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Abstract

Precision machining tool wear is responsible for low product throughput and
10 quality. Monitoring the tool wear online is vital to prevent degradation in
machining quality. However, direct real-time tool wear measurement is not
practical. This paper presents residual-based anomaly detection models, com-
bining a hybrid model comprised of a physics-based model and a data-driven
model (a decision tree or a neural network) to predict signals of interest (e.g.,
15 power or forces) under nominal conditions, followed by Page’s cumulative sum
test for detecting tool wear on-line using the computer numerical control ma-
chine measurements. The most informative features are ranked using dynamic
programming and its approximation variants from real-time measurements and
machine settings, such as the width of cut, depth of cut, feed rate and spin-
2 dle speed, that serve as inputs to the predictive models. The baseline nominal
model is incrementally updated with experimental data via a gradient boosted
adaptation model to generate the residuals that account for discrepancies be-
tween the actual machine data under normal conditions and the baseline nomi-
nal model predictions. The hybrid model is validated against 20 Mazak milling
»  machine experimental tests and one Haas run-to-failure experiment. The pro-
posed anomaly detector is applied to synthetic data from simulations of the
physics-based model at different operating conditions, measurement noise lev-
els, and tool wear levels, and the methods were able to achieve an overall 92%
accuracy in data with 1% noise. The anomaly detection methods based on hy-
s brid model reduced the false alarms of either the data-driven or physical-based
models alone, and are found to be capable of good online detection of tool wear.
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1. Introduction

1.1. Motivation

Computer Numerical Control (CNC) machining plays an important role in
modern digital manufacturing. CNC machining is used for shaping metals or
other rigid materials, usually by cutting, boring, grinding, shearing, or other
forms of subtractive deformation [1]. Currently, milling is the second most
common method for machining custom parts to precise tolerances [2]. Face
milling, due to its ability to quickly cut and shape large objects or large surfaces,
is widely used to cut a flat surface, and can be performed using a wide range
of tools. The cutting tool in a milling machine is regularly subjected to high
stress and temperature gradients near its surface due to metal-to-metal contact
with the workpiece. Tool wear is a gradual process due to regular machining
operations, and can be of different types: abrasion, adhesion, diffusion, chemical
wear and fatigue. Forms of tool wear include flank and crater wear, thermal
cracking and tool fracture, thermal and mechanical load wear, edge chipping
and entry or exit failures. The average width of the flank wear land is the most
common variable used to evaluate the tool wear status. Blunt tools impact the
product quality and machining efficiency [3]. For example, unwanted vibrations
of blunt tools lead to poor quality in surface finish and inaccurate dimensions [4].
In a modern manufacturing industry, nearly 79.6% of the downtime of a machine
tool is caused by these mechanical failures [5]. Consequently, incipient detection
of tool wear in milling machines is salient for minimizing the cost of scrap and for
reducing down-time [6]. Modern milling machines are able to measure operating
signals, such as machine power, cutting force, feed rate, spindle speed, width and
depth of cut [3], which are used to characterize the state of the tool and for early
detection of anomalies in machine’s state of operation [4]. Among the sensors
mentioned above, the power sensor is cheap, non-intrusive, and is convenient to
acquire [7][8][9]. Fusion of these data with domain expert knowledge is, however,
at its infancy in the manufacturing industry and is the focus of this work.

1.2. Previous Work

There are two distinct approaches to monitor a milling machine tool condi-
tion: Direct and Indirect. Direct approaches measure the geometric parameters
of the cutting tool or the work piece, while the Indirect approaches monitor
and translate more commonly available machine sensor signals into a tool wear
status estimate [10]. Few image-based direct online tool condition monitoring
(TCM) methods that involve measuring the flank wear and machined parts have
been investigated [11]. T. Pfeifer et al. [12][13] presented a CCD-array camera
and a vision system to monitor the tool flank wear from the processed image.
Wang et al. [14] used a neural network, together with a computer vision sys-
tem, to estimate flank wear. Specifically, a morphological component analysis
(MCA)-based tool wear monitoring system was proposed to deal with noise,
blurred boundary, and misalignment of captured images [15]. A novel shape-
based descriptor B-ORCHIZ was introduced [16] and a support vector machine
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(SVM) was used to discriminate among two (low-high) and three (low-medium-
high) different tool wear levels. However, it is usually hard to measure the
geometric parameters instantaneously and the inconsistency due to variation in
illumination, translation and rotation of the captured images prevent the direct
methods from being implemented in the industry [4].

Indirect monitoring approaches estimate tool wear based on sensed mea-
surements, such as the power consumed, cutting forces in the z-y-z directions,
vibrations, acoustic emissions, spindle motor and feed currents [1][4][16]. Liu et
al. [17] evaluated the impact of different levels of cutting tool wear on energy
consumption and built a predictive model to describe the relationship between
the machine’s energy consumption and the process and environmental variables.
Spindle power data analyzed and evaluated by an artificial intelligence system
to monitor the tool wear in real time [9]. Cutting forces are reliable indicators
for online tool condition monitoring and were used in [11], where the cutting
force signatures in both time and frequency domain were extracted and changes
in the variance and the first harmonic component of the cutting forces were
related to the flank wear. Nouri et al. [4] introduced a real-time monitoring
method to detect the milling tool wear by tracking the coefficients of a model
of the cutting force and demonstrated its effectiveness on multiple tool wear ex-
periments using different cutting conditions and materials. Bustillo et al. [18]
presented Random Forest ensembles combined with a Synthetic Minority Over-
sampling Technique for the prediction of the flatness deviation caused by the
tool wear in face milling. Zhou et al. [19] proposed a two-layer network for tool
condition monitoring using acoustic sensor signals. The method used two-layer
angle kernel functions without hyperparameters and avoided the complications
in conventional kernel functions.

