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Abstract

Pectin, cellulose, and hemicelluloses are major components of primary cell
walls in plants. In addition to cell adhesion and expansion, pectin plays a
central role in seed mucilage. Seed mucilage contains abundant pectic
rhamnogalacturonan-l (RG-l) and lower amounts of homogalacturonan (HG),
cellulose, and hemicelluloses. Previously, accumulated evidence has
addressed the role of pectin RG-l in mucilage production and adherence.
However, less is known about the function of pectin HG in seed coat mucilage
formation. In this study, we analyzed a novel mutant, designated things fall
apart2 (tfa2), which contains a mutation in HG methyltransferase
QUASIMODO2 (QUA2). Etiolated tfa2 seedlings display short hypocotyls and
adhesion defects similar to qua2 and (tumorous shoot development2) tsd2
alleles, and show seed mucilage defects. The diminished uronic acid content
and methylesterification degree of HG in mutant seed mucilage indicate the
role of HG in the formation of seed mucilage. Cellulosic rays in mutant
mucilage are collapsed. The epidermal cells of seed coat in tfa2 and tsd2
display deformed columellae and reduced radial wall thickness. Under
polyethylene glycol treatment, seeds from these three mutant alleles exhibit
reduced germination rates. Together, these data emphasize the requirement of
pectic HG biosynthesis for the synthesis of seed mucilage, and the functions of
different pectin domains together with cellulose in regulating its formation,

expansion, and release.

Introduction

The cell wall surrounding plant cells not only provides structural support for
intracellular constituents, but also regulates plant growth and development. It
functions in cell wall integrity maintenance, cell signaling, and response to
internal and environmental cues (Caffall and Mohnen, 2009; Vaahtera et al.,

2019; Anderson and Kieber, 2020). Pectin, together with cellulose and
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xyloglucan, makes up the bulk of primary cell walls in dicotyledonous plants
(Zablackis et al., 1995). Pectin is one of the most abundant and complex
constituents of the primary cell wall, and is mainly composed of three types of
polysaccharides: homogalacturonan (HG), rhamnogalacturonan | (RG-1), and
rhamnogalacturonan Il (RG-Il). HG can be covalently bound to RG-1 or RG-Il to
form pectin macromolecules (Atmodjo et al., 2013). Of the pectin domains, HG,
which consists of linear chains of a-1,4-linked galacturonic acid (GalA)
residues, is the most abundant. It can be acetylated at the O2 and O3
positions and methylesterified at the C6 carboxyl group (Caffall and Mohnen,
2009). RG-1 has a disaccharide repeats backbone composed of
a-D-GalA-a-L-Rha with different side chains. The GalA residues in RG-I
backbone are also acetylated at O2 or O3, and the Rha residues may be
substituted at O4 with oligosaccharides or polysaccharides (Atmodjo et al.,
2013). RG-ll has an HG backbone substituted with four well-defined side
chains. RG-Il molecules are known to form RG-II-B dimers via a boron diester
bond (Caffall and Mohnen, 2009; Atmodjo et al., 2013). Pectin is
biosynthesized in the Golgi apparatus, and highly methylesterified HG is
secreted into the apoplast (Staehelin and Moore, 1995) and
de-methylesterified by pectin methylesterases (PMEs). PME activity is
modulated by pectin methylesterase inhibitors (PMEls) (Willats et al., 2001).
The degree of methylesterification and the distribution patterns of methylesters
in HG chains determine binding interactions between pectin and calcium ions
(Ca?*) that lead to pectin crosslinking, and the ability of pectin-degrading
enzymes to bind to HG molecules. Contiguous de-methylesterified GalA may
cross link with Ca?* to form “egg box” structures, which are predicted to
strengthen wall mechanics and increase cell—-cell adhesion (Peaucelle et al.,
2012; Hocq et al.,, 2017). Sporadically de-methylesterified HG can be
degraded by polygalacturonases (PGs) and pectate lyases (PLs) to allow for
wall expansion (Pelloux et al., 2007; Wolf et al., 2009; Xiao et al., 2014; Rui et
al., 2017; Wu et al., 2020).
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Pectic HG synthesis requires the participation of different
glycosyliransferases, methyltransferases, and acetyltransferases (Mohnen,
2008; Atmodijo et al., 2011). GALACTURONOSYLTRANSFERASE1 (GAUT1)
has HG:GalA transferase activity and forms a complex with GAUT7 to
accomplish glycan chain elongation (Amos et al., 2018). GAUTS8 is also
necessary for HG synthesis: mutations in GAUT8 cause GalA content
reduction in the cell wall and cell adhesion defects (Bouton et al., 2002).
GAUT11 functions in the formation of seed coat mucilage (Voiniciuc et al.,
2018), and GAUT12 not only regulates pectin synthesis, but also affects the
deposition of lignin in secondary cell walls, with mutations in GAUT12 resulting
in plant dwarfism (Persson et al., 2007; Hao et al., 2014). In addition to
galacturonosyltransferases, several putative pectin methyltransferases such
as QUASIMODO2 (QUA2), QUA3, CGR2 (COTTON GOLGI RELATED 2),
and CGRS3 have been identified to be involved in HG synthesis (Krupkova et al.,
2007; Mouille et al., 2007; Miao et al., 2011; Kim et al., 2015). Recently,
heterologously expressed PMR5 (POWDERY MILDEW RESISTANT5) was
shown to transfer acetyl groups to oligogalacturonides in vitro (Chiniquy et al.,

2019).

Seed coat mucilage, a specialized type of cell wall, is an excellent system for
the investigation of cell wall structure and function (Griffiths and North, 2017).
In angiosperms like Arabidopsis thaliana, transparent, soluble, and
pectinaceous polysaccharides are synthesized and secreted from the seed
coat epidermis when mature dry seeds are hydrated in water (Arsovski et al.,
2010; Haughn and Western, 2012). The seed coat epidermis stems from the
outer ovule integument after fertilization and increases in size by vacuolar
expansion. During mucilage deposition, a mucilage pocket is present in the
space between the primary cell wall and the developing columella. Following
its growth, the columella is delimited by a secondary cell wall and is shaped

like a volcano (Western et al., 2000). Once extruded, seed coat mucilage
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contains two different layers of structures surrounding the mature seeds: the
outer mucilage is diffuse and can be easily extracted by gentle shaking,
whereas the inner mucilage adheres tightly to seeds and can be removed only
by vigorous shaking. Some evidence has implied that seed coat mucilage
facilitates successful seed germination under extreme conditions, which might
be beneficial for seed survival, dispersal, hydration, and attachment to soil

(Haughn and Western, 2012; Francoz et al., 2015; Ezquer et al., 2016).

