

1 Detrital U-Pb zircon and $^{40}\text{Ar}/^{39}\text{Ar}$ muscovite geochronology from Middle Pennsylvanian

2 strata in the Anadarko Basin, Texas Panhandle, USA

3 R. Spencer Hollingworth¹, Ryan J. Leary¹, Matthew T. Heizler^{1,2}

8 Email Addresses:

⁹ R. Spencer Hollingworth: shollingworth1722@gmail.com (corresponding author)

10 Ryan J. Leary: ryan.leary@nmt.edu

11 Matthew T. Heizler: Matt.Heizler@nmt.edu

12 **Keywords:** Amarillo-Wichita Uplift; Ancestral Rocky Mountains; Sierra Grande Uplift;
13 Laurentia; Desmoinesian; Morrowan

14 Abstract

15 The Late Mississippian-Permian Anadarko Basin formed in Texas and Oklahoma, USA as the
16 result of inversion of Neoproterozoic and Cambrian rift structures. Subsidence was driven by
17 flexural loading of the Amarillo-Wichita Uplift, and this uplift may represent the easternmost
18 element of the Ancestral Rocky Mountains system. The northwestern part of this basin has
19 generally been interpreted to have been filled by sediment derived from the Ancestral Front
20 Range Uplift, ~475 km to the northwest during the early stages of basin filling. We test this
21 model using U-Pb detrital zircon and $^{40}\text{Ar}/^{39}\text{Ar}$ detrital muscovite results from three subsurface

22 samples of the Morrow B sandstone in the northwestern part of the Anadarko Basin. We provide
23 a new maximum depositional age of 310.9 ± 4.9 Ma that indicates the age of the Morrow B to be
24 no older than late Atokan to early Desmoinesian Age (Moscovian), ~10 Myr younger than
25 previously interpreted. In contrast to some previous interpretations, we propose that the most
26 likely source for the sediment in the Morrow B is the Amarillo Uplift to the south. Detrital zircon
27 and detrital muscovite data have age peaks at 900-1300 Ma, 1370 Ma and 1600-1800 Ma
28 corresponding to derivation from Grenville, Granite-Rhyolite and Yavapai-Mazatzal basement
29 provinces, respectively. A dominant detrital zircon peak at 1370 Ma suggests that
30 Mesoproterozoic granites in the Amarillo Uplift were exposed by Middle Pennsylvanian time,
31 and detritus eroded from the Amarillo Uplift dominated the lowstand sediment budget of the
32 Texas Panhandle during this time; small volumes of sediment were likely sourced from the
33 Ancestral Front Range. This study presents the first detrital geochronology data from the
34 subsurface Anadarko Basin and the first detrital muscovite data from late Paleozoic southwestern
35 Laurentia. The results presented here highlight the interpretive power of combined detrital zircon
36 and muscovite datasets.

37 **1. Introduction**

38 The collision between the Laurentian and Gondwanan continents along the Ouachita-
39 Marathon Fold Belt led, at least in part, to a series of major uplifts, including the Ancestral
40 Rocky Mountains and the Amarillo-Wichita Uplift and their associated basins: the Denver,
41 Paradox, Eagle, and Anadarko basins (Fig. 1). The Ancestral Rocky Mountains uplifts, which
42 were made up of multiple geographic highs, formed in an intra-plate setting, and numerous
43 models have been proposed for their origin including: stress from the Ouachita-Marathon Belt
44 (Kluth and Coney, 1981; Dickinson and Lawton, 2001), reactivation of preexisting basement

45 faults (Marshak et al., 2000), flat-slab subduction along the Sonoran margin of southwestern
46 Laurentia (Ye et al., 1996), dynamic uplift/subsidence associated with Cambrian mafic
47 underplating (Soreghan et al., 2012), or a combination of plate interactions along the Sonoran,
48 Nevadan, and Ouachita-Marathon margins (Leary et al., 2017). Whether deformation and uplift
49 of the Amarillo-Wichita Uplift were driven by the same processes that drove deformation and
50 uplift in the Ancestral Rocky Mountains remains poorly understood. Many workers have
51 interpreted collision along the Ouachita-Marathon Belt to have driven compressional
52 deformation of the Amarillo-Wichita Uplift (Fig. 1; Kluth and Coney, 1981; Budnik, 1986;
53 Soreghan et al., 2012), but others have interpreted deformation as the result of stress generated
54 along the southwestern Laurentian margin (Ye et al., 1996; Leary et al., 2017). If the Ancestral
55 Rocky Mountains and the Amarillo-Wichita Uplift were uplifted by the same forces, then the
56 Amarillo-Wichita would represent the earliest and easternmost expression of Ancestral Rocky
57 Mountains deformation (e.g. Soreghan et al., 2012) .

58 Detrital mineral provenance studies across the Ancestral Rocky Mountains orogen
59 suggest that exhumation of Ancestral Rocky Mountains uplifts began by at least the Atokan Age
60 (Bashkirian-Moscovian). The Denver, Eagle, and Paradox basins were primarily filled by
61 Ancestral Rocky Mountains detritus with minor components of far-traveled sediment from a
62 variety of sources (Leary et al., 2020a; Leary et al., 2020b). Although the Anadarko Basin was
63 the earliest possibly Ancestral Rocky Mountains-related basin to begin accumulating syn-
64 tectonic sediment (Soreghan et al., 2012), no detrital geochronology studies have sampled
65 Pennsylvanian-lower Permian syn-tectonic strata within the Anadarko Basin (Thomas et al.,
66 2016; 2019). As such, the relative contribution of Amarillo-Wichita-sourced sediment versus
67 extra-basinal sediment is unknown for the most active stage of Anadarko Basin subsidence

68 (Soreghan et al., 2012). Here, we present the first detrital mineral geochronology study of Lower
69 Pennsylvanian subsurface strata in the Anadarko Basin directly testing the timing and
70 contribution of adjacent Amarillo-Wichita detritus to the basin. This study also refines the age of
71 the Morrow B sandstone to Desmoinesian (Moscovian) Age by establishing a new maximum
72 depositional age.

73 Radioisotopic dating of detrital minerals such as zircon, sanidine, biotite, and muscovite
74 for provenance studies has been a key tool in reconstructing paleogeography and sediment
75 routing in a wide range of depositional systems (e.g. Gehrels et al., 2011; Blum and Pecha, 2014;
76 Mulder et al., 2017; Benowitz et al., 2019; Cather et al., 2019; Leary et al., 2020b). Although
77 single mineral geochronometers have yielded powerful provenance datasets, the combining of
78 multiple geochronometers has the potential to capture a much wider range of crystallization
79 and/or cooling temperatures in sediment source areas (e.g. Gutiérrez-Alonso et al., 2005; Mulder
80 et al., 2017). Multiple geochronometers can also account for variable mineral fertility across
81 source lithologies (e.g. Moecher and Samson, 2006; Repasch et al., 2017) and variable
82 hydrodynamic properties during sediment transport (Garzanti et al., 2008; Resentini et al., 2013;
83 Augustsson et al., 2019). Therefore, multiple detrital geochronometers can provide a more
84 comprehensive interpretation of paleogeography, sediment routing, and sediment recycling. The
85 data presented here provide an important example of the power of combining detrital
86 geochronometers from opposite ends of the hydrodynamic spectrum (Garzanti et al., 2008;
87 Resentini et al., 2013) and highlight the advantage of multiple provenance indicators.

88 This study presents detrital zircon U-Pb and detrital muscovite $^{40}\text{Ar}/^{39}\text{Ar}$ data from
89 Middle Pennsylvanian strata known locally as the Morrow B (Ampomah et al., 2016) or Morrow
90 Buckhaults (Munson, 1989) (Fig. 2), in the northwestern part of the Anadarko Basin (Ochiltree

91 county, Texas, USA). Samples were collected from three drill cores in an oilfield known as the
92 Farnsworth Unit made available through a Department of Energy funded carbon capture
93 utilization and storage case-study called the Southwest Regional Partnership on Carbon
94 Sequestration (SWP).

95 **2. Geologic background**

96 The Southern Oklahoma Aulacogen formed during the Neoproterozoic to Cambrian as a
97 failed rift arm during the breakup of the Rodinian supercontinent ca. 860-750 Ma (Perry, 1989;
98 Keller and Stephenson, 2007; Li et al., 2008). Subsidence in the Southern Oklahoma Aulacogen
99 was driven by thermal subsidence following intrusion of middle Cambrian igneous rocks.
100 Thermal subsidence persisted in the surrounding area until the Early Mississippian (Feinstein,
101 1981; Perry, 1989; Soreghan et al., 2012). Beginning during the Late Mississippian, progressive
102 closure of the Rheic Ocean and collision between Gondwana and Laurentia drove deformation
103 and subsidence of a series of basins along the Laurentian margin including the Black Warrior,
104 Arkoma, Ardmore, Fort Worth, Val Verde, and Marfa basins (Graham et al., 1975; Ross, 1986;
105 Dickinson and Lawton, 2003; Alsalem et al., 2017).

106 Rapid subsidence in the Anadarko Basin began in Late Mississippian time as the result of
107 flexural loading by deformation along the Amarillo-Wichita Uplift (Johnson, 1989; Perry, 1989;
108 Soreghan et al., 2012). Similar patterns of uplift and subsidence occurred throughout the
109 Ancestral Rocky Mountains province in the Denver, Eagle, and Paradox basins, although
110 subsidence in those basins did not begin until Early Pennsylvanian (Ye et al., 1996; Dickinson
111 and Lawton, 2001; Leary et al., 2017); and basement exhumation in most Ancestral Rocky
112 Mountain uplifts did not occur until the Middle Pennsylvanian (Gehrels et al., 2011; Leary et al.,
113 2020b).

114 During the Pennsylvanian and Permian, southwestern Laurentia was located at equatorial
115 latitudes, whereas Gondwana was located at more southerly latitudes (Scotese et al., 1999;
116 Domeier and Torsvik, 2014). High-frequency fluctuations between glacial and interglacial
117 conditions caused high-frequency fluctuation in eustacy , although interpretations of the
118 magnitude of sea-level change vary from < 50 m to > 100 m (Ross and Ross, 1987; Heckel,
119 2008). Bowen and Weimer (2003) attribute ~280 km of lateral shoreline displacement in the
120 American midcontinent to this sea-level change during the Early Pennsylvanian.

121 The Morrow B sandstone is a coarse-grained sandstone preserved in the northwest corner
122 of the Anadarko Basin (northern Texas panhandle). Within the study area, the Morrow B is a
123 10.2-15.9 m (33.5-52.3 ft) thick medium-grained sandstone to pebble conglomerate. The base of
124 the unit is a 30-90 cm (1 to 3 ft) thick, matrix-supported conglomerate with clasts up to 5 cm (2
125 in) in diameter. The conglomerate overlies a sharp, erosional surface with the underlying
126 Morrow Shale (Figs. 3-4). Facies associations include massive, laminated, and cross-bedded
127 sandstones and conglomerates, with stylolites and clay seams (Fig. 3-4; Rose-Coss, 2017). Rose-
128 Coss (2017) used Ultra-Sonic Borehole Images logs to determine that planar features in the core
129 dip between 20-30° to the east-northeast, and he interpreted dip directions to reflect fluvial cross
130 strata and thus sediment transport direction.