Multi-sensor fusion improves tool condition monitoring over a single sensor
approach. Ghosh et al. [20] fused features extracted from cutting forces, spin-
dle vibration, spindle current, and sound pressure level to estimate the average
flank wear using a neural network. A multi-sensor tool wear prediction system
utilizing a third order regression model was investigated [10]. Acceleration and
electrical current signals were fused for tool wear prediction. Han et al. [21]
fused the audio and vibration signals to monitor the machine state using three
methods, including K-nearest neighbor, convolutional neural networks and sup-
port vector machines. Nowadays, embedded sensors are used to monitor tool
wear in CNC milling machines. An artificial neural network (ANN) was trained
with data from a built-in vibration sensor to classify the tool wear state [3].
Palanisamy et al. [22] presented regression and ANN models to predict the tool
flank wear in milling machines and Six Sigma software was used to determine
the input features for experimentation. It was claimed that the ANN model
was much more robust and accurate in estimating tool wear when compared to
traditional multivariate regression (MVR) models. Convolutional Neural Net-
works (CNN) and Long Short-Term Memory (LSTM) are the most popular deep
learning models for tool wear prediction. Huang et al. [23] presented a deep
convolutional neural network (DCNN)-based tool wear prediction method by
fusing multi-domain features, which was shown to improve prediction accuracy.
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Cai et al. [24] presented a hybrid information system, which utilized a stacked
long short-term memory network (LSTM) for tool wear prediction.

Most of the existing methods are based on the stationarity assumption (i.e.,
constant speed and load) and, as such, are only suitable for fault detection
under constant operating conditions [25]. In production machining processes,
however, the working conditions are affected by many factors, including dis-
similar cutting tools, diverse work pieces, varying cutting parameters, different
machining loads, time varying speeds, to name a few [26]. This variability re-
sults in non-stationary signals, requiring context-dependent models. Bustillo et
al. [27] studied the modelling of machining repetitions using regression trees,
kNN, artificial neural networks, bagging and Random Forests. This work pre-
dicted tool-life in face-turning operations under different machining conditions
and showed that the use of raw experimental data gave higher accuracy when
compared to their averaged values. Pimenov et al. [28] presented a study to pre-
dict the surface roughness using main drive power and monitoring the wear on
face milling teeth online. Meta-learning [29] and transfer learning [30] methods
became popular in solving the tool condition monitoring problem by demon-
strating their ability to learn the hidden rules behind a variety of experiments
with small samples. A tool wear prediction method based on meta learning was
proposed by Li et al. [31], which adapted to new machining tasks of different
cutting conditions and predicted the tool wear status with enhanced accuracy.
A transfer learning approach, combined with Convolutional Neural Networks,
was proposed by Mohamed et al. [30] to predict the health state of cutting
tools.

It should be noted that the physics-based models are subject to modeling
uncertainty, while the data-driven prediction models are affected by measure-
ment noise. To improve the diagnostic and prognostic accuracy, hybrid tech-
niques, which fuse data-driven and physics-based models, were presented in
recent works. Hanachi et al. [32] combined particle filters and a numerical in-
ference model, and reduced the tool wear prediction errors by almost half. To
predict the tool wear, a physics-guided neural network model was presented by
Wang et al. [33], and eliminated the inconsistency in conventional data-driven
models. Compared to the data-driven or physics-based approaches in isola-
tion, a hybrid model-based fusion framework is a relatively unexplored area in
machining process monitoring. The framework presented here augments the
physics-based model predictions with an incremental data-driven model pre-
dictions, and thereby demonstrates a significant improvement in spindle power
estimation and a consequent reduction in false alarms.

1.3. Contributions and Organization of the Paper

This paper presents a hybrid monitoring methodology, combining data-
driven and model-informed methods, using power consumption and cutting force
as sensed variables (we focus on power consumption for illustrative purposes in
the paper). The methodology presented can be applied to different modes of
operation and cutting conditions. The objective is to determine the level of the
geometrically averaged flank tool wear based on the spindle power or force signal



225

230

235

240

Synthetic data

Physics-based Model

0]
Synthetic healthy data l 1) Data-driven nominal model

Data-driven model for (2] |
discrepancies

|@o
Experimental Data Hybrid model
| @0

Simulate data with tool
wear using hybrid model

Simulated data l 00

(3]4)

Anomaly Detection 0

|@e

Verification on 00
experimental data

Figure 1: Potential implementations of the hybrid model

residuals. Monitoring of the tool condition is accomplished by using a digital
twin of machining process in the form of a hybrid model that predicts power and
force measurements. Although extensive research efforts have been made on an-
alytical expressions of the milling process, complete and accurate physics-based
models that capture all aspects of milling operations do not exist. The main
difficulty is that there are too many uncontrollable or immeasurable internal and
external variables that would have to be monitored and considered. Moreover,
process parameters and workpiece and cutting tool condition vary with time.
On the other hand, purely data-driven models miss key physics and do not cap-
ture what is known and well-understood about the physics of milling. A hybrid
model promises to merge the powers of these modeling approaches and is the
key focus of this work. The hybrid model, proposed here, can be potentially im-
plemented in the four ways shown in Fig. 1. We will present the first and second
approaches of the following in this paper: Hybrid Physics-based and Incremen-
tal Data-driven Model Validated on Healthy Data; Combined Data-driven and
Incremental Data-driven Model Validated on Healthy Data.

The rest of this paper is organized as follows: Section 2 describes the Physics-
based model used to generate the synthetic nominal data; it briefly presents the
key equations of the analytical model. In Section 3, our modeling and anomaly
detection process are outlined and details of the proposed residual-based method
for incipient anomaly detection are briefly introduced. In Section 4, the per-
formance of the residual-based anomaly detector is evaluated using simulation
and experimental data. Finally, conclusions and future research directions are
presented in Section 5.
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2. Physics-based Model

In this section, we briefly present the analytical model for the prediction of
power and force in milling as a function of inputs (spindle speed, feed rate, width
of cut and depth of cut) and machine parameters (number of teeth, diameter of
cutter, offset distance between workpiece and tool, workpiece dimensions, etc.).
More details on this semi-empirical model, along with an extensive validation
against actual machining data, can be found in [34].

The face milling model is derived from the original equations presented in
[35]. The model calculates the power consumption and directional force com-
ponents. Milling depends on the radial immersion of the tool in the workpiece,
i.e., the overlap between tool and workpiece, and on the diameter of the tool,
D, and the width of cut, a.. The tool rotation angle, ¢, varies from 0° to 360°,
depending on the tooth pitch ® (= 360/N;, where N, is the total number of
teeth in the tool) and the immersion of the tool. The type of milling considered
for data generation is Up milling. The entry or start angle, ¢s = 0° and the
exit angle ¢, = cos™!((r — ae)/r) depend on the tool immersion.

