

1 **Gas generation and intramolecular isotope study in laboratory**

2 **pyrolysis of the Springfield coal from the Illinois Basin**

3

4 Xiaoqiang Li^{a*}, Maria Mastalerz^b, Juske Horita^a

5 ^a Department of Geosciences, Texas Tech University, Lubbock, TX 79409, USA

6 ^b Indiana Geological and Water Survey, Indiana University, Bloomington, IN 47405, USA

7 (* Corresponding author: xiaoqiang.li@ttu.edu)

8 Abstract

9 Position-specific (PS) isotopes of propane have been proposed as a potential geochemical tool to
10 decipher various geological processes (e.g., thermal cracking, biodegradation, H exchange) in
11 natural reservoirs. The limited studies have been conducted on the PS isotopes of propane from
12 the pyrolysis gases from marine shales, and natural gases sourced from lacustrine and marine
13 kerogens, but little is known on gases produced from the humic kerogen. This study investigated
14 the PS $\delta^{13}\text{C}$ of propane in the closed-system pyrolysis of the Springfield coal, Illinois Basin,
15 Indiana, at 310 to 470 °C (Easy %R_o: 0.76 to 3.07). The C kinetic isotope effect (KIE) of CH₄
16 produced in both this study and previous low-temperature pyrolysis of the same coal indicates the
17 cleavage of C-O bonds is the main generation pathway at the early kerogen cracking stage,
18 followed by the breakdown of alkyl groups. At the wet-gas cracking stage, C₃H₈ production from
19 thermally stable compounds has a significant influence on the bulk and position-specific C KIE in
20 the pyrolysis of marine Woodford kerogen and Springfield coal. According to the PS $\delta^{13}\text{C}$ of
21 propane, the central site is likely more enriched in ¹³C and the $\delta^{13}\text{C}$ of the terminal site is relatively

22 heterogeneous within the propyl group attached to different functional groups of the gas-prone
23 kerogen. Our findings based on the pyrolysis experiments and natural gas samples indicate thermal
24 cracking and biodegradation appear to alter the $\delta^{13}\text{C}_{\text{cen}}$ values more significantly than the $\delta^{13}\text{C}_{\text{ter}}$
25 values of propane. The larger magnitude of $\Delta\text{C}_{\text{c-t}}$ in the kMC simulations (Peterson et al., 2018)
26 compared with those from the marine shale and coal possibly implies the non-random distributions
27 of ^{13}C of propane precursors in the kerogens. As a new dimension of intramolecular isotopic
28 information of propane, the PS $\delta^{13}\text{C}$ values can contribute to fingerprinting the gas origins and
29 identifying the various geological processes (e.g., kerogen cracking, wet-gas cracking, microbial
30 activities) in sedimentary basins.

31 **Key words:** position-specific isotope, pyrolysis experiments, natural gas, gas generation

32 1 Introduction

33 Recently, position-specific (PS) isotope of propane has been applied to examine the gas origin and
34 maturity (Suda et al., 2017; Piasecki et al., 2018), decipher the intramolecular isotope equilibrium
35 in natural system (Liu et al., 2019; Xie et al., 2020), identify the microbial activities in gas
36 reservoirs (Gilbert et al., 2019), and so on. With the application of this new geochemical diagnostic
37 tool, we can better constrain the gas history in the sedimentary basins. However, geological factors
38 controlling the position-specific isotope of propane are not fully understood, for example the types
39 of kerogen, which exerts a significant role on the intramolecular isotopic structures of the gaseous
40 products. The characterization of PS isotope of propane generated from different types of source
41 rock contributes to resolving this issue and identifying various geological processes in natural
42 reservoirs. Marine shales and coals are the most important source rocks for the gas deposits in
43 sedimentary basins worldwide. The latest study on the pyrolysis of the marine Woodford Shale

44 (Li et al., in review) has provided an insightful investigation on understanding the importance of
45 kinetic and exchange reactions on chemical and isotopic compositions of gases produced in
46 laboratory and natural conditions from the same source rock, and laying a framework of the
47 generation of natural gases, and subsequent geochemical and microbial processes in natural
48 reservoirs based on PS $\delta^{13}\text{C}$ and $\delta^2\text{H}$ isotopic compositions of propane.

49 Based on our previous work on the pyrolysis of immature Woodford Shale, here we conduct
50 artificial maturation experiments on the Springfield coal with the aim to characterize the evolution
51 of PS $\delta^{13}\text{C}$ from different kerogens, and interpreting the PS isotope compositions of propane in
52 nature. The several methods for analyzing the position-specific isotope of propane have been
53 developed: GC-pyrolysis-GC/IRMS (Gilbert et al., 2016), high-resolution mass spectrometry
54 (Piasecki et al., 2016; Xie et al., 2018), GC/IRMS with chemical degradation (Gao et al., 2016)
55 and quantitative nuclear magnetic resonance (qNMR) (Liu et al., 2018). In this study we apply an
56 improved GC-pyrolysis-GC/IRMS technique (Li et al., in review) to accurately and precisely
57 obtain the position-specific ^{13}C of propane. This study compares PS carbon isotopes of propane
58 generated from different kerogen types or experienced secondary alternation to better constrain
59 different geological processes in natural gas. Based on the bulk and position-specific isotopes of
60 hydrocarbon gases generated from the gas-prone kerogen, we attempt to give an insightful look on
61 the isotopic structure of kerogen that remains unresolved in modelling gas generation from the
62 organic matter.

63 2 Samples and methods

64 A low maturity Pennsylvanian coal sample from the Illinois Basin used in this study was collected
65 from the Oaktown mine in Springfield, Indiana. This coal has a total organic carbon (TOC) content

66 of 72.6%, H/C molar ratio of 0.93, vitrinite reflectance (%R₀) of 0.54, total sulfur content of 3.56%,
67 oxygen content of 8.19%. The Springfield coal has δ¹³C value of -25.4‰ of the kerogen fraction.
68 The rock samples were collected fresh from a core, which was also used for the study of methane
69 generation at low-temperature conditions (Wei et al., 2018). The coal was crushed into the size of
70 0.5 - 2 cm for the pyrolysis experiments.

71 2.1 Pyrolysis experiments

72 The experimental procedures in hydrous and anhydrous conditions were already described in
73 details in Li et al. (in review). Hydrous pyrolysis experiments were conducted on the Springfield
74 coal, using a ~ 300 ml bolted-closure Hastelloy reactor vessel at temperatures of 310, 340, 360 °C
75 for 72 h each, 370 °C for 14 and 45 days. In general, 20 - 80 g samples and 60 - 80 g deionized
76 water (DI) with δ²H of -36 ± 0.2‰ were loaded into the quartz liner in the reactor, which was
77 connected to a high-pressure 2-port valve via 1/16 inch stainless steel tubing. After checking for
78 leak by pressuring the vessel with ~ 80 psi of air, the reactor was evacuated to 0.3 psi and placed
79 in a convection oven. A K-type thermocouple, which was attached closely to the sample location
80 of the reactor and wrapped by Al foil, was used to monitor the temperature in the reactor within ±
81 0.5 °C. Anhydrous pyrolysis experiments were conducted with the same Hastelloy vessel at 310,
82 340, 360, 380, 400, 415, 430, 450, 470 °C for 72 h each, without added DI water. After loading
83 the samples into the liner, quartz wool was added to prevent the powders from contaminating or
84 blocking the 1/4 inch tubes, when the reactor was evacuated to 0.1 torr. During the isothermal
85 hydrous and anhydrous pyrolysis of the Springfield coal the reactor was heated to the target
86 temperature in ~ 2 h, and cooled down to room temperature within ~ 1 h once the experiments
87 were finished. In these series of pyrolysis experiments, the equivalent maturities for the
88 temperature-time conditions were determined according to Sweeny and Burnham (1990).

89 After the pyrolysis experiments cooled down, the gaseous products in the headspace were
90 collected by expanding the gas from the reactor to a pre-evacuated and calibrated volume
91 connected to a pressure gauge. The total amounts of the gas were calculated based on the
92 temperature and pressure according to the ideal gas law. The gases were extracted by a 10-ml
93 syringe through a septum, and stored in 10 ml pre-evacuated serum vials for the analysis of gas
94 compositions, bulk isotope compositions, and position-specific ^{13}C isotope of propane.

95 2.2 Gas compositional and isotopic analysis

96 Gaseous and isotopic compositions of the gases from the pyrolysis of the Springfield coal were
97 analyzed, using a gas chromatography-combustion/pyrolysis-isotope ratio mass spectrometry
98 (GC-C/Py-IRMS). The gases stored in the serum bottles were injected by a gas-tight syringe and
99 transferred by high-purity helium into a GC column CP7551 (HP-PLOT-Q, 27.5 m \times 0.32 mm i.d.
100 including 2.5 m particle trap, 10 μm film thickness), which was connected to GC Isolink and
101 Finnigan Delta V plus mass spectrometer. The injector temperature was set at 100 $^{\circ}\text{C}$ with a split
102 ratio of 8. The GC oven temperature was initially kept at 30 $^{\circ}\text{C}$ for 4 min and increased to 100 $^{\circ}\text{C}$
103 at a heating rate of 6 $^{\circ}\text{C}/\text{min}$, followed by the increase to 220 $^{\circ}\text{C}$ at a heating rate of 20 $^{\circ}\text{C}$, and
104 then kept constant for 2 min. For bulk carbon isotope analysis, \sim 12 μl of the gas samples were
105 injected and the combustion furnace temperature was set at 1030 $^{\circ}\text{C}$ with helium flow was 1.2
106 ml/min. For hydrogen isotopic composition, at least 25 μl gas samples were injected with the HTC
107 temperature set at 1420 $^{\circ}\text{C}$ and the helium flow of 1 ml/min.

108 The chemical compositions of gaseous products (hydrocarbon gases, CO_2 , H_2 , H_2S) in the
109 pyrolysis experiments were calibrated with a standard hydrocarbon gas mixture (Scotty Analyzed
110 Gases), pure H_2 or CO_2 gas, a gas mixture of H_2S (1% mole concentration) balanced with N_2 . The
111 bulk carbon and hydrogen isotopic compositions were calibrated against the VPDB and VSMOW

112 scales, respectively using the natural gas standards obtained from USGS (Dias et al., 2016). The
113 precisions of $\delta^{13}\text{C}$ and $\delta^2\text{H}$ are within $\pm 0.5\text{\textperthousand}$ and $\pm 5\text{\textperthousand}$ respectively (1 σ).

114 2.3 Position-specific carbon isotope analysis of propane

115 For the determination of intramolecular $\delta^{13}\text{C}$ values of propane in the pyrolysis gases, an improved
116 GC-Pyrolysis-GC/IRMS method was described in Li et al. (in review). The key parameters for the
117 measurements were summarized below. For the measurements of intramolecular $\delta^{13}\text{C}$ values of
118 propane, approximately 60 μl gas samples with C_3H_8 contents of $\sim 5\%$ were injected via a gas-
119 tight syringe and the injector temperature was at 100 $^{\circ}\text{C}$ using the split liner with the split ratio of
120 4. A first GC column (HP-PLOT-Q, 27.5 m \times 0.32 mm i.d. including 2.5 m particle trap, 10 μm
121 film thickness) separates the propane from samples. The gases were carried by high purity helium
122 at 2.5 ml/min, into a high temperature pyrolysis furnace connected with a second column (CP-
123 PoraPLOT-Q, 27.5 m \times 0.32 mm i.d., 10 μm film thickness) to separate the CH_4 , C_2H_4 and C_2H_6
124 fragments from propane cracking. The temperature of pyrolysis furnace was set at 800 - 820 $^{\circ}\text{C}$.
125 The temperature program in the first GC column was set: initially stayed at 50 $^{\circ}\text{C}$ for 15 min, then
126 increased to 100 $^{\circ}\text{C}$ at 10 $^{\circ}\text{C}/\text{min}$ and held it for 10 min, and finally heated at 20 $^{\circ}\text{C}/\text{min}$ to 150 $^{\circ}\text{C}$
127 where it was kept for 15 min. The second column was placed in an oven and the temperature was
128 kept at 25 $^{\circ}\text{C}$ during the measurements and increased to 180 $^{\circ}\text{C}$ after each measurement in order
129 to elute the other longer-chain HCs retained in the column. After the correction for isotope
130 fractionations associated with propane cracking to the fragments (Li et al., in review), accurate
131 $\delta^{13}\text{C}$ values of terminal and central sites were obtained.

