distances between the buses. Then the crews are allocated

to the regions, where the crews would be stationed at a depot. Therefore,

the distance is not explicitly considered in the mathematical model, but it is

considered in the preprocessing step of determining the regions.

Constraint (10) states that the total crews deployed to all regions is equal

to the number of available crews. This constraint can be relaxed by replacing

the equality with an inequality if some crews are required on standby. This

work assumes that all available crews will be deployed. Constraint (11) sets

a minimum and maximum number of crews that can be stationed in each
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individual region. ∑
∀r∈ΩR

nCrew
r = NCrew (10)

NCrew,min
r ≤ nCrew

r ≤ NCrew,max
r , ∀r ∈ ΩR (11)

where nCrew
r is the number of repair crews in region r and NCrew is the total

number of crews. The number of repair crews is limited in each region, using

NCrew,min
r and NCrew,max

r , depending on the size and capacity of the staging

locations.

After allocating the fuel in the first stage, each generator can be operated

in the second stage based on how much fuel is available. Similarly, once the

pre-position decisions of mobile resources and repair crews are obtained in

the first stage, the second stage can decide the mobile resource operation and

repair schedule.

2.3. Second stage Constraints

In the second stage of the proposed pre-event preparation model, the

constraints of PV systems and repair crew dispatch are mainly discussed. The

model also considers unbalanced power flow constraints, voltage constraints,

and network reconfiguration constraints [43, 46].

2.3.1. PV System Constraints

To thoroughly investigate the impact of PV systems on system resilience,

three types of PV systems are considered with different operation modes in

the second stage [43], ΩPV = ΩG
PV∪ΩH

PV∪ΩC
PV. The main differences between

those three types of PV systems are their different behaviors during an out-

age: (i) Type 1: on-grid PV with grid-following operation mode (ΩG
PV), where
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the PV will be switched off and disconnected during an outage. (ii) Type 2:

hybrid on-grid/off-grid PV + energy storage system (ESS) (ΩH
PV), where the

PV system operates on-grid in normal condition or off-grid during an outage

(serves local load only). (iii) Type 3: grid-forming PV + ESS with grid-

forming capability (ΩC
PV), this system can restore part of the network that is

not damaged if the fault is isolated. There are several benefits of considering

different types of PV systems during a power outage. For example, this kind

of model is more like a real-world application with multiple PV systems. In

addition, the PV systems are mostly considered as power supply resources in

previous research works, while the grid-forming and black-start capability of

PV systems during outages shall also be explored and discussed. The output

power of the PV systems is determined using the following equations:

0 ≤ PPV
i,φ,t,s ≤

Iri,t,s
1000W/m2

P rate
i , ∀i ∈ ΩPV/Ω

G
PV, φ, t, s (12)

0 ≤ PPV
i,φ,t,s ≤ χi,t,s

Iri,t,s
1000W/m2

P rate
i ,∀i ∈ ΩG

PV, φ, t, s (13)

(PPV
i,φ,t,s)

2 + (QPV
i,φ,t,s)

2 ≤ (SPV
i )2,∀i ∈ ΩPV/Ω

G
PV, φ, t, s (14)

(PPV
i,φ,t,s)

2 + (QPV
i,φ,t,s)

2 ≤ χi,t,s(S
PV
i )2,∀i ∈ ΩG

PV, φ, t, s (15)

The PV active power output PPV
i,φ,t,s depends on the solar cell rating ca-

pacity P rate and the solar irradiance Iri,t,s [47]. The active power outputs of

Type 2 ΩH
PV and Type 3 ΩC

PV PVs can be determined in (12), while the active

power outputs of Type 1 ΩG
PV PVs is calculated in (13). The binary variable

χi,t,s = 0 if bus i is not energized at time t and scenario s. Using advanced

PV smart inverters [48], the PVs can provide reactive power support QPV
i,φ,t,s,
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which is constrained by the capacity SPV
i in (14) and (15). During an outage,

on-grid PVs are disconnected and the on-site load is not served by the PVs,

therefore, constraints (13) and (15) are multiplied by χi,t,s. PV systems of

types ΩC
PV and ΩH

PV can disconnect from the grid and serve the on-site load.