The net cutting force can be approximated as the product of chip area, A,
and the specific force, K, applied, as shown in (1):

F =K,A=K,a,h (1)

where h is the instantaneous chip thickness and is calculated as h = f; sin(¢),
and a,, is the depth of cut. The feed rate per tooth, f;, can be computed by
the feed rate, f, spindle speed, v,, and number of teeth, Ny, as f; = f(vsN;) L.
In orthogonal cutting, the tool is perpendicular to the direction of motion and
hence the cutting force is divided into the normal force component, F,, and the
tangential force component, Fy, as shown in (2) and (3):

F, = Fcos(¢.) = Ksaphcos(¢.) = Kyaph (2)

F; = Fsin(¢.) = Ksaphsin (¢.) = Kiaph (3)

where ¢, is the angle between the net cutting force, F', and the normal force
component Fi,.

In face milling, because of the forces involved in cutting, the tool gets worn
out. This wear can result in the breaking of the tool or improper surface finish
of the work piece; hence, tool wear can be considered a fault. To capture the
effect of tool wear in the model, the force coefficient, K,,, is computed using the
empirical correlation shown in (4), as proposed by [36]:

K, =c1[1+ co(W —0.1)]h~ N/ (4)
where ¢, ¢z, c3, ¢4 are regression coefficients, N; is the number of teeth, h
is the mean chip thickness and W is the tool wear. Similarly, the tangential
force component coefficient, K;, is computed using the empirical correlation as
proposed by [37], shown in (5) :

InK; = c5 + cgInh + c7In v, + cgsin (¢,.) (5)
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where c5, cg, ¢7 and cg are regression coefficients, v, is the cutting speed, and
¢, is the rake angle, which is the angle the cutting surface of the tool makes
with the perpendicular to the cutting edge. The tangential force equation (3),
is also updated to capture the effect of tool wear [37], as shown in (6):

F, = K;A+ pHWa, (6)

where H is the material hardness. The mean chip thickness, h, can be calculated
by integrating the instantaneous chip thickness over the immersion of tool in
the workpiece [34].

In the case of a tool with multiple teeth, depending on tool immersion and
tooth pitch, multiple teeth can perform cutting simultaneously. If the rotation
angle of the first tooth is ¢, then the angle of every subsequent tooth j, is
¢; = ¢+ j®, for all 2 < j < N;. The normal cutting force and tangential
cutting force are calculated when the cutting angle ¢; of each tooth lies between
the start angle, ¢, and exit angle, ¢, and is zero otherwise. The conditional
equations in (7) calculate the normal force and the tangential force for each
tooth j :

Fn,j - Knapft Sin(¢j) ¢s < ¢j S ¢e
Fyj = Kapfesin(¢;) + pHWa,  ¢s < ¢j < de (7)
I ;=0,F,; =0; otherwise

A dynamometer can measure the forces in the x and y directions; hence, the
tangential and normal cutting forces are expressed in a fixed frame of reference.
The directional force components in this frame of reference are obtained by
summing the projection of tangential and normal cutting forces over every single
tooth cutting at an instant. Equations (8) and (9) below show the cutting forces
in the z and y directions:

N,

Fp =Y F,jcos(¢;) + Fnjsin(g)) (8)
j=1
N,

Fy =Y Fyjsin(¢;) — Fnjcos (¢;) 9)
j=1

The mean cutting power can be calculated by adding the idle running power or

power consumed in air cutting, p;, to the product of torque, M, and rotational

spindle speed, vs:

2nMv, — _
60 + Di

where the torque, M, is calculated as the product of tangential force and the

radius of the cutter, D/2, as shown in (11):

P = (10)

Ny

M= (D/2)F, (11)

Jj=1
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Table 1: System inputs, outputs and parameters

Inputs
Vs Spindle speed (RPM)
f Feed rate (mm/min)
[ Width of cut (mm)
ap Depth of cut (mm)
Outputs
P Mean cutting power (kWatt)
Fy x - direction force component (N)
F, y - direction force component (N)
Parameters
N¢ Number of teeth
D Diameter of milling cutter (mm)
D; Idle-running power of a spindle motor (kWatt)
I Friction coefficient
H Material hardness (HRC)
c1 - c8 Regression coefficients
Faults
w Tool wear (mm)

For the cutting to take place, the spindle must provide sufficient torque against
the tangential cutting force. Similar to the force components, the torque is
summed over the number of teeth engaged in the cut based on the cutting
angle, ¢;. The inputs, outputs, parameters and faults (in the form of model
parameters) of the physics-based model of precision machining are summarized
in Table 1. This physics based model was validated against experimental data of
power consumption and used parameter estimation to determine the regression
coefficients in (4) and (5), [34].

3. Methodology

The proposed framework for anomaly detection enables us to answer two
salient architectural questions: (a) what is the optimal ranking of input fea-
tures in terms of their ability to distinguish between healthy and faulty tools?
(b) what is the minimal tool wear that is detectable by the anomaly detec-
tion method at different sensor noise levels? Our tool wear monitoring method
associated with tool wear detection is as follows:

e Synthetic data generation: Devise a database for the variability and
operating envelope of the system of interest. Specifically, define the in-
put space (discrete or continuous), the known or anticipated variance of
system (or model) parameters and boundaries, and the noise in system
outputs. Use the physics-based model to simulate the power consumption
and cutting force for various combinations of feed rate, depth of cut, width
of cut and cutting speed that cover the input space. After injecting sensor
noise into the resulting data, we form the synthetic database of healthy
machine outputs.
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Inputs

Train nominal machine model: Using the synthetic data, train a de-
cision tree (DT) or a neural network (NN) model to predict the power
consumption and cutting force. If the physics-based nominal model is
computationally feasible to simulate in real-time (as is the case here), it
can be used to predict the healthy data as well.

Incremental model update to match the healthy experimental
data: Generate experimental data under healthy conditions covering the
operating envelope. Train an incremental data-driven DT or NN model
to account for discrepancies between the experimental data and model
predictions (physics-based or data-driven model of the previous step).

Generate tool wear data: Generate a new synthetic database using
the hybrid model (physics-based + incremental data-driven model) that
captures how tool wear propagates through the machining system to be
evidenced in outputs.