Analysis of seed coat mucilage has revealed that it contains many
components of primary cell walls, but in unique proportions, including
abundant pectic RG-l1 and lesser amounts of HG with varying degree of
methylesterification; cellulose; and hemicelluloses (Windsor et al., 2000;
Macquet et al., 2007). Several key enzymes required for RG-I synthesis have
been identified to function in seed mucilage production through genetic
analysis. MUCILAGE-MODIFIED4/RHAMNOSE BIOSYNTHESIS2
(MUM4/RHM2), a UDP-L-rhamnose synthase, participates in mucilage RG-I
synthesis (Oka et al., 2007). It is modulated by upstream regulator APETALA2
(AP2), TRANSPARENT TESTA GLABRA1 (TTG1), and GLABRA2 (GL2) to
accomplish seed coat development and mucilage production (Usadel et al.,
2004; Western et al., 2004). Mutations in MUCILAGE-RELATED 70 (MUCI70),
RUBY PARTICLES IN MUCILAGE (RUBY),
B-D-XYLOSIDASE/a-L-ARABINOFURANOSIDASE1 (BXL1), and
MUCILAGE-MODIFIED2 (MUMZ2), which influence the structures of galactan
and arabinan side chains on RG-I, result in defective mucilage release (Dean
et al., 2007; Arsovski et al., 2009; Voiniciuc et al., 2018; Sola et al., 2019).
These findings indicate that pectic RG-I side chains are crucial for normal
mucilage release. Aside from RG-l, HG may also function in seed mucilage
formation. GAUT11 is required for the synthesis of an HG region attached to
RG-I, and gaut11 mutants show significant reductions in galacturonic acid and

rhamnose content in seed mucilage (Voiniciuc et al., 2018). Furthermore,
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pectin methylesterification status is associated with seed mucilage formation
and release. It appears that a lower degree of methylesterification on HG limits
mucilage release to some degree (Rautengarten et al., 2008; Saez-Aguayo et
al., 2013; Voiniciuc et al., 2013). Besides containing large amounts of pectic
polysaccharides, mucilage also contains some cellulose. CELLULOSE
SYNTHASES is required for cellulose production and mucilage adhesion in
seed coat epidermal cells (Mendu et al., 2011; Griffiths et al., 2015). Cellulose
is also the primary constituent of the columella, which arises from seed coat
epidermal cells. Normal cellulose deposition in the walls of Arabidopsis seeds
is essential for the establishment of subsequent mucilage architecture (Yang et
al., 2019). Mucilage attachment to the seed coat is likely dependent on
interactions between wall components such as pectin and cellulose that vary
spatiotemporally to allow for dynamic behaviors during seed maturation,
dispersal, and germination (Western et al., 2000; Stork et al., 2010; Voiniciuc

et al., 2015a).

QUASIMODO2 (QUA2), a pectin methyltransferase, has been demonstrated
to be involved in HG synthesis. Two mutant alleles of QUA2, quasimodo2
(qua2) and tumorous shoot development2 (tsd2), show reduced pectin HG
content, severe cell-cell adhesion defects, and growth inhibition (Krupkova et
al., 2007; Mouille et al., 2007; Du et al., 2020). However, little is known about
the function of QUA2 in pectin synthesis and modification during seed
mucilage formation. In this study, a novel allelic mutant of qua2 and tsd2,
referred to as tfa2 (things fall apart?), was characterized. Besides showing
shorter hypocotyls and cell adhesion defects in hypocotyl epidermal cells, we
observed that QUAZ2 allele mutants have reduced pectin content and
methylesterification degree, and display structural defects in seed coat
mucilage. tfa2 with tsd2 and qua2 mutant seeds exhibit lower levels of
crystalline cellulose compared with wild-type. The surface morphology of seed

coat in mutants is altered, showing deformed volcano-shaped columellae,
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along with decreased germination rates under low water availability. These
results indicate that QUAZ2 is involved in the formation of seed mucilage, and
provide new evidence to support the function of homogalacturonan in the

deposition of seed mucilage.

Materials and methods

Plant materials and growth conditions

Arabidopsis thaliana ecotype Colombia (Col-0), tfa2, tsd2, and qua2 mutant
seeds were used in this study. Three QUAZ allele mutant seeds were kindly
provided by Tanya Falbel and Sara Patterson. Seeds were surface sterilized in
30% bleach containing 0.1% SDS, followed by washing four times with sterile
water. After sowing on Murashige and Skoog (MS) plates containing 2.2 g/L
MS  (Phytotech lab, Cat#M519), 0.6 g¢g/L MES (Life-biotech,
Cat#A610341-0100), 1% or 0% (w/v) sucrose, and 0.8% (w/v) agar, pH 5.6,
seeds were vernalized at 4°C in the dark for 4 days. Seedlings were grown in a
chamber at 22°C with a 16-h-light/8-h-dark photoperiod for 8 days. Then
seedlings were transferred from MS medium plates into sterilized soil, and
grown in a greenhouse under the same conditions. The seeds of different
genotypes are from the same batch and harvested after full maturation and

complete drying.
Construction of complementary plants

For generation of complementary plants, fragments of 2.0 kb upstream of
QUAZ2 translation initiation site from Col genomic DNA and the full length of
QUAZ2 coding sequence from Col leaf cDNA were amplified by high-fidelity
DNA polymerase with gene-specific primers (Table S1). Two PCR fragments
were integrated into the binary vector pH7FGW2 to generate the
QUAZ2pro::QUAZ2 construct, which was transformed into Agrobacterium

tumefaciens strain GV3101 and infected tfa2 mutant plants using the floral dip
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method (Clough and Bent, 1998). Positive transformants were selected on MS

plates containing 25 pg/mL hygromycin.