An example network with a damaged line is given in Figure 2, where the

network is divided into three islands due to the damaged line. The grid-

forming sources in ΩC
PV ∪ ΩG has the black start capability and can restore

the network. While PV system in types ΩG
PV or ΩH

PV can connect to the grid

only after the PV bus is energized. Island A has a grid-forming generator,

therefore, a microgrid is created and the PV system can participate. Island

B must be isolated because of the damaged line. Island C does not have any

grid-forming generators; hence, it will not be active and the grid-tied PV will

be disconnected.

G

Grid-forming generator Damaged lineOpen switch

Load

Island A Island B Island C

VS

Virtual source/generator Virtual load

Energized

Figure 2: A single line diagram of an example network with one damaged line.

To determine the connection status of the PV systems, a virtual network

is designed in parallel to the distribution network. The example network

shown in Figure 2 is transformed into a virtual network shown in Figure

3. To identify if an island network can be energized and restored by grid-

forming sources ΩC
PV ∪ ΩG, a virtual network is built with virtual sources,
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G

Grid-forming generator Damaged lineOpen switch

Load

Island A Island B Island C

VS

Virtual source/generator Virtual load

Energized

Figure 3: A virtual network created for the example network in Figure 2.

virtual flows, and virtual loads. Each grid-forming generator is replaced by

a virtual source with infinite capacity. Other power sources without grid-

forming capability (e.g., grid-tied PVs) are removed. The virtual loads with

magnitude of 1 replace the actual loads. The virtual network scheme is

modeled using constraints (16)-(20).

∑
∀j∈ΩC

PV∪ΩG

vS
j,t,s +

∑
∀k∈ΩK(.,i)

vf
k,t,s = χi,t,s +

∑
∀k∈ΩK(i,.)

vf
k,t,s,∀i, t, s (16)

−(uk,t,s)M ≤ vf
k,t,s ≤ (uk,t,s)M,∀k ∈ ΩK, t, s (17)

0 ≤ vS
k,t,s ≤ (nMEG

i + nMES
i )M,∀i ∈ ΩCN, t, s (18)

χi,t,s ≥ yi,t,s,∀i ∈ ΩN/{ΩC
PV ∪ ΩH

PV ∪ ΩG}, t, s (19)

χi,t,s + nMEG
i + nMES

i ≥ yi,t,s,∀i ∈ ΩCN, t, s (20)

A power balance equation is added for each virtual bus, which means that

if the virtual load at a bus is served, then that bus is energized. Therefore,

for islands without grid-forming generators, all buses will be de-energized as
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the virtual loads in the island cannot be served. Constraint (16) is the node

balance constraint for the virtual network. Virtual source vS is connected to

buses with power sources that have the capability to restore the system. The

variable vf
k represents the virtual flow on line k and each bus is given a load of

1 that is multiplied by χi. Therefore, χi = 1 (bus i is energized) if the virtual

load can be served by a virtual source and 0 (bus i is de-energized) otherwise.

The virtual flow is limited by (17). The limits are multiplied by the status

of the line (uk,t,s) so that the virtual flow is 0 if a line is disconnected. The

virtual source can be used only if a generator is installed, as enforced by (18).

Define ΩN as the set of all buses. If bus i is de-energized, then the load must

be shed (19), unless bus i has a local power source with disconnect switch.

Constraint (20) is similar to (19) but with the presence of mobile sources.

2.3.2. Repair Crews Constraints

The second stage of the proposed pre-event model assigns repair crews to

damaged components that are in the area at where the crews are positioned.