131 The Morrow B consists of a NW-SE trending sandstone belt incised into marine shales.
132 This stratigraphic juxtaposition along with the Morrow B's sharp basal contact, basal
133 conglomerate, cross-bedded sandstones, and clay seams/drapes, has been interpreted to represent
134 fluvial deposition within an incised valley with tidal influence (Gallagher, 2014; Rose-Coss,
135 2017). Siltstone facies that overlie the fluvial sandstones have been interpreted as being
136 deposited in an estuarine setting (Gallagher, 2014; Rose-Coss, 2017). Pennsylvanian deposits

137 with similar architecture in southeastern Colorado have also been interpreted as incised valleys
138 (Bowen and Weimer, 2003; Puckett et al., 2008).

139 **3. Materials and methods**

140 **3.1 Detrital zircon analysis**

141 Four samples were collected from the Farnsworth field Morrow B sandstone and the B1
142 sandstone, a lower sand interval intersected by well 32-8 (Fig. 3). One sample each was collected
143 from wells 13-10A at 2343.3 m (7688 ft) and 13-14 at 2351.5 m (7715 ft) and two samples were
144 collected from well 32-8 at 2426.5 m (7961 ft) and 2445.4 m (8023 ft) (Fig. 3; Table 1). Samples
145 were named based on well name and depth in feet. Samples were processed at ZirChron LLC
146 and were separated by Electro Pulse Disaggregator, which applies a strong electric field to the
147 rock while submerged underwater in order to break the rock down along existing grain
148 boundaries. A water table and heavy liquids were used to separate grains by density, and a Frantz
149 magnetic separator removed magnetic minerals from the remaining grains. Three of the four
150 samples yielded zircons grains: 13-10A-7688, 13-14-7715, and 32-8-7961; whereas sample 32-8-
151 8023 did not (Fig. 3). All samples were analyzed at the University of Arizona LaserChron
152 Center. There, zircon grains were mounted in epoxy with zircon standards, polished, and then
153 imaged using the Hitachi 3400N Scanning Electron Microscope. Grains were analyzed by U-Pb
154 laser ablation multicollector inductively coupled plasma mass spectrometer (LA-MC-ICPMS)
155 (Gehrels et al., 2006; Gehrels et al., 2008). We analyzed 132 grains from sample 13-10A-7688,
156 318 grains from sample 13-14-7715, and 351 grains from sample 32-8-7961. See supplemental
157 Data Table 1 for analytical settings. During analysis, zircon grains were ablated using a Photon
158 Machines Analyte G2 excimer laser with a spot diameter of 30 μm . For each analysis, the errors
159 in determining $^{206}\text{Pb}/^{238}\text{U}$ and $^{206}\text{Pb}/^{204}\text{Pb}$ result in a measurement error of ~1-2% (at 2σ level) in

160 the $^{206}\text{Pb}/^{238}\text{U}$ age. The errors in measurement of $^{206}\text{Pb}/^{207}\text{Pb}$ and $^{206}\text{Pb}/^{204}\text{Pb}$ also result in $\sim 1\text{-}2\%$ (at 2σ level) uncertainty in age for grains that are >1.0 Ga, but are substantially larger for
161 younger grains due to low intensity of the ^{207}Pb signal. Apparent ages were filtered using 25%
162 discordance and 5% reverse-discordance.
163

164 **3.2 Detrital muscovite analysis**

165 A portion of the 32-8-7961 sample was crushed, washed, and sieved between the No. 20-
166 60 mesh (841-250 μm), before hand picking 50-75 detrital muscovite crystals. Optical inspection
167 under a binocular microscope and the very high K/Ca values (determined from $^{39}\text{Ar}/^{37}\text{Ar}$)
168 indicate that the crystals are devoid of Ca and thus do not have smectitic or other clay alteration.
169 Crystals were irradiated at the Oregon State Triga reactor for 14 hours in the NM-309 package.
170 The flux monitor used during irradiation was Fish Canyon Tuff dated to 28.201 ± 0.046 Ma
171 (Kuiper et al., 2008). A decay constant of $5.463\text{e}^{-10}/\text{yr}$ was used in age calculations (Min et al.,
172 2000). Due to large analytical time and cost, 30 of the 50-75 crystals were dated. Crystals were
173 step heated in 7 to 16 increments using a Photon Machines CO₂ laser and gas was measured
174 using the Argus VI mass spectrometer at the New Mexico Geochronology Research Laboratory
175 at the New Mexico Bureau of Geology and Mineral Resources. Plateau ages were calculated for
176 most of the age spectra and represent the inverse variance weighted mean of the selected steps.
177 The closure temperature of muscovite varies based on crystal size and cooling rate and we use a
178 nominal closure temperature of $\sim 400^\circ\text{C}$ for this study (Harrison et al., 2009).

179 **4. Results**

180 **4.1 Detrital zircon**

181 Sample 13-10A-7688 yielded 128 concordant ages from a total of 132 ages; sample 13-
182 14-7715 yielded 306 concordant ages from a total of 318 ages; sample 32-8-7961 yielded 341
183 concordant ages from a total of 351 ages. Detrital zircon age distributions are shown by
184 probability density plots and kernel density estimates with a bandwidth of 20 Myr (Fig. 5);
185 histograms in each plot have 50 Myr bin width. Spectra in each sample are dominated by a
186 primary peak centered at 1370 Ma, and grains in this population make up more than 50% of each
187 sample. To better illustrate subordinate peaks, the above plots are also constructed following
188 removal of the prominent 1370 Ma peak (Fig. 5B). All samples also contain peaks in the age
189 ranges of 1900-1625 Ma, 1500-1400 Ma, and 1300-900 Ma. In addition, sample 13-10A-7688
190 has peaks at 2740 Ma, 520 Ma, and 430 Ma; 13-14-7715 has age peaks at 2740 Ma, 2650 Ma,
191 620 Ma, 450 Ma, and 310 Ma; and 32-8-7961 has peaks at 650 Ma, 580 Ma, 480 Ma, and 420
192 Ma. A maximum depositional age of 310.9 ± 4.9 Ma (MSWD = 2.1, n = 3) was calculated based
193 on the youngest grains for sample 13-14-7715 with Isoplot (Ludwig, 2003), using a weighted
194 average at 2σ (Fig. 6).

195 **4.2 Detrital muscovite**

196 Detrital muscovite grains were recovered from sample 32-8-7961, from which 30 plateau
197 ages were obtained ranging from 1644 Ma to 1215 Ma (Fig. 7). Step-heating age spectra
198 commonly show late Precambrian initial steps that climb steeply to overall flat segments referred
199 to as plateaus. These plateau segments commonly have > 5 steps comprising $> 60\%$ of the ^{39}Ar
200 released, but in some instances are represented by less gas and fewer steps. The plateau age
201 errors are reported to 1σ and range from 1.6 Ma to 16.2 Ma. Plateau ages are presented in
202 probability density plots and kernel density estimates with a bandwidth of 20 Ma. Spectra of

203 muscovite ages shows a tri-modal age distribution with major peaks at 1230, 1370, and 1620 Ma
204 (Fig. 5A).

205 **5. Discussion**

206 **5.1 Morrow B depositional age**

207 The Morrow B sandstone has previously been reported to fall within the Morrowan Age
208 (Bashkirian) (Munson, 1989; Ampomah et al., 2016). Near-depositional age grains dated from
209 sample 13-14-7715 provide the first radioisotopic age for the Morrow B sandstone. The newly
210 calculated maximum depositional age of 310.9 ± 4.9 Ma (Fig. 6) shifts the Morrow B from
211 Morrowan to late Atokan or early Desmoinesian (Moscovian) Age (Richards, 2013). The
212 previous age determination for the Morrow B was based on biostratigraphic dating of the
213 Thirteen Finger Limestone, which overlies the Morrow (Fig. 2; Rascoe and Adler, 1983).
214 However, the biostratigraphy is based on the presence of *Fusulinella*, which indicates an age
215 from late Atokan (Moscovian) to early Desmoinesian (Moscovian) (Wahlman, 2013). Thus,
216 depending on sedimentation rates, both the Morrow B and the Thirteen Finger Limestone could
217 be Desmoinesian (Moscovian-Kasimovian) Age. Furthermore, biostratigraphic ages used to
218 determine the age for the Thirteen Finger Limestone in the study area come from southern
219 Colorado (Maher, 1948) and Kansas (Lee, 1953), approximately 250 and 150 km away from the
220 current study area, respectively. Thirteen Finger Limestone strata in Colorado and Kansas may
221 not be time correlative with the Thirteen Finger Limestone in the Texas Panhandle. Therefore,
222 we argue that the newly calculated radioisotopic age is a robust maximum allowable age for the
223 Morrow B sandstone in the Texas Panhandle.

224 **5.2 Possible zircon sources**

225 Zircon age spectra that appear to have nearly unimodal age distributions such as those
226 presented in Fig. 5A are often interpreted to indicate proximal, single source, small catchment
227 size areas (Leary et al., 2016; Thomas et al., 2016; Leary et al., 2020b). Accordingly, we narrow
228 our consideration of the major potential source terranes to the southwestern Laurentian continent
229 and focus on nearby uplifts that could have exposed 1370 Ma basement rocks during Early-
230 Middle Pennsylvanian time. We cannot rule out the possibility of zircon recycling from lower
231 Paleozoic strata; however, if there was significant recycling, a more cosmopolitan distribution of
232 ages would be expected (Laskowski et al., 2013; Zotto et al., 2020).

233 Although all spectra presented here are dominated by peaks at 1370 Ma, up to 28% of
234 analyzed grain ages are outside 1430-1300 Ma (Fig. 5B). Of these grains, we attribute 1900 Ma
235 to ~1800 Ma to Penokean sources (Schulz and Cannon, 2007). The ~1800 Ma to ~1655 Ma ages
236 are interpreted to represent grains sourced from the Yavapai-Mazatzal province, NE-SW oriented
237 zones of juvenile crust that cover much of Arizona, New Mexico, and the American
238 midcontinent (Fig. 8; Karlstrom and Bowring, 1988; Whitmeyer and Karlstrom, 2007). Erosion
239 of early Paleozoic strata may have contributed Paleoproterozoic grains to the Morrow B in the
240 Farnsworth Unit (e.g. Amato and Mack, 2012).

241 Felsic magmatism has been documented along the southeastern margin of Laurentia
242 during the Mesoproterozoic. Basement ages generally young toward the southwest with the
243 youngest basement ages (~1370 Ma) dated in the southern Granite-Rhyolite province in the
244 modern American Southwest (e.g. Van Schmus et al., 1996; Barnes et al., 2002; Bickford et al.,
245 2015). Granitic basement ~100 km southwest of the study area has yielded U-Pb zircon ages of
246 1341-1400 Ma (Bickford et al., 2015). These ages overlap with 1370 Ma populations in Morrow

247 B samples (Figs. 1B, 5A, and 8), and we interpret the southern Granite-Rhyolite province rocks
248 as the most likely source of 1370 Ma zircon in the Morrow B.

249 We interpret 1300-900 Ma grains to have been sourced from Grenville-age rocks (Fig. 5;
250 Rivers, 1997; Heumann et al., 2006; Whitmeyer and Karlstrom, 2007; Gehrels et al., 2011).
251 Grenville-age granites are widespread in the northeastern United States, but similar age rocks are
252 also present in the Llano Uplift of central Texas and in isolated plutons in Colorado and New
253 Mexico (Scharer and Allegre, 1982; Bickford et al., 2000; Whitmeyer and Karlstrom, 2007;
254 Mosher et al., 2008). Erosion of early Paleozoic strata may have contributed Grenville-age grains
255 to the Morrow B in the Farnsworth Unit (e.g. Amato and Mack, 2012).