132 3 Results

133 3.1 Gas yields

134 In the hydrous and anhydrous pyrolysis of the Springfield coal, the gas molar yields (C₁-C₅, CO₂,
135 H₂S and H₂) normalized to the TOC value, were shown as a function of the thermal maturities
136 (Table 1, Fig. 1). The yields of methane, ethane, and propane generated in hydrous conditions
137 increased from 0.15 to 1.85, 0.06 to 0.57, and 0.03 to 0.3 mmol/g TOC, respectively, at the
138 Easy %R_o of 0.76 to 1.93. In the anhydrous pyrolysis experiments at maturity ranges from 0.76 to
139 3.07 %, methane yields increased from 0.13 to 5.55 mmol/g TOC, while ethane and propane yields
140 increased continually with the maturities, followed by a decrease of their yields up to Easy %R_o
141 of 3.07, due to the cracking of wet gas. The gas species of C₄ and C₅ as minor compositions of the
142 pyrolysis gas showed increasing yields up to the Easy %R_o of 1.75 - 2, followed by the reduction
143 due to the cracking reactions with increasing maturity. In this study the HC gases up to Easy %R_o
144 of 2 were regarded as the products mainly sourced from thermal decomposition of kerogen and
145 longer-chain HCs (C₅₊), while at higher maturities the gases were mainly originated from the
146 cracking of a mixture of the remained kerogen, wet-gas and other thermally stable organic
147 compounds. As the most abundant non-hydrocarbon gases (Table 1), CO₂ yields in the hydrous
148 conditions were much higher than those in the anhydrous conditions at the similar maturities
149 mainly because of the interaction of water with carbonyl compounds in hydrous conditions (Lewan,
150 1997), which was similar to the observation of H₂S yields in the experiments with and without DI
151 water. H₂S has various sources in the thermal maturation of coal, for instance thiols, sulfides and
152 thiophenes (Lewan and Kotarba, 2014). The molar yields of H₂ in the hydrous conditions are
153 comparable to the amounts in the anhydrous experiments, increasing from 0.01 to 0.13 mmol/g
154 TOC at the Easy %R_o of 0.76 to 2, followed by a large increase up to 0.32 mmol/g TOC at the

155 highest maturity (Table 1). This implies that the H₂ is mainly sourced from organically bound
156 hydrogen, as suggested by the open system pyrolysis of different types of source rocks showing
157 the organic origin of H₂ (Li et al., 2015).

158 The molar yields of total hydrocarbon gases (C₁-C₅) increased significantly from 0.24 to 2.9 and
159 from 0.23 to 6.15 mmol/g TOC in the hydrous and anhydrous experiments, respectively (Fig. 2).
160 The gas dryness (C₁/(C₁-C₅)) in the pyrolysis experiments firstly decreased with the thermal
161 maturity, and then increased continually with the highest values of 0.9 at Easy %R_o of 3.07 (Fig.
162 2). Such patterns of the evolution of gas dryness were also observed in the closed-system pyrolysis
163 of immature Jurassic coal, extracted coal, and bitumen-rich coal at a heating rate of 2 or 20 °C/h
164 (Li et al., 2013), and immature Cretaceous Cameo coal from the Piceance Basin (Zhang et al.,
165 2008). This reflects that the gas produced at the early stage of coal cracking is relatively wet during
166 the bond cleavage of various bonds (C-O, C-S, C-C).

167 3.2 Bulk isotopic compositions of hydrocarbon gases

168 As presented in Fig. 3 and Table 2, $\delta^{13}\text{C}$ values of C₁-C₃ in the hydrous and anhydrous pyrolysis
169 experiments are similar at the similar maturities (Easy %R_o: 0.76 - 2), with the initial values of ~
170 -35, -29.5 and -29‰ at 310 °C. With increasing thermal maturation their highest $\delta^{13}\text{C}$ values were
171 -31.5, -20.2 and 2.1‰, respectively, at 470 °C (Easy %R_o: 3.07). Previous studies on the hydrous
172 pyrolysis of the Springfield coal with the same original $\delta^{13}\text{C}$ of kerogen (-25.4‰) as in this study,
173 showed $\delta^{13}\text{C}$ values of CH₄ increased from ~ -57‰ to -44‰ with the increase of temperature from
174 60 to 200 °C for different time (6 - 24 months) (Wei et al., 2018). This is likely attributed to the
175 temperature-dependent kinetic isotope effect in gas generation. The decrease of $\delta^{13}\text{C}_1$, and the
176 relative constant values of $\delta^{13}\text{C}_2$ and $\delta^{13}\text{C}_3$ during coal kerogen cracking in this study were also
177 observed in the closed-system pyrolysis of an immature Jurassic coal at 20 °C/h (Li et al., 2013)

178 and an immature Late Tertiary lignite at 10 °C/h (He et al., 2018). This can be explained by the
179 cracking of various bonds associated to different $\delta^{13}\text{C}$ values in the gas precursors (Tang et al.,
180 2000).

181 The $\delta^2\text{H}$ of C₁-C₃ in the anhydrous conditions showed heavier values than those in the hydrous
182 pyrolysis experiments at similar maturities, indicating H from water is involved in the gas
183 generation reactions (Fig. 3). With the added DI water ($\delta^2\text{H}$: $-36 \pm 0.2\text{\textperthousand}$) $\delta^2\text{H}_{\text{C}1}$ in the hydrous
184 experiments at Easy %R_o: 0.76 - 1.93 remained around $-290\text{\textperthousand}$, while those from the anhydrous
185 conditions at Easy %R_o: 0.76 - 3.07 kept increasing from -282 to $-174\text{\textperthousand}$. Low-temperature
186 pyrolysis study verified that hydrogen from water has insignificant effect of $\delta^2\text{H}$ of CH₄, whereas
187 for the pyrolysis experiments at high temperature $\sim 50\%$ of H in CH₄ was derived from water (Wei
188 et al., 2018). Previous hydrous pyrolysis study on the Springfield coal at 60 - 200 °C showed $\delta^2\text{H}_{\text{C}1}$
189 values varying between -218 and $-275\text{\textperthousand}$ with $\delta^2\text{H}_{\text{H}_2\text{O}}$ of -137 or $1246\text{\textperthousand}$ (Wei et al., 2018), which
190 are similar to the variations of $\delta^2\text{H}_{\text{C}1}$ in the anhydrous pyrolysis in this study (310 to 400 °C). This
191 indicated that the physical and chemical properties of water related to the temperature also plays
192 an important factor in influencing the $\delta^2\text{H}$ in the pyrolysis conditions, besides the H KIE.

193 3.3 Position-specific C isotopes of propane

194 In the hydrous and anhydrous pyrolysis of the Springfield coal the position-specific carbon isotope
195 deviation ($\Delta\text{C}_{\text{c-t}} = \delta^{13}\text{C}_{\text{cen}} - \delta^{13}\text{C}_{\text{ter}}$) changed from 3.2 ± 1.2 to $22.7 \pm 1.2\text{\textperthousand}$ in the entire maturity
196 range of 0.76 to 3.07 with a significant increase at the Easy %R_o above 2 (Fig. 4). The variations
197 of $\Delta\text{C}_{\text{c-t}}$ values in this study closely matched the results from the hydrous and anhydrous pyrolysis
198 of the immature marine Woodford shale (Li et al., in review), indicating that maturity is a
199 significant factor in controlling the $\Delta\text{C}_{\text{c-t}}$. Compared with the values of $\Delta\text{C}_{\text{c-t}}$ in equilibrium state
200 (Webb and Miller, 2014) within the temperature range of ~ 27 to 327 °C, our results showed that

201 the propane generated in the pyrolysis conditions (310 to 470 °C) were not in equilibrium,
202 indicating the position-specific C isotopes were mainly controlled by the kinetic processes. The
203 larger increases of ΔC_{c-t} values in the pyrolysis of coal compared with those from the cracking of
204 single compound of n-C₂₅ and C₃H₈ were observed at the wet gas cracking stage (Fig. 4).

205 The $\delta^{13}\text{C}$ values at the terminal and central positions of propane increased from $\sim -30 \pm 0.5$ to $-5.3 \pm 0.5\text{\textperthousand}$, and from $\sim -26.5 \pm 1.1$ to $17.4 \pm 1.1\text{\textperthousand}$, respectively with the significant increases at
206 Easy %R_o above 2 (Table 3 and Fig. 5). The $\delta^{13}\text{C}$ at the central position was heavier than that in
207 the terminal position, which was also observed in closed-system pyrolysis of the Woodford shale
208 (Li et al., in review) and natural thermogenic propane (Gao et al., 2016; Liu et al., 2019) or
209 biodegraded propane (Gilbert et al., 2019). In the hydrous and anhydrous conditions at the similar
210 maturities, the values of $\delta^{13}\text{C}_{\text{ter}}$ or $\delta^{13}\text{C}_{\text{cen}}$ are close, indicating the similar propane generation
211 processes.

213 3.4 Kinetic isotope effect in gas generation

214 The bulk and position-specific carbon isotope fractionation of hydrocarbon gases have been
215 verified to be associated with the kinetic isotope effect (KIE) in the cleavage of various bonds (e.g.,
216 C-C, C-S, C-O) attached to different functional groups. Assuming gas generation follows the
217 Rayleigh model at the initial kerogen cracking (310 °C, Easy %R_o: 0.76) (Li et al., in review), the
218 KIE was calculated based on the original $\delta^{13}\text{C}$ of the Springfield coal, and kinetic parameters of
219 gas generation and cracking in the pyrolysis experiments (Zhang et al., 2008; Li et al., 2021) (Fig.
220 6). At the initial stage of coal kerogen cracking, the carbon isotope fractionation factors (α) of CH₄
221 in the hydrous and anhydrous conditions were 0.9900 ± 0.0007 and 0.9894 ± 0.0007 , respectively,
222 with the values of 0.9957 ± 0.0007 and 0.9955 ± 0.0007 for C₂H₆, and the values of 0.9962 ± 0.0007
223 and 0.9964 ± 0.0007 for C₃H₈. The isotope fractionations were larger than those of C₁-C₃

224 generated in the pyrolysis of xylite in the high temperature conditions (450 °C) (Berner et al., 1995).
225 The CH₄ KIE in this study at 310 °C was much smaller compared with that in the pyrolysis of the
226 Springfield coal at low temperature (0.9674 at 60 °C, 0.9807 at 200 °C) (Wei et al., 2018). In the
227 wet-gas cracking stage the KIE of C₃H₈ in this study was significantly lower than those from the
228 immature marine Woodford kerogen (Fig. 6) at the same temperature conditions (Li et al., in
229 review).

230 The α values for carbon at the terminal and central sites of propane in the pyrolysis of the
231 Springfield coal at 310 °C were 0.9952 ± 0.0007 and 0.9985 ± 0.0007 in the hydrous experiments,
232 similar to the anhydrous conditions: 0.9953 ± 0.0007 and 0.9989 ± 0.0007 , respectively. The
233 relatively larger isotope fractionation in the terminal site was also observed in the pyrolysis of the
234 Woodford Shale (Li et al., in review) and theoretical model (Tang et al., 2000) (Fig. 7). In C₃H₈
235 cracking, the carbon isotope fractionation at the terminal and central sites of propane in the
236 pyrolysis of the Springfield coal were smaller than those in the Woodford Shale maturation at the
237 temperature range of 430 - 480 °C (Fig. 7), but exceeded greatly those in pure propane cracking
238 (Li et al., 2021).

239

240 4 Discussion

241 4.1 Hydrocarbon gas generation and propane cracking

242 The Springfield coal in this study has a thermal maturity equivalent to vitrinite reflectance of
243 0.54%, a TOC value of 72.6% and H/C ratio of 0.93, which show similar geochemical
244 characterization as the immature Cameo coal in the Piceance Basin (0.5%, 77% and 0.9,
245 respectively) (Zhang et al., 2008). The maceral composition of the Springfield coal is 85% vitrinite,

246 2.9% liptinite and 12.1% inertinite, which is relatively close to the petrographic composition of
247 the Cameo coal (87.2%, 4.6%, 8.2%, respectively). Therefore the Springfield coal is
248 geochemically and petrographically similar to the Cameo coal, which makes it reliable to use the
249 kinetic parameters from the latter to model the thermogenic gas generation in this study. This is
250 likely one of the reasons why the experimental gas dryness for the two samples at different
251 temperature conditions are similar at Easy $\%R_o$ above 1.4 (Fig. 2).

252 In the pyrolysis of the Springfield coal, hydrocarbon gas generation and wet-gas cracking are
253 compared with kinetic models (Fig. 1) based on several parallel, first-order reactions with a
254 distribution of activation energies (E_a) due to the high heterogeneities of chemical structures of
255 coal (e.g., Burnham et al., 1987; Tang et al., 1996). The kinetic parameters obtained from the
256 pyrolysis studies involved in the reactions prior to secondary cracking ($\%R_o < \sim 2.2$) (Hill et al.,
257 2007; Zhang et al., 2008) are used to calculate the hydrocarbon gas yields at the maturity range of
258 Easy $\%R_o$ of 0.76 to ~ 2 in this study. In this calculation the maximum amounts of CH_4 , C_2H_6 and
259 C_3H_8 are assumed to be 100%, 20% and 20% higher than the experimental gas yields at Easy $\%R_o$
260 of ~ 2 , based on Zhang et al. (2008). The maximum total gas amounts is assumed to be 50% higher
261 than the measured results at Easy $\%R_o$ up to 2, based on the gas amount applied for the
262 determination of kinetic parameters in the pyrolysis of immature Barnett Shale (Hill et al., 2007).
263 As shown in Fig. 1, the CH_4 yields are slightly larger than the prediction from kinetic model on
264 the pyrolysis of immature Cameo coal (Zhang et al., 2008), but lower than those from kinetic
265 calculation based on the early CH_4 generation from the Tertiary lignite (Tang et al., 1996). The
266 yields of C_2H_6 and C_3H_8 are close to the calculated amount based on the kinetic model (Zhang et
267 al., 2008). The lignite used in the previous pyrolysis experiments (Tang et al., 1996) has a $\%R_o$ of
268 0.31, a TOC value of 61.2% and H/C ratio of 0.78, with the maceral composition of 91% vitrinite,

269 5% liptinite and 4% inertinite. Possibly the maturity difference between the Springfield coal and
270 lignite plays a significant role in the discrepancy of CH₄ yields.