Note that the travel time is neglected in this study, as the travel distances

between components in the same area is assumed to be small. An example for

crew assignment is given in Figure 4, where two working areas are assigned

for the crews. In this example, four damaged lines in Area 1 will be repaired

by crews 1-3, while crews 4 and 5 are responsible for the two damaged lines

in Area 2. The repair crews constraints can be presented as follows:

∑
∀k∈ΩDL(s)

zk,t,s ≤ nCrew
r ,∀r, t, s (21)
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∑
∀t

zk,t,s ≤ T rk,s,∀k ∈ ΩDL(s), s (22)

1

T rk,s

t−1∑
τ=1

zk,τ,s − 1 + ε ≤ uk,t,s ≤
1

T rk,s

t−1∑
τ=1

zk,τ,s,∀k ∈ ΩDL(s), t, s (23)

Figure 4: A crew assignment example with 2 depots and 5 crews.

where zk,t,s is a binary variable, zk,t,s = 1 means that line k is being re-

paired at time t on scenario s, and ΩDL(s) is the set of damaged lines on sce-

nario s. Constraint (21) limits the number of repairs being conducted in each

area according to the number of crews nCrew
r available. Constraint (22) defines

the repair time for each damaged line. The line status uk,t,s equals 0 until

the repair process is conducted for T rk,s time periods. Based on constraint

(23), let T rk,s = 3, zk,t,s = {0, 0, 1, 1, 1, 0, 0}, then uk,t,s = {0, 0, 0, 0, 0, 1, 1}.

For example, when t = 6 and ε = 0.001, then constraint (23) becomes

0.668 ≤ uk,6,s ≤ 1, therefore, uk,6,s = 1.

2.3.3. Network Operational Constraints

The next set of constraints are related to the operation of distribution sys-

tems, including unbalanced power flow equations, radiality constraints, fuel

consumption, and energy storage constraints. The unbalanced distribution

system constraints are given below:
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∑
b∈ΩK(i,.)

PK
b,φ,t,s −

∑
k∈ΩK(.,i)

PK
k,φ,t,s = PG

i,φ,t,s + PPV
i,φ,t,s

+ (PCh
i,φ,t,s − PDis

i,φ,t,s)− yi,t,sdPi,φ,t,∀i, φ, t, s (24)

∑
b∈ΩK(i,.)

QK
b,φ,t,s −

∑
k∈ΩK(.,i)

QK
k,φ,t,s = QG

i,φ,t,s +QPV
i,φ,t,s

+QESS
i,φ,t,s − yi,t,sd

Q
i,φ,t,∀i, φ, t, s (25)

−uk,t,sPK,max
k ≤ PK

k,φ,t,s ≤ uk,t,sP
K,max
k , ∀k ∈ ΩK, φ, t, s (26)

−uk,t,sQK,max
k ≤ QK

k,φ,t,s ≤ uk,t,sQ
K,max
k ,∀k ∈ ΩK, φ, t, s (27)

0 ≤ PG
i,φ,t,s ≤ PG,max

i ,∀i ∈ ΩEG, φ, t, s (28)

0 ≤ QG
i,φ,t,s ≤ QG,max

i ,∀i ∈ ΩEG, φ, t, s (29)

0 ≤ PG
i,φ,t,s ≤ nMEG

i PG,max
i ,∀i ∈ ΩCN, φ, t, s (30)

0 ≤ QG
i,φ,t,s ≤ nMEG

i QG,max
i ,∀i ∈ ΩCN, φ, t, s (31)

Ui,φ,t,s − Uj,φ,t,s ≥ 2(R̂ijP
K
ij,φ,t,s + X̂ijQ

K
ij,φ,t,s)

+ (uk,t,s + pij,φ − 2)M,∀k, ij ∈ ΩK, φ, t, s
(32)

Ui,φ,t,s − Uj,φ,t,s ≤ 2(R̂ijP
K
ij,φ,t,s + X̂ijQ

K
ij,φ,t,s)

+ (2− uk,t,s − pij,φ)M,∀k, ij ∈ ΩK, φ, t, s
(33)

χi,t,sU
min
i ≤ Ui,φ,t,s ≤ χi,t,sU

max
i ,∀i, φ, t, s (34)

26



∑
k∈∈ΩB(l)

uk,t,s ≤ |ΩB(l)|−1,∀l ∈ Ωloop, t, s (35)