256 All samples analyzed here contain scattered Paleozoic and Neoproterozoic grains ranging
257 from 646 Ma to 307 Ma (Fig. 5B). Potential sources for these grains include accreted peri-
258 Gondwanan terranes with ages ranging from 800-500 Ma (Thomas et al., 2017), Gondwanan arc
259 with ages from 310-270 Ma (Pereira et al., 2012; Ortega-Obregón et al., 2013), and the
260 Appalachian province with grains from 500-270 Ma (Thomas et al., 2017; Waite et al., 2020)
261 (Fig.8).

262 **5.3 Possible muscovite sources**

263 There are substantially fewer published muscovite ages (basement and detrital) than
264 zircon ages, so provenance interpretations for these data are more speculative. Muscovite data
265 are grouped into three prominent peaks at 1625 Ma, 1370 Ma, and 1230 Ma. The ca. 1625 Ma
266 peak is consistent with derivation from Mazatzal-Yavapai province basement (Karlstrom and
267 Bowring, 1988; Whitmeyer and Karlstrom, 2007); however, in the southwestern USA,
268 Paleoproterozoic muscovite cooling ages are generally sparse and limited to geographically

269 restricted regions (Shaw et al., 2005). This is primarily due to the substantial thermal
270 overprinting related to 1.4 Ga magmatism and the Picuris Orogeny (Daniel et al., 2013). The
271 majority of rocks containing Paleoproterozoic muscovite crop out in central Arizona, the Grand
272 Canyon area, and small pockets in New Mexico and Colorado (Shaw et al., 2005; Mulder et al.,
273 2017). Basement exposed in the South Dakota Black Hills region also yields Paleoproterozoic
274 muscovite cooling ages (Dahl and Foland, 2008) and could represent a source.

275 The 1230 Ma muscovite age peak overlaps with Grenville basement ages (Rivers, 1997;
276 Bickford et al., 2000; Heumann et al., 2006; Whitmeyer and Karlstrom, 2007; Gehrels et al.,
277 2011), and we interpret Grenville rocks to have been the source for these grains.

278 The 1370 Ma muscovite population corresponds to the dominant zircon population of the
279 same age in all samples presented here. We interpret muscovite grains of this age to have been
280 sourced from the same 1370 Ma granites that supplied 1370 Ma zircon to the study area or from
281 surrounding muscovite bearing country rock in which muscovite was reset by 1370 Ma
282 magmatism. Muscovite bearing rocks have been described in the Granite-Rhyolite province
283 (Ham et al., 1965; Van Schmus et al., 1996) including leucogranites in the Texas Panhandle
284 (Barnes et al., 2002). Although zircon and muscovite have different closure temperatures,
285 >800°C and 400°C, respectively (Lee et al., 1997; Harrison et al., 2009), granites in the southern
286 Granite-Rhyolite province have been interpreted as epizonal--emplaced within a few kilometers
287 of the surface (Thomas et al., 1984). Such granites would crystallize above muscovite's argon
288 closure temperature in normal continental crust (Barbier, 2002); however, their shallow
289 emplacement would facilitate rapid cooling and would result in similar zircon and muscovite
290 ages.

291 **5.4 Morrow B sediment provenance**

292 Based on detrital zircon and muscovite geochronologic data presented here, we evaluate
293 three potential provenance scenarios for the Morrow B sandstone: sourcing from the Ancestral
294 Front Range Uplift northwest of the study area, the Sierra Grande Uplift west of the study area,
295 or the Amarillo Uplift directly south of the study area (Figs. 1 and 9).

296 The Ancestral Front Range has been a known contributor of Yavapai-Mazatzal and
297 Mesoproterozoic age detritus to adjacent sedimentary basins beginning in the Atokan
298 (Bashkirian-Moscovian) sAge (Leary et al., 2020b). Therefore, the newly calculated
299 Desmoinesian (Moscovian-Kasimovian) Age maximum depositional age overlaps with delivery
300 of 1100 Ma zircons to the Denver Basin during the Desmoinesian (Moscovian-Kasimovian)
301 (Leary et al., 2020b). It is possible that the Morrow B received sediment from the Ancestral
302 Front Range Uplift via southeast-flowing fluvial systems documented in eastern Colorado
303 (Bowen and Weimer, 2003; Puckett et al., 2008). Sourcing of Grenville-age grains from the
304 northeastern United States is unlikely due to their distance from the study area (Leary et al.,
305 2020b); however, we cannot rule the northern Appalachians out as a potential source. The Llano
306 province could also have contributed Grenville-age grains, but these rocks were exposed to the
307 south of the Amarillo-Wichita Uplift (e.g. Whitmeyer and Karlstrom, 2007), which would likely
308 have blocked their transport into the Anadarko Basin (Fig. 1). Therefore, we interpret the most
309 likely source for the Grenville-age zircon grains in this provenance scenario to have been
310 Grenville rocks that were exposed in the Ancestral Front Range (e.g. the Pikes Peak batholith).
311 However, ages in our samples that are consistent with Ancestral Front Range sources make up
312 only a small amount of our overall age population in the Morrow B, and 1370 Ma ages are not
313 abundant in Ancestral Front Range detritus shed into the Denver Basin during the Atokan
314 (Bashkirian-Moscovian) (Leary et al., 2020b). Therefore, although we cannot definitively rule

315 out the Ancestral Front Range as a source, we argue that the data are more consistent with the
316 Ancestral Front Range providing only minor volumes of sediment (see below).

317 The Sierra Grande Uplift is located in northeastern New Mexico, southeastern Colorado,
318 and the Texas Panhandle (Fig. 1) and is defined by a zero isopach of Pennsylvanian strata
319 (McKee and Crosby, 1975). The Sierra Grande Uplift includes parts of the southern Granite-
320 Rhyolite province and contains basement ages that overlap with the 1370 Ma peak in Morrow B
321 samples (Fig. 1B and 5; Bickford et al., 2015). Basement rocks were likely exposed at the
322 surface in the Sierra Grande Uplift by Atokan-Desmoinesian (Bashkirian-Kasimovian) time
323 (Brotherton et al., 2019) and could have been a source for the Morrow B. In the Tucumcari
324 Basin, directly south of the Sierra Grande Uplift, Broadhead and King (1988) interpreted minor
325 sedimentation beginning in Atokan (Bashkirian-Moscovian) time, with more voluminous,
326 arkosic, deposition beginning during the Desmoinesian (Moscovian-Kasimovian) (Brotherton et
327 al., 2019). McCasland (1980) shows granite wash shed off the Sierra Grande Uplift as restricted
328 to the proximal portion of the Palo Duro Basin, and it seems unlikely that such material would
329 have entered the Anadarko Basin. To the north, the north-south trending Cimarron Uplift likely
330 served as a topographic high during the Desmoinesian (Moscovian-Kasimovian) and separated
331 the Dalhart Basin from the Anadarko Basin (e.g. Fig. 1; McKee and Crosby, 1975; Dutton et al.,
332 1979). Such a topographic high would have blocked sediment from entering the Anadarko Basin.
333 Therefore, we argue that the Sierra Grande Uplift was not a contributor of 1370 Ma sediment to
334 the Morrow B in the Farnsworth Unit.

335 Published U-Pb zircon ages from the Amarillo-Wichita Uplift are ~550-525 Ma from
336 rocks emplaced in the Southern Oklahoma Aulacogen (Ham et al., 1965; Thomas et al., 2016;
337 Wall et al., 2020). However, these ages come from surface exposures in the Wichita segment of

338 the uplift located in southeastern Oklahoma, ~250 km southeast of the current study area (Fig. 1).
339 Basement rocks of the Amarillo segment of the Amarillo-Wichita Uplift have been dated only
340 from select well cores/cuttings. Ages in the Amarillo segment (western side) of the Amarillo-
341 Wichita Uplift are 1341-1400 Ma (Fig. 1B; Bickford et al., 2015) and overlap with the primary
342 Morrow B age peak at 1370 Ma (Fig. 5A). Although muscovites from these samples have not
343 been dated, we argue that epizonal emplacement of these plutons (Thomas et al., 1984) would
344 result in similar $^{40}\text{Ar}/^{39}\text{Ar}$ muscovite and U-Pb zircon ages (see above). Basement was exposed
345 in the Amarillo Uplift during the Atokan (Bashkirian-Moscovian) (Dutton, 1982; Johnson,
346 1989). Atokan (Bashkirian-Moscovian) basement exposure, close proximity to the study area,
347 and close overlap in basement ages make the Amarillo Uplift our preferred primary source area
348 for the Morrow B within the Farnsworth Unit.

349 **5.5 Implications for Anadarko Basin sediment provenance**

350 Previous studies of the Lower Pennsylvanian stratigraphy in the northwest Anadarko
351 Basin have suggested sedimentation by southeast-flowing extrabasinal river systems (Bowen and
352 Weimer, 2003; Puckett et al., 2008). The Morrow B in the study area has previously been
353 interpreted either as part of this system (Puckett et al., 2008; Gallagher, 2014) or as part of a
354 system draining the Amarillo-Wichita Uplift to the south (Munson, 1989). The data presented
355 here suggest that basement rocks in the Amarillo Uplift were exposed at the surface and
356 shedding sediment into the Anadarko Basin by the early Desmoinesian (Moscovian) and that the
357 interface between proximal Amarillo Uplift sediment and more distal sediment transported into
358 the basin via southeast flowing rivers was northeast of the Farnsworth Unit, which is consistent
359 with the interpretations of Bowen and Weimer (2003) (Fig. 9). This revised provenance
360 interpretation for the Morrow B does not necessarily change the depositional model of the

361 Morrow B as an incised fluvial deposit (e.g. Gallagher, 2014; Rose-Coss, 2017); however, it
362 suggests that the Morrow B in the Farnsworth Unit is part of an overall northeastward flowing
363 fluvial system, which is consistent with paleocurrent data from Rose-Coss (2017), even if the
364 part of this system preserved in the Farnsworth Unit is locally northwest-southeast oriented (Fig.
365 9) as has been previously reported (Gallagher, 2014; Rose-Coss, 2017).

366 Whereas we interpret the Amarillo Uplift as the primary source for the Morrow B, the
367 erosion of Amarillo Uplift rocks does not provide a source for Proterozoic grains outside the
368 1430-1300 Ma range and Paleozoic grains that are present in all samples presented here. There
369 are several possibilities for the provenance of these grains (see above), but we favor a model in
370 which these grains were transported into the Anadarko Basin by southeast-flowing fluvial
371 systems draining the Ancestral Rocky Mountains and American midcontinent and then mixed
372 with proximal Amarillo Uplift detritus by longshore currents during highstand conditions (Fig.
373 9). During the highstand that deposited the lower member of the Morrow Shale--stratigraphically
374 below the Morrow B (Fig. 2)--the Farnsworth Unit would have been flooded, and longshore
375 currents could have introduced grains sourced from the Ancestral Rocky Mountains or American
376 midcontinent to shoreline sediments (Fig. 9). During the following sea-level fall and lowstand,
377 these shoreline sediments could have been reworked and incorporated into the Morrow B
378 sandstone. In this scenario, the majority of grains would be sourced from the Amarillo Uplift to
379 the south, with a smaller number of grains coming from the Ancestral Rocky Mountains or
380 midcontinent sources. Although longshore current mixing during highstand is our preferred
381 model, we also cannot rule out eolian transport of non-1430-1300 Ma grains into the Anadarko
382 Basin (M. Soreghan et al., 2008; G. Soreghan et al., 2014).