Feature ranking: Use the Kullback-Leibler divergence measure between
the healthy and faulty residuals of the aforementioned database or feature
subsets in a dynamic programming algorithm or its approximate variants
to rank order the features for anomaly detection.

Anomaly detection: Use the cumulative Sum (CUSUM) test [38][39] on
residuals of the synthetic database to detect the tool wear degradation.

Performance evaluation and model selection for deployment:
Evaluate the performance of CUSUM test under various tool wear condi-
tions to quantify the minimal detectable tool wear. Select the best pre-
diction model (physics-based nominal model + incremental data-driven
model or nominal data-driven model + incremental data-driven model)
by comparing their anomaly detection performance in terms of missed
detections and false alarms.

Experimental measurements P

Tool conditions

aterial, di
Teeth

M; iameter, 5 Prediction 5 _ 5 ;.
Synthetic P°‘;’er Train b P =Pt ra (PSS Database [IENOH Anomaly detection

Cutting Condition data nominal 1 .@ » > and performance
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Ta = Pg — Py, model update

Machine setting, ug

Figure 2: The proposed framework for anomaly detection.

8.1. Synthetic data generation

Monte Carlo (MC) simulation was used to generate the nominal and anoma-

lous synthetic data. The efficiency of MC simulation stems from its use of a large

10
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number of pseudo-random numbers to simulate a complex system with uncer-
tain input variables chosen from user-defined probability distributions [40][41].
Thus, to conduct a Monte Carlo simulation, one needs a model of the system
and user-selected probability distributions for the model inputs.

Using the theoretical milling force model described in Section 2, combined
with an incremental data-driven model to account for discrepancies between the
nominal physics-based model predictions and the nominal (healthy) experimen-
tal data (see below), distributions of the spindle power and forces in the x and
y directions were calculated for the cutting conditions listed in Table 2. For the
MC simulation, different geometric parameters and process parameters, such as
the cutting speed, v,, feed rate, f, width of cut, a. and depth of cut, a,, on
the power and force signals were propagated thorough the model of Section 2
and the incremental data-driven model to calculate their impact on power and
forces.

Table 2: Machining conditions studied

Depth of cut (mm) ap ~ U(0.01,10)
Feed rate (mm/rev) f ~ U(200,800)
Spindle speed (rpm) vs ~ U(1000,2000)
Width of cut (mm) ae ~ U(5,63.6)
Offset distance (mm) =0
Tool wear (mm) W =10,0.01,0.02,0.03, ...,0.1]

One thousand Monte Carlo simulations were run at each of the 11 different
levels of tool wear of Table 2. For the healthy condition, tool wear is zero;
for the faulty conditions, tool wear was set from 0.01 mm to 0.1 mm, for a
total of 10 distinct tool wear values. Each simulation was run for a machining
operation of 100 seconds and 500 samples of power consumption (P) and forces
in x (Fy), y (F,) directions were collected (sampling interval 0.2 sec). Thus, we
collected a total of 550,000 data points over all simulation runs: 100 (runs) x
500 (number of samples of the signal) x 11 (values of tool wear) W. A sample
time sequence from a single Monte Carlo run of the model is shown in Fig. 3a.

Anomaly detection methods are often sensitive to sensor noise. The impact
of sensor noise on the method proposed here was studied with a zero mean
Gaussian noise with a standard deviation of 0.1% to 3% of the magnitude of
the signals injected into the synthetic data generated with the model. A sample
of the impact of noise on the power measurement for the same simulation of
Fig. 3a of tool wear W = Omm shown in Fig. 3b. Here we have illustrated the
impact of 0.1%, 1% and 3% noise also to show their effects on the power signal.

3.2. Train the nominal machine model

In the proposed anomaly detection algorithm, a model built from nominal
data is used to predict the outputs of the fault-free milling processes. A model
with lower prediction error is preferred. Here, we employ decision trees and

11
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neural networks to predict the spindle power or the discrepancy between the
experimentally measured spindle power and the nominal model predictions from
the physics-based or the data-driven model based on depth of cut, width of cut,
feed rate, and cutting speed as input features. The residuals of spindle power,
which are the deviation of the predictions from the actual measurements, are
generated and are used as indicators for anomaly detection.

3.2.1. Decision Tree-based Regression Model

DTs are non-parametric supervised learning methods, and are commonly
used in operations research, specifically in decision analysis, to help identify a
strategy most likely to achieve a goal, but are also popular in machine learning.
Decision trees have advantages over other regression models, because they can
handle large datasets and are invariant to scaling of data. They are intuitive
and are able to handle missing variables through surrogate splits. They also
do not require data pre-processing to remove redundant variables, and result in
explainable models [42].

Suppose that we have a scalar output (also termed dependent or response)
variable Y, and a p-vector of explanatory (also termed independent or feature
or parameter) variables, X. Assume Y € A. The regression tree partitions A
into disjoint regions Aj and provides a fitted value, usually the mean value,
E(Y | X € Aj) within each feature region Ay indexed by node k. To determine
how to split region Ay, the weighted mean squared error (MSE) of the responses
in region Ay, is calculated using (12):

en =Y wily; — o)’ (12)

jeK

where w; is the weight of observation j, and K is the set of all observation
indices in region Aj. Here, the default w; = 1/n is used, where n is the sample

12
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size at the root node. The probability that an observation is in region Ay is

P(A) =Y (13)
JjEK

Model complexity and accuracy, which are competing characteristics of the
DT model, need to be simultaneously considered as stopping rules [43]. Since
continuous attributes have noise, the model could fit the noise in addition to
the structure in the model. A complex model would cause over-fitting and is
less reliable when predicting testing data. One can prevent over-fitting by: (i)
stopping early (e.g., by constraining the leaf nodes to have a minimum number
of records or by restricting the depth of any leaf node from the root node); (ii)
pruning back the full tree to an appropriate size using cost-complexity pruning
or error-based pruning [44]; or (iii) using ensemble trees to reduce variability
in predictions. The latter include bagging, random forests, gradient boosting
and adaptive boosting [45][46]. Although decision trees have high accuracy in
prediction, there are some limitations in the functions they are able to approx-
imate due to the simple models used in their leaves. Nevertheless, they provide
explainable models that have low computational complexity in terms of running

time and storage [47].