Constraints (24) and (25) are nodal power balance constraints of active

and reactive powers, where PK
ij,φ,t,s and QK

ij,φ,t,s are active and reactive power

flows, and PG
i,φ,t,s and QG

i,φ,t,s are the power outputs of the generators. The

active charging/discharging and reactive power outputs of energy storage

systems are denoted by PCh
i,φ,t,s, P

Dis
i,φ,t,s and QESS

i,φ,t,s. Constraints (26)-(27) rep-

resent the active and reactive power limits of the lines, where the limits

(PK,max
k and QK,max

k ) are multiplied by the line status binary variable uk,t,s.

Therefore, if a line is disconnected or damaged, power cannot flow through

it. Constraints (28)-(29) limit the output of the generators to PG,max
i and

QG,max
i . Similarly, the output of the MEGs is limited in (30)-(31) if an MEG

is installed (nMEG
i = 1).

Constraints (32) and (33) calculate the voltage difference along line k

between bus i and bus j, where Ui,φ,t,s is the square of voltage magnitude of

bus i. The big-M method is used to relax constraints (32) and (33), if lines

are damaged or disconnected. R̂ij and X̂ij are the unbalanced three-phase

resistance matrix and reactance matrix of line ij, which can be referred

to [48]. The vector pij,φ represents the phases of line ij. Constraint (34)

guarantees that the voltage is limited within a specified region (Umin
i and

Umax
i ), and is set to 0 if the bus is in an outage area. Constraint (35) can

guarantee the radiality network during the network reconfiguration. This

model assumes that all the possible loops can be identified by the depth-first

search method. The set of loops are given by Ωloop, and the set of switches

in loop l is given by ΩB(l). For each fuel-based generator, the total fuel
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consumption Fi,s is limited by the available fuel resources nFuel
i in constraint

(36), as follows:

Fi,s = rf
∑
∀t

∑
∀φ

PG
i,φ,t,s ≤ nFuel

i ,∀i ∈ ΩG, φ, t, s (36)

The operation constraints for ESSs and MESs include the change in state

of charge (SOC), charging and discharging limits, and reactive power limits.

Let ΩES be the set of buses with ESSs, and ΩESC = ΩES ∪ ΩCN.

ESOC
i,t,s =ESOC

i,t−1,s+

∆t
(
∑
∀φ P

Ch
i,φ,t,sηCh −

∑
∀φ P

Dis
i,φ,t,s/ηDis)

ECap
i

, ∀i ∈ ΩESC, φ, t, s
(37)

ESOC,min
i ≤ ESOC

i,t,s ≤ ESOC,max
i , ∀i ∈ ΩESC, t, s (38)

0 ≤ PCh
i,φ,t,s ≤ hi,t,sP

Ch,max
i ,∀i ∈ ΩESC, φ, t, s (39)

0 ≤ PDis
i,φ,t,s ≤ (1− hi,t,s)PDis,max

i , ∀i ∈ ΩESC, φ, t, s (40)

−QESS,max
i ≤ QESS

i,φ,t,s ≤ QESS,max
i ,∀i ∈ ΩES, φ, t, s (41)

0 ≤ PCh
i,φ,t,s ≤ nMES

i PCh,max
i , ∀i ∈ ΩCN, φ, t, s (42)

0 ≤ PDis
i,φ,t,s ≤ nMES

i PDis,max
i ,∀i ∈ ΩCN, φ, t, s (43)

−nMES
i QESS,max

i ≤ QESS
i,φ,t,s ≤ nMES

i QESS,max
i ,∀i ∈ ΩCN, φ, t, s (44)

Constraint (37) calculates the state of charge (SOC) of ESSs (ESOC
i,t,s ).