383 **5.6 Implications for detrital provenance studies**

384 Recent work has shown that reliance on a single mineral for detrital provenance studies
385 may not capture all detrital sources due to variable zircon fertility (Moecher and Samson, 2006),
386 sediment recycling (e.g. Zotto et al., 2020), hydraulic sorting (Garzanti, 2016), pebble abrasion
387 (Lavarini et al., 2018), or differences in mineral closure temperatures (Copeland et al., 1990;
388 Mulder et al., 2017). This study relies on geochronology of two detrital minerals with nearly
389 opposite end-member hydraulic properties (Garzanti et al., 2008; Resentini et al., 2013) and
390 disparate closure temperatures, zircon: >800°C; muscovite: 400°C, (Lee et al., 1997; Harrison et
391 al., 2009).

392 Several features emerge from this combined dataset that serve as examples of the
393 interpretive power of multiple mineral systems in detrital provenance studies. First, despite the
394 different closure temperatures and hydrodynamic properties of the two minerals, the Yavapai-
395 Mazatzal, the Granite-Rhyolite province, and the Grenville-age grains are present in both
396 datasets (Fig. 5). However, their relative proportions are substantially different between zircon
397 and muscovite datasets. Zircon age spectra contain >50% ~1370 Ma grains, whereas the
398 muscovite spectrum is trimodally distributed between these age groups (Fig. 5). We interpret this
399 to reflect muscovite's higher susceptibility to tractive transport compared to zircon (Garzanti et
400 al., 2008; Resentini et al., 2013; Augustsson et al., 2019). If highstand longshore currents were
401 the dominant mode of Ancestral Rocky Mountains sediment transport into the Farnsworth Unit,
402 muscovite may have been more mobile than zircon, resulting in a more even distribution
403 between Ancestral Rocky Mountain and Amarillo Uplift sourced grains. Conversely, different
404 relative abundances of muscovite and zircon in source rocks could also account for the observed
405 differences in relative abundances of muscovite and zircon in the age spectra. The combination
406 of two detrital minerals allows for a more comprehensive provenance interpretation for the

407 Morrow B. It should be noted however, that we dated substantially more zircons from each
408 sample compared to muscovite crystals, and larger muscovite datasets are necessary to fully
409 compare these two datasets.

410 Second, the data presented here provide an interesting example of the potential power to
411 distinguish sources with different emplacement/cooling histories. The close overlap in zircon and
412 muscovite ages at ~1370 Ma may indicate that plutons from which these grains were sourced
413 were emplaced at relatively shallow crustal levels if both zircons and muscovites of this age
414 share the same provenance. If Mesoproterozoic plutons in the Amarillo Uplift were emplaced at
415 mid-crustal depths, we would expect significant differences between zircon and muscovite ages
416 as is common in the present day Precambrian rocks of the Rocky Mountain region (e.g.
417 Karlstrom et al., 1997; Shaw et al., 2005). Although dating of muscovite from Amarillo Uplift
418 basement samples, and better provenance constraint in general, would be required to fully test
419 this idea, coupled zircon-muscovite provenance data may be a valuable tool in identifying
420 epizonal igneous sources in the sedimentary record.

421 **6. Conclusions**

422 We present U-Pb detrital zircon data for three samples and detrital muscovite $^{40}\text{Ar}/^{39}\text{Ar}$
423 data for one sample from the Middle Pennsylvanian Morrow B sandstone in the subsurface
424 Anadarko Basin. Based on these results, we draw the following conclusions:

425 1. We establish a new maximum depositional age of 310.9 ± 4.9 Ma based on a weighted
426 mean of the youngest concordant zircon grains (3 grains) in sample 13-14-7715. This
427 changes the age of the Morrow B to Desmoinesian (Moscovian) stage.

428 2. Based on nearly unimodal zircon populations at 1370 Ma, a similar detrital muscovite age
429 peak, and previously interpreted epizonal emplacement of granites in the Amarillo Uplift,
430 we conclude that the Amarillo Uplift in the Texas Panhandle was the primary source for
431 Morrow B detritus.

432 3. Based on minor abundances of Yavapai-Mazatzal and Grenville-age grains, we argue that
433 small volumes of sediment sourced from the Ancestral Front Range or American
434 midcontinent were incorporated into the Morrow B in the Farnsworth Unit via axial
435 fluvial transport into the northwest Anadarko Basin and longshore current along
436 highstand coastline(s).

437 4. Geochronological provenance datasets that include multiple minerals provide greater
438 interpretive power than single mineral datasets because they may offset the effects of
439 selective transport, differential mineral fertility, and differential resistance to weathering.
440 Here, a multi-mineral dataset provides additional provenance constraints based on
441 previously interpreted emplacement depths of igneous source areas and sheds light on
442 sediment transport processes.

443 **Acknowledgements**

444 Funding for this project is provided by the U.S. Department of Energy's (DOE) National
445 Energy Technology Laboratory (NETL) through the Southwest Regional Partnership on Carbon
446 Sequestration (SWP) under Award No. DE-FC26-05NT42591. We would like to thank the
447 staff of New Mexico Bureau of Geology & Mineral Resources, the Arizona LaserChron lab, and
448 Zirchron LLC for their help with sample preparation and analysis. The ideas presented in this
449 paper were improved upon by discussion with Noah Hobbs and Ron Broadhead. We would also
450 like to thank Tim Lawton, Branimir Segvic, Xiangyang Xie, and Drustin Sweet for careful

451 reviews that improved the quality of this manuscript; additional thanks to Dustin Sweet for
452 editorial handling of this manuscript.

453 **References**

454

455 Alsalem, O.B., Fan, M., Zamora, J., Xie, X., Griffin, W.R., 2017. Paleozoic sediment dispersal
456 before and during the collision between Laurentia and Gondwana in the Fort Worth
457 Basin, USA. *Geosphere* 14, 325-342.

458 Amato, J.M., Mack, G.H., 2012. Detrital zircon geochronology from the Cambrian-Ordovician
459 Bliss Sandstone, New Mexico: Evidence for contrasting Grenville-age and Cambrian
460 sources on opposite sides of the Transcontinental Arch. *Geological Society of America
461 Bulletin* 124, 1826-1840.

462 Ampomah, W., Balch, R., Cather, M., Rose-Coss, D., Dai, Z., Heath, J., Dewers, T., Mozley, P.,
463 2016. Evaluation of CO₂Storage Mechanisms in CO₂Enhanced Oil Recovery Sites:
464 Application to Morrow Sandstone Reservoir. *Energy & Fuels* 30, 8545-8555.

465 Augustsson, C., Aehnelt, M., Voigt, T., Kunkel, C., Meyer, M., Schellhorn, F., Plink-Björklund,
466 P., 2019. Quartz and zircon decoupling in sandstone: Petrography and quartz
467 cathodoluminescence of the Early Triassic continental Buntsandstein Group in Germany.
468 *Sedimentology* 66, 2874-2893.

469 Barbier, E., 2002. Geothermal energy technology and current status: an overview. *Renewable &
470 Sustainable Energy Reviews* 6, 3-65.

471 Barnes, M.A., Anthony, E.Y., Williams, I., Asquith, G.B., 2002. Architecture of a 1.38-1.34 Ga
472 granite-rhyolite complex as revealed by geochronology and isotopic and elemental
473 geochemistry of subsurface samples from west Texas, USA. *Precambrian Research* 119,
474 9-43.

475 Benowitz, J.A., Davis, K., Roeske, S., 2019. A river runs through it both ways across time:
476 40Ar/39Ar detrital and bedrock muscovite geochronology constraints on the Neogene
477 paleodrainage history of the Nenana River system, Alaska Range. *Geosphere* 15, 682-
478 701.

479 Bickford, M.E., Soegaard, K., Nielsen, K.C., Mclelland, J.M., 2000. Geology and geochronology
480 of Grenville-age rocks in the Vanhorn and Franklin Mountains area, west Texas:
481 Implications for the tectonic evolution of Laurentia during the Grenville. *GSA Bulletin*
482 112, 1134-1148.

483 Bickford, M.E., Van Schmus, W.R., Karlstrom, K.E., Mueller, P.A., Kamenov, G.D., 2015.
484 Mesoproterozoic-trans-Laurentian magmatism: A synthesis of continent-wide age
485 distributions, new SIMS U-Pb ages, zircon saturation temperatures, and Hf and Nd
486 isotopic compositions. *Precambrian Research* 265, 286-312.

487 Blum, M., Pecha, M., 2014. Mid-Cretaceous to Paleocene North American drainage
488 reorganization from detrital zircons. *Geology* 42, 607-610.

489 Bowen, D.W., Weimer, P., 2003. Regional sequence stratigraphic setting and reservoir geology
490 of Morrow incised-valley sandstones (lower Pennsylvanian), eastern Colorado and
491 western Kansas. *AAPG Bulletin* 87, 781-815.

492 Boyd, D., 2008. Stratigraphic guide to Oklahoma oil and gas reservoirs. *Oklahoma Geological
493 Survey*

494 Broadhead, R.F., King, W.E., 1988. Petroleum geology of Pennsylvanian and Lower Permian
495 strata, Tucumcari Basin, east-central New Mexico. New Mexico Bureau of Mines &
496 Mineral Resources Bulletin 119, 1-81.

497 Brotherton, J.L., Chowdhury, N.U.M.K., Sweet, D.E., 2019. A Synthesis of Late Paleozoic
498 Sedimentation in Central and Eastern New Mexico: Implicaiton for Timing of ANcestral
499 ROcky Mountains Deformation. Society for Sedimentary Geology.

500 Budnik, R.T., 1986. Left-lateral intraplate deformation along the Ancestral Rocky Mountains:
501 implications for late Paleozoic plate motions. Tectonophysics 132, 195-214.

502 Cather, S.M., Heizler, M.T., Williamson, T.E., 2019. Laramide fluvial evolution of the San Juan
503 Basin, New Mexico and Colorado: Paleocurrent and detrital-sandine age constraints
504 from the Paleocene Nacimiento and Animas formations. Geosphere 15, 1641-1664.

505 Copeland, P., Harrison, T.M., Heizler, M.T., 1990. $^{40}\text{Ar}/^{39}\text{Ar}$ Single-Crystal Dating of Detrital
506 Muscovite and K-Feldspar from Let 116, Southern Bengal Fan: Implications for the
507 Uplift and Erosion of the Himalayas. Proceedings of the Ocean Drilling Program,
508 Scientific Results 116, 93-114.

509 Dahl, P.S., Foland, K.A., 2008. Concentric slow cooling of a low-P-high-T terrane: Evidence
510 from 1600-1300 Ma mica dates in the 1780-1700 Ma Black Hills Orogen, South Dakota,
511 U.S.A. American Mineralogist 93, 1215-1229.

512 Daniel, C.G., Pfeifer, L.S., Jones, J.V., McFarlane, C.M., 2013. Detrital zircon evidence for non-
513 Laurentian provenance, Mesoproterozoic (ca. 1490-1450 Ma) deposition and orogenesis
514 in a reconstructed orogenic belt, northern New Mexico, USA: Defining the Picuris
515 orogeny. Geological Society of America Bulletin 125, 1423-1441.

516 Dickinson, W.R., Lawton, T.F., 2001. Carboniferous to Cretaceous assembly and fragmentation
517 of Mexico. GSA Bulletin 113, 1142-1160.

518 Dickinson, W.R., Lawton, T.F., 2003. Sequential intercontinental suturing as the ultimate control
519 for Pennsylvanian Ancestral Rocky Mountains deformation. Geology 31.

520 Domeier, M., Torsvik, T.H., 2014. Plate tectonics in the late Paleozoic. Geoscience Frontiers 5,
521 303-350.

522 Dutton, S.P., 1982. Pennsylvanian Fan-Delta and Carbonate Deposition, Mobeetie Field, Texas
523 Panhandle. AAPG Bulletin 66, 389-407.