271 During the wet gas cracking (Easy %R_o > 2) C₃H₈ yields in this study is compared with the
272 theoretical calculation based on the pure propane cracking (Tian et al., 2008; Li et al., 2021) and
273 the immature Woodford Shale (Li et al., in review), with maximum C₃H₈ amounts 5% higher than
274 the measured yields at Easy %R_o of 2. Our experimental results agree with the calculated C₃H₈
275 yields by kinetic parameters from the pure propane cracking (Fig. 1), but present lower values than
276 those based on the Woodford Shale pyrolysis where significant amount of C₃H₈ are produced at
277 high maturity stage. This indicates that in the pyrolysis of coal C₃H₈ generation potential at high
278 maturity stage is limited, possibly as a byproduct in aromatization/polymerization of the remaining
279 kerogen. The discrepancy in C₃H₈ yields between the two kerogens suggest that oil/secondary
280 cracking to C₃H₈ during the wet-gas cracking plays an important role in the marine Woodford
281 kerogen, as indicated by the comparison of gas generation from type II and III kerogens (Behar et
282 al., 1995). The total gas yields (C₁-C₅) at Easy %R_o of 0.76 to 2 modeled by the kinetic parameters
283 based on the anhydrous pyrolysis of immature marine Barnett Shale (Hill et al., 2007) match the
284 experimental results in the anhydrous conditions, but deviate slightly from those in the hydrous
285 pyrolysis. The marine Barnett Shale has a %R_o of 0.44, TOC of 5.5% and H/C ratio of 1.4, which
286 has similar maturity to the Springfield coal. Although the two kerogen have different chemical
287 structures, the immature Springfield coal and Barnett Shale have similar gas generation potentials
288 in the maturity range before the wet gas cracking.

289 The extrapolation of kinetic parameters obtained in the high-temperature conditions to natural
290 reservoirs could lead to a large underestimation of gas yields, as indicated by a recent study on the
291 low-temperature pyrolysis of marine New Albany Shale (Wei et al., 2018). Here, we apply kinetic

292 parameters based on the pyrolysis experiments from 280 to 490 °C (Zhang et al., 2008) to calculate
293 the CH₄ yields at the temperature range of 60 - 200 °C for 6 - 12 months in the previous study (Wei
294 et al., 2018). The predicted results are 6 - 9 orders of magnitude lower than the CH₄ yields in the
295 low-temperature pyrolysis of the Springfield coal, indicating the gas generation from coal is also
296 largely underestimated in natural reservoirs by extrapolating the kinetic data from high-
297 temperature pyrolysis experiments, as observed in marine New Albany Shale (Wei et al., 2018).

298 4.2 Kinetic isotope effect in gas generation

299 In this section, we explore what influences the PS C isotope of propane in the thermal maturation
300 of organic matter as well as kinetic isotope effect, and interpret the PS isotopes in the gas
301 generation from the Springfield coal as well as explore the isotopic structures of kerogen.

302 4.2.1 Bulk isotope effect of C₁-C₃

303 A comparison of kinetic isotope effects of C₁-C₃ generation and C₃H₈ cracking in the pyrolysis of
304 the Springfield coal at temperature of 310 to 470 °C with those from the pyrolysis of the Springfield
305 coal at 60 - 200 °C (Wei et al., 2018), the Woodford Shale (Li et al., in review) and C₃H₈ (Li et al.,
306 2021), and theoretical models on gas generation from the cracking of n-alkane (\leq C₆) (Tang et al.,
307 2000), n-C₈ (Ni et al., 2011) is presented (Fig. 6). The carbon isotope fractionation is much larger
308 for methane generation at low temperatures compared with those in this study due to the
309 temperature-dependent KIE. Because of the heterogeneity of gas precursors and multiple sources,
310 the C isotope fractionation in the pyrolysis of marine kerogen and coal does not match the
311 prediction from the cracking of n-alkane (Tang et al., 2000). In the wet-gas cracking stage the
312 carbon KIE in this study is not as large as those observed in the pyrolysis of marine Woodford
313 kerogen, but much larger than those in the pure propane cracking, possibly due to different propane
314 generation potentials at high maturity as indicated in Li et al. (in review). The previous pyrolysis

315 studies on mature coals verify the low C₃H₈ yields at the wet-gas cracking (Lewan and Kotarba,
316 2014; Li et al., 2018). This is supported by the pyrolysis of mature type II and III kerogen with %R_o
317 of 1.4 and 1.3, respectively, showing the C₃H₈ yields are ~ 2 times larger in marine shale than
318 those of coal in the pyrolysis experiments at 400 °C for 24 h and 450 °C for 3 h (Lorant and Behar,
319 2002).

320 To interpret the decrease of $\delta^{13}\text{C}_1$ with increasing thermal maturity, we assume $\delta^{13}\text{C}$ of the gas
321 precursors is the same as value of kerogen (-25.4‰) in gas generation. Due to the lower
322 dissociation energy of hetero bonds, HC gases are formed by the cracking of C-S/C-O bonds first,
323 rather than C-C, during the maturation of coal. The C KIE associated with the C-O breaking for
324 CH₃- radical attached to aromatics is smaller (~ 0.9901) than those of C-C (~ 0.9847) at 310 °C
325 (Tang et al., 2000). CH₄ produced from C-O cracking of the kerogen at low maturity (Easy %R_o:
326 0.76) would have a $\delta^{13}\text{C}_1$ value of ~ 35.3‰, which is close to the observed values in the pyrolysis
327 of Springfield coal (Fig. 3). With increasing maturity, C-C cracking increasingly produces C₁-C₃
328 with larger C KIE and lower $\delta^{13}\text{C}$ values, consistent with the observations of the $\delta^{13}\text{C}_1$ in the
329 pyrolysis gases. The C KIE for C-O cleavage is 0.9619 at 60 °C and 0.9813 at 200 °C, which results
330 in the $\delta^{13}\text{C}_1$ values of ~ 63 and ~ 44‰, respectively. This calculation matches the $\delta^{13}\text{C}_1$ in the
331 pyrolysis of Springfield coal at 200 °C, and presents more negative value (by 6‰) than that at 60
332 °C (Wei et al., 2018). This further confirms that the CH₄ is sourced from the C-O bonds cracking
333 at early maturation. At the lowest temperature (60 °C) for 6 - 12 months, the relatively heavy
334 experimental $\delta^{13}\text{C}_1$ possibly implies CH₄ is produced from the mixtures of C-S and C-O bonds
335 cleavage, as suggested by the smaller C KIE of 0.9732 at 60 °C in breaking C-S bonds (Tang et al.
336 2000). Based on the S and O contents in the kerogen of the Springfield coal (2.8 and 8.3%,
337 respectively), the amounts of C-O bonds are approximately 6 times more than those of C-S bonds

338 in this coal assuming both S and O exist in the form of single bond. Combined with the $\delta^{13}\text{C}_1$ of ~
339 -57‰ in the pyrolysis of the Springfield coal at 60 °C (Wei et al., 2018), isotope balance calculation
340 suggests 44% of CH₄ is produced from the cracking of C-O bond while 56% is sourced from the
341 C-S bond cleavage. The C KIE of C₂H₆ and C₃H₈ generated from C-C cracking are 0.9926 and
342 0.9930 at 310 °C (Tang et al., 2000), respective, leading to their $\delta^{13}\text{C}$ values more negative by ~
343 3‰ than the measured values. This indicates C₂H₆ and C₃H₈ are likely to be also produced by the
344 cleavage of hetero bonds with relatively small C KIE at early stages of coal kerogen.

345 4.2.2 Position-specific isotope effect of propane

346 This study compares the position-specific C KIE of propane sourced from the marine Woodford
347 Shale, Springfield coal and single organic compound at different temperatures (Fig. 7). The smaller
348 fractionation at the terminal and central site of propane produced in the pyrolysis of the Springfield
349 coal compared with those in the Woodford Shale at the same temperature (310 °C) (Li et al., in
350 review) and theoretical model (Tang et al., 2000) indicates the difference of bonds cleavage at an
351 early gas generation stage, as observed in the bulk C KIE (Fig. 6). Coal is more enriched in
352 heteroatom-compounds (e.g., O, S) and aromatics structures, compared with the marine kerogen.
353 The C KIE of propyl groups cleaved from C-O bonds could be smaller than those from C-C bonds,
354 as suggested by the fractionation factors for the cracking of methyl radicals from various organic
355 structures (Tang et al., 2000). Therefore, the propyl radicals attached to the hetero compounds in
356 coal could be main factor that results in the relatively small position-specific C KIE at early
357 propane generation. The position-specific isotope fractionation at the initial Woodford kerogen
358 cracking matches the theoretical calculation based on propyl groups cleaved from n-alkanes (n ≤
359 6) (Tang et al., 2000), indicating the C-C bonds cleavage in the aromatics occurring at the terminal
360 site is likely the main propane generation pathways.

361 During propane cracking in this study the isotope fractionation in the central position is larger than
362 that in the terminal position, as observed in the pyrolysis of Woodford Shale (Li et al., in review).
363 The difference of the position-specific isotope fractionation of propane between the two kerogens
364 is consistent with the observation of bulk C KIE (Fig. 6). Together with the comparison of C₃H₈
365 yields in the cracking of Woodford kerogen, Springfield coal and C₃H₈ (Fig. 1), and bulk C KIE
366 (Fig. 6), the different C₃H₈ generation potentials during the wet-gas cracking stage is the main
367 factor leading to the different magnitude of position-specific C KIE (Li et al., in review).

368 4.2.3 Position-specific $\delta^{13}\text{C}$ deviation of propane and isotopic structures of kerogen
369 At high maturity stage (Easy %R_o > 2), significant increases of $\Delta\text{C}_{\text{c-t}}$ with the maturity in the both
370 Springfield coal and Woodford Shale were observed, but the pure propane cracking will not lead
371 to such a large increase in the $\Delta\text{C}_{\text{c-t}}$ (Li et al., 2021). We compare the $\Delta\text{C}_{\text{c-t}}$ values of propane in
372 the pyrolysis of the Woodford Shale, Springfield coal, and C₃H₈, with those from the kinetic Monte
373 Carlo (kMC) simulations on the cracking of n-alkane compound (n-C₄₀/n-C₂₀) (Petersons et al.,
374 2018) (Fig. A1). We have normalized their simulation results with the initial $\delta^{13}\text{C}$ values of the
375 alkanes same as that of the Springfield coal (-25.4‰). The increase of $\Delta\text{C}_{\text{c-t}}$ during the pyrolysis
376 of the Springfield coal is consistent with late-stage production of C₃H₈ from nC₂₀/nC₄₀ in the kMC
377 simulations, which is also observed in the Woodford pyrolysis study (Li et al., in review). The
378 larger magnitude of $\Delta\text{C}_{\text{c-t}}$ of propane in the kMC simulations could be likely due to the random
379 distribution of ¹³C in the substrates, significant kinetic isotope fractionation (-30‰) for C-C bonds
380 cracking, and no consideration of secondary/tertiary isotope effects. This also implies that propyl
381 groups (CH₃-CH₂-CH₂-) of the Woodford Shale and Springfield coal have non-random
382 distributions of ¹³C in kerogen, as indicated by the heterogeneity of the terminal three C of long-
383 chain n-alkanes varying by ~ 12‰ (Gilbert et al., 2013).