ECap
i is the maximum capacity of the storage system. To ensure safe ESS

operation, the SOC and charging (PCh
i,φ,t,s) and discharging (PDis

i,φ,t,s) power
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of ESSs are constrained as shown in (38)-(40). Here, ESOC,min
i , ESOC,max

i ,

PCh,max
i and PDis,max

i define the permissible range of SOC, and maximum

charging and discharging power, respectively. In constraints (39)-(40), the

binary variable hi,t,s indicates that ESSs cannot charge and discharge at

the same time instant. The ESS charging and discharging efficiency are

represented by ηCh and ηDis, respectively. The reactive power of ESS, QESS
i,φ,t,s,

is kept within maximum limit, QESS,max
i , through constraint (41). For MES

units, the constraints (42)-(43) are presented so that if nMES
i = 0, the output

power is 0 at bus i. The same method is applied for the reactive power in

(44).

3. Solution Algorithm

When the number of scenarios is finite, a two-stage stochastic problem

can be modeled as a single-stage large linear programming model, where

each constraint in the problem is duplicated for each realization of the ran-

dom data. As discussed before, the Monte Carlo sampling technique can

be used to generate a manageable number of scenarios for problems where

the number of realizations is too large or infinite. In this work, the scenario

decomposing method PH is used to solve the proposed two-stage stochastic

pre-event preparation problem.

3.1. Two-stage Progressive Hedging Algorithm

The proposed two-stage stochastic pre-event preparation model (4)-(44)

can be compactly reformulated as follows:

ξ = min
x,ys

aTx+
∑
∀s

Pr(s)bTs ys (45)
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s.t. (x, ys) ∈ Qs,∀s (46)

In objective (45), the vectors a and bs include the coefficients related

with the compact first stage variable x and compact second stage variable

ys, respectively. The compact constraint (46) can ensure the feasibility for so-

lutions from each subproblem and scenario. When the the non-anticipativity

of the first stage variables is relaxed, then the PH algorithm decomposes the

extensive form (EF) (45)-(46) into scenario-based subproblems. Therefore,

the proposed stochastic pre-event preparation problem with the total num-

ber S of scenarios can be decomposed into S subproblems. In Algorithm

1, the proposed stochastic pre-event preparation problem is solved by PH

algorithm. In Step 1, we initialize the problem. In Step 2-3, the subproblems

with individual scenarios are solved. In Step 4, we obtain the expected value

x̄ of the first stage solution by aggregating the solutions from Steps 2-3. Step

5 calculates the value of the multiplier ηs. In Step 8, the subproblems are

solved by augmenting two terms: one linear term, which is proportional to

the multiplier ητ−1
s ; one squared two norm term of the difference between x

and x̄τ−1, which is penalized by rho. Steps 9-10 are similar as Steps 4-5. The

algorithm terminates once all first stage decisions xs converge to a common x̄.

Note that the two-stage model has been reformulated to a single-level prob-

lem for each individual scenario. In Algorithm 1, τ is the iteration number,

ρ is a penalty factor and ε is the threshold value for termination.

3.2. Convergence Analysis and Solution Validation

As shown in Algorithm 1, the convergence metric gτ for the progressive

hedging algorithm at each iteration τ is expressed as the deviation from the
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Algorithm 1 PH Algorithm for Solving Stochastic Pre-event Preparation
Problem

1: Initialization: the iteration τ .
2: For each individual scenario s ∈ S, solve.
3: x

(τ)
s := arg minx{aTx+ bTs ys : (x, ys) ∈ Qs}.

4: x̄(τ) :=
∑
∀s∈S Pr(s)x

(τ)
s .

5: η
(τ)
s := ρ(x

(τ)
s − x̄(τ)).

6: τ := τ + 1.
7: For each individual scenario s ∈ S, solve.
8: x

(τ)
s := arg minx{aTx+ bTs ys + η

(τ−1)
s x+ ρ

2
‖x(τ)

s − x̄(τ)‖2: (x, ys) ∈ Qs}.
9: x̄(τ) :=

∑
∀s∈S Pr(S)x

(τ)
s .

10: η
(τ)
s := η

(τ−1)
s + ρ(x

(τ)
s − x̄(τ)).