524 Dutton, S.P., Finley, R.J., Galloway, W.E., Gustavson, T.C., Handford, C.R., Presley, M.W.,
525 1979. Geology and Geohydrology of the Palo Duro Basin, Texas Panhandle. Geological
526 Circular 79-1, 1-99.

527 Feinstein, S., 1981. Subsidence and Thermal History of Southern Oklahoma Aulacogen:
528 Implications for Petroleum Exploration. AAPG Bulletin 65, 2521-2533.

529 Gallagher, S.R., 2014. Depositional and Diagenetic Controls on Reservoir Heterogeneity: Upper
530 Morrow Sandstone, Farnsworth Unit, Ochiltree County, Texas. New Mexico Institute of
531 Mining and Technology, 1-214.

532 Garzanti, E., 2016. From static to dynamic provenance analysis—Sedimentary petrology
533 upgraded. Sedimentary Geology 336, 3-13.

534 Garzanti, E., Andò, S., Vezzoli, G., 2008. Settling equivalence of detrital minerals and grain-size
535 dependence of sediment composition. Earth and Planetary Science Letters 273, 138-151.

536 Gehrels, G., Pecha, M., 2014. Detrital zircon U-Pb geochronology and Hf isotope geochemistry
537 of Paleozoic and Triassic passive margin strata of western North America. Geosphere 10,
538 49-65.

539 Gehrels, G., Valencia, V.A., Pullen, A., 2006. Detrital Zircon Geochronology by Laser-Ablation
 540 Multicollector ICPMS at the Arizona Laserchron Center. *Geochronology: Emerging*
 541 *Opportunities, Paleontology Society Short Course: Paleontology Society Papers 12.*

542 Gehrels, G.E., Blakey, R., Karlstrom, K.E., Timmons, J.M., Dickinson, B., Pecha, M., 2011.
 543 Detrital zircon U-Pb geochronology of Paleozoic strata in the Grand Canyon, Arizona.
 544 *Lithosphere* 3, 183-200.

545 Gehrels, G.E., Valencia, V.A., Ruiz, J., 2008. Enhanced precision, accuracy, efficiency, and
 546 spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled
 547 plasma-mass spectrometry. *Geochemistry, Geophysics, Geosystems* 9, n/a-n/a.

548 Graham, S.A., Dickinson, W.R., Ingersoll, R.V., 1975. Himalayan-Bengal Model for Flysch
 549 Dispersal in the Appalachian-Ouachita System. *Geological Society of America Bulletin*
 550 86.

551 Gutiérrez-Alonso, G., Fernández-Suárez, J., Collins, A.S., Abad, I., Nieto, F., 2005. Amazonian
 552 Mesoproterozoic basement in the core of the Ibero-Armorican Arc: $40\text{Ar}/39\text{Ar}$ detrital
 553 mica ages complement the zircon's tale. *Geology* 33.

554 Ham, W.E., Denison, R.E., Merritt, C.A., 1965. Basement Rocks and Structural Evolution of
 555 Southern Oklahoma-A Summary. *AAPG Bulletin* 49, 927-934.

556 Harrison, T.M., Célérier, J., Aikman, A.B., Hermann, J., Heizler, M.T., 2009. Diffusion of 40Ar
 557 in muscovite. *Geochimica et Cosmochimica Acta* 73, 1039-1051.

558 Heckel, P.H., 2008. Pennsylvanian Cyclothsems in Midcontinent North America as far-field
 559 effects of waxing and waning of Gondwana ice sheets. *Geological Society of America*
 560 *Bulletin*, 275-289.

561 Heumann, M.J., Bickford, M.E., Hill, B.M., McLelland, J.M., Selleck, B.W., Jercinovic, M.J.,
 562 2006. Timing of anatexis in metapelites from the Adirondack lowlands and southern
 563 highlands: A manifestation of the Shawinigan orogeny and subsequent anorthosite-
 564 mangerite-charnockite-granite magmatism. *Geological Society of America Bulletin* 118,
 565 1283-1298.

566 Johnson, K.S., 1989. Geologic Evolution of the Anadarko Basin Oklahoma Geological Survey
 567 Circular 90, 3-12.

568 Karlstrom, K.E., Bowring, S.A., 1988. Early Proterozoic Assembly of Tectonostratigraphic
 569 Terranes in Southwestern North America. *The Journal of Geology* 96, 561-576.

570 Karlstrom, K.E., Dallmeyer, R.D., Grambling, J.A., 1997. $40\text{Ar}/39\text{Ar}$ Evidence for 1.4 Ga
 571 Regional Metamorphism in New Mexico: Implications for Thermal Evolution of
 572 Lithosphere in the Southwestern USA. *The Journal of Geology* 105, 205-223.

573 Keller, G.R., Stephenson, R.A., 2007. The Southern Oklahoma and Dniepr-Donets aulacogens:
 574 A comparative analysis, 4-D Framework of Continental Crust, pp. 127-143.

575 Kluth, C.F., Coney, P.J., 1981. Plate tectonics of the Ancestral Rocky Mountains. *Geology* 9, 10-
 576 15.

577 Kuiper, K.F., Deino, A., Hilgen, F.J., Krijgsman, W., Renne, P.R., Wijbrans, J.R., 2008.
 578 Synchronizing rock clocks of Earth history. *Science* 320, 500-504.

579 Laskowski, A.K., DeCelles, P.G., Gehrels, G.E., 2013. Detrital zircon geochronology of
 580 Cordilleran retroarc foreland basin strata, western North America. *Tectonics* 32, 1027-
 581 1048.

582 Lavarini, C., Attal, M., da Costa Filho, C.A., Kirstein, L.A., 2018. Does Pebble Abrasion
 583 Influence Detrital Age Population Statistics? A Numerical Investigation of Natural Data
 584 Sets. *Journal of Geophysical Research: Earth Surface* 123, 2577-2601.

585 Leary, R., Orme, D.A., Laskowski, A.K., DeCelles, P.G., Kapp, P., Carrapa, B., Dettinger, M.,
586 2016. Along-strike diachroneity in deposition of the Kailas Formation in central southern
587 Tibet: Implications for Indian slab dynamics. *Geosphere* 12, 1198-1223.

588 Leary, R.J., Smith, M.E., Umhoefer, P., 2020a. Grain-Size Control on Detrital Zircon
589 Cycloprovenance in the Late Paleozoic Paradox and Eagle Basins, USA. *Journal of*
590 *Geophysical Research: Solid Earth* 125.

591 Leary, R.J., Umhoefer, P., Smith, M.E., Riggs, N., 2017. A three-sided orogen: A new tectonic
592 model for Ancestral Rocky Mountain uplift and basin development. *Geology*.

593 Leary, R.J., Umhoefer, P., Smith, M.E., Smith, T.M., Saylor, J.E., Riggs, N., Burr, G., Lodes, E.,
594 Foley, D., Licht, A., Mueller, M.A., Baird, C., 2020b. Provenance of Pennsylvanian–
595 Permian sedimentary rocks associated with the Ancestral Rocky Mountains orogeny in
596 southwestern Laurentia: Implications for continental-scale Laurentian sediment transport
597 systems. *Lithosphere* 12, 88-121.

598 Lee, J.K.W., Williams, I.S., Ellis, D.J., 1997. Pb, U and Th diffusion in natural zircon. *Nature*
599 390, 159-162.

600 Lee, W., 1953. Subsurface gologic cross section from Meade County to Smith County, Kansas.
601 United States Geological Survey, 23.

602 Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E., Fitzsimons,
603 I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M.,
604 Pease, V., Pisarevsky, S.A., Thrane, K., Vernikovsky, V., 2008. Assembly, configuration,
605 and break-up history of Rodinia: A synthesis. *Precambrian Research* 160, 179-210.

606 Ludwig, K.R., 2003. User's manual for Isoplot 3.75: A Geochronologic Toolkit for Microsoft
607 Excel (No. 5).

608 Maher, J.C., 1948. Subsurface geologic cross section from Baca County to Yuma County,
609 Colorado. United States Geological Survey, 11.

610 Mallory, W.W., 1972. Pennsylvanian system: Regional synthesis. *Geologic Atlas of the Rocky*
611 *Mountain Region* Rocky Mountain Association of Geologists, 111-127.

612 Marshak, S., Karlstrom, K.E., Timmons, J.M., 2000. Inversion of Proterozoic extensional faults:
613 An explanation for the pattern of Laramide and Ancestral Rockies intracratonic
614 deformation, United States. *Geology* 28, 735-738.

615 McCasland, R.D., 1980. Subsurface Geology of the Dalhard Basin, Texas Panhandle. Texas
616 Tech University, 1-147.

617 McKee, E.D., Crosby, E.J., 1975. Paleotectonic Investigations of the Pennsylvanian System in
618 the United States. U.S. Geological Survey Professional Paper 853.

619 McKee, E.D., McKee, S.S., 1967. Paleotectonic maps of the Permian System. U.S. Geological
620 Survey IMAP 450.

621 Merriam, D.F., 1963. The Geologic History of Kansas. *Kansas Geological Survey Buelletin* 162.

622 Min, K., Mundil, R., Renne, P.R., Ludwig, K.R., 2000. A test for systematic errors in $^{40}\text{Ar}/^{39}\text{Ar}$
623 geochronology through comparison with U/Pb analysis of 1.1-Ga rhyolite. *Geochimica et*
624 *Cosmochimica Acta* 64, 73-98.

625 Moecher, D., Samson, S., 2006. Differential zircon fertility of source terranes and natural bias in
626 the detrital zircon record: Implications for sedimentary provenance analysis. *Earth and*
627 *Planetary Science Letters* 247, 252-266.

628 Mosher, S., Levine, J.S.F., Carlson, W.D., 2008. Mesoproterozoic plate tectonics: A collisional
629 model for the Grenville-aged orogenic belt in the Llano uplift, central Texas. *Geology* 36.

630 Mulder, J.A., Karlstrom, K.E., Fletcher, K., Heizler, M.T., Timmons, J.M., Crossey, L.J.,
631 Gehrels, G.E., Pecha, M., 2017. The syn-orogenic sedimentary record of the Grenville
632 Orogeny in southwest Laurentia. *Precambrian Research* 294, 33-52.

633 Munson, T.W., 1989. Depositional, Diagenetic, and Production History of the Upper Morrowan
634 Buckhaults Sandstone, Farnsworth Field, Ochiltree County Texas. *Shale Shaker Digest*
635 40, 2-19.

636 Ortega-Obregón, C., Solari, L., Gómez-Tuena, A., Elías-Herrera, M., Ortega-Gutiérrez, F.,
637 Macías-Romo, C., 2013. Permian–Carboniferous arc magmatism in southern Mexico: U–
638 Pb dating, trace element and Hf isotopic evidence on zircons of earliest subduction
639 beneath the western margin of Gondwana. *International Journal of Earth Sciences* 103,
640 1287-1300.

641 Pereira, M.F., Chichorro, M., Johnston, S.T., Gutiérrez-Alonso, G., Silva, J.B., Linnemann, U.,
642 Hofmann, M., Drost, K., 2012. The missing Rheic Ocean magmatic arcs: Provenance
643 analysis of Late Paleozoic sedimentary clastic rocks of SW Iberia. *Gondwana Research*
644 22, 882-891.

645 Perry, W., J. Jr., 1989. Tectonic Evolution of the Anadarko Basin Region, Oklahoma. U.S.
646 Geological Survey Bulletin 1866-A, 1-19.

647 Puckett, J., Al-Shaieb, Z., Van Evera, E., 2008. Sequence Stratigraphy, Lithofacies, and
648 Reservoir Quality, Upper Morrow Sandstones, Northwestern Shelf, Anadarko Basin.
649 Oklahoma Geological Survey Circular 111, 81-97.