Hypocotyl length measurements and epidermal cell morphology

For observations of hypocotyl length, MS plates containing 6-day-old
dark-grown seedlings were scanned by a HP Scanjet G4050 scanner at 600
dpi, and hypocotyl length was measured in Imaged. Cell adhesion defects
were observed and analyzed by imaging hypocotyl epidermal cells of etiolated
seedlings using a Cell Observer SD spinning-disk confocal microscope with a

100x 1.40 NA oil-immersion objective (Zeiss).
Total RNA isolation and gene expression analysis

Arabidopsis wild-type flowers at the day of pollination were carefully labeled
as previously described (Western et al., 2000). Rosette leaves from
6-week-old adult plants and siliques at the day indicated were collected and
used for the extraction of total RNA using a Plant RNA Kit (Omega). RNA
samples were treated with RNase-free DNase | (NEB) on a column to remove
genomic DNA. RNA concentration was measured by spectrophotometer
(NanoDrop™ OneC®), and first-strand cDNA was synthesized from 500 ng
DNase I-treated total RNA using PrimeScript™ RT reagent Kit supplemented
with a primer mix of random hexamer and oligo (dT) (Takara, Cat# RR047A).
gPCR was performed using SYBR Green FastMix (Takara) with cDNA and
gene-specific primers (Table S1) on a Bio-rad CFX96 Touch Real-Time PCR
machine. ACT2 was amplified as an internal control. Gene expression levels

were calculated relative to ACT2 using the AACT method.

Seed size measurements and water absorbance analysis

About 100 dry seeds of each genotype were imaged with a
stereomicroscope (Leica M205FA), and seed area was measured by Imaged.

To explore the water absorption capability of seeds, 100 mg of dry seeds of
8
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each genotype were hydrated in 1.5 mL Eppendorf tubes containing 1 mL
water overnight at room temperature to allow seeds to absorb water
completely, and the total height of the seeds in the tube after water absorption

was measured.

Ruthenium red staining and extraction of seed coat mucilage

Pectin staining of seed coat mucilage was performed according to the
method described by Voiniciuc et al. (Voiniciuc et al., 2015a). Staining was
carried out in 24-well cell culture plates. Around 30 seeds were placed into a
well prefilled with 500 pL water and shaken for 30 min at a speed of 125 rpm
(ORBITAL SHAKER KB-900). After removing the water, seeds were stained in
a solution of 500 pL 0.01% (w/v) Ruthenium Red (Sigma-Aldrich, Cat#R2751)
for 10 min. The dye was removed before washing seeds with water. Then, 500
puL water was added to each well and the seeds were imaged with a
stereomicroscope (Leica M205FA). Image processing and quantification of
mucilage area were performed in Imaged according to the method described
by Voiniciuc et al. (Voiniciuc et al., 2015a). Total area of seed plus mucilage
and seed area were measured by particle function analysis (circularity 0.5-1),
respectively. Area of mucilage was calculated by subtracting seed area from

total area.

The mucilage extraction was performed as previously described (Xu et al.,
2022) with small modifications. Briefly, 100 mg dry seeds were imbibed with 4
mL of distilled water in a 15 mL centrifugal tube and shaken at 200 rpm for 1 h
at room temperature. The supernatants were collected by centrifugation at
5000 rpm for 1 min, then the seeds were washed with 1 mL of distilled water.
The supernatants were transferred into a 50 mL centrifugal tube and labeled
as non-adherent mucilage (NM). The washed seeds were resuspended in 4
mL of distilled water and subjected to ultrasonic treatment (65% amplitude, 6 x

10 s for 1 min) by ultrasound equipment with a 4 mm probe. The supernatants
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were collected by centrifugation at 5000 rpm for 1 min, then the seeds were
washed with 1 mL of distilled water. The supernatants were collected into a 50
mL centrifuge tube and labeled as adherent mucilage (AM). Then, five times
the volume of ethanol was added into NM and AM to precipitate the
polysaccharides on ice for 30 min (Mendu et al., 2011). Finally, pellets were
collected by centrifugating at 10,000 rpm for 10 min, followed by drying at 45°C

and weighing.
Determination of degree of pectin methylesterification

To extract seed mucilage, 5 mg of dry seeds was vigorously vortexed
(Scientific Industries Vortex-Genie 2) in 300 pyL of 50 mM EDTA for 60 min.
After seeds were allowed to settle for 2 min, 250 pyL of supernatant was
transferred to a new tube and saponified with 0.25 M NaOH for 60 min. The
reaction was neutralized with 0.25 M HCI and centrifuged at 10,000g for 5 min.
An aliquot of 500 pL of neutralized supernatant was transferred into a new 1.5
mL tube, and 500 uL HEPES buffer (pH 7.0) containing 0.5 units of alcohol
oxidase (Sigma-Aldrich, Cat#A2404) was added. The solution was then
shaken at 250 rpm for 15 min at room temperature. After being briefly
centrifuged, 500 pL of assay buffer (20 mM acetyl acetone, 50 mM acetic acid,
2 M ammonium acetate) was added to react at 60°C for 15 min. After cooling
down, 1 mL reaction solution was used to read absorbance at 412 nm, and
released methanol content was calculated according to a standard curve of
methanol (Klavons and Bennett 1986). An aliquot of 200 pL of remaining
mucilage solution was used to assay uronic acid content. Absorbance was
measured at 525 nm, and uronic acid content was quantified using
D-(+)-galacturonic acid monohydrate (Sigma-Aldrich, Cat#48280) as a

standard.

Immunofluorescence microscopy

Dry seeds were imbibed in water in a cell culture plate overnight at room
10
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temperature before immunostaining. Imbibed seeds were incubated with
primary antibody (Agrisera; JIM5, Cat#AS184194; JIM7, Cat#AS184195) in
phosphate buffer containing 3% (w/v) nonfat milk for 1 h at room temperature.
After washing three times with PBS buffer, seeds were incubated with
DyLight™ 488-labeled goat anti-rat secondary antibody (1:500, SeraCare) in
phosphate buffer containing 3% nonfat dry milk for 1 h at room temperature.
Negative controls were processed without primary antibody. Fluorescence
images were taken using Observer SD spinning-disk confocal microscope with

a 488-nm excitation laser and 525/550-nm emission filter (Zeiss).