384 Currently we have little insight into the isotopic structures of kerogens in sedimentary basins, a
385 major obstacle for understanding the kinetic processes and predicting the geochemical
386 characterization of hydrocarbon products. In the modelling of the specific isotopologues of
387 hydrocarbon gases generated from organic compounds, it is assumed that the internal isotope
388 distributions within the precursors are homogeneous (e.g., Tang et al., 2000; Petersons et al., 2018).
389 A potential way to tackle this issue is to analyze the isotopic structures of gaseous compounds
390 generated from the thermal maturation of kerogen. The difference of $\delta^{13}\text{C}$ between the humic and
391 marine kerogen is around $3.6\text{\textperthousand}$, which is smaller than that of $\delta^{13}\text{C}_3$ of the two kerogens at the
392 same temperature (e.g., $6.5\text{\textperthousand}$ at $310\text{ }^{\circ}\text{C}$). This suggests the bond types that propyl groups attach
393 to other radicals are different in the Springfield coal and Woodford Shale, leading to the various
394 KIE. Theoretical calculation on the cleavage of propyl groups at the terminal position from the C-
395 C bonds (Tang et al., 2000) agrees well with the $\delta^{13}\text{C}_3$ of $\sim -36\text{\textperthousand}$ in the Woodford Shale at 310
396 $^{\circ}\text{C}$, but presents more negative value ($-32.4\text{\textperthousand}$) than that in the Springfield coal ($-29\text{\textperthousand}$). This
397 indicates propyl groups attached to the hetero compounds are relatively widespread in the humic
398 kerogen due to the smaller KIE in the cracking of C-O and C-S bonds (Tang et al., 2000), while
399 the propyl radicals mainly exist in the form of C-C bonds in the marine kerogen.
400 The similar trend of $\delta^{13}\text{C}_{\text{ter}}$ and $\delta^{13}\text{C}_{\text{cen}}$ of propane with increasing maturity in the pyrolysis of both
401 humic and marine kerogens (Fig. A2) and the agreements of position-specific C KIE in the
402 Woodford Shale with theoretical modelling on the propyl radicals cleavage from n-alkane at 310
403 $^{\circ}\text{C}$ (Tang et al., 2000) (Fig. 7), indicate the bond cracking possibly occurs at the terminal site of
404 the propyl groups and the bond cleavage from hetero compounds are the main source of propane
405 at an early cracking stage in coal. The continual increase of $\delta^{13}\text{C}_{\text{cen}}$ with increasing maturity at
406 kerogen cracking stage, which surpasses the constant $\delta^{13}\text{C}_{\text{ter}}$, suggests the ^{13}C values at the central

407 site of propyl groups are possibly heavier than those at the terminal sites in both humic and marine
408 kerogens. The increase of $\delta^{13}\text{C}_{\text{ter}}$ at Easy %R_o from 0.76 to ~ 2 in the Springfield coal is less
409 significant than those in the Woodford Shale, implying the ¹³C at the terminal site of propyl
410 radicals attached to different functional groups is likely more heterogeneous within humic kerogen.
411 The insights into intramolecular ¹³C of propyl groups also suggest the non-random isotope
412 distribution within kerogen, as indicated in the comparison of $\Delta\text{C}_{\text{c-t}}$ values from the kMC
413 simulation and gas-prone kerogens (Fig. A1).

414 4.3 Insights into the propane history in natural reservoirs

415 In coal maturation gas generation is associated with the elimination of oxygenated functional
416 groups with low oil potential (Behar and Vandenbroucke, 1987), during which the propane
417 precursors are shifted from the hetero compounds to the alkyl structures. The influence of
418 formation processes, and subsequent geochemical and microbial activities on the position-specific
419 $\delta^{13}\text{C}$ and $\delta^2\text{H}$ of propane in natural reservoirs has been discussed (Li et al., in review). Here we
420 extend this framework to summarize the $\delta^{13}\text{C}_{\text{ter}}$ and $\delta^{13}\text{C}_{\text{cen}}$ of propane from this study, pyrolysis
421 gases from the Woodford Shale, and pure n-C₂₅ and C₃H₈, natural gas samples, and kMC
422 simulations of propane generation from n-C₄₀/n-C₂₀ (Piasecki et al., 2018; Gilbert et al., 2019; Liu
423 et al., 2019; Zhao et al., 2020; Li et al., 2021; Li et al., in review) (Fig. 8). In the pyrolysis gases
424 and most of natural gas samples the $\delta^{13}\text{C}_{\text{ter}}$ values are lower than $\delta^{13}\text{C}_{\text{cen}}$, suggesting the similar
425 isotopic structures of propane precursors in the kerogen. In the most gas samples from natural and
426 laboratory conditions, the intramolecular $\delta^{13}\text{C}$ values of propane are not in equilibrium, possibly
427 due to the much longer time required for C isotope equilibria, compared with intramolecular $\delta^2\text{H}$
428 values, which show equilibrium state in Eagle Ford Shale gas (Xie et al., 2020). Biodegradation
429 appears to have more significant effect on the $\delta^{13}\text{C}_{\text{cen}}$ than the $\delta^{13}\text{C}_{\text{ter}}$, as indicated in the U.

430 Devonian Antrim reservoir (Gilbert et al., 2019). The abiogenic origin of a gas sample from a
431 terrestrial serpentine-hosted hot spring (Suda et al., 2017) shows similar $\delta^{13}\text{C}_{\text{ter}}$ as the $\delta^{13}\text{C}_{\text{cen}}$,
432 which is different from those in the thermogenic and biodegraded gases.

433 The stable isotopic compositions of HC gases have been commonly used to fingerprint natural gas
434 origin in the sedimentary basins (e.g., Schoell, 1988; Milkov and Etiope, 2018). However, the
435 complex geological processes could hinder effective identification. For example, the mixing of
436 kerogen/oil cracking gas, wet-gas cracking gas leads to the wide ranges of chemical contents and
437 carbon isotopes of ethane and propane in the Ordovician gases in the Tarim Basin (Liu et al., 2019).
438 The abiogenic origin of natural gases in Kidd Creek Mine, Canada (Sherwood Lollar et al., 2002),
439 can be misled as the coal-type thermogenic source based on the Bernard diagram ($\text{C}_1/(\text{C}_2+\text{C}_3)$ vs
440 $\delta^{13}\text{C}_1$). The deep-gases in the Xujiaweizi Depression in the Songliao Basin, China, were previously
441 considered as a mixture of abiotic and biotic gases, but have been verified to be purely thermogenic
442 gases generated from high-mature coal ($\%R_o$: 2 - 4) and a marine kerogen ($\%R_o$: 1.2 - 3) (Shuai et
443 al., 2018). The $\delta^{13}\text{C}_{\text{ter}}$ and $\delta^{13}\text{C}_{\text{cen}}$ values of propane could provide an additional dimension of
444 geochemical information on the gas history, detecting different activities in the subsurface (e.g.,
445 thermal degradation, anaerobic or aerobic biodegradation) (Gilbert, 2021).

446

447 5 Conclusions

448 We examined the position-specific ^{13}C of propane generated from the pyrolysis of the Springfield
449 coal compared with those from the marine Woodford Shale cracking (Li et al., in review).
450 Hydrocarbon gases are generated from the cracking first of hetero compounds (e.g., C-O, C-S) and
451 then alkyl groups during coal maturation, as suggested by wide distributions of activation energies

452 and the decrease of $\delta^{13}\text{C}_1$. At the wet-gas cracking stage (Easy $\%R_o > 2$) C_3H_8 production potential
453 is a main factor influencing the C_3H_8 cracking rates, and isotope effect at bulk and position-specific
454 levels in the pyrolysis of the gas-prone kerogen. The smaller C KIE at the terminal and central
455 sites of propane at the early cracking of the Springfield coal compared with the marine Woodford
456 Shale are mainly attributed to the different types of bonds cleavage in kerogen. The similar $\Delta\text{C}_{\text{c-t}}$
457 values of propane generated from the marine kerogen and the coal indicate that maturity is a main
458 factor controlling the intramolecular $\delta^{13}\text{C}$ deviation, and that at wet-gas cracking stage C_3H_8
459 production from thermally stable compounds with relative heavy ^{13}C has a significant influence
460 on the $\Delta\text{C}_{\text{c-t}}$ value as shown in the kMC simulation on n-alkane cracking (Peterson et al., 2018).
461 The position-specific $\delta^{13}\text{C}$ values of propane produced at the kerogen cracking stage indicate the
462 original ^{13}C at the central site of propyl groups is likely more positive than that at the terminal site.
463 The $^{13}\text{C}_{\text{ter}}$ of the propyl radicals attached to various functional groups is more heterogeneous within
464 the humic kerogen.

465 In the pyrolysis gases, including the marine Woodford Shale and Springfield coal, and most of
466 natural gas samples, the $\delta^{13}\text{C}_{\text{ter}}$ is more negative than the $\delta^{13}\text{C}_{\text{cen}}$, suggesting similar isotopic
467 structures of organic precursors in kerogen. Thermal cracking and biodegradation seem to have a
468 more significant effect on the $\delta^{13}\text{C}_{\text{cen}}$ than the $\delta^{13}\text{C}_{\text{ter}}$ of propane, as observed in the laboratory
469 pyrolysis gas, and natural gas from the U. Devonian Antrim deposit in the Michigan Basin, as well
470 as propane production from the kMC simulation. The PS $\delta^{13}\text{C}$ values of propane from the
471 Woodford Shale and Springfield coal indicate the potential to serve as a geochemical diagnostic
472 tool for fingerprinting the gas origins in geological conditions (primary vs. secondary cracking).
473 Further work on analyzing the PS isotopes of natural gas samples with a series of maturity gradient

474 from different types of source rocks, contributes to better constraining the gas history in natural
475 reservoirs.

476

477 Acknowledgements

478 Financial support was provided by U. S. Department of Energy Geosciences program (DE-
479 SC0016271).

480

481

482 References

483 Behar, F., Vandenbroucke, M., 1987. Chemical modelling of kerogen. *Organic Geochemistry* 11,
484 15-24.

485 Behar, F., Vandenbroucke, M., Teermann, S.C., Hatcher, P.G., Leblond, C., Lerat, O., 1995.
486 Experimental simulation of gas generation from coals and a marine kerogen. *Chemical Geology*
487 126, 247-260.

488 Berner, U., Faber, E., Scheeder, G., Panten, D., 1995. Primary cracking of algal and landplant
489 kerogens: kinetic models of isotope variations in methane, ethane and propane. *Chemical
490 Geology* 126, 233-245.

491 Burnham, A.K., Braun, R.L., Gregg, H.R., Samoun, A.M., 1987. Comparison of methods for
492 measuring kerogen pyrolysis rates and fitting kinetic parameters. *Energy & Fuels* 1, 452-458.

493 Dias, R., Ellis, G., Coleman, D., 2016. Development and calibration of new natural gas d13C and
494 d2H reference standards. International Conference and Exhibition, Barcelona, Spain, 3-6 April
495 2016. Society of Exploration Geophysicists and American Associate of Petroleum Geologists,
496 228.

497 Gao, L., He, P.Q., Jin, Y.B., Zhang, Y.Q., Wang, X.Q., Zhang, S.C., Tang, Y.C., 2016.
498 Determination of position-specific carbon isotope ratios in propane from hydrocarbon gas
499 mixtures. *Chemical Geology* 435, 1-9.

500 Gilbert, A., Yamada, K., Yoshida, N., 2013. Exploration of intramolecular ^{13}C isotope
501 distribution in long chain n-alkanes (C11-C31) using isotopic ^{13}C NMR. *Organic*
502 *Geochemistry* 62, 56-61.

503 Gilbert, A., Yamada, K., Suda, K., Ueno, Y., Yoshida, N., 2016. Measurement of position-specific
504 ^{13}C isotopic composition of propane at the nanomole level. *Geochimica et Cosmochimica Acta*
505 177, 205-216.

506 Gilbert, A., Lollar, B.S., Musat, F., Giunta, T., Chen, S.C., Kajimoto, Y., Yamada, K., Boreham,
507 C.J., Yoshida, N., Ueno, Y., 2019. Intramolecular isotopic evidence for bacterial oxidation of
508 propane in subsurface natural gas reservoirs. *Proceedings of the National Academy of Sciences*
509 116, 6653-6658.

510 Gilbert, A., 2021. The organic isotopologue frontier. *Annual Review of Earth and Planetary*
511 *Sciences* 49, 435-464.

512 He, K., Zhang, S.C., Mi, J.K., Zhang, W.L., 2018. The evolution of chemical groups and
513 fractionation at different maturation stages during lignite pyrolysis. *Fuel* 211, 492-506.

514 Hill, R.J., Zhang, E., Katz, B.J., Tang, Y.C., 2007. Modeling of gas generation from the Barnett
515 Shale, Fort Worth Basin, Texas. AAPG Bulletin 91, 501-521.

516 Lewan, M.D., 1997. Experiments on the role of water in petroleum formation. *Geochimica et*
517 *Cosmochimica Acta* 61, 3691-3723.

518 Lewan, M.D., Kotarba, M.J., 2014. Thermal-maturity limit for primary thermogenic-gas
519 generation from humic coals as determined by hydrous pyrolysis. AAPG Bulletin 98, 2581-
520 2610.

521 Li, E.T., Pan, C.C., Yu, S., Jin, X.D., Liu, J.Z., 2013. Hydrocarbon generation from coal, extracted
522 coal and bitumen rich coal in confined pyrolysis experiments. *Organic Geochemistry* 64, 58-
523 75.

524 Li, X.Q., Krooss, B.M., Weniger, P., Littke, R., 2015. Liberation of molecular hydrogen (H_2) and
525 methane (CH_4) during non-isothermal pyrolysis of shales and coals: Systematics and
526 quantification. *International Journal of Coal Geology* 137, 152-164.

527 Li, X.Q., McGovern, G.P., Horita, J., 2021. Kinetics of propane cracking and position-specific
528 isotope fractionation: Insights into the origins of natural gases. *Organic Geochemistry* 155,
529 104234.

530 Li, X.Q., Horita, J. Molecular and intramolecular isotope study on natural and laboratory
531 generation of thermogenic gases from the Woodford Shale. *Geochimica et Cosmochimica Acta*
532 (in review).

533 Li, W., Zhu, Y.M., Liu, Y., 2018. Gas evolution and isotopic fractionation during pyrolysis on coals
534 of different ranks. *International Journal of Coal Geology* 188, 136-144.