11: if
∑
∀s∈S Pr(s)‖x

(τ)
s − x̄(τ)‖≤ ε then

12: Go to Step 5.
13: else
14: terminate.
15: end if

mean summed across all first stage variables xs(τ) and the average value of

the first stage variable x̄τ as follows:

gτ =
∑
s∈S

Pr(s)‖xs(τ)− x̄τ‖ (47)

Since the solution is obtained using a limited number of damage scenar-

ios, the quality of the solution requires verification. Adopted from [49], the

MRP can be applied to repeat generating S scenarios and solving the pro-

posed model for S times. Then the confidence interval (CI) is constructed to

calculate the optimality gap. The detailed steps in MRP are shown in Algo-

rithm 2, where Ḡn(ng) is the gap estimate and s2
G(ng) is the sample variance.

Numerical results for the convergence analysis and solution validation of the
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Algorithm 2 Multiple Replication Procedure

1: Initialization: Set α ∈ (0, 1) (e.g., α = 0.05), sample size n, replication
size ng and a candidate solution x̂ ∈ X.

2: For k = 1, 2, ..., ng.
3: Sample i.i.d. observations ζk1 , ζk2 , ..., ζkn from the distribution of ζ.
4: Solve (SPn) using ζk1 , ζk2 , ..., ζkn to obtain xk∗n .
5: Calculate Gk

n(x̂) := n−1
∑n

j=1(f(x̂, ζkj)− f(xk∗n , ζ
kj)).

6: End for.
7: Calculate gap estimate Ḡn(ng) := 1

ng

∑ng

k=1G
k
n(x̂).

8: Calculate sample variance s2
G(ng) := 1

ng−1

∑ng

k=1(Gk
n(x̂)− Ḡn(ng))

2.

9: Let ε := tng−1,αSG(ng)/
√
ng.

10: Obtain one-sided CI on [0, Ḡn(ng) + εg].
11: Output: Approximate (1− α) as the level confidence interval on µx̂.

test case are given in the next section.

4. Case Study

This section uses a large-scale system as a test case to verify the scalability

and effectiveness of the two-stage stochastic pre-event preparation model.

This large-scale system consists of 3 existing test systems, EPRI ckt5, ckt7

systems [50], and IEEE 8500 bus system [51], Following the suggestions from

[15], the unit costs in the simulation are CD = 14$/kWh for load shedding at

all buses, CSW = 8$ for each line switch, CF = 1$/L and rF = 0.3L/kWh for

fuel consumption of generators. The Pyomo and Gurobi mixed-integer solver

[52] are used to solve the proposed stochastic model. All experiments are

implemented on the Iowa State University Condo cluster, whose individual

blade consists of two 2.6 GHz 8-Core Intel E5-2640 v3 processors and 128

GB of RAM.
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4.1. Pre-event Preparation Results

This case study include 9 depots that are hosting a total of 27 crews,

9 dispatchable DGs, 8 MEGs, 3 MESs, 123 switches, 5 small PVs, 15 large

PVs, and 12 ESSs. The active and reactive power capacities of the 9 DGs are

300 kW and 250 kVAr. The active power capacity of small PVs ranges from

11 kW to 22 kW. The active power capacity of large PVs is 500 kW. The 12

ESSs are rated at 500 kW/ 3500 kWh. The pre-event preparation model of

the large-scale system is solved in 10.2 hours with 10 damage scenarios. The

locations of MEGs, MESs, and number of crews are shown in Figure 5. 27

crews are allocated to 9 different depots. The value inside the crew depot in

Figure 5 represents the number of crews assigned to that depot. Areas with

a large number of crews indicate that the lines in the area have high damage

probabilities.
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Crew Depot

MEG

DG

Large PV+Battery

Small PV

MES

Figure 5: Resource allocation of large-system with the proposed model.

As discussed in Section 3.2, the convergence metric can be used to eval-

uate the convergence speed of the proposed model. At the same time, the

computational speed with and without a soft-start solution are compared.

In this paper, a soft-start solution means that the previously computed so-

lution in other instances will be used as the starting point. The comparison

result is shown in Figure 6. If the convergence metric reaches the convergence

threshold of 0.01, the algorithm will stop and obtain the optimal solution.