Cellulose content measurements and cellulose staining in seeds

Cellulose content in seeds was measured according to the method
described by Xiao et al. (Xiao et al., 2016) with some modifications. Seeds
were ground into a fine powder in liquid nitrogen before washing with 75%
ethanol for 45 min at 70°C. The powder was washed with acetone five times,
for 2 min each time. The materials were air-dried in a chemical fume hood
overnight. An aliquot of 2 mg of air-dried samples was added to a 1 mL solution
of acetic acid:water:nitric acid (8:2:1). After vortexing, samples were boiled for
30 min and cooled on ice. The supernatant was discarded by centrifugation for
5 min, and the pellets were washed in 1 mL water. After washing with 1 mL
acetone, the pellets were air-dried overnight in a chemical fume hood. An
aliquot of 1 mL 67% sulfuric acid was added to resuspend the pellets by
vortexing. An aliquot of 50 pL of each sample was added to a tube to which
450 pL of water had already been added. An aliquot of 1 mL 0.2% (w/v)
anthrone (Sigma-Aldrich, Cat#319899) in concentrated sulfuric acid was
added and vortexed immediately to mix. The samples were heated at 100°C
for 5 min, and cooled down to room temperature. Absorbance of samples at
ODs20 was measured using a spectrophotometer (NanoDrop™ OneC).
D-glucose (Sigma-Aldrich, Cat#G8270) was used as a standard to calculate

cellulose content.
11
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Cellulose staining was carried out according to a method described by
Mendu et al. (Mendu et al., 2011). Around 20 dry seeds were hydrated in 500
uL water in a 24-well plate well for 5 min. The water was removed, and
cellulose was stained with 0.01% (w/v) Direct Red 23 (Pontamine Fast Scarlet
4B, Sigma-Aldrich, Cat#212490) in a solution with 50 mM NaCl. After shaking
for 60 min at 125 rpm in the dark, seeds were washed three times with 500 pL
water and imaged at 561 nm with a confocal microscope (Zeiss). Whole seeds
were also stained with Calcofluor White (Sigma-Aldrich, Cat#18909) in a drop
of 10% (v/v) KOH for 5 min in dark according to product manual. Seeds were

imaged at 405 nm with a confocal microscope (Zeiss).

Scanning electron microscopy

For observation of seed surface morphology, mature seeds of wild-type and
mutants were dried at 37°C overnight before being gold-coated with a sputter
coater. Seed epidermal cells were scanned with a scanning electron

microscope at 1.5 kV (Thermo Scientific Helios G4 UC).
Seed germination analysis

About 50 seeds were placed on moistened paper in a Petri dish with 1 mL
water or 10% (w/v) polyethylene glycol PEG-3350 (Sigma-Aldrich). Seeds
were stratified at 4°C for 3 days and then grown for 4 days at 22°C under 16 h
light/8 h dark conditions. Seed germination was scored every day as testa

rupture preceding radicle protrusion.
Results
tfa2, a novel mutant allele of QUAZ2, displays shorter hypocotyls
and cell adhesion defects
The quaZ2 and tsd2 alleles of QUAZ2 are point mutants. Both mutations lead

to premature termination of translated peptide (Krupkova et al., 2007; Mouille
12
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et al., 2007). A novel mutant allele isolated via ethyl methanesulfonate (EMS)
mutagenesis, called things fall apart? (tfa2), was identified to contain a
mutation in QUA2 gene by map-based cloning (kindly provided by Tanya
Falbel and Sara Patterson). Through PCR amplification and Sanger
sequencing of the QUAZ2 genomic DNA, a single nucleotide change at 1210 (G
to A) was confirmed. This mutation is located in the third exon of coding
sequence and generates a stop codon and premature termination (Fig. 1A; Fig.

S1; Table S1).

Rapid-growing etiolated seedlings in dark are mainly composed of primary
cell walls. Thus, the hypocotyl elongation of etiolated seedlings is considered a
good model to study primary cell wall. As previously reported, qua2 and tsd2
mutants show shorter hypocotyls and cell adhesion defects in epidermal cells
of hypocotyls and cotyledons (Krupkova et al., 2007; Mouille et al., 2007; Du et
al., 2020). To determine whether the tfa2 mutation also affects hypocotyl
elongation and cell adhesion, we grew tfa2 seeds together with tsd2, qua2,
and wild-type seeds on 1/2 MS medium plates in the dark. Hypocotyls of
6-day-old etiolated tfa2, tsd2, and quaZ2 seedlings had average lengths of 1.19
+ 0.25 cm (SD), 0.45 £ 0.14 cm (SD), and 0.59 + 0.13 cm (SD), respectively,
whereas wild-type Colombia (Col) hypocotyls had an average length of 1.78 +
0.24 cm (Fig. 1B and C). Average hypocotyl length in the three mutant alleles
was significantly shorter than Col (P < 0.001, ttest). The tsd2 seedlings
showed the shortest hypocotyls, whereas tfa2 hypocotyls were longer than
tsd2 and quaZ2 hypocotyls. Similar to qua2 and tsd2, epidermal cells of tfa2
etiolated hypocotyls also displayed cell-cell adhesion defects (Fig. 1D),
although these were relatively milder in tfa2 seedlings. Among the three
mutant alleles, the degree of severity of cell adhesion defects in hypocotyl
epidermal cells is correlated with hypocotyl length, suggesting that cell
adhesion defects might somehow disrupt hypocotyl elongation. To confirm the

observed defects in tfa2 mutants were caused by loss of function of QUA2,
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wild-type QUAZ2 gene driven by endogenous promoter was expressed in tfa2
mutant to generate complementary plants (COM). Six-day-old etiolated
seedlings of two independent complementary lines had significantly longer
hypocotyls than tfa2 mutant (Fig. S2A and B), and had intact hypocotyl
epidermal cells (Fig. S2C), which indicates QUAZ2 can rescue shorter
hypocotyls and cell adhesion defects of tfa2 mutants. These data stress the
roles of QUAZ2 in cell elongation and cell adhesion. Additionally, seedlings of
tfa2, tsd2, and qua2 mutants had shorter primary roots than Col seedlings (Fig.
S3A). The cotyledons of mutant seedlings were prone to be aberrantly
hydrated when grown on MS plates (Fig. S3B), likely resulting from cell
adhesion defects in the epidermis. When seedlings were transferred into soil to
continue growth in a chamber, mutant plants were smaller than wild-type

plants (Fig. S3C).