535 Liu, C.J., McGovern, G.P., Liu, P., Zhao, H., Horita, J., 2018. Position-specific carbon and
536 hydrogen isotopic compositions of propane from natural gases with quantitative NMR.
537 Chemical Geology 491, 14-26.

538 Liu, C.J., Liu, P., McGovern, G.P., Horita, J., 2019. Molecular and intramolecular isotope
539 geochemistry of natural gases from the Woodford Shale, Arkoma Basin, Oklahoma.
540 Geochimica et Cosmochimica Acta 255, 188-204.

541 Liu, Q.Y., Wu, X.Q., Wang, X.F., Jin, Z.J., Zhu, D.Y., Meng, Q.Q., Huang, S.P., Liu, J.Y., Fu, Q.,
542 2019. Carbon and hydrogen isotopes of methane, ethane, and propane: A review of genetic
543 identification of natural gas. Earth-Science Reviews 190, 247-272.

544 Lorant, F., Behar, F., 2002. Late generation of methane from mature kerogens. Energy & Fuels 16,
545 412-427.

546 Milkov, A.V., Etiope, G., 2018. Revised genetic diagrams for natural gases based on a global
547 dataset of > 20,000 samples. Organic Geochemistry 125, 109-120.

548 Ni, Y.Y., Ma, Q.S., Ellis, G.S., Dai, J.X., Katz, B., Zhang, S.C., Tang, Y.C., 2011. Fundamental
549 studies on kinetics isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems.
550 Geochimica et Cosmochimica Acta 75, 2696-2707.

551 Peterson, B.K., Formolo, M.J., Lawson, M., 2018. Molecular and detailed isotopic structures of
552 petroleum: Kinetic Monte Carlo analysis of alkane cracking. Geochimica et Cosmochimica
553 Acta 243, 169-185.

554 Piasecki, A., Sessions, A., Lawson, M., Ferreira, A.A., Neto Santos, E.V., Eiler, J.M., 2016.
555 Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio
556 mass spectrometer. Geochimica et Cosmochimica Acta 188, 58-72.

557 Piasecki, A., Sessions, A., Lawson, M., Ferreira, A.A., Neto Santos, E.V., Ellis, G.S., Lewan, M.D.,
558 Eiler, J.M., 2018. Position-specific ^{13}C distributions within propane from experiments and
559 natural gas samples. *Geochimica et Cosmochimica Acta* 220, 110-124.

560 Schoell, M., 1988. Multiple origins of methane in the earth. *Chemical Geology* 71, 1-10.

561 Sherwood Lollar, B., Westgate, T.D., Ward, J.A., Slater, G.F., Lacrampe-Couloume, G., 2002.
562 Abiogenic formation of alkanes in the Earths crust as a minor source for global hydrocarbon
563 reservoirs. *Nature* 416, 522-524.

564 Shuai, Y.H., Etiope, G., Zhang, S.C., Douglas, P.M.J., Huang, L., Eiler, J. M., 2018. Methane
565 clumped isotopes in the Songliao Basin (China): Nedw insights into abiotic vs. biotic
566 hydrocarbon formation. *Earth and Planetary Science Letters* 482, 213-221.

567 Suda, K., Gilbert, A., Yamada, K., Yoshida, N., Ueno, Y., 2017. Compound- and position-specific
568 carbon isotopic signatures of abiogenic hydrocarbons from on-land serpentinite-hosted Hakuba
569 Hoppo hot spring in Japan. *Geochimica et Cosmochimica Acta* 206, 201-215.

570 Sweeney, J.J., Burnham, A.K., 1990. Evaluation of a simple model of vitrinite reflectance based
571 on chemical kinetics. *AAPG Bulletin* 74, 1559-1570.

572 Tang, Y.C., Jenden, P.D., Nigrini, A., Teerman, S.C., 1996. Modeling early methane generation
573 in coal. *Energy & Fuels* 10, 659-671.

574 Tang, Y., Perry, J.K., Jende, P.D., Schoell, M., 2000. Mathematical modeling of stable carbon
575 isotope ratios in natural gases. *Geochimica et Cosmochimica Acta* 64, 2673-2687.

576 Tian, H., Xiao, X.M., Wilkins, R.W.T., Tang, Y.C., 2008. New insights into the volume and
577 pressure changes during the thermal cracking of oil to gas in reservoirs: Implications for the in-
578 situ accumulation of gas cracked from oils. *AAPG Bulletin* 92, 181-200.

579 Wei, L., Schimmelmann, A., Mastalerz, M., Lahann, R.W., Sauer, P.E., Drobniak, A., Strąpoć, D.,
580 Mango, F.D., 2018. Catalytic generation of methane at 60 – 100 °C and 0.1 – 300 MPa from
581 source rocks containing kerogen Types I, II and III. *Geochimica et Cosmochimica Acta* 231,
582 88-116.

583 Xia, X.Y., Gao, Y.L., 2019. Kinetic clumped isotope fractionation during the thermal generation
584 and hydrogen exchange of methane. *Geochimica et Cosmochimica Acta* 248, 252-273.

585 Xie, H., Ponton, C., Formolo, M.J., Lawson, M., Peterson, B.K., Lloyd, M.K., Sessions, A.L., Eiler,
586 J.M., 2018. Position-specific hydrogen isotope equilibrium in propane. *Geochimica et
587 Cosmochimica Acta* 238, 193-207.

588 Xie, H., Ponton, C., Formolo, M.J., Lawson, M., Ellis, G.S., Lewan, M.D., Ferreira, A.A., Morais,
589 E.T., Spigolon, A.L.D., Sessions, A.L., Eiler, J.M., 2020. Position-specific distribution of
590 hydrogens in natural propane: Effects of thermal cracking, equilibration and biodegradation.
591 *Geochimica et Cosmochimica Acta* 290, 235-256.

592 Zhang, E., Hill, R.J., Katz, B.J., Tang, Y.C., 2008. Modeling of gas generation from the Cameo
593 coal zone in the Piceance Basin, Colorado. *AAPG Bulletin* 92, 1077-1106.

594

Fig. 1. Evolution of molar yields of C₁-C₅ gases in the pyrolysis of the Springfield coal as a function of thermal maturity (Easy %R_o) (C₄ and C₅ include i-C₄ and n-C₄, i-C₅ and n-C₅, respectively). The comparison of gas yields in this study with the kinetic calculations are shown (Tang et al., 1996; Zhang et al., 2008; Tian et al., 2008; Li et al., 2021; Li and Horita, in revision).

Fig. 2. Total hydrocarbon gas yields (C₁-C₅) and molar ratios (C₁/(C₁-C₅)) with maturities, compared with kinetic model on gas generation from immature Barnett Shale (Hill et al., 2007) and gas ratios on the pyrolysis of Cameo coal (Zhang et al., 2008).

Fig. 3. Carbon and hydrogen isotopic compositions of CH₄, C₂H₆ and C₃H₈ in the pyrolysis gases from Springfield coal.