The instance with a soft-start solution converges at 57 iterations and takes

10.2 hours. The case without a soft-start solution converges after 100 itera-

tions and takes 24.3 hours. To test the solution quality with MRP, based on
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the limited number of generated damage scenarios, the one-sided CI of the

obtained solution is [0, 12.48%]. This small gap indicates that the damage

scenarios are representative and the solution is stable with high quality.

Figure 6: The convergence metric comparison with and without soft-start solutions.

To evaluate the performance of the developed pre-event preparation model,

the model is compared to a base model. The base case is generated by the

following steps: (i) one MEG is pre-positioned at each substation. (ii) Extra

MEGs are pre-positioned at high-priority loads. (iii) PV and ESS are not

considered. (iv) Fuel is allocated to the MEGs such that the MEGs can op-

erate for at least 24 hours. (v) Crews are allocated evenly between depots.

In this work, the average outage duration is calculated by dividing the sum

of outage duration for the loads by the total number of loads. To compare

the proposed model and the base model, a random scenario is generated and
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test the response of the system. The generated scenario has 103 damaged

lines, which are aggregated to 34 damaged areas in Figure 7. Each circle

represents the repair time needed for the specific damaged area considering

all the aggregated damaged lines.

Figure 7: Aggregated damaged areas.

The comparison between the base model and the proposed method is

shown in Figure. 8. In the base model, the total restored energy is 231,422.38

kWh and the average outage duration is 14.69 hours. In the proposed

method, the total restored energy is 291,727.48 kWh and the average out-

age duration is 11.28 hours. Therefore, approximately 20.67% more loads

are served by the proposed method and the outage duration decreased by

30.22%.
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Figure 8: Comparison between the base model and the proposed method.

4.2. Impacts of Solar PV on System Resilience

To show the advantages of the PV systems, the responses of the system

with the proposed pre-event preparation method and different PV penetra-

tion levels are tested. Three rated capacities of PV systems are considered:

(i) Capacity 1 PV, which represents residential PV panels and the rated ca-

pacity is assumed to be 6 kW; (ii) Capacity 2 PV, which represents mid-size

PV systems and the rated capacity is assumed to be 48 kW; (iii) Capacity

3 PV, which represents large utility PV farm and the rated capacity is as-

sumed to be 2000 kW. Based on the number of different types of PVs, 6

PV penetration levels are defined as 9%, 27%, 45%, 63%, 81%, and 99%.

The number of Capacity 1, 2, and 3 PVs for each PV penetration level is

summarized in Table 1. To better collaborate the setting of PV penetration,

the number of dispatchable DGs has been changed to 10 and the positions
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of those DGs have been changed accordingly.

Table 1: PV penetration levels and the number of PV systems with different rated capac-
ities

PV Penetration

Level

Capacity 1

PV

Capacity 2

PV

Capacity 3

PV

9% 8 1 1

27% 24 4 3

45% 40 7 5

63% 63 9 7

81% 72 12 9

99% 88 15 11

Based on the results of Figure. 9, it can be observed that different PV

penetration levels have different allocation results for the flexible resources,

including the positions of MEGs, MESs, and the number of repair crews.
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(c) 45% PV

(a) 9% PV (b) 27% PV

(d) 63% PV

(e) 81% PV (f) 99% PV
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DG
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Capacity 2 PV

Capacity 1 PV
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MEG

DG
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Capacity 3 PV

Capacity 2 PV

Capacity 1 PV

Crew Depot

MEG

DG

MES

Capacity 3 PV

Capacity 2 PV

Capacity 1 PV

Crew Depot

MEG

DG

MES

Capacity 3 PV

Capacity 2 PV

Capacity 1 PV

Crew Depot

MEG

DG

MES

Capacity 3 PV

Capacity 2 PV

Capacity 1 PV

Crew Depot

MEG

DG

MES

Capacity 3 PV

Capacity 2 PV

Capacity 3 PV

Figure 9: Pre-event resource allocation results with different PV penetration levels.
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Figure. 10 shows the percentage of power served during the event, and af-

ter the repair process starts. Table 2 and Table 3 compare the amount of load

served and average outage duration with different levels of PV penetration.