tfa2 and tsd2 mutant seeds have altered water absorption
capability

Aside from inhibition of etiolated seedling growth and cell adhesion defects
(Fig. 1B and D), we noticed that mutations in QUAZ influenced the water
absorption capability of seeds (Fig. 2). We weighed 100 mg dry seeds of Col,
tfa2, tsd2, and qua2, and incubated each batch of seeds with 1 mL water at
room temperature overnight to allow the seeds to absorb water completely.
Imbibed tfa2 and tsd2 seeds displayed smaller total volumes than wild-type
seeds (Fig. 2A-C). To determine whether the lower imbibed seed volume in
the mutants arises from smaller seed size, we measured the sizes of dry seeds,
and found no significant differences between the mutants and wild-type (Fig.
2D). This suggests that the alteration of hydrated seed volume in the mutants
is likely due to a diminished ability to absorb water. Considering that alterations
in hydrated seed volume are often associated with changes in released seed

coat mucilage (Harpaz-Saad et al., 2012; Ben-Tov et al., 2015), we speculated
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that QUA2 might function in the formation of hydratable mucilage by seed coat

epidermal cells.
tfa2 and tsd2 mutants show seed coat mucilage defects

To explore the function of QUA2 in seed mucilage formation, we first
estimated the expression of QUAZ in siliques at different developmental
stages by real-time quantitative RT-PCR (gPCR). It was found that QUAZ is
expressed at relatively low level in rosette leaves and young siliques at 4 days
after pollination (DAP). By contrast, QUAZ transcripts are dramatically induced
at 7, 10, and 13 DAP (Fig. S4A), which is correlated with the time of mucilage
formation (Western et al., 2000). Previously published laser-capture
microdissection followed by ATH1 GeneChip analysis showed QUAZ2 mRNA is
expressed throughout seed development and especially enhanced in seed
coat at linear cotyledon stage (Fig. S4B) (Winter et al., 2007; Le et al., 2010).
This expression pattern in developing seeds supports the idea that QUA2

functions in seed development and seed mucilage formation.

Thus, we examined whether mucilage deposition, structure, and/or adhesion
were affected in tfa2, tsd2, and qua2 mutant seeds by ruthenium red staining.
Both tfa2 and tsd2 seeds showed obviously reduced adherent mucilage when
hydrated in water for 30 min, whereas quaZ2 seeds released similar amounts of
mucilage as wild-type seeds (Fig. 3A and B). Meanwhile, we also directly
weighed the released adherent mucilage, which confirmed that tfa2 and tsd2
seeds secreted significantly less mucilage than wild-type and quaZ2 seeds after
soaking in water (Fig. 3C). In parallel, the extruded seed coat mucilage in two
complementary lines of QUAZpro::QUAZ/tfa2 was significantly larger than that
in tfa2 mutant seeds (Fig. S5), which indicates wild-type QUAZ can rescue the
seed coat mucilage defects of tfa2 mutant. However, as the weight of
non-adherent mucilage was very low from the seeds of all four genotypes, we

failed to obtain accurate weight for them. So we performed the ruthenium red
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staining to observe the non-adherent mucilage. As shown in Fig. S6, no
obvious difference in non-adherent mucilage was evident between wild-type
and mutant seeds upon hydrating dry seeds directly in ruthenium red staining
buffer. These data indicate that QUA2 modulates the formation of adherent

mucilage.

QUA2 is critical for pectin homogalacturonan production and

methylesterification in seed coat mucilage

Mucilage defects are often accompanied by alteration of pectin
methylesterification status (Rautengarten et al., 2008; Saez-Aguayo et al.,
2013; Voiniciuc et al., 2013). Arabidopsis QUAZ2 is a pectin methyltransferase,
which transfers methyl group to galactosyluronic acid residues in pectin in vitro
(Du et al., 2020). Loss of function of OsTSDZ2, one of the homologs of
Arabidopsis QUAZ in rice, resulted in a reduced degree of methylesterification
in root (Qu et al., 2016). This evidence led us to further investigate whether the
degree of methylesterification is altered in seed mucilage of Arabidopsis QUA2
mutants. As described by previous study, saponification of mucilage-derived
alcohol insoluble residue (AIR) was performed and followed by the
determination of released methanol through oxidation by alcohol oxidase
(Klavons and Bennett, 1986; Louvet et al., 2011). The degree of pectin
methylesterification was then calculated as the ratio of released methanol to
uronic acid in the AIR. Compared with wild-type, uronic acid content was lower
in imbibition-released mucilage for tfa2 and tsd2 mutants (Fig. 4A), which is
consistent with the result of ruthenium red staining (Fig. 3A). The amount of
methanol released from seed coat mucilage-derived AIR was even lower in
tfa2, tsd2, and quaZ2 seeds (Fig. 4B), resulting in significantly lower calculated
degrees of HG methylesterification in the mutants compared with wild-type
controls (Fig. 4C). Immunolabeling experiments were also carried out using

JIM5 and JIM7 antibodies, which recognize lower-methylesterified and
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higher-methylesterified HG, respectively (Goubet and Mohnen, 1999; Willats
et al., 2001). There was noticeably more JIM5 immunofluorescence signal in
tfa2 and tsd2 seed coat mucilage, but no significant difference in JIM7
immunofluorescence signal in three mutants compared with wild-type controls
(Fig. 4D-F). Taken together, these observations indicate that QUAZ2 is required
to maintain proper pectin methylesterification in seed mucilage, and those

mutations in QUAZ increase the proportion of de-methylesterified HG.

Mutations in QUAZ2 hinder the formation of cellulosic rays in seed

mucilage

Previous studies have shown that cellulose is important for both mucilage
extrusion and adherence in epidermal cells of seed coats (Griffiths et al., 2014;
Griffiths et al.,, 2015). A recent study found that pectin HG deficiency in
etiolated seedlings and adult leaves of qua2 and tsd2 mutants inhibits
cellulose biosynthesis (Du et al., 2020). To further test the effects of pectin
deficiency on cellulose deposition in seed mucilage, we measured crystalline
cellulose content in seeds, finding that cellulose content was 44% lower in both
tfa2 and tsd2 mutant seeds, and 30% lower in quaZ2 seeds, than in Col controls
(Fig. 5A). Pontamine Fast Scarlet 4B (S4B, also called Direct Red 23) and
Calcoflour White are dyes that have been widely used to stain cellulose
(Anderson et al.,, 2010; Xu et al.,, 2020). Both S4B and Calcoflour White
staining revealed that cellulose was collapsed in mucilage capsules of tfa2 and
tsd2 seeds hydrated in water (Fig. 5B) and produced lower fluorescence
intensity (Fig. 5C and D). Meanwhile, the expression of QUAZ partially rescued
the defect of cellulose deposition in the seed mucilage of tfa2 mutant (Fig. S7A,
B). These data indicate that loss of function of QUAZ restricts cellulose
deposition and accumulation in seed mucilage, emphasizing that pectin and

cellulose function collectively in generating seed coat mucilage.