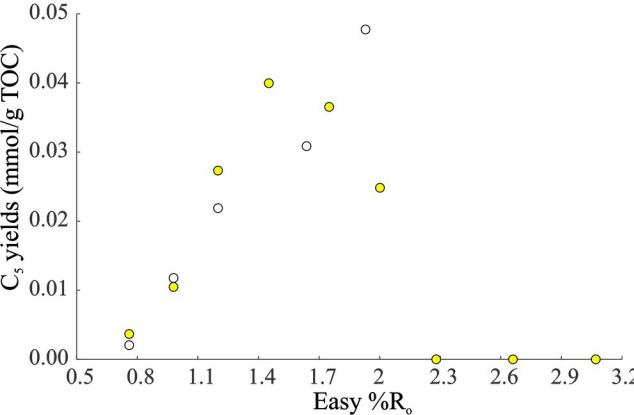
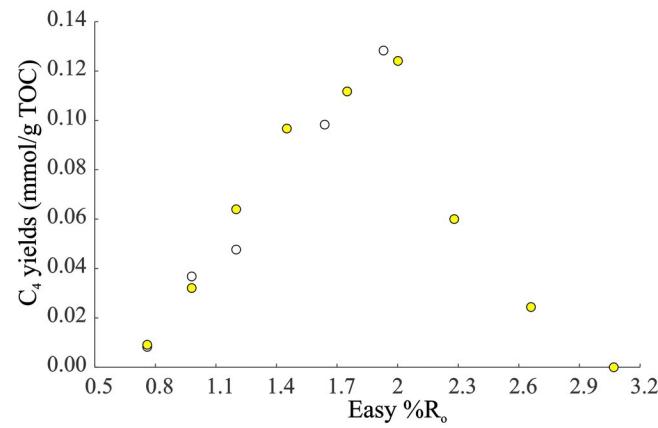
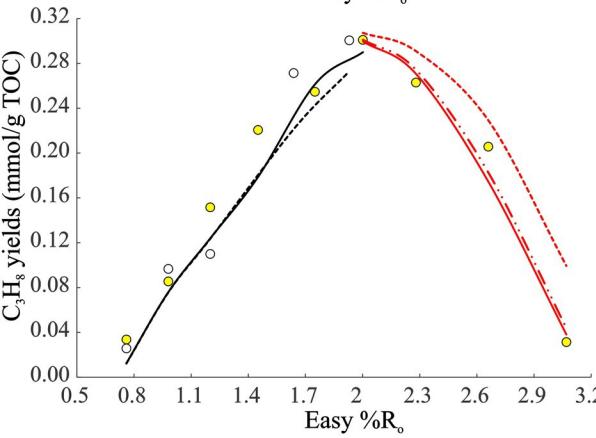
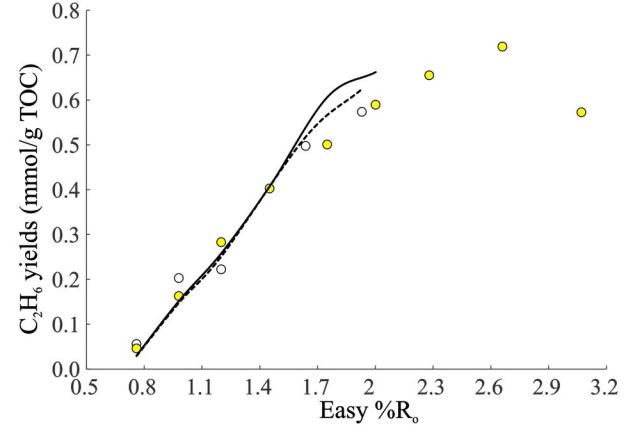
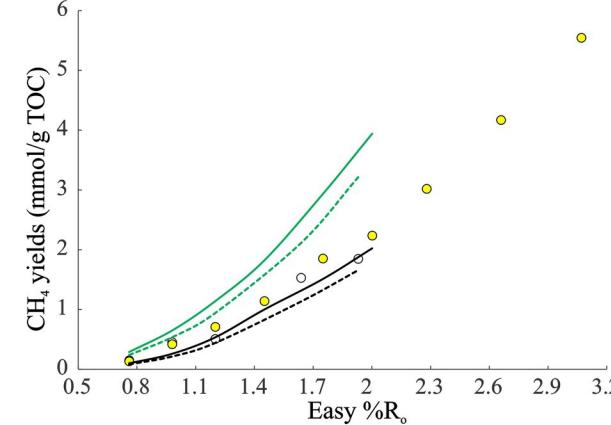
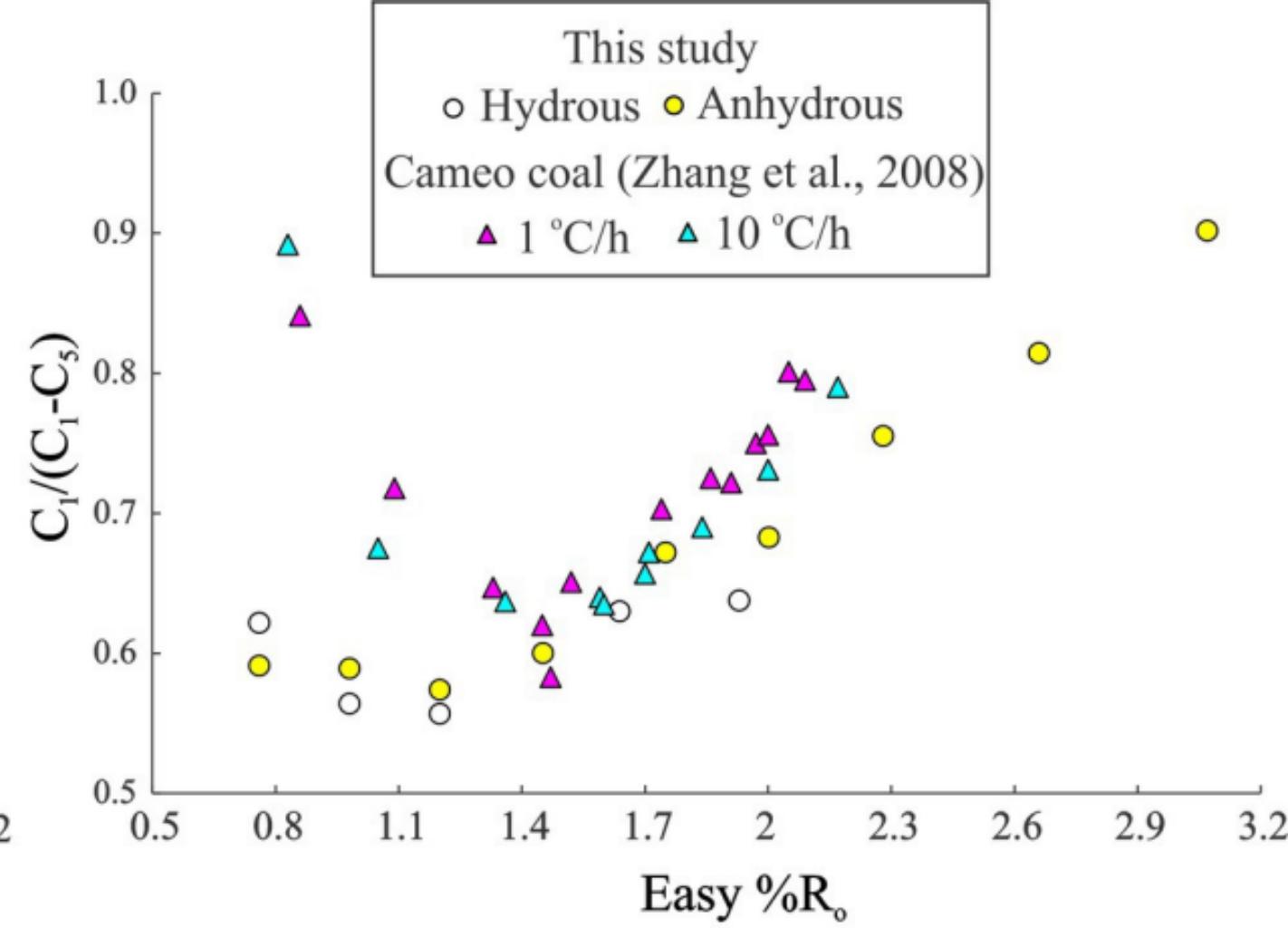
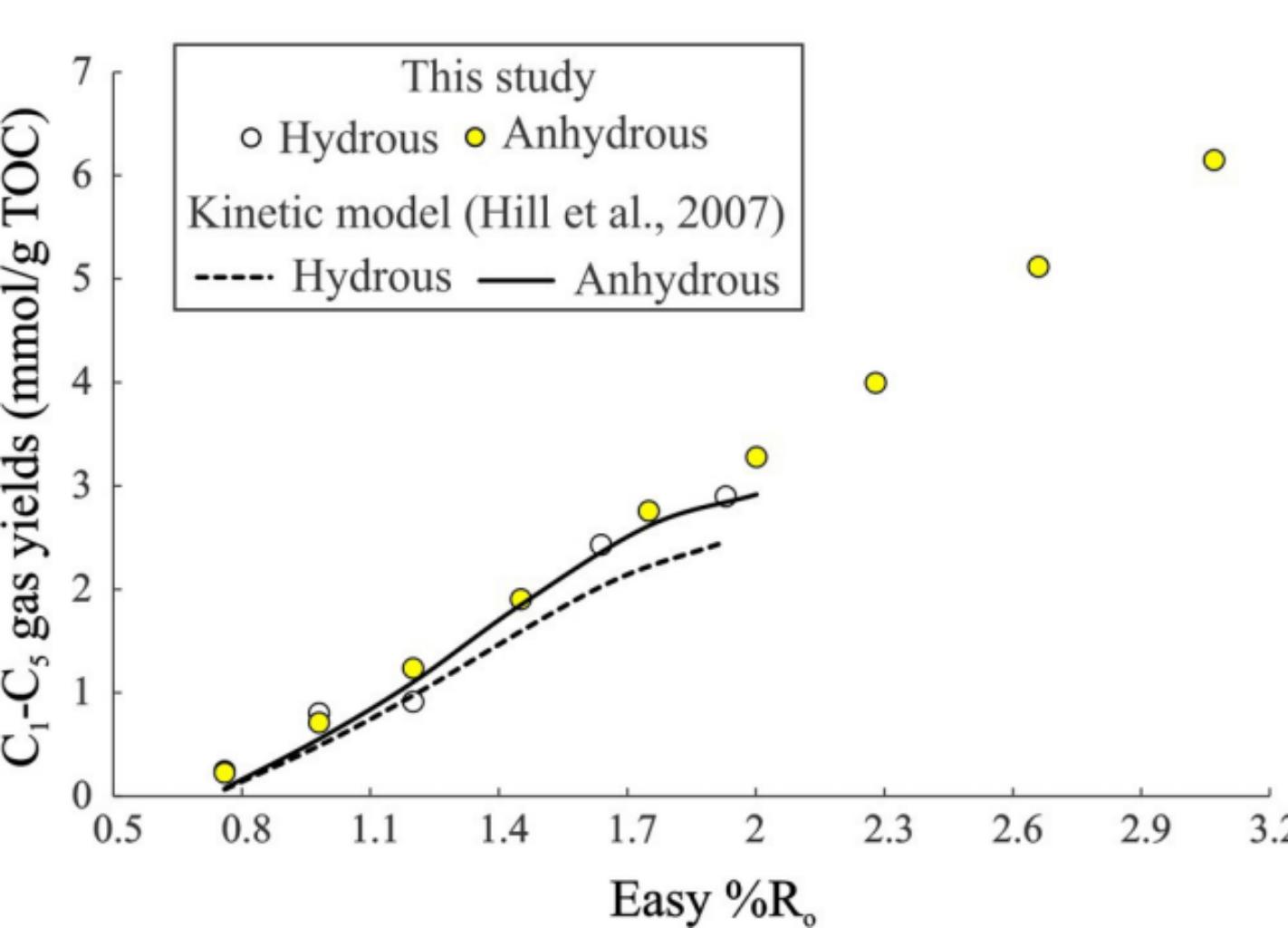
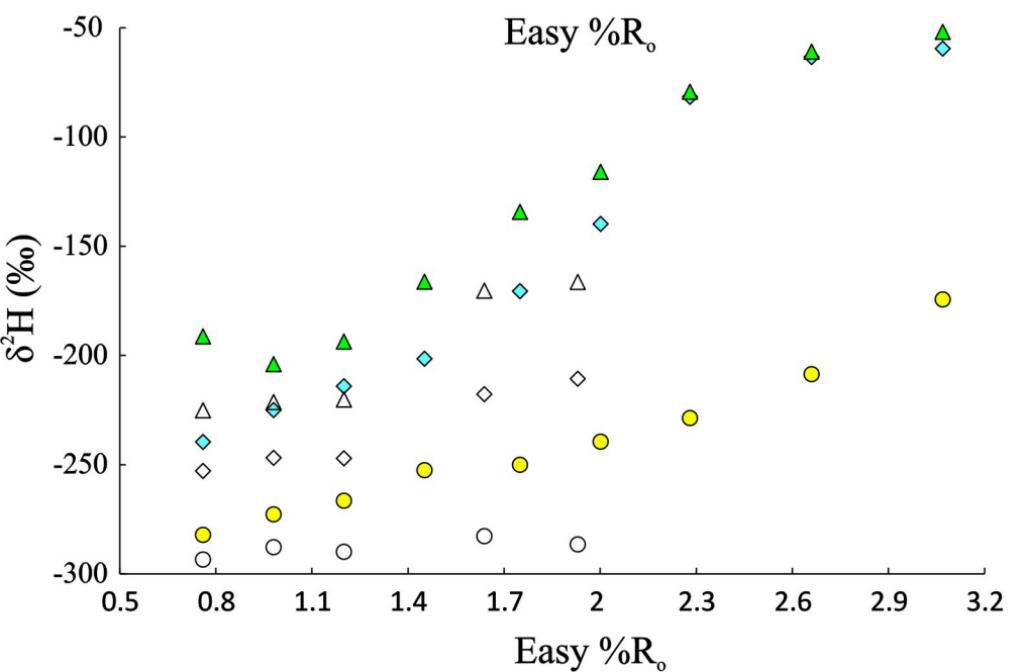
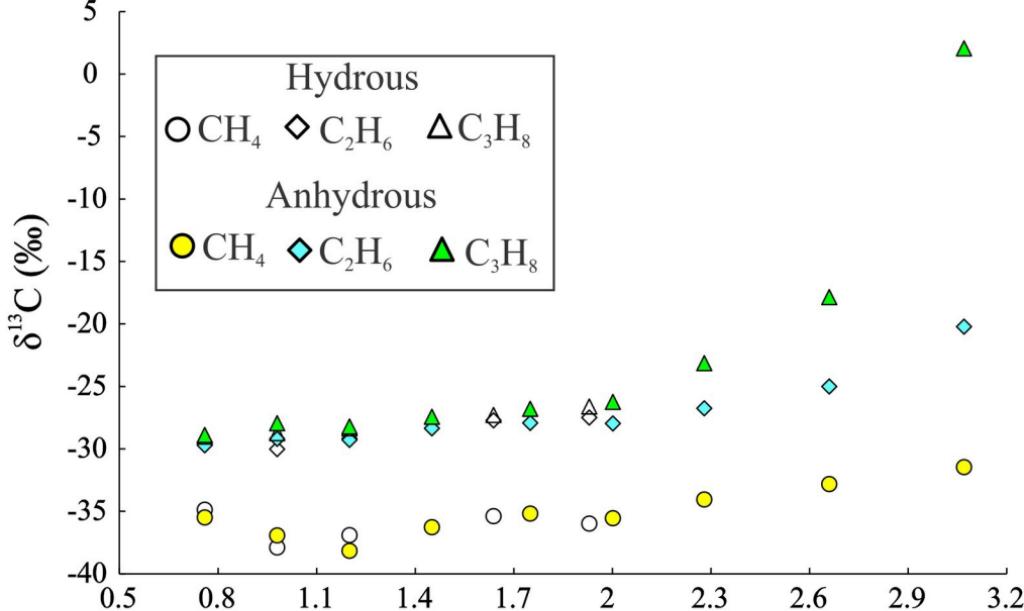
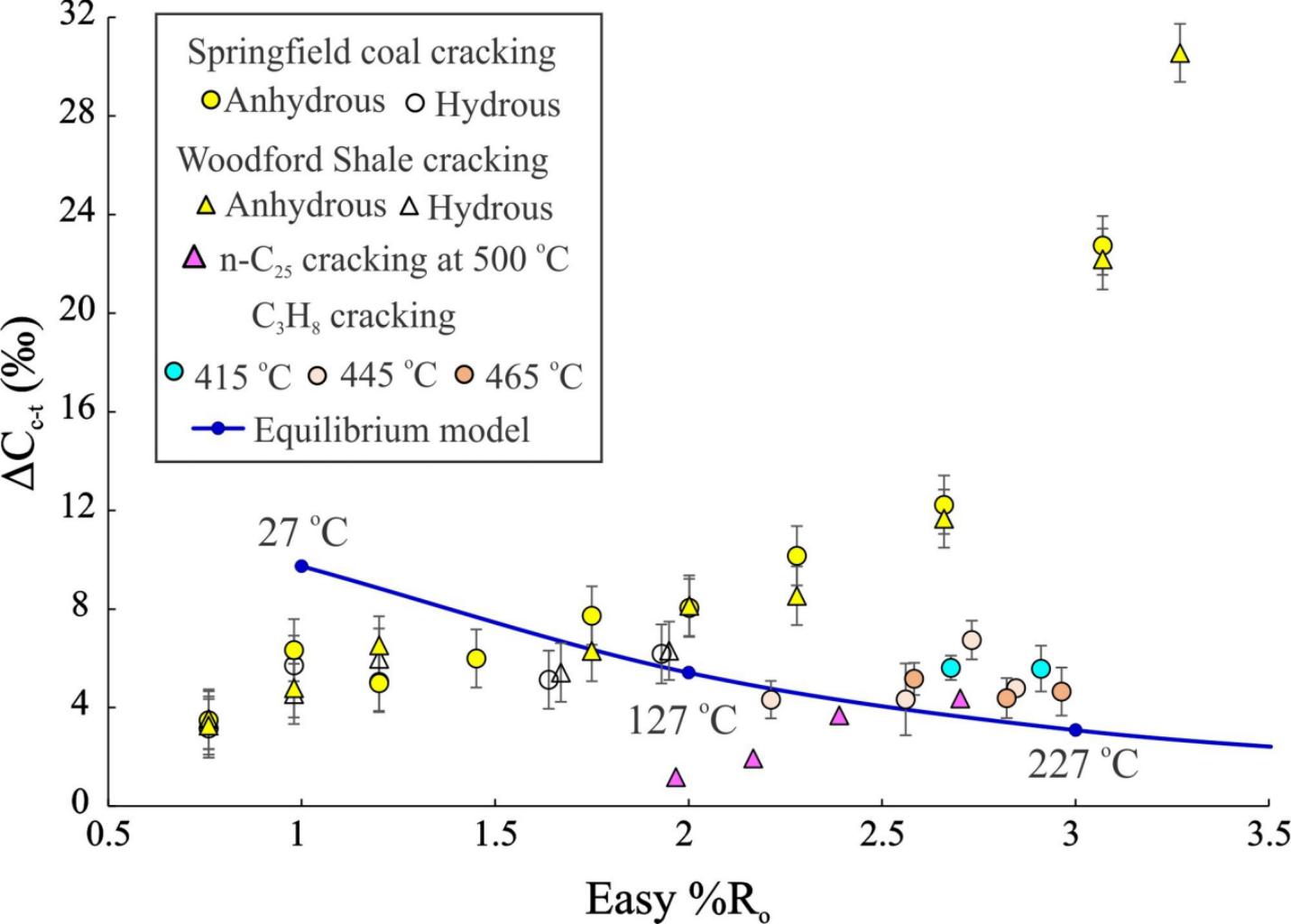
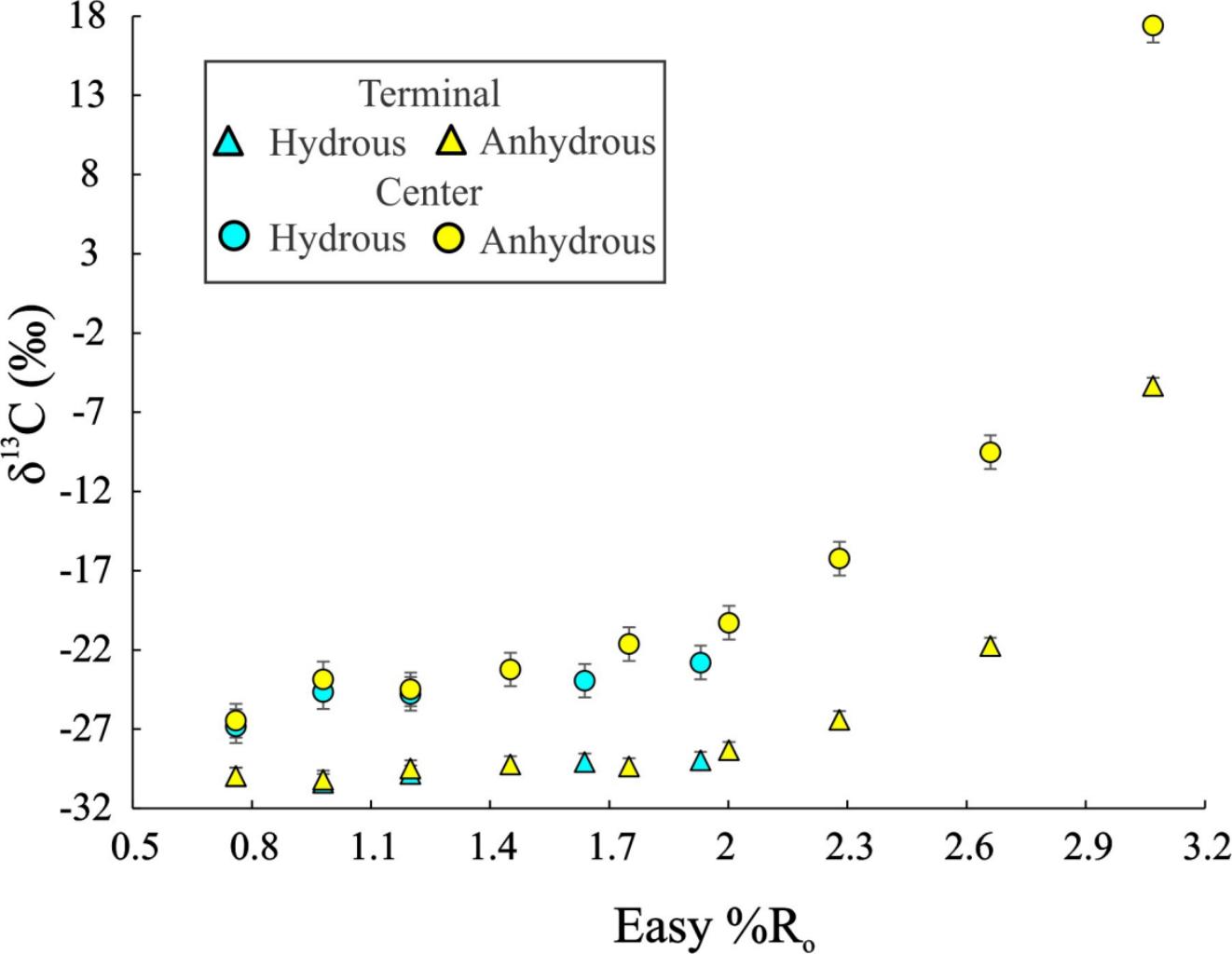