Figure 10: Load served percentage comparison of the proposed model with various PV
penetration levels and the base model.

Based on the results from Figure. 10, Table 2, and Table 3, it can be

seen that the penetration of PV contributes to enhancing system resilience.

Approximately 31.13% more loads are served than the base model when

the proposed method with 99% PV penetration is used. Also, the average

outage duration decreased by 31.12%. However, compared with 81% PV

penetration level, the proposed method with 99% PV penetration does not

have significant improvement.

40



Table 2: The amount of load served and resilience improvement with different PV pene-
tration levels

PV Penetration

Level

Load Served

(kWh)

Resilience Improvement

Percentage(%)

0 251,210.72 -

9% 318,668.37 26.85

27% 335,525.77 33.56

45% 336,710.74 34.04

63% 344,588.22 37.17

81% 360,668.04 43.57

99% 364,785.93 45.21

Table 3: The amount of average outage duration and outage decreased percentage with
different levels of PV penetration

PV Penetration

Level

Average Outage

Duration (hour)

Outage Decreased

Percentage(%)

0 14.69 -

9% 12.33 16.07

27% 11.72 20.22

45% 11.65 20.69

63% 11.21 23.69

81% 10.45 28.86

99% 10.12 31.11

5. Conclusion

Extreme weather events may severely impact the electric grid infrastruc-

tures, causing major damage and faults in the system. This leads to power

outages for an extended period. It is up to the electric utility to plan how
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to prepare for such an event and restore power to the customers after the

event. When an extreme weather event hits the distribution system, the

damaged network may hinder the physical delivery of mobile resources and

repair crews. In addition, without proper preparation, utilities will be over-

whelmed with the number of tasks that must be conducted, including as-

signing tasks to crews, managing crews coming from different areas, and

dispatching portable generators to supply critical customers. Therefore, to

achieve fast and efficient response, it is critical to pre-position crews, equip-

ment, and other resources before the severe event occurs. In this paper, a

two-stage stochastic pre-event preparation and resource allocation method is

proposed for upcoming extreme weather events, which enhances the system

resilience and enables more efficient post-event restoration. The proposed

pre-event method leverages the pre-allocation of mobile resources, fuel re-

sources, and labor resources. By considering different operation modes of

distributed PV systems, the proposed model also facilitates the benefits of

solar powers in the resilience improvement of distribution grids. According

to the case studies, the following observations are found: (i) Compared to

the base model without pre-event resource allocation, the proposed pre-event

preparation model can serve more loads and reduce the outage duration. (ii)

Based on the response of the system with different PV penetration levels, it

can be observed that the proposed pre-event preparation model with high

PV penetration can further improve system resilience and reduce the outage

duration. Therefore, PV systems can play a critical role in improving dis-

tribution grid resilience and further promote renewable energy deployment.

(iii) By considering the trade-off between solution accuracy and computation
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efficiency, the result of MRP indicates that the proposed model’s solutions

with a limited number of scenarios can be very stable and of high quality.

The scalability of the proposed pre-event preparation model is verified with

a large-scale system. The trade-off between the cost of pre-event resource

allocation and the risk associated with damage loss will be considered under

upcoming extreme weather events in future work.
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Scenario generation Two-stage stochastic pre-event preparation model

Objective: 

maximize served load and minimize operation costs 

 Pre-position and number 

of MEGs and MESs

 Pre-allocation of fuel to 

generators

 Pre-position of repair 

crews to depots

First stage: preparation of flexible resources

Fuel resourcesMobile resources Repair crews

Second stage: system operational constraints
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Network operational 
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Resource 
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 Operation of different 

types of PV systems

 Schedule of repair crews
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 Network reconfiguration

Monte Carlo sampling 

method

Physical characteristic of distribution 

grid infrastructures

 Fragility model of distribution 
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Damage scenario of distribution grid 

infrastructures for upcoming extreme 

weather events
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