Surface morphology is altered in tfa2 and tsd2 seed coats
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During seed coat development, production and polar secretion of mucilage
results in the formation of a volcano-shaped columella in the center of each
epidermal cell (Arsovski et al., 2010). To explore whether the mucilage defects
observed in QUAZ2 mutants might result from a disruption in this secretory
process, seed coat epidermal cells in dry seeds were imaged by scanning
electron microscopy (SEM). The images showed that volcano-shaped
columellae in both tfa2 and tsd2 seeds were severely deformed (Fig. 6A-C),
resulting in larger columella areas in three mutants (Fig. 6D), whereas the
radial cell walls were thinner than in wild-type controls (Fig. 6E). Surfaces of
dry seeds were also observed using bright field mode on a confocal
microscope, and we likewise found that columellae on epidermal cells in tfa2
and tsd2 mutant seeds were less protrusive than in Col controls (Fig. 6F and
G), while the columellae on the seed surface of complementation lines (COM-1
and COM-2) are likely more protrusive than in tfa2 mutant seeds (Fig. S8).
These results underscore the functional requirement for QUA2 in the
development and formation of columellae in seed coat epidermal cells, which

are essential for normal seed imbibition and germination.

QUA2 mutant alleles display reduced seed germination capability

under low water availability

The development of seed epidermal cells and mucilage deposition are
closely linked to seed hydration and germination under harsh conditions
(Western, 2012). Pectin methylesterification status in cell wall has been shown
to influence seed germination (Muller et al., 2012). According to the above
analyses, QUAZ2 mutants display the defect of mucilage formation, altered
degree of methylesterification in released mucilage, and abnormal
development in the seed coat epidermis. These findings raised the question of
whether seed germination is affected in QUA2 mutants. As shown in Figure 7,

there was no difference in germination rate among tested genotypes when
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seeds were grown on normal Murashige and Skoog medium. To find out
whether drought stress has an effect on seed germination of mutants, we
sowed seeds on the medium supplemented with 10% polyethylene glycol to
mimic water-deficient conditions (Ezquer et al., 2016). The results showed that
all mutant alleles had lower seed germination rates than Col controls when
seeds were exposed to medium supplemented with 10% polyethylene glycol.
Notably, tfa? seeds displayed almost 50% less germination after 24 h of
growth on plates containing 10% polyethylene glycol (Fig. 7). These results
imply that QUA2 is required to facilitate seed imbibition and therefore

germination, especially under water-limiting conditions.

Discussion

QUASIMODO2 was first identified as a putative pectin methyltransferase,
with functions in mediating cell-cell adhesion and plant development
(Krupkova et al., 2007; Mouille et al., 2007). Our recently published results
biochemically confirmed that QUA2 possesses pectin methyltransferase
activity in vitro and is required for normal pectin and cellulose biosynthesis in
Arabidopsis (Du et al., 2020). Here, we observed that, apart from its influence
on cell adhesion and hypocotyl elongation, QUA2 also functions centrally in
seed development and mucilage formation. Previous data have deduced that
total seed volume upon hydration in water results from gaps between seeds
where gel-like mucilage expands (Harpaz-Saad et al., 2012). Our data show
that the water absorption capacity of tfa2 and tsd2 mutant seeds is significantly
lower than that of wild-type seeds, whereas the size of dry mutant seeds is
similar to that of wild-type (Fig. 2), implying a change in seed coat mucilage of
QUA2 mutants (Mizzotti et al., 2014). Indeed, we found that the formation of
seed mucilage in mutants, at least tfa2 and tsd2 seeds, was inhibited (Fig. 3A
and B). These data support a requirement for QUA2 in the production of seed

mucilage.
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Defects in seed coat mucilage are generally associated with changes in the
morphology of seed coat epidermal cells (Voiniciuc et al., 2018). The defects in
pectin HG content and seed mucilage formation we observed in QUAZ2
mutants prompted us to observe the surface morphology of the seed coat
epidermis. The SEM images showed that mutant seeds have collapsed and
wider volcano-shaped columellae (Fig. 6), around which seed coat mucilage is
secreted. The alterations of seed coat properties in mutants further strengthen
the link between epidermal cell morphology and mucilage formation in seeds.
The data also indicate that QUA2 functions in seed development and the

formation of seed coat mucilage by facilitating normal HG biosynthesis.

Pectin, relative to other cell wall components, such as cellulose, is the most
predominant component of seed coat mucilage (Windsor et al., 2000; Macquet
et al., 2007). Among different pectin domains, RG-I is the most abundant in
Arabidopsis seed coat mucilage, and has been shown to be essential for the
normal formation of seed mucilage, although seed mucilage is also known to
contain HG (Macquet et al., 2007; Voiniciuc et al., 2013; Voiniciuc et al.,
2015b). However, the precise function of HG in seed coat mucilage remains to
be determined. GAUT11 is an HG o-1,4 GalA transferase, and might also
function in RG-I chain elongation, despite the RG-I backbone consisting of
alternating GalA and rhamnose residues. Mutation of GAUT11 results in
defects in uronic acid content and mucilage extrusion in seeds (Caffall et al.,
2009; Voiniciuc et al., 2018), suggesting that HG synthesis influences seed
mucilage formation. Besides galacturonosyltransferases, pectin
methyltransferases have been shown to function in HG biosynthesis
(Krupkova et al., 2007; Mouille et al., 2007; Du et al., 2020). Here, we found
that tfa2 and tsd2 seeds show smaller mucilage capsules upon water
absorption compared with wild-type seeds as revealed by ruthenium red
staining and quantification of extracted mucilage (Fig. 3), and significantly less

uronic acid is extracted from seed mucilage of tfa2 and tsd2 mutants (Fig. 4A).
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One interpretation of these results is that the mucilage defect in QUA2 mutants
arises from a reduction in HG content. However, the mucilage extrusion of
qua2 mutant is comparable to wild-type, possibly because the mutation
position of quaZ2 is located in C-terminus of coding sequence, which keeps
relatively intact methyltransferase 29 domain with SAM binding region.
Additionally, we cannot completely exclude the possibility that tfa2 contains
other gene interruption in addition to the QUAZ2 locus that may partially

contribute to seed mucilage defect.

Previous work has demonstrated that the methylesterification level of HG is
important for determining mucilage structure and extrusion (Rautengarten et
al., 2008; Saez-Aguayo et al., 2013; Voiniciuc et al., 2013; Xu et al., 2020). tfa2
and tsd2 seeds show stronger JIM5 immunolabeling signal and a lower degree
of methylesterification (Fig. 4), indicating a relatively higher accumulation of
low-methylesterified pectin in mucilage of mutant seeds. We also note the
significantly altered methylesterification level of remaining HG in seed
mucilage of tfa2, tsd2, and quaZ2 alleles (Fig. 4), which was not detected in
etiolated seedlings and mature leaves (Krupkova et al., 2007; Mouille et al.,
2007; Du et al., 2020). It is possible that QUAZ2 functions non-redundantly in
seed development, whereas other HG methyltransferases such as CGR2 and
CGR3 might methylesterify HG in other tissues (Kim et al., 2015). This finding
highlights the idea that pectin methylesterification status can be

organ-dependent, as found in another study (Xu et al., 2020).