Fig. 4. Position-specific carbon isotope deviations of propane ($\Delta C_{c-t} = \delta^{13}\text{C}_{\text{center}} - \delta^{13}\text{C}_{\text{terminal}}$) in the pyrolysis of Springfield coal, with the comparison of results from the pyrolysis of Woodford Shale (Li and Horita, in revision) and the cracking of n-C₂₅ (Gilbert et al., 2019) and C₃H₈ (Li et al., 2021), as well as the equilibrium model (Webb and Miller, 2014).

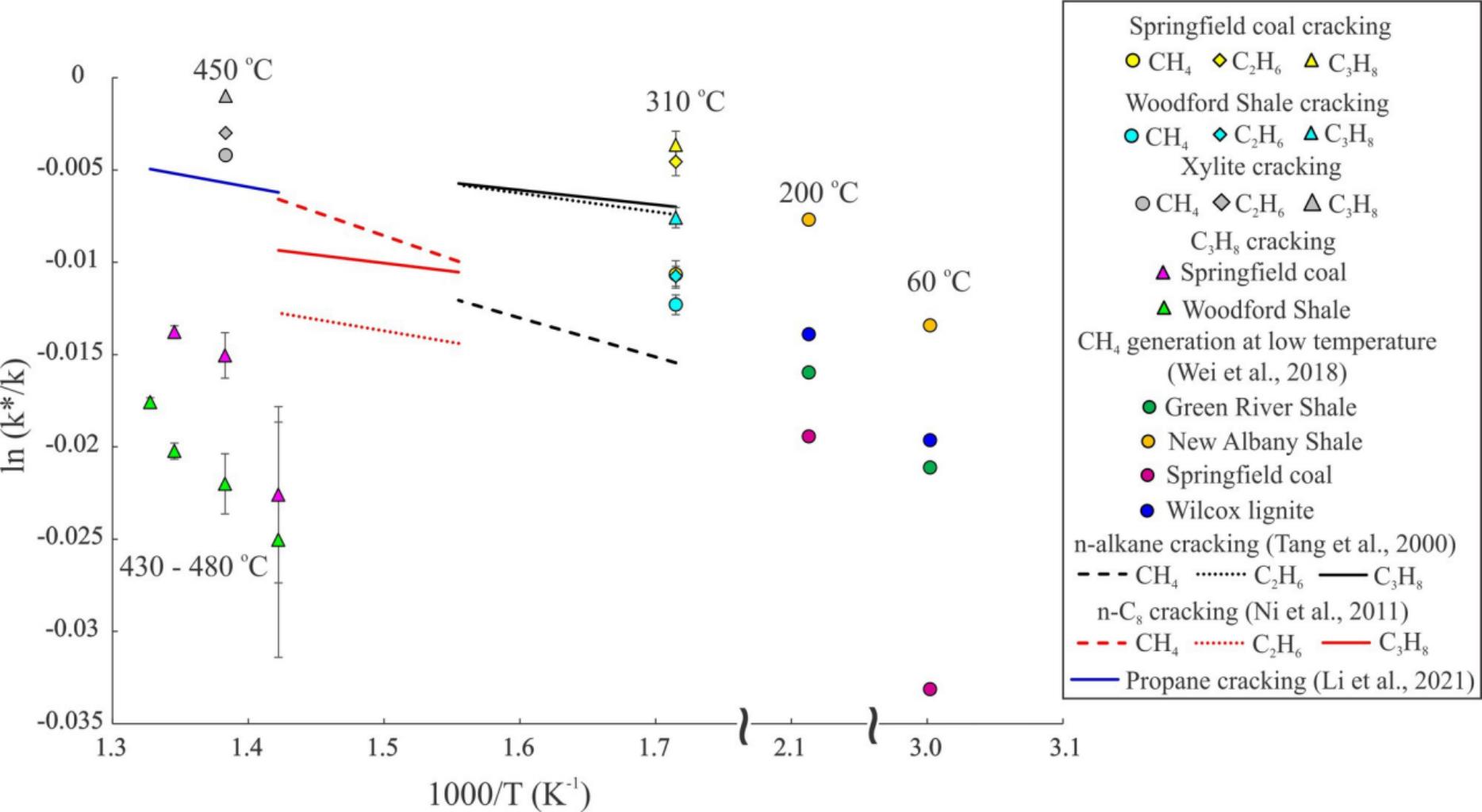
Fig. 5. Position-specific $\delta^{13}\text{C}$ values of propane in hydrous and anhydrous pyrolysis conditions as a function of maturity (Easy %R_o).

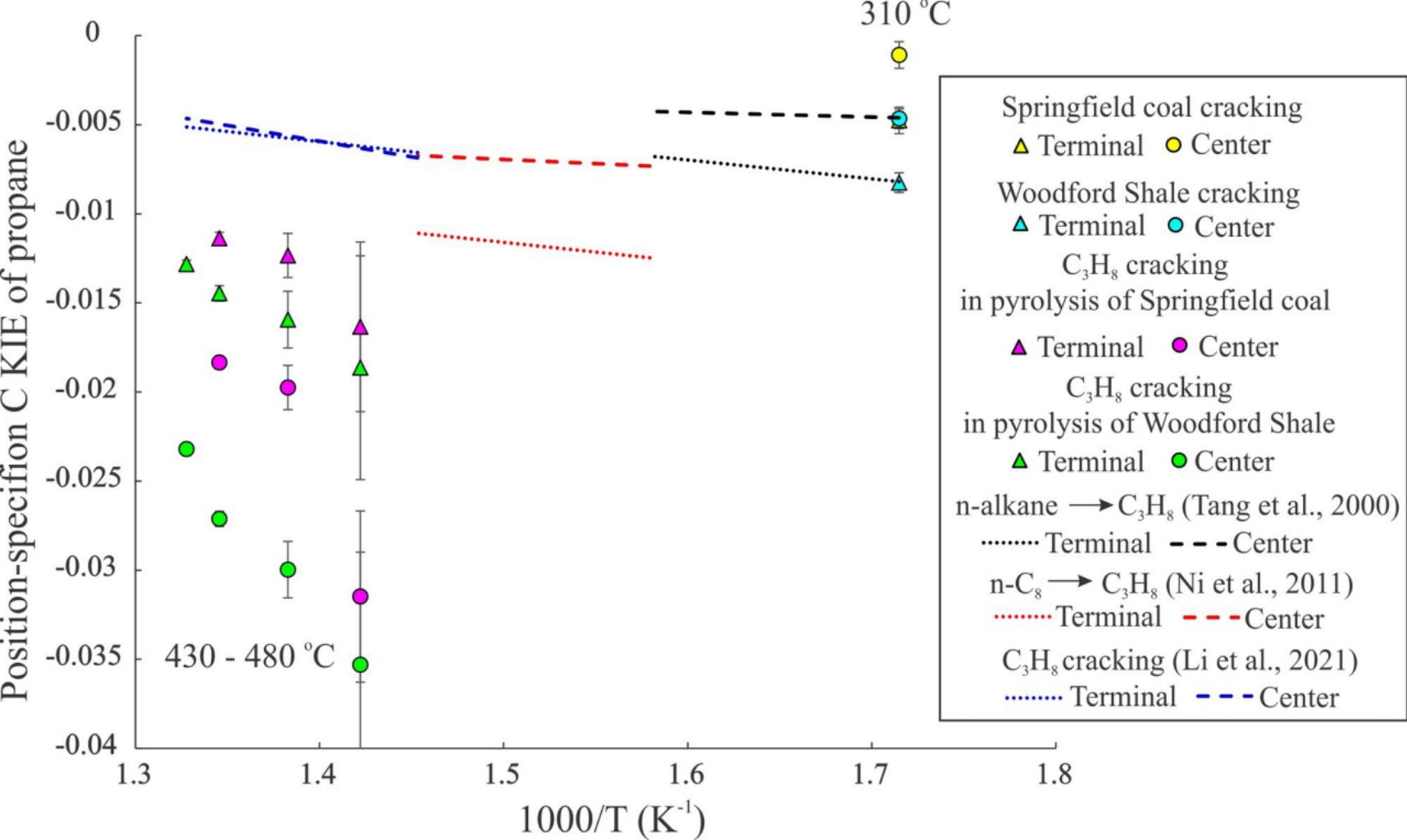


Fig. 6. Bulk carbon isotope fractionation of C₁-C₃ in the pyrolysis of Springfield coal (this study), marine Woodford Shale (Li and Horita, in revision) in the temperature range of 310 to 480 °C. The theoretical calculations on the KIE in the cracking of n-alkane (Tang et al., 2000) and n-C₈ (Ni et al., 2011), and experimental study of C₃H₈ cracking (Li et al., 2021) are presented, with C KIE of CH₄ in the low-temperature pyrolysis of different kerogens (Wei et al., 2018) and of C₁-C₃ at high-temperature pyrolysis of xylite (Berner et al., 1995).