650 Rascoe, B.J., Adler, F.J., 1983. Permo-Carboniferous Hydrocarbon Accumulations, Mid-
651 Continent, U.S.A. *AAPG Bulletin* 67, 979-1001.

652 Repasch, M., Karlstrom, K., Heizler, M., Pecha, M., 2017. Birth and evolution of the Rio Grande
653 fluvial system in the past 8 Ma: Progressive downward integration and the influence of
654 tectonics, volcanism, and climate. *Earth-Science Reviews* 168, 113-164.

655 Resentini, A., Malusà, M.G., Garzanti, E., 2013. MinSORTING: An Excel® worksheet for
656 modelling mineral grain-size distribution in sediments, with application to detrital
657 geochronology and provenance studies. *Computers & Geosciences* 59, 90-97.

658 Richards, B.C., 2013. Current status fo the international Carboniferous time scale. The
659 Carboniferous-Permian Transition, New Mexico Museum of Natural Histroy and
660 Science, Bulletin, 348-352.

661 Rivers, T., 1997. Lithotectonic elements of the Grenville Province: review and tectonic
662 implications. *Precambrian Research* 86, 117-154.

663 Rose-Coss, D., 2017. A Refined Depositional Sequence Stratigraphic and Structural Model for
664 the Reservoir and Caprock Intervals at the Farnsworth Unit, Ochiltree County TX. New
665 Mexico Institute of Mining and Technology 1-231.

666 Ross, C.A., 1986. Paleozoic evolution of southern margin of Permian basin. *GSA Bulletin* 97,
667 536-554.

668 Ross, C.A., Ross, J.R.P., 1987. Late Paleozoic Sea Levels and Depositional Sequences. Cushman
669 Foundation for Foraminiferal Research 24, 137-149.

670 Scharer, U., Allegre, C.J., 1982. Uranium-lead system in fragments of a single zircon. *Nature*,
671 585-587.

672 Schulz, K.J., Cannon, W.F., 2007. The Penokean orogeny in the Lake Superior region.
673 *Precambrian Research* 157, 4-25.

674 Scotese, C.R., Boucot, A.J., McKerrow, W.S., 1999. Gondwanana Palaeogeography and
675 Palaeoclimatology. *Journal of African Earth Sciences* 28, 99-114.

676 Shaw, C.A., Heizler, M.T., Karlstrom, K.E., 2005. *40Ar/39Ar thermochronologic record of*
 677 *1.45–1.35 Ga intracontinental tectonism in the southern Rocky Mountains: Interplay of*
 678 *conductive and advective heating with intracontinental deformation, The Rocky*
 679 *Mountain Region—An Evolving Lithosphere: Tectonics, Geochemistry, and Geophysics*,
 680 *pp. 163–184.*

681 Soreghan, G., Keller, G.R., Gilbert, M.C., Chase, C.G., Sweet, D.E., 2012. Load-induced
 682 subsidence of the Ancestral Rocky Mountains recorded by preservation of Permian
 683 landscapes. *Geosphere* 8.

684 Soreghan, G.S., Sweet, D.E., Heavens, N.G., 2014. Upland Glaciation in Tropical Pangaea:
 685 Geologic Evidence and Implications for Late Paleozoic Climate Modeling. *The Journal*
 686 *of Geology* 122, 137–163.

687 Soreghan, M.J., Soreghan, G.S., Hamilton, M.A., 2008. Glacial–interglacial shifts in atmospheric
 688 circulation of western tropical Pangaea. *Palaeogeography, Palaeoclimatology,*
 689 *Palaeoecology* 268, 260–272.

690 Thomas, J.J., Shuster, R.D., Bickford, M.E., 1984. A terrane of 1,350- to 1,400-m.y.-old silicic
 691 volcanic and plutonic rocks in the buried Proterozoic of the mid-continent in the wet
 692 mountains, Colorado. *GSA Bulletin* 95, 1150–1157.

693 Thomas, W.A., Gehrels, G.E., Greb, S.F., Nadon, G.C., Satkoski, A.M., Romero, M.C., 2017.
 694 Detrital zircons and sediment dispersal in the Appalachian foreland. *Geosphere* 13, 2206–
 695 2230.

696 Thomas, W.A., Gehrels, G.E., Lawton, T.F., Satterfield, J.I., Romero, M.C., Sundell, K.E., 2019.
 697 Detrital zircons and sediment dispersal from the Coahuila terrane of northern Mexico into
 698 the Marathon foreland of the southern Midcontinent. *Geosphere* 15, 1102–1127.

699 Thomas, W.A., Gehrels, G.E., Romero, M.C., 2016. Detrital zircons from crystalline rocks along
 700 the Southern Oklahoma fault system, Wichita and Arbuckle Mountains, USA. *Geosphere*
 701 12, 1224–1234.

702 Van Schmus, W.R., Bickford, M.E., Turek, A., 1996. Proterozoic geology of the east-central
 703 Midcontinent basement. *Geological Society of America Special Paper* 308, 7–32.

704 Wahlman, G.P., 2013. Pennsylvanian to Lower Permian (Desmoinesian–Wolfcampian) fusulinid
 705 biostratigraphy of Mid continent North America. *Stratigraphy* 10, 73–104.

706 Waite, L., Fan, M., Collins, D., Gehrels, G., Stern, R.J., 2020. Detrital zircon provenance
 707 evidence for an early Permian longitudinal river flowing into the Midland Basin of west
 708 Texas. *International Geology Review* 62, 1224–1244.

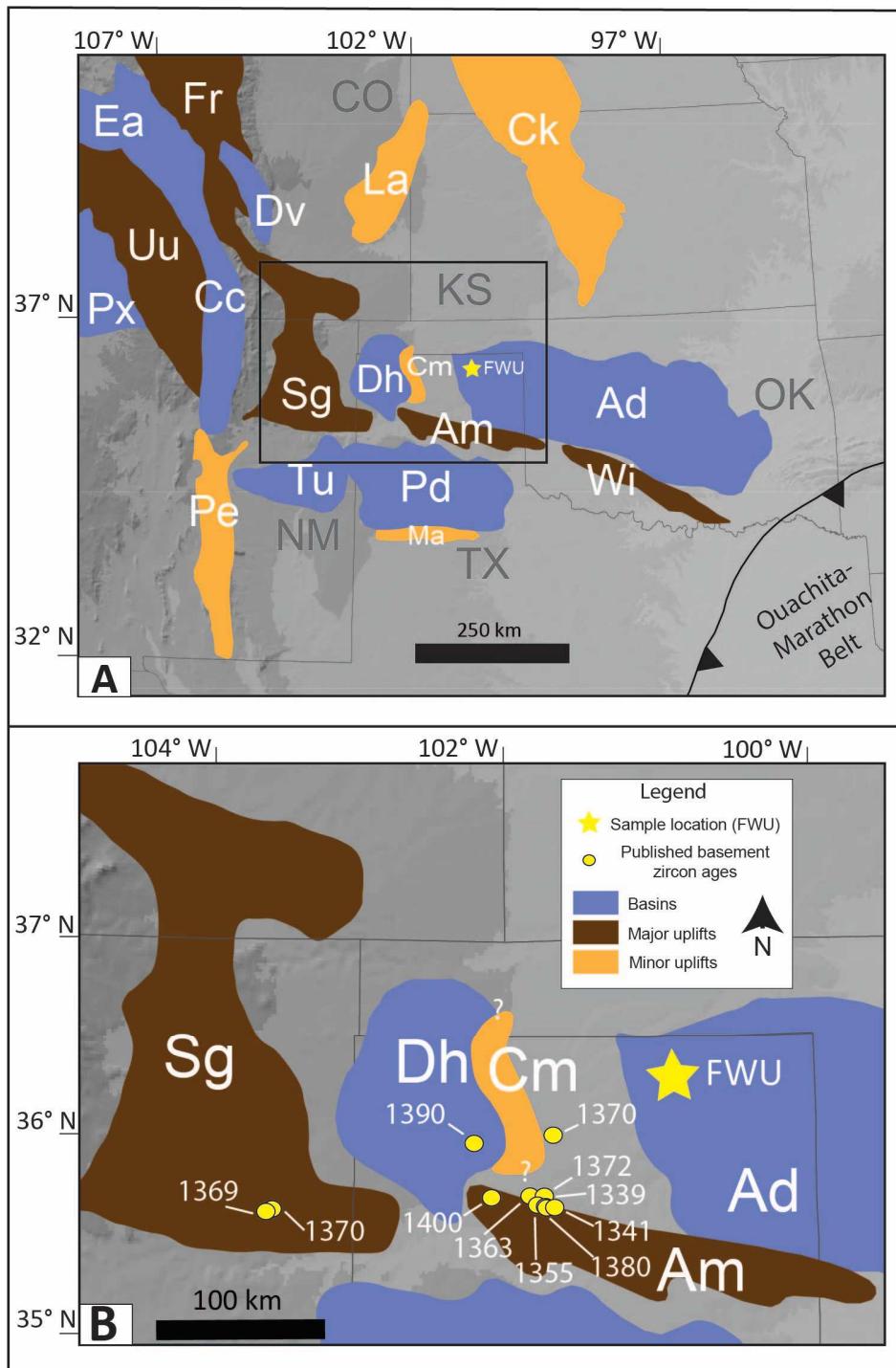
709 Wall, C.J., Hanson, R.E., Schmitz, M., Price, J.D., Donovan, R.N., Boro, J.R., Eschberger, A.M.,
 710 Toews, C.E., 2020. Integrating zircon trace-element geochemistry and high-precision U–
 711 Pb zircon geochronology to resolve the timing and petrogenesis of the late Ediacaran–
 712 Cambrian Wichita igneous province, Southern Oklahoma Aulacogen, USA. *Geology* 49.

713 Whitmeyer, S.J., Karlstrom, K.E., 2007. Tectonic model for the Proterozoic growth of North
 714 America. *Geosphere* 3, 220–259.

715 Ye, H., Royden, L., Burchfiel, C., Schuepbach, M., 1996. Late Paleozoic Deformation of Interior
 716 North America: The Greater Ancestral Rocky Mountains. *AAPG Bulletin* 80, 1397–1432.