Cellulose has also been demonstrated to play a significant role in
maintaining seed mucilage structure, especially in the formation of cellulosic
rays and the secondary wall structure called the columella (Sullivan et al., 2011;
Griffiths et al., 2014; Ben-Tov et al., 2015; Hu et al., 2016). A previous study
showed that cellulose biosynthesis and deposition are defective in hypocotyls
of qua2 and tsd2 etiolated seedlings (Du et al., 2020). Here, we measured

cellulose content in seeds by a biochemical method (Updegraff, 1969). All
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three mutants exhibited decreased crystalline cellulose content in their seeds
(Fig. 5A). Meanwhile, both hydrated tfa2 and tsd2 seeds showed obviously
reduced cellulose rays after S4B and Calcofluor White staining (Fig. 5B), which
could be caused by reduced cellulose content (Sullivan et al., 2011), or the
lack of normal organization of cellulose in the ray (Giriffiths et al., 2014). These
data indicate that the defective pectin biosynthesis and reduced degree of
pectin methylesterification in QUA2 mutants also have an impact on cellulose

deposition in seeds.

The deposition of cellulose, the main component of the volcano-shaped
columellae, in the seed coat epidermis is guided by accumulated pectin
(Griffiths et al., 2015; Voiniciuc et al., 2015b). The SEM images showed that
QUAZ2 mutant seeds have thinner radial cell walls, with collapsed and wider
columellae. The results in this study support multiple functions for QUA2 in cell
wall deposition, ray formation, radial wall thickening, and columella formation
during seed coat development. Our previous work has also revealed that
mutation of QUAZ affects microtubule organization in hypocotyl cells (Du et al.,
2020). The twisting growth in hypocotyls of microtubule-associated mutants
can be restored by inducing cell-cell adhesion defects that result in the
relaxation of local mechanical conflicts, and pectin deficiency seems to have a
direct effect on microtubule organization in plant cells (Verger et al., 2019).
Therefore, it is unclear whether the defect of cellulose deposition in QUA2
mutant seeds might also result from perturbed functional interplays between
pectin and microtubules, which in turn influence cellulose synthesis. These
questions will be the subject of future investigations into the connections
between pectin and cellulose during seed development and germination, as

well as in other developmental contexts.

In addition, our results reveal that seed germination in three mutants is
inhibited under conditions of low water potential. This is potentially attributable

to limited mucilage deposition and/or altered pectin methylesterification status
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in the mutants, in connection with the fact that pectin is a highly hydratable
polymer and likely functions in mucilage to aid in water uptake during seed
germination (Muller et al., 2012). These data support the idea that the
production of mucilage is one strategy for plants to adapt to complex and
changing environments and efficiently acquire sufficient water for germination

(Western, 2012; Ezquer et al., 2016).

In summary, we found that the novel mutant allele tfa2 and previously
characterized tsd2 mutant display short hypocotyls and cell adhesion defects,
and significantly reduced seed mucilage extrusion after hydration. Biochemical
and immunolabeling analysis revealed the decreased uronic acid content and
lower degree of methylesterification in mucilage of QUA2 mutants. We also
detected the decreased cellulose content and collapsed cellulosic rays in tfa2
and tsd2 seeds. In the epidermal cells of tfa? and tsd2 seed coat,
volcano-shaped columellae are deformed, displaying wider columella area and
thinner radial cell wall. Additionally, mutant seeds show reduced germination
rate after polyethylene glycol treatment. Together, these data demonstrate the
function of pectic HG biosynthesis mediated by QUAZ2 in the formation of seed
coat mucilage, and provide new evidence of how pectin HG together with
cellulose regulates seed mucilage formation and, consequently, seed

germination under detrimental conditions.
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Figure Legends

Fig. 1. tfa2 seedlings have shorter hypocotyls and cell adhesion defects together with tsd2
and quaZ2 mutants. (A) Schematic gene structure of QUASIMODOZ2 (exons shown as solid
boxes, introns as gray lines, 5 and 3' regions as gray boxes) with three different point
mutations. tsd2 and quaZ2 are presented by Krupkova et al., 2007 and Mouille et al., 2007,
respectively. tfa2 contains a point mutation in the third exon of QUAZ2 gene, which results
in premature termination. (B) Six-day-old etiolated seedlings of Col, tfa2, tsd2, and quaz
grown in the dark. Scale bar, 1 cm. (C) Hypocotyl length of Col, tfa2, tsd2, and qua2
seedlings grown in dark for 6 days (n = 20 seedlings per genotype), at least three
replicates were performed. Bars represent SD, and asterisks indicate significant
differences (**P < 0.001, ttest). (D) tfa2, tsd2, and qua2 mutant alleles display different
levels of cell adhesion defects. Scale bar, 200 pm.

Fig. 2. tfa2 and tsd2 mutants have altered water absorption capability. (A, B) One
hundred milligrams dry seeds of Col, tfa2, tsd2, and qua2 mutants before (A) and after (B)
soaking in 1 mL water overnight at room temperature. Scale bar, 1 cm. (C) Heights of
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seeds in each tube after soaking in water (n = 3 tubes per genotype). (D) Sizes of dry
seeds from Col, {fa2, tsd2, and qua2 mutants (n = 80 seeds per genotype). Bars represent
SD, and asterisk indicates significant difference (**P < 0.001, ttest).

Fig. 3. QUAZ mutants display aberrant seed coat mucilage. (A) Seeds of Col, tfa2, tsd2,
and quaZ2 mutants were hydrated in water and stained with ruthenium red (RR) for 45 min
and visualized by stereomicroscope. Scale bar, 100 um. (B) Quantification of RR-stained
mucilage area in seeds (n = 100 seeds per genotype). (C) Measurement of adherent
mucilage weight from seeds of Col, tfa2, tsd2, and qua2 mutants (n = 3 technical
replicates per genotype). Bars represent SD, and asterisks indicate significant differences
(*™P < 0.001, ttest).