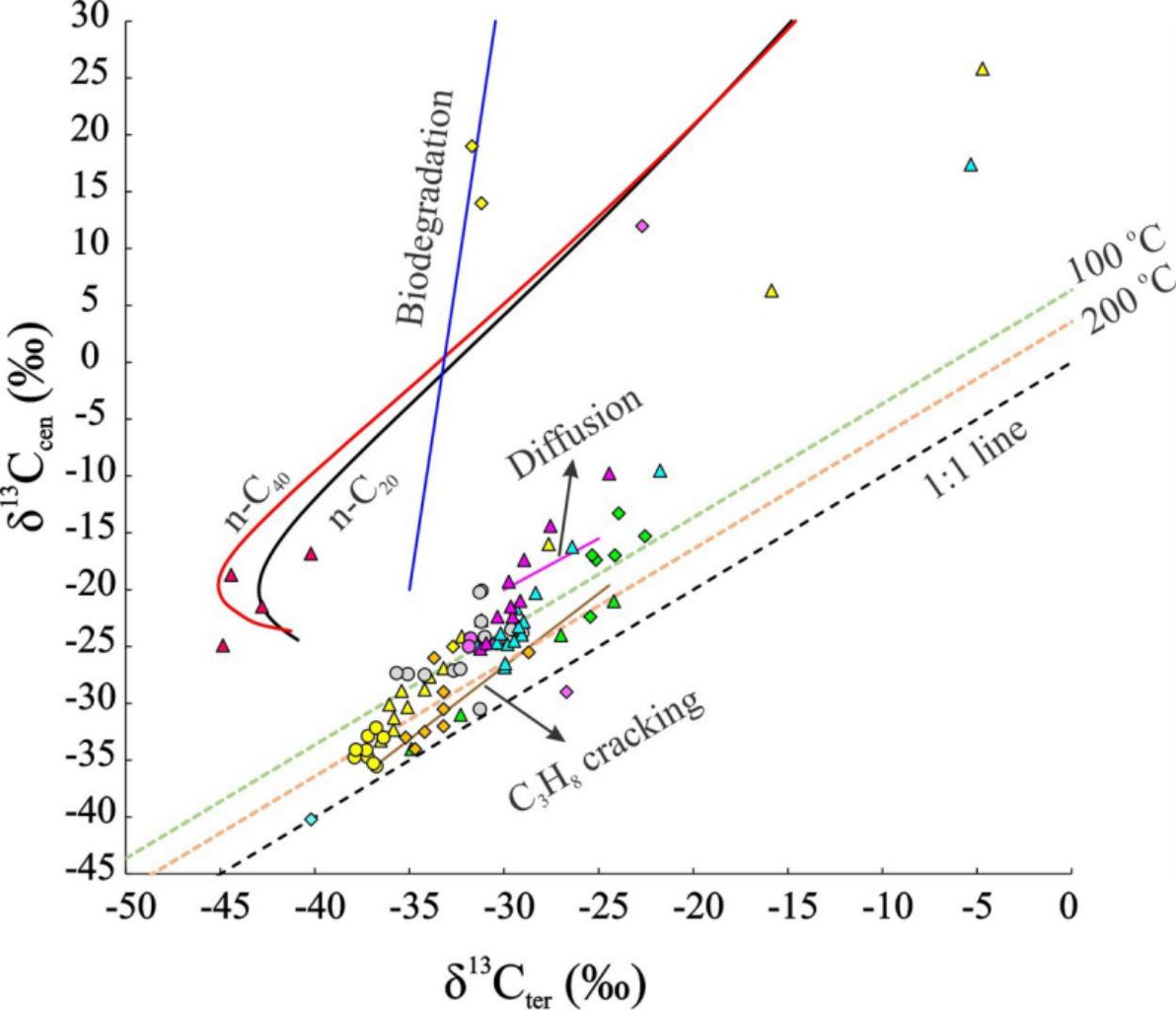


Fig. 7. Position-specific carbon isotope fractionation of propane from the cracking of the Springfield coal (this study), Woodford Shale (Li and Horita, in revision), n-alkane (Tang et al., 2000), n-C₈ (Ni et al., 2011) and C₃H₈ (Li et al., 2021) in the temperature range from 310 to 480 °C.


Fig. 8. Summary of $\delta^{13}\text{C}_{\text{ter}}$ and $\delta^{13}\text{C}_{\text{cen}}$ values of propane from this study, natural and pyrolysis gases (Suda et al., 2017; Liu et al., 2018, 2019; Piasecki et al., 2018; Gilbert et al., 2019; Zhao et al., 2020; Zhang et al., 2022; Li and Horita, in revision), compared with theoretical modeling on n-C₄₀ and n-C₂₀ cracking (Peterson et al., 2018), C₃H₈ cracking (Li et al., 2021), biodegradation (Gilbert et al., 2019), and diffusion (Piasecki et al., 2016).




This study	
○	Hydrous
○	Anhydrous
Kerogen cracking	
Tang et al. (1996)	
---	Hydrous
---	Anhydrous
C ₃ H ₈ cracking	
---	Tian et al. (2008)
---	Li et al. (2021)
C ₃ H ₈ cracking	
in pyrolysis of Woodford Shale	
---	Li and Horita (in revision)





Natural gas

- Woodford (Liu et al., 2019)
- Eagle Ford (Zhao et al., 2020)
- Eagle Ford (Piasecki et al., 2018)
- Potiguar (Piasecki et al., 2018)
- Tarim (Zhang et al., 2022)
- Carnarvon (Gilbert et al., 2019)
- Michigan (Gilbert et al., 2019)
- Southwest Ontario (Gilbert et al., 2019)
- Hakuba Happo hot spring (Suda et al., 2017)

Pyrolysis gas

- Springfield coal (this study)
- Lijiaya coal (Zhang et al., 2022)
- Woodford (Li and Horita, in revision)
- Woodford (Piasecki et al., 2018)
- n-C₂₅ (Gilbert et al., 2019)

Table 1. Experimental conditions and measured yields of gaseous species produced from the isothermal closed-system pyrolysis of Springfield coal in the temperature range of 310 to 470 °C.

Table 2. Isotope compositions of the HC gases from the pyrolysis of Springfield coal in different experimental conditions.

Table 3. Position-specific C isotopes of propane generated in the hydrous and anhydrous pyrolysis of Springfield coal. ($\delta^{13}\text{C}_{\text{ter}}$: $\delta^{13}\text{C}$ in terminal position of propane; $\delta^{13}\text{C}_{\text{cen}}$: $\delta^{13}\text{C}$ at central position of propane; $\Delta\text{C}_{\text{c-t}}$: position-specific carbon isotope deviation ($\delta^{13}\text{C}_{\text{cen}} - \delta^{13}\text{C}_{\text{ter}}$); std: standard deviation)

Type	T (°C)	Easy %R _o	HC gas yield (C ₁ -C ₅) (mmol/g TOC)	Gas yield (mmol/g TOC)								C ₁ /(C ₁ -C ₅)
				CH ₄	C ₂ H ₆	C ₃ H ₈	C ₄	C ₅	H ₂	CO ₂	H ₂ S	
Hy	310	0.76	0.24	0.15	0.06	0.03	0.01	0.00	0.01	0.53	0.00	0.62
	340	0.98	0.76	0.43	0.19	0.09	0.03	0.01	0.10	0.86	0.16	0.56
	360	1.2	0.91	0.51	0.22	0.11	0.05	0.02	0.13	0.90	0.44	0.56
	370	1.67	2.43	1.53	0.50	0.27	0.10	0.03	0.09	1.28	0.33	0.63
	370	1.95	2.90	1.85	0.57	0.30	0.13	0.05	0.12	1.30	0.94	0.64
Anhy	310	0.76	0.23	0.13	0.05	0.03	0.01	0.00	0.01	0.30	0.00	0.59
	340	0.98	0.71	0.42	0.16	0.09	0.03	0.01	0.06	0.43	0.02	0.59
	360	1.2	1.24	0.71	0.28	0.15	0.06	0.03	0.11	0.40	0.13	0.57
	380	1.45	1.90	1.14	0.40	0.22	0.10	0.04	0.09	0.44	0.13	0.60
	400	1.75	2.76	1.85	0.50	0.25	0.11	0.04	0.09	0.59	0.10	0.67
	415	2.00	3.28	2.24	0.59	0.30	0.12	0.02	0.12	0.51	0.15	0.68
	430	2.28	4.00	3.02	0.66	0.26	0.06	0.00	0.15	0.58	0.35	0.76
	450	2.66	5.12	4.17	0.72	0.21	0.02	0.00	0.21	0.59	0.24	0.81
	470	3.07	6.15	5.55	0.57	0.03	0.00	0.00	0.32	0.57	0.00	0.90

Easy %R_o is calculated based on temperature and time program in the pyrolysis experiments according to [Sweeney](#) and Burnham (1990).

Hy: hydrous experiments; Anhy: anhydrous experiments.

CO₂ and H₂S yields in hydrous conditions include measured gaseous amounts and calculated yields in the solution.

Type	T (°C)	Easy %R _o	δ ¹³ C (‰)							δ ² H (‰)									
			CH ₄	C ₂ H ₆	C ₃ H ₈	i-C ₄	n-C ₄	i-C ₅	n-C ₅	CO ₂	CH ₄	C ₂ H ₆	C ₃ H ₈	i-C ₄	n-C ₄	i-C ₅	n-C ₅	H ₂	H ₂ S
Hy	310	0.76	-34.9	-29.5	-29.0	-28.9	-28.3	-27.3	-29.0	-20.5	-293	-253	-225	-192	-201	-174	-204	-423	
	340	0.98	-37.9	-30.0	-28.7	-29.2	-27.9	-27.8	-27.6	-21.2	-288	-247	-221	-178	-199	-168	-198	-393	-536
	360	1.2	-36.9	-29.2	-28.4	-29.7	-27.6	-27.8	-27.1	-23.2	-290	-247	-220	-179	-197	-164	-189	-388	-535
	370	1.64	-35.4	-27.7	-27.3	-28.2	-26.8	-27.1	-26.9	-22.6	-283	-218	-170	-151	-148	-129	-158	-372	-539
	370	1.93	-36.0	-27.5	-26.6	-27.7	-26.5	-26.6	-26.5	-23.0	-287	-211	-166	-147	-145	-123	-149	-387	-536
	Anhy	310	0.76	-35.5	-29.7	-28.9	-29.2	-28.4	-27.8	-27.9	-22.2	-282	-240	-191	-177	-188	-164	-189	-487
Anhy	340	0.98	-36.9	-29.2	-28.0	-28.5	-27.4	-27.5	-27.5	-22.7	-273	-225	-204	-168	-182	-153	-185	-471	
	360	1.2	-38.2	-29.3	-28.2	-28.4	-27.9	-27.9	-27.7	-22.6	-266	-214	-194	-152	-175	-142	-171	-399	-533
	380	1.45	-36.3	-28.4	-27.4	-28.5	-27.1	-26.8	-26.6	-22.1	-252	-202	-166	-141	-147	-123	-152	-383	-537
	400	1.75	-35.2	-27.9	-26.8	-26.9	-26.0	-22.5	-23.3	-22.8	-250	-171	-134	-126	-119	-92	-119	-408	
	415	2.00	-35.5	-28.0	-26.2	-26.5	-22.2	-15.1	-13.2	-22.5	-239	-140	-116	-94	-88	-54	-89	-320	-535
	430	2.28	-34.0	-26.8	-23.1	-21.2	-9.8			-22.8	-229	-82	-79				-321	-535	
	450	2.66	-32.8	-25.0	-17.8	-15.3	-1.3			-22.7	-209	-63	-61				-303	-536	
	470	3.07	-31.5	-20.2	2.1					-22.8	-174	-60	-52				-297	-532	

Type	T (°C)	Easy %R _o	Position-specific ¹³ C isotope of C ₃ H ₈ (‰)					
			δ ¹³ C _{ter}	std	δ ¹³ C _{cen}	std	ΔC _{c-t}	std
Hy	310	0.76	-30.0	0.5	-26.8	1.1	3.2	1.2
	340	0.98	-30.4	0.5	-24.7	1.1	5.7	1.2
	360	1.2	-29.8	0.5	-24.8	1.1	5.0	1.2
	370	1.64	-29.1	0.5	-23.9	1.1	5.1	1.2
	370	1.93	-29.0	0.5	-22.8	1.1	6.2	1.2
Anhy	310	0.76	-30.0	0.5	-26.5	1.1	3.5	1.2
	340	0.98	-30.2	0.6	-23.9	1.1	6.3	1.3
	360	1.2	-29.5	0.5	-24.5	1.1	5.0	1.2
	380	1.45	-29.2	0.5	-23.2	1.1	6.0	1.2
	400	1.75	-29.4	0.5	-21.6	1.1	7.7	1.2
	415	2.00	-28.3	0.5	-20.3	1.1	8.0	1.2
	430	2.28	-26.4	0.6	-16.2	1.1	10.2	1.2
	450	2.66	-21.8	0.5	-9.5	1.1	12.2	1.2
	470	3.07	-5.3	0.5	17.4	1.1	22.7	1.2