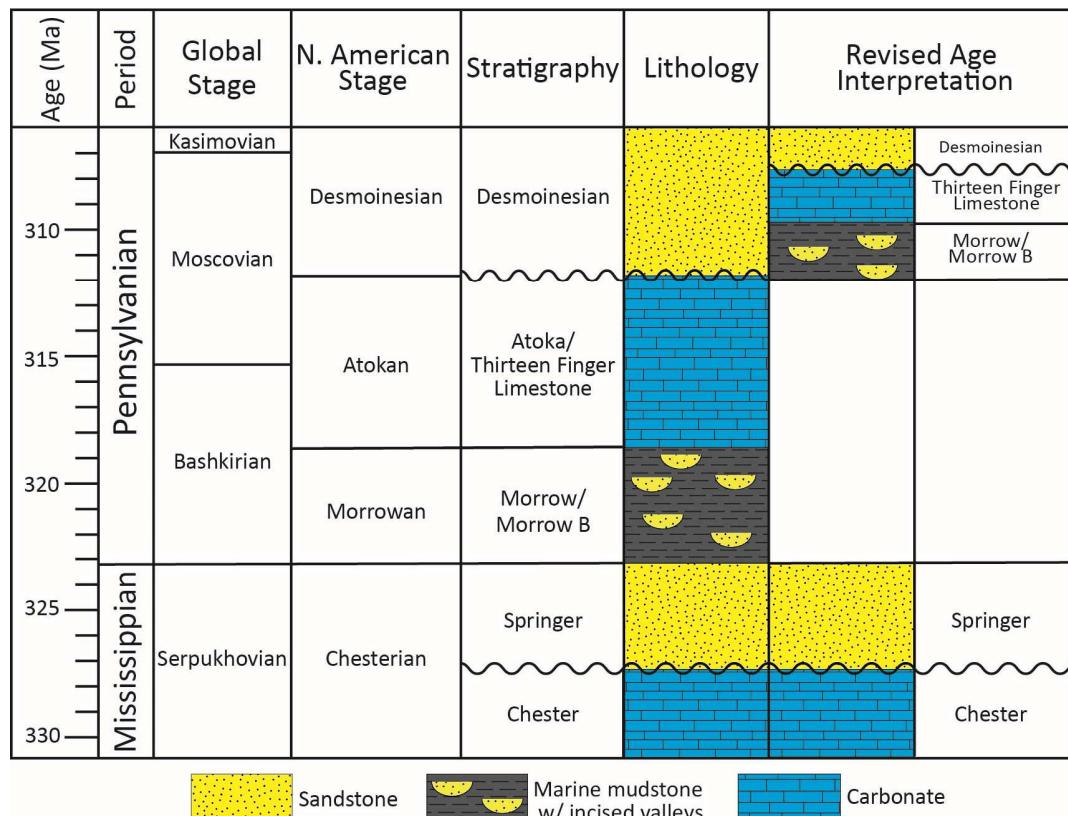
717 Zotto, S.C., Moecher, D.P., Niemi, N.A., Thigpen, J.R., Samson, S.D., 2020. Persistence of Grenvillian
 718 dominance in Laurentian detrital zircon age systematics explained by sedimentary recycling:
 719 Evidence from detrital zircon double dating and detrital monazite textures and geochronology.
 720 *Geology* 48, 792–797.

722 Table 1. Well and core data.

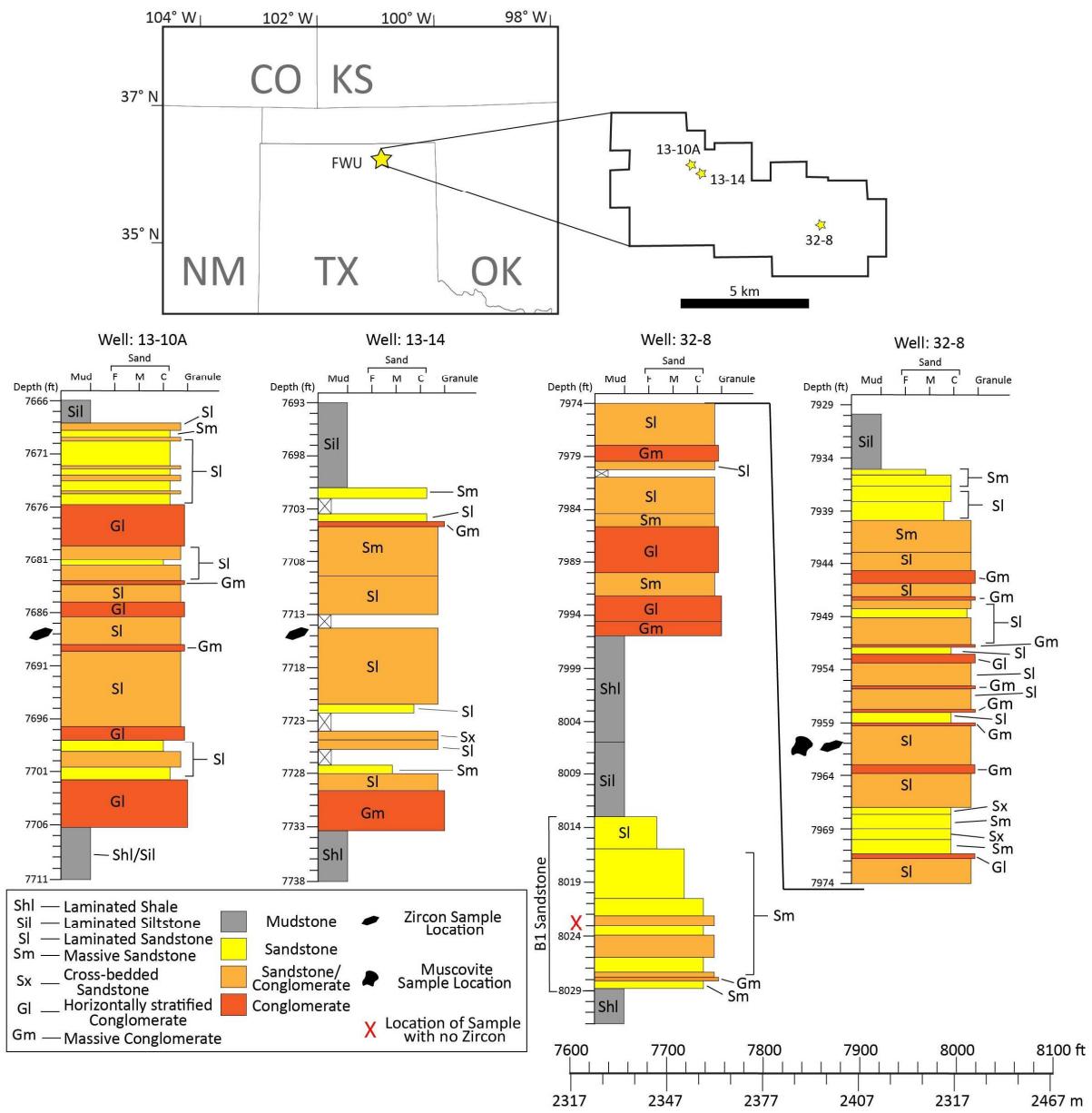

723

Well name	Latitude	Longitude	Location of core	Core length
				725
				726
13-10A	36.3651	-101.01061	New Mexico Bureau of Geology & Mineral Resources	~80 m (260 ft) 727 728 729
13-14	36.26264	-101.00598	New Mexico Bureau of Geology & Mineral Resources	~83 m (270 ft) 730 731 732
32-8	36.242406	-100.95036	New Mexico Bureau of Geology & Mineral Resources	~78 m (255 ft) 733 734 735

736


737

738 Figure 1. (A) Map of Midcontinent late Paleozoic tectonic elements after Merriam (1963);
 739 McKee and McKee (1967); Mallory (1972); McKee and Crosby (1975); Dutton et al. (1979);
 740 Leary et al. (2020b). Basins: Ad – Anadarko, Pd – Palo Duro, Dh – Dalhart, Cc – Central
 741 Colorado Trough, Ea – Eagle, Px – Paradox, Dv – Denver, Tu – Tucumcari. Major and minor
 742 uplift designation from Soreghan et al. (2012) and Leary et al. (2020b). Major uplifts: Am –
 743 Amarillo, Wi – Wichita, Sg – Sierra Grande, Fr – Ancestral Front Range, Uu – Uncompahgre.
 744 Minor uplifts: Ck – Central Kansas, Cm – Cimarron, Pe – Pedernal, Ma – Matador Arch, and La
 745 – Las Animas Arche. (B) Enlarged view of rectangle from figure 1A, showing U-Pb ages of
 746 basement rocks, taken from the subsurface, in millions of years (Bickford et al., 2015).


747
748
749
750

751 Figure 2. General stratigraphic column of the Anadarko Basin after Boyd (2008) and Munson
 752 (1989). Timescale after Richards (2013).

766 Figure 3. Location of cores (stars) at the Farnsworth Unit, north Texas. Black outline is the
 767 outline of the Farnsworth Unit oil and gas field. Description of core modified from (Rose-Coss,
 768 2017) showing facies associations and locations of zircon and muscovite samples.

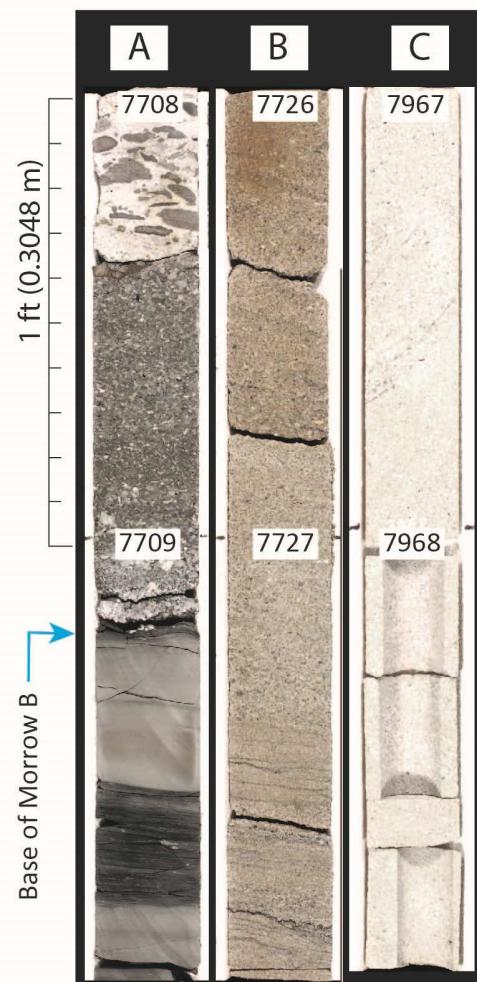
769

770

771

772

773


774

775

776

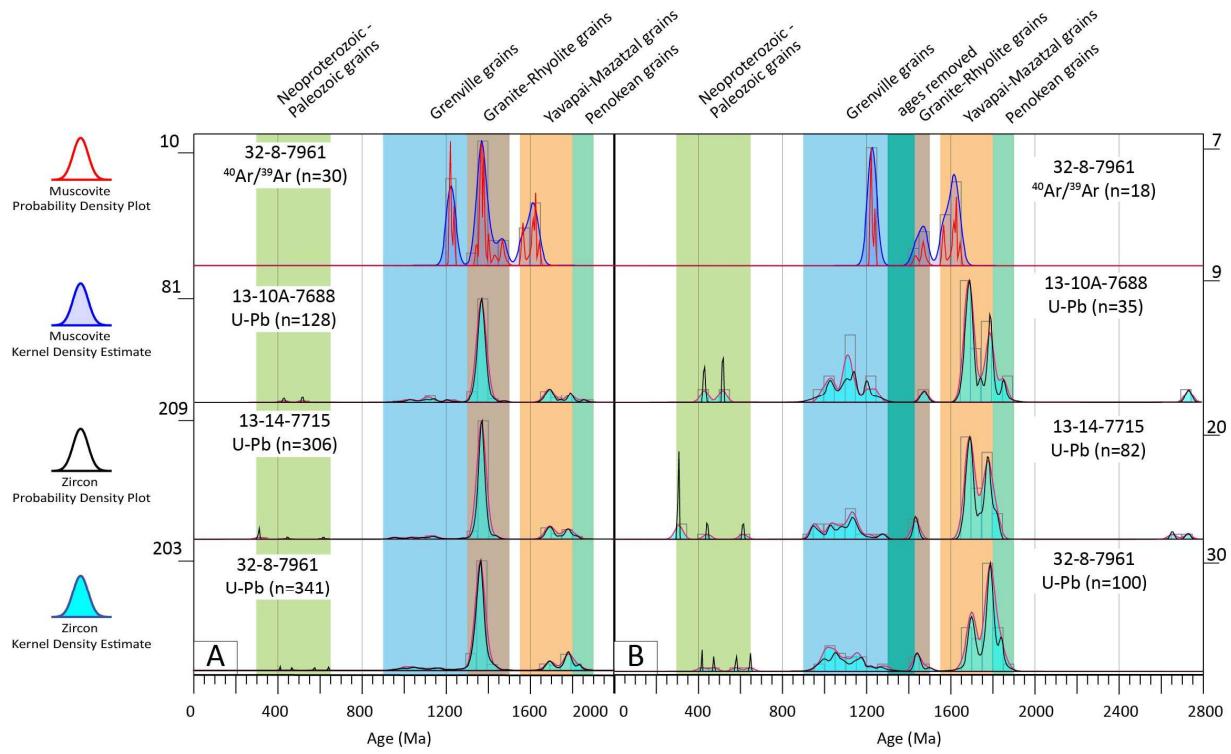
777

778 Figure 4. Core photos taken from the Farnsworth Unit, TX. Numbers on the core are depth in ft.
779 (A) from core 13-10A, showing sharp contact between underlying siltstone and mudstone with
780 the basal conglomerate of the Morrow B. (B) From core 13-14 showing coarse to granular
781 sandstone/conglomerate and finer grained laminated facies with stylolites and clay drapes
782 (bottom). (C) From core 32-8 showing cross bedded facies (top).