Fig. 4. Biochemical determination and immunolabeling of pectin methylesterification in
whole seeds and mucilage from wild-type and mutants. (A) Total uronic acid content in
extracted mucilage from Col and mutant seeds. (B) Methanol content in extracted
mucilage from Col and mutants seeds. (C) Degree of pectin methylesterification of
extracted mucilage from Col and mutant seeds calculated as the ratio of methanol to
uronic acid (n = 5 technical replicates per genotype). (D) Immunolabeling of intact seeds
with JIM5 and JIM7, which are antibodies that recognize low-methylesterified and
high-methylesterifed HG, respectively. Scale bar, 100 um. (E, F) Arbitrary fluorescent
intensity of immunolabeling images for JIM5 and JIM7 antibodies (n = 8). Bars represent
SD, and asterisks indicate significant differences (*P < 0.05, **P < 0.001, t-test).

Fig. 5. Cellulose deposition is defective in QUA2 mutant alleles. (A) Crystalline cellulose
content was decreased in mutant seeds compared with Col controls (n = 5 technical
replicates per genotype). (B) S4B and Calcoflour White staining of cellulose in mucilage
capsules of seeds hydrated in water. Scale bar, 100 um. (C, D) Arbitrary fluorescence
intensities of cellulosic rays from S4B staining (C) and Calcoflour White (D) staining
images, respectively (n = 10 seeds per genotype). Bars represent SD, and asterisks
indicate significant differences (*P < 0.05, **P < 0.001, t-test).

Fig. 6. Columella imaging of dry mature seeds of wild-type and mutants. (A, B) The
surface morphology of dry tfa2 and tsd2 seeds show more flat volcano-shaped columellae
that differ from Col controls. (C) Zoomed images from (B) show the center of single
volcano-shaped columella in wild-type and mutant seeds. (D, E) Quantification of
columella area and radial cell wall thickness from the images in (C) (n = 124 cells per
genotype). (F) Images of mature seeds showing volcano-shaped columella cells in
confocal microscope. (G) Zoomed images from (F). Scale bar, 100 ym in (A, F, G), 50 um
in (B), and 25 pm in (C). Bars represent SD, and asterisks indicate significant differences
(**P < 0.001, ttest).

Fig. 7. Seed germination rate of QUAZ2 mutants is decreased with the treatment of
polyethylene glycol (PEG). Water (control) or 10% PEG (PEG) was used to treat Col and
mutant seeds (n = 100 seeds from three biological replicates). Seed germination rate was
scored every 12 h. HAS, hours after sowing. Asterisks indicate significant differences (*P
< 0.05, ttest).
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Fig. 1. tfa2 seedlings have shorter hypocotyls and cell adhesion defects together with tsd2
and qua2 mutants. (A) Schematic gene structure of QUASIMODO?2 (exons shown as solid
boxes, introns as gray lines, 5" and 3' regions as gray boxes) with three different point
mutations. tsd2 and qua2 are presented by Krupkova et al., 2007 and Mouille et al., 2007,
respectively. tfa2 contains a point mutation in the third exon of QUA2 gene, which results in
premature termination. (B) Six-day-old etiolated seedlings of Col, tfa2, tsd2, and qua2
grown in the dark. Scale bar, 1 cm. (C) Hypocotyl length of Col, tfa2, tsd2, and qua2
seedlings grown in dark for 6 days (n = 20 seedlings per genotype), at least three replicates
were performed. Bars represent SD, and asterisks indicate significant differences (**P <
0.001, t-test). (D) tfa2, tsd2, and qua2 mutant alleles display different levels of cell adhesion
defects. Scale bar, 200 ym.
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and qua2 mutants were hydrated in water and stained with ruthenium red (RR) for 45 min
and visualized by stereomicroscope. Scale bar, 100 ym. (B) Quantification of RR-stained
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mucilage weight from seeds of Col, tfa2, tsd2, and qua2 mutants (n = 3 technical
replicates per genotype). Bars represent SD, and asterisks indicate significant differences
(**P < 0.001, t-test).
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Fig. 4. Biochemical determination and immunolabeling of pectin methylesterification in whole
seeds and mucilage from wild-type and mutants. (A) Total uronic acid content in extracted
mucilage from Col and mutant seeds. (B) Methanol content in extracted mucilage from Col
and mutants seeds. (C) Degree of pectin methylesterification of extracted mucilage from Col
and mutant seeds calculated as the ratio of methanol to uronic acid (n = 5 technical replicates
per genotype). (D) Immunolabeling of intact seeds with JIM5 and JIM7, which are antibodies
that recognize low-methylesterified and high-methylesterifed HG, respectively. Scale bar, 100
um. (E, F) Arbitrary fluorescent intensity of immunolabeling images for JIM5 and JIM7
antibodies (n = 8). Bars represent SD, and asterisks indicate significant differences (*P < 0.05,
**P < 0.001, t-test).
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Fig. 5. Cellulose deposition is defective in QUA2 mutant alleles. (A) Crystalline cellulose
content was decreased in mutant seeds compared with Col controls (n = 5 technical
replicates per genotype). (B) S4B and Calcoflour White staining of cellulose in mucilage
capsules of seeds hydrated in water. Scale bar, 100 um. (C, D) Arbitrary fluorescence
intensities of cellulosic rays from S4B staining (C) and Calcoflour White (D) staining
images, respectively (n = 10 seeds per genotype). Bars represent SD, and asterisks
indicate significant differences (*P < 0.05, **P < 0.001, t-test).
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Fig. 6. Columella imaging of dry mature seeds of wild-type and mutants. (A, B) The surface
morphology of dry tfa2 and tsd2 seeds show more flat volcano-shaped columellae that differ
from Col controls. (C) Zoomed images from (B) show the center of single volcano-shaped
columella in wild-type and mutant seeds. (D, E) Quantification of columella area and radial cell
wall thickness from the images in (C) (n = 124 cells per genotype). (F) Images of mature seeds
showing volcano-shaped columella cells in confocal microscope. (G) Zoomed images from (F).
Scale bar, 100 ym in (A, F, G), 50 ym in (B), and 25 ym in (C). Bars represent SD, and
asterisks indicate significant differences (**P < 0.001, t-test).
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Fig. 7. Seed germination rate of QUA2 mutants is decreased with the treatment of
polyethylene glycol (PEG). Water (control) or 10% PEG (PEG) was used to treat Col and
mutant seeds (n = 100 seeds from three biological replicates). Seed germination rate was
scored every 12 h. HAS, hours after sowing. Asterisks indicate significant differences (*P <
0.05, t-test).