3.2.2. Neural Network Models

To investigate the effect of different regression models on the anomaly de-
tection accuracy, a multi-layer perceptron (MLP) model is developed. MLP is
a feed-forward network with an input layer, one or more hidden layers and a
fully connected output layer. MLPs can ideally approximate any function with
desired accuracy, given enough hidden neurons and data [48]. Due to their abil-
ity to learn complex functional relationships among multiple variables, neural
networks have performed well in applications without prior knowledge on the
relationship between inputs and outputs [49].

The network includes a large number of interconnected neurons. Each neu-
ron receives one or more inputs and predicts an output signal through the map-
ping function. The mapping function g is unknown, but is approximated by a
MLP. In layer j, the input vector z; is an output of the previous layer (j — 1),
and is multiplied by a weighted vector w;;. Then the output z; of neuron ¢ of
layer j is given by an activation function ¥ as in (14):

j=1

The weight parameters w;; are optimized to minimize the mean square error
between the observed output and model predictions via a stochastic gradient
descent method or their accelerated versions [50][51][52]. The gradient is com-
puted via the back propagation method [52]. The number of hidden layers ap-
plied is determined by estimating the generalization error of each network. For
the current application to power consumption and force signals of the precision
machining process, it was found that one hidden layer is adequate.
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3.3. Incremental model update to match healthy experimental data

8.8.1. Healthy experimental data

The physics-based model was tuned and validated on a series of face milling
tests conducted using a Mazak Variaxis 630-5X II T 5-axis legacy CNC machine
in dry milling, with the tool properties shown in Table 3. Flat plate stocks
(254 x 254 x 38.1 mm?) of AISI 4340 material with hardness HRC20 and a five-
teeth cutting tool from KENNAMETAL were used. To eliminate z-direction
forces, 90° insert angle was used. The Mazak has an inbuilt controller to control
the milling or turning operation and acquires in-process data for machine power,
spindle power, spindle vibration. Extra sensors, such as a Dynamometer and
infrared sensor, are added to measure the force and the temperature. The
experimental database was collected for different machine settings, including
repeatability tests. This resulted in 20 data sets of single-pass linear cuts (see
Table 4). Machine data were acquired at a sampling frequency of 50 Hz. All
the 20 experimental tests were recorded with a healthy tool. More information
about the machining tests and test process design can be found in [34].

Table 3: Tool properties for Mazak experimental tests.

Diameter  63.5 mm
Cutting Tool Number of teeth 5
Insert angle  90°
Max. cutting power 40 hp
Max. spindle speed 8000 RPM
Composition  0.4% C, 0.8% Cr, 0.25% Mo and 1.8% Ni
Material AISI 4340 Hardness 20 HRC
Dimensions 254 x 254 x 38.1 mm3

Table 4: Settings of machining experiments with a healthy tool

No Cutting speed | Feed rate f | Depth of cut | Width of cut
’ vs (RPM) (mm/min) ap (mm) ae(mm)
1-6 1299 647.7 1.5875 31.75
7-12 1299 647.7 2.54 31.75
13 2000 200 2.54 34.3
14 1500 800 2.54 5
15 1500 200 2.54 63.5
16 1000 500 2.54 5
17 1000 500 2.54 63.5
18 1500 500 2.54 34.3
19 2000 800 2.54 34.3
20 1500 200 2.54 5

The experimental data was used to train an incremental data-driven model
that augments the predictions of an existing data-driven model or to augment
the predictions of a physics-based model. Fig. 4 shows a sample of the Mazak
spindle power, its prediction by the physics-based model and the hybrid model
(physics-based model + incremental data-driven model). Overall, the spindle
power agreement between models and machine data was very good.
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Figure 4: Sample spindle power measurement from the Mazak machine and physics-based
and hybrid model predictions; Run #1: a, = 1.5875 mm, a. = 31.75 mm, vs =1299 RPM,
f = 647.7 mm/min.

3.8.2. Incremental model update

Due to errors and simplifications in the physics-based model of the machine
dynamics and process noise, the physics-based model does not describe the
cutting behavior well. Our approach is to adapt these models by adding a data-
driven model component to account for the errors between model predictions
and the actual experimental data. Fig. 5 shows the general structure of the
hybrid model development.

Machine settings, ug Pg
and measurements Pg uE
Physics-| based ordata- | p Residual Incremental data- ﬁM N N
driven nominal ro=p.—p driven model of z P =Py, + Py,
machine model M; a EoTM residuals M,

Py

1

Figure 5: Architecture of the hybrid anomaly detector

The hybrid approach includes three stages: 1) Utilize the physics-based or
data-driven model M; to predict spindle power PMI and calculate the residual
rq between the experimental data and predictions from model Mj; 2) Randomly
select 80% of the experimental data (16 tests out of the 20 from Table 4) to
build model M5 of the residuals r4 between M; and the healthy experimental
data, and test the model predictions on the remaining 20% of the experimental
data (remaining 4 tests); 3) Combine the physics-based model (or data-driven
model) predictions and the incremental data-driven model predictions to obtain
the hybrid model prediction P.
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3.4. Feature Ranking using Dynamic programming (DP)
3.4.1. Dynamic programming (DP)

Many machine learning algorithms can be viewed as performing estimation
of the outputs given a set of input features. To avoid over-fitting the model and
reduce its complexity, a small set of truly relevant and measurable features is
needed. Feature ranking is performed to solve this sensor (feature) optimization
problem. In developing regression models, we considered the width of cut, a,
depth of cut, a,, feed rate, f, and spindle speed, v as the input features available
and spindle power P and cutting force F' as the output variables.

Dynamic programming (DP) [53][54] is used to select a ranked subset of k-
optimal (k < N) features from a given set of N features. The dynamic program-
ming method splits a global optimization problem into a series of sub-problems
in a recursive manner. The functional form of DP enables one to choose a
ranked subset of features of specified cardinality with maximum effectiveness
(e.g., minimum mean square error, MSE, between nominal data and nominal
model predictions or maximum Kullback—Leibler divergence, D, between the
healthy and faulty condition).