783

784

785


786

787

788

789

790 Figure 5. U-Pb detrital zircon and $^{40}\text{Ar}/^{39}\text{Ar}$ detrital muscovite results from 3 samples; 13-10A-
791 7688, 13-14-7715, and 32-8-7961. Results are displayed in both probability density plots and
792 kernel density estimates. Bandwidth for kernel density estimate is 20 Ma and bin width for
793 histogram is 50 Ma. The y-axis illustrates maximums for histograms. (A) Age spectrum of all
794 zircon and muscovite results. (B) Age spectrum of zircon and muscovite without 1300-1400 Ma
795 ages, in order to better visualize ages outside primary 1370 Ma peak.

796

Zircon and muscovite spectra with all ages

Zircon spectra without ages from 1300-1430 Ma

797

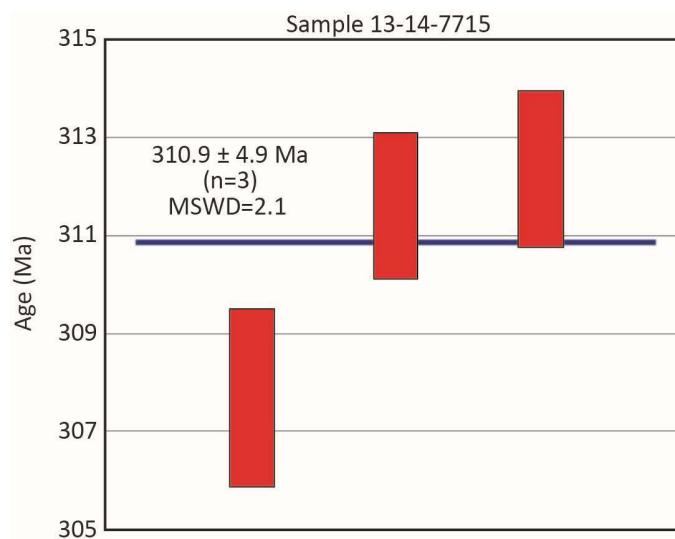
798

799

800

801

802


803

804

805

806

807 Figure 6. New maximum depositional age of 310.9 ± 4.9 Ma (including systematic error) for
808 sample 13-14-7715 calculated using weighted average for the youngest age peak. Red bars are
809 1σ uncertainty.

810

811

812

813

814

815

816

817

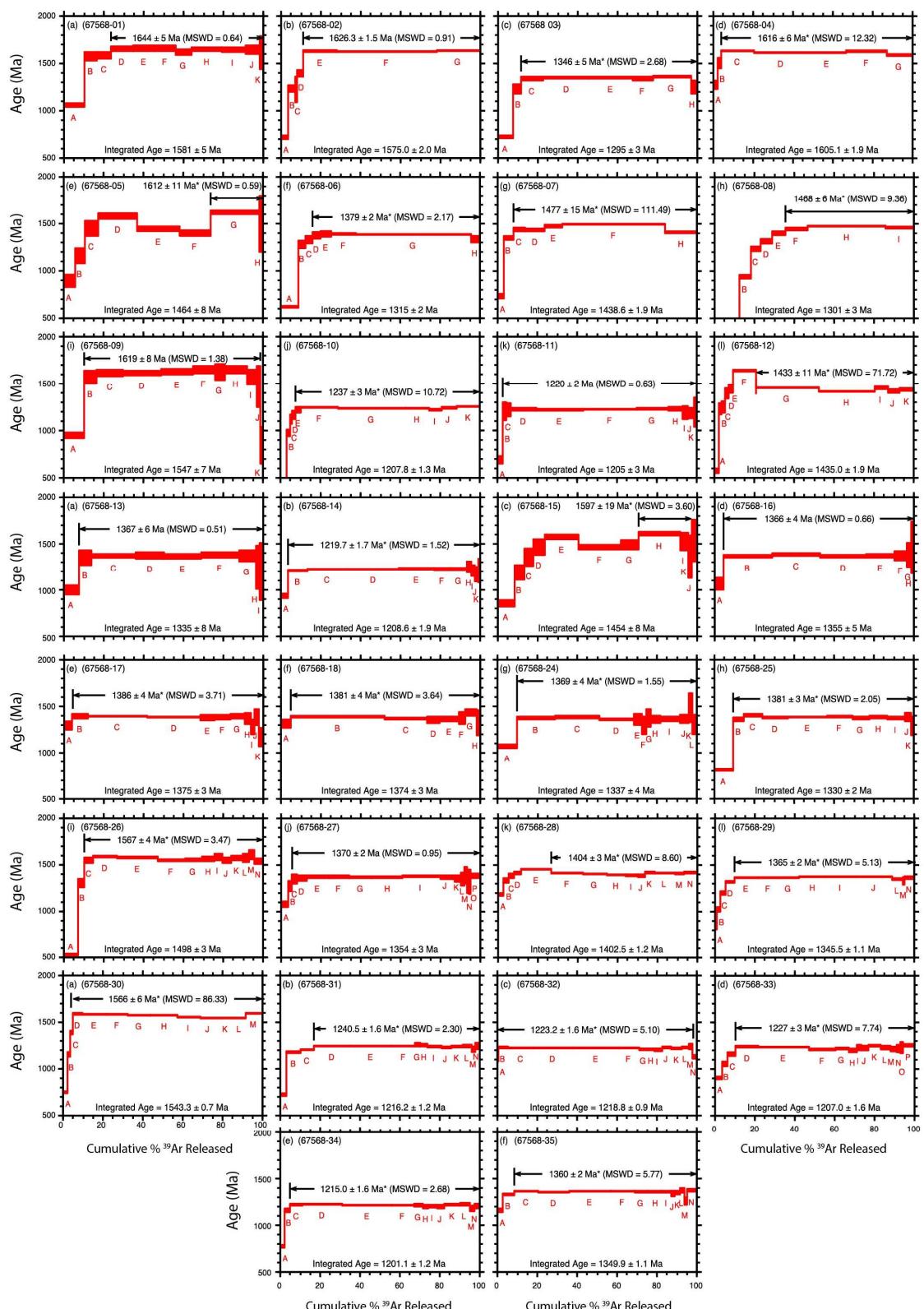
818

819

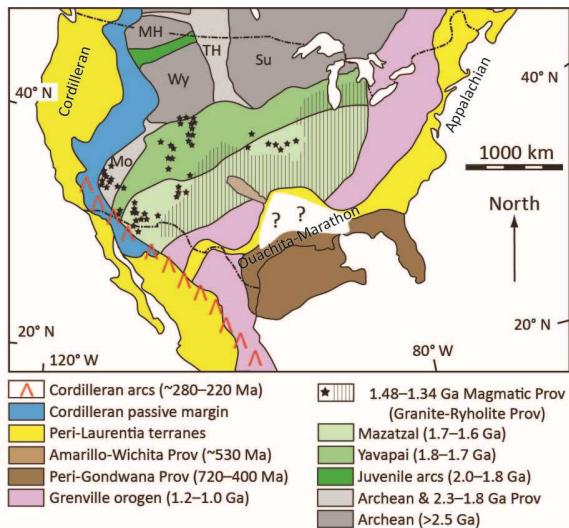
820

821

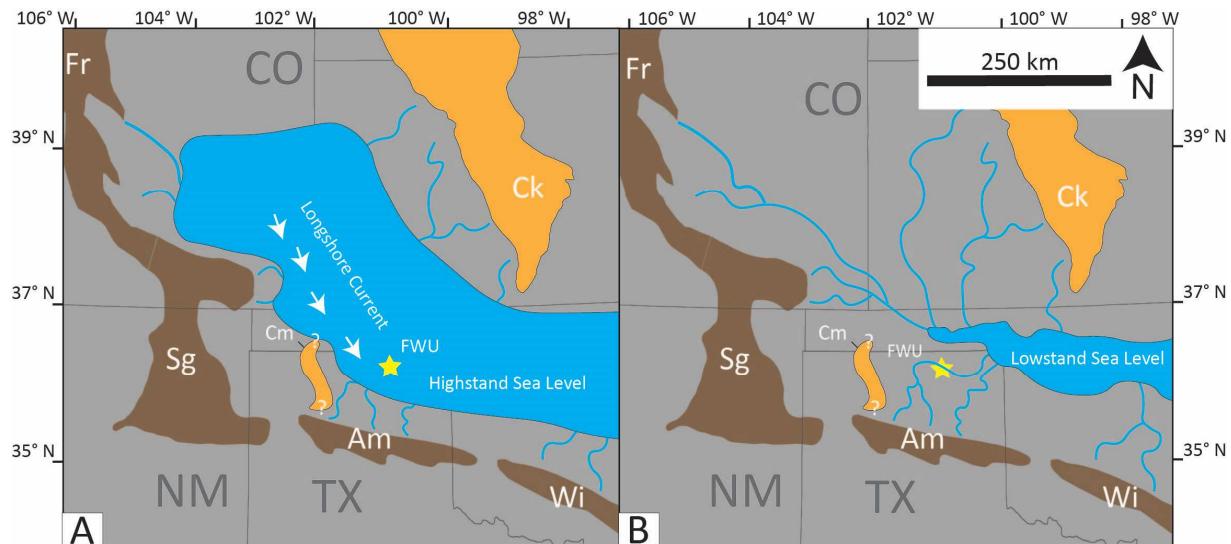
822


823

824


825

826


827 Figure 7. Step heating analysis and plateau definition of muscovite crystals.

829 Figure 8. North American basement provinces and ages based on (Whitmeyer and Karlstrom,
 830 Gehrels et al., 2011; Gehrels and Pecha, 2014) Hoffman (1989), Whitmeyer and Karlstrom
 831 (2007), Gehrels et al. (2011), and Gehrels and Pecha (2014). Provinces: Mo - Mojave; Wy -
 832 Wyoming; MH - Medicine Hat; Su - Superior; TH - Trans-Hudson.

849 Figure 9. Schematic map of depositional system and tectonic elements during (A) deposition of
 850 the Morrow shale at highstand and (B) Morrow B sandstone during lowstand after Merriam
 851 (1963); McKee and McKee (1967); (Mallory, 1972); McKee and Crosby (1975); Dutton et al.
 852 (1979); Bowen and Weimer (2003); Leary et al. (2020b). Major uplifts: Am – Amarillo, Wi –
 853 Wichita, Sg – Sierra Grande, Fr – Ancestral Front Range. Minor uplifts: Ck – Central Kansas
 854 and Cm – Cimarron. FWU – Farnsworth Unit.

855