The Kullback-Leibler divergence of (15), D, (also called relative entropy)
is a measure of discrimination between two probability density functions: p(x)
(the distribution of residuals of physics-based, hybrid model, under the healthy
condition) and ¢(z) (the distribution of residuals under a faulty condition) on
space X [55]:

Dol )= 3 ple) log(22)) (15)

reEX q(x)

Larger Dy, values signify better discrimination between the two distributions
and, thus, separation of the evidence of the fault scenarios of interest. Here, we
use Dy, between the residuals of the healthy data with W = 0 mm and faulty
data W = 0.01 mm as the criterion for ranking features.

Suppose a set of N features F' = (fi, f2,..., fn) is available, and a subset
of k best features is needed among the entire set F'. The dynamic programming
considers the sub-problems of selecting i-best features, i = (1,2,...,k), and the
subset is named as X;. Let Jp,., (X;) be the performance criterion of subset X,
which is assumed to be a monotonic function of i. The forward DP recursion
for selecting the i-best features based on D between the healthy and faulty
condition proceeds for i = 1,2, ..., k with the initial subset as Xy = () proceeds
as follows:

JDKL(X;) = )I(n%}lg IDkr, (Xl)

N Tpger (Xic1 U (16)
Xgrfl?)e(F fe}rwr{%(}il: Drr(Xic1 U f)
Xi1Uf=X;
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The optimal feature subsets (X}) according to Dy, are given as:

X = Jp. (X,
i = arg max Dier (Xi) a7
fi* = Xz‘*\X;il

DP can also be implemented as a backward recursion for ¢ = N — 1, N —
2, ...,k with:

IDiy (Xz*) = )I(Ilfé)}g Ik (Xl)

Jhax, max s (Xig1\f)

Xi=Xip1\f
The task for DP here, is to rank the machining settings (features) in order of
significance for anomaly detection using spindle power or cutting force mea-
a0 surements. For this purpose, we chose the Kullback—Leibler divergence between
healthy and faulty system output signals.

8.4.2. Backward and Forward Feature Ranking as Approzimate Dynamic Pro-
gramming (ADP)

The dynamic programming as backward recursion has exponential computa-

a5 tional complexity O(2" —1). To reduce the complexity, “knock-out” strategies,
including “backward” and “forward” feature selection methods, are used as the
approximations of DP. These methods only consider 1+ Zf;l(z + 1) combina-
tions for the backward and Zle(N — i+ 1) for the forward method.

Forward selection starts with a (usually empty) set of variables and adds
variables to it, until the stopping criterion or the required number of the features
k is met [56][57]. At stage ¢ (i = 1,...,k), the forward strategy adds the best
feature f; which provides the largest Dy to the feature set of the previous
stage. The feature subset of ¢ optimal features, X, and the the most effective
feature, f*, are shown in (19) and (20), respectively:

X =X"_,Uff (19)
[i(Dkpr) = arg fierlf“l\ag((;,l J(X;1 U fi) (20)

Similarly, the backward method starts with a (usually complete) set of variables
and then excludes variables from that set, with the optimal features and the the
most effective feature f; as shown below:

X=X\ S (21)

fi (Dkp) = arg fgl)?il(‘](X:-i-l\fi) - J(Xi5)

ixe (22)
_argfren)%?frl ( i+1\fi)

17



480

485

490

495

500

505

The rank or importance of the features using the backward feature selection
would be {f{, f5, f4,..., fi}. In total, there are w subsets to evalu-

ate for the forward method 1 + w subsets for the backward. The
backward and forward feature selection strategy can be used as a heuristic in
rollout and Monte Carlo Tree Search-based approximate dynamic programming
algorithms to provide approximately-optimal feature subsets [58].

3.5. Cumulative Sum (CUSUM)-based Anomaly Detection

This section presents an online sequential anomaly detector, based on the
cumulative sum (CUSUM) test proposed by [59]. The CUSUM test is developed
to detect small shifts in the power and force signal residuals generated by the
machine models (hybrid in our case) in real time. Sequential change-point de-
tection plays a crucial role in detecting whether a process is still working under
normal operating conditions (usually termed in-control) or not (out-of-control).
Using the hybrid system model, we calculate the difference between the pre-
dicted outputs and the actual observations. The key hypothesis here is that any
deviations between the hybrid system model and the machine data are due to
an anticipated fault. The CUSUM test is one of the control charts that monitors
process variable means over time to quickly detect anomalies by calculating the
cumulative sum of the sequence predictions and reduces the risk of false alarms
[60][61].

Both positive and negative changes between the predicted outputs and the
observations are calculated in our case. For a time sequence data Z(t) (t =
1,2,3,...,n), the equations to calculate the high cumulative sum C7(¢) and
the low cumulative sum C'~(¢) at time ¢ are shown below:

WL-1

20) =5 S 2t-]) (23)

7=0
CT(t) = max(0,CT(t — 1)+ Z(t) — po — k) (24)
C™(t) =max(0,C~ (t — 1) — Z(t) + po — k) (25)

where Z(t) is the t'" sample mean, WL is the window length, Z(¢) is the t**
sample measured with a target pre-defined distribution Z ~ N(uo,00) under
the nominal condition, k is the allowable slack and usually set as k = &%, and
the tunable parameter § decides the amount of the shift in process mean that
one seeks to detect. The Upper Control Limit (UCL) and the Lower Control
Limit (LCL) are included to determine whether an anomaly has occurred or not.
When either C*(t) or C'~ () exceeds the pre-defined threshold h, the process is

said to be out-of-control.
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8.6. Performance Evaluation

The performance of residual-based CUSUM detectors is assessed on the syn-
thetic data set with different levels of tool wear in terms of classification ac-
curacy, missed detection rate (FNR) and the false positive rate (FPR). In
(26)-(28), TP is the number of true positives defined as positive instances clas-
sified correctly, F'P is the number of false positives defined as negative instances
misclassified as positive, TN is the number of negative instances correctly clas-
sified, and F'N is the number of positive instances misclassified as negatives
[62].

TP+TN

Accuracy:TP—l—FP—i—FN—i—TN (26)
FN
Missed Detection Rate: FNR = TPIEN (27)
FP
False Alarm Rate: FFPR = FPLTN (28)

4. Results and Discussion

In this section, the residual generation and anomaly detection processes de-
scribed earlier are applied to 1,000 (operating conditions)x 11 (tool wear levels)
simulation data runs generated by the proposed hybrid model and 20 experi-
mental milling processes run on a healthy tool. Width of cut a., depth of cut
ap, feed rate f, and spindle speed v; are used as the attributes of regression
models and spindle power and forces in the x and y directions are measured and
used to evaluate the tool wear.

4.1. Hybrid Model generated data

A case study is presented to demonstrate the precision improvement from
the hybrid approach of Section 3.3.2 by comparing its accuracy with that ob-
tained by the physics-based model alone. The performance of the physics-based
model on a subset of the experimental data (the testing set) is displayed in
Fig. 6, including the prediction results and the residual between the actual and
predicted values. It is evident that the physics-based model by itself does not
fit the transient part of the experimental data well.

After incrementally updating the model, based on residuals from the ex-
perimental data and the physics-based model, the hybrid model (physics-based
or data-driven model predictions + data-driven model predictions on the dis-
crepancies) yields lower MSE and fits the experimental data much better as
shown in Fig. 7. From the performance comparison, it is evident that the
proposed hybrid model outperforms the data-driven model alone described in
Section 3.2 and the physics-based model alone. The hybrid model achieves a
smaller deviation between the predicted value and the observed value, reflected
by the residuals and the values of mean square error (MSE). The mean value
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Figure 6: Physics-based model, M7, predictions and residuals for the experimental measure-
ments of spindle power of the testing set.

of the MSE, averaged over 1000 simulation runs, decreases from 0.04315 for the
physics-based model alone, and 0.0445 for the regression tree model alone, to
0.02405 and 0.0246 for the two hybrid models, respectively.

The performance of the hybrid Model 1 is slightly better than hybrid Model
2. The MSE is reduced by 2.2%, from 0.0246 (for hybrid model 2) to 0.02405
(for hybrid model 1). Based on the results of Table 5, we chose the hybrid model
1 for further implementation in the anomaly detection study.

4.2. Feature Ranking

The feature ranking step is crucial in order to find which features are the
most significant and reliable for anomaly detection. In practice, measuring all
features may be costly and thus feature selection is needed to select a subset
of relevant features for use in regression models. If the input vector is large,
training and validation steps could be computationally expensive. However,
normally increasing the number of parameters in a regression model reduces
the prediction error, e.g., MSE. This trade-off between model complexity and
performance is also a problem for models that describe the relationship between
the cutting parameters in precision machining and the response variables, such
as power and forces. Here, four features; namely, the width of cut, a., depth
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Figure 7: Hybrid model (physics-based + data-driven incremental) predictions and residuals
for the experimental measurements of spindle power of the testing set.

of cut, a,, feed rate, f, and spindle speed, vs, were evaluated and ranked to
find the optimal inputs to the regression models. Dynamic programming with
backward and forward feature selection, developed in Section 3.4, were used
to select the most salient features. Table 6 shows the results, wherein the
“Remaining Features” lists the features selected, the “Deleted Features” lists the
features deleted according to the algorithm and the “Dy using DT” column
shows the Kullback—Leibler divergence between the residuals of the healthy data
(W = O0mm) and faulty data (W = 0.03mm), using the decision tree model, and
“Dpr, using NN” column shows the Dy between the residuals of the healthy
and faulty data using the neural network. The initial candidate set {a,, ac, f,vs}
included all four features.

The number of selected features directly affects the Dy, used as a measure
of distinguishability of the power signal in response to a healthy and a degraded
tool. The best ranked feature subsets of 1 to 4 features are {a,}, {ap,a.},
{ap, ae, f} and {ap,ac, f,vs} implemented using both dynamic programming
and the “knock-out” strategy. It can be seen that more features give better
discrimination in terms of Dgr,.

Evidently, the model with ordered feature subset {a,, a., f,vs} achieved the
best accuracy. The dynamic programming chose all the features in this case,
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Table 5: Comparison of the power prediction models in term of MSE

Run 1 Run 12 Run 15 Run 19 Mean
Physics-based MSE 0.0119 0.0423 0.0307 0.0877 0.0431
Data-driven MSE 0.0124 0.0429 0.0320 0.0907 0.0445
MSE 0.0051 0.0073 0.0280 0.0558 0.0240
Hybrid 1%
% change from | o040 | g9 7407 | 0.30% | -36.37% | -44.33%
Physics-based
% change from
R -58.87% | -82.98% | -12.50% | -38.48% | -45.96%
Data-driven
MSE 0.0051 0.0072 0.0306 0.0555 0.0246
Hybrid 2**
% change from | w1400 | g9 089 | 24.10% | -36.72% | -43.06%
Physics-based
% change from
. -58.87% | -83.22% 19.06% -38.81% | -44.72%
Data-driven

*Model fusing physics-based model and data-driven model on residuals.
**Model fusing data-driven model and data-driven model on residuals.

which was expected since all four features are machine settings and directly
affect the power consumption and forces. To verify this feature ranking, we
performed the CUSUM test using the highest ranked feature sets with 1 to 4
features. The accuracy of detection, per (26) after tuning the CUSUM threshold
for each case, is plotted as a function of tool wear severity in Fig. 8. In summary,

Table 6: Dynamic Programming based Feature Ranking using DT at W = 0.03mm

Feature Num. | Remaining Features | Deleted Features | Dgr, D1, using NN
4 ap, e, f,Vs - 0.0744 | 0.0473
ap, ae, f Vs 0.0569 | 0.0470
3 ap,ae, Vs f 0.0377 | 0.0454
ap, f,vs ae 0.0065 | 0.0015
ae, fyvs ap 0.0004 | 0.0005
ap, Ge fvs 0.0328 | 0.0028
ap, f Ge, Vs 0.0067 | 0.0015
9 ap, Vs e, f 0.0052 | 0.0012
ae, f ap, Vs 0.0004 | 0.0004
e, Vs ap, f 0.0002 | 0.0002
frvs ap, Ge 0.0002 | 0.0002
ap e, f,vs 0.0017 | 0.00065
1 Qe ap, f,vs 0.0003 | 0.00025
f Ap, Ge, Vs 0.0002 | 0.00025
Vs ap, e, | 0.0002 | 0.00024

the proposed methodology aims to balance accuracy with model complexity in
an objective manner. Although it costs more in computation time, the model
with four features provided both higher Kullback—Leibler divergence and higher
accuracy across all levels of noise. Therefore, we concluded that the feature set

22



590

595

{ap, ae, f,vs} provides the best anomaly detection performance.
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Figure 8: Detection accuracy for different numbers of features at various tool wear levels.

4.8. Anomaly Detection Model

As explained in Section 3.5, only healthy data are used for training, while
healthy and faulty (W = 0.01,0.02,...,0.1 mm) data are used for testing to
see if an anomaly has occurred. Residuals and CUSUM detection statistics for
mean changes of Run #1 of Table 4 are in Fig. 9. The high CUSUM value
(upper statistic) detects a positive anomaly (mean of residual increases) and
low CUSUM value (lower statistic) detects a negative anomaly. That is, if the
process mean shifts upward, the upper CUSUM test statistic will eventually
drift upwards, and vice versa if the process mean decreases.
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Figure 9: Run #1 hybrid model residuals and CUSUM statistics: Run #1 ap = 1.5875 mm,
ae = 31.75 mm, vs =1299 RPM, f = 647.7 mm/min.

The spindle power was estimated over one milling pass using the hybrid
model under a healthy condition (W = 0 mm) as described in Section 4.1.
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A significantly worn tool affects the power consumption. AP, which are the
deviations of power measurements from the predictions, were used as indicators
for detection. We used a cumulative sum (CUSUM) control chart to detect
a change in the mean of a moving window of residuals (a window size of 20
samples) that may indicate an out-of-control process. The CUSUM method was
applied on each simulation run and it captures the first out-of-control situation
when the thresholds are breached. If there is any point out-of-control in a
simulation run, the tool is said to be worn in that simulation run. Thus, for
each tool wear level, we had 2,000 runs, 1,000 under a healthy condition and
1,000 under the faulty condition of a specified severity level, to evaluate the
anomaly detection performance. The results of this analysis are shown in Fig.
10. Here, the CUSUM J is defined as two standard deviations from the training
P residual mean and the threshold h was selected as 2.5.

In general, the example of Fig. 9 illustrates that combining the hybrid model
with the CUSUM test detects anomalies with a high accuracy at a relatively
early stage of tool wear. The detection accuracy tends to decrease and missed
detection rate increases with larger noise levels or a smaller tool wear levels.
When the tool wear (W) is equal or larger than 0.02 mm, CUSUM is able to
detect more than 90% of faulty cases and almost all healthy cases are judged to
be healthy, yielding greater than 90% accuracy at 0.1% noise level. However,
due to the impact of noise and a wide range of operating conditions, runs with
smaller tool wear, W < 0.02 mm, are hard to detect accurately.

o 0005 001 002 0025 003

0015
oise level

(b) Missed Detection Rate

] 0005 001 0015 00z 0025 003 0 0005 001 0015 002 0025 003
Noise level Noise level

(c) False Alarm Rate (d) Minimum Detectable Tool Wear

Figure 10: Sensitivity Analysis of CUSUM Anomaly Detector with the hybrid model on
simulated data: § = 2, window size= 20, h = 1.

For the quantitative comparison of anomaly detection performance, a sensi-
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tivity analysis of CUSUM test with the hybrid model, a physics-based model,
DT-CUSUM and NN-CUSUM detectors using accuracy, missed detection rate,
false alarm rate and the minimum detectable tool wear was performed and the
results are shown in Table 8. Different regression methods were tried and the
performance of the anomaly detectors with noise level of 0.01 (1%) and tool
wear (W) of 0.03 mm are shown. The approach of combining a physics-based
model with an incremental data-driven model to account for discrepancies un-
der nominal conditions and a CUSUM detector are the highest accuracy at a
relatively low computational cost among the methods. The approach can be
implemented in real-time by monitoring the time series signals, spindle power
and cutting forces; it takes 2.2 seconds for a 100 second run or about 4.4 msec
per sample with a sampling interval of 200 msec, less than 2.5% of the sampling
interval to compute.

Table 8: Comparing the Performance of Anomaly Detection Algorithms using P: Noise level
= 0.01 (1%), W = 0.03 mm

Min. Detectable | Cost over
Method Accuracy | FNR | FPR Tool Wear 2000 runs
(Accuracy> 0.8) | (Seconds)
Hybrid 0.92 0.16 0 0.01 3870
Physics-based 0.89 0.14 0.08 0.01 2956.17
Decision Tree 0.86 0.20 0.08 0.03 2219.72
Neural Network 0.8 0.3 0 0.03 4628.68

The detection performance of the anomaly detector at 10 different levels of
tool wear with 1% noise level using § = 2 in the CUSUM test are compared
in Fig. 11. The detection performance reflects different values of the threshold
h of CUSUM, discussed in Section 3.5, governing the relationship between risk
(false alarm rate) and detection delay. Evidently, for a given false alarm level
(which can be controlled by adjusting the threshold &), lower tool wear level
has higher detection delay, as it should.

Runs with tool wear less than 0.03 mm have higher risk of false alarms and
take longer time to detect anomalies, which might represent a transition from
a new to a worn tool state. When the tool wear becomes larger, the power and
force signals deviate from the healthy runs significantly and the CUSUM can
detect the shift within 25 seconds on average. The methods were also applied to
the 20 experimental datasets and CUSUM decisions corresponding to a healthy
state were obtained using the hybrid model.

In summary, the proposed approach integrates domain knowledge, synthetic
data from a hybrid model, and an incremental data-driven model that accounts
for discrepancies between nominal model predictions and the experimental data.
The unexplained hidden information in real-world data is accounted for by the
incremental data-driven model of the hybrid modeling approach. The general-
ization and robustness of the system model (physics-based or data-driven) are
improved with the use of experimental data. On the other hand, the restriction
of the lack of experimental data with tool wear at the initial stages of designing
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Figure 11: Operation curve - risk (false alarm rate) versus mean delay of detection at 1%
noise level for 10 tool wear levels

anomaly detectors is overcome by the use of synthetic data from the hybrid
model.

4.4. Experimental Validation

In order to verify the efficacy of the proposed hybrid tool wear detection
method, a validation run-to-failure experiment was performed on a 3-axis Haas
Mini Mill CNC machine with a maximum cutting power of 7.5 hp and a maxi-
mum spindle speed of 6000 RPM. A circular milling cutter with two inserts was
used to cut a circular block of AISI 4340 steel. The milling machine recorded
signals of machine power, spindle power, cutting force and 3-directional spin-
dle vibrations in real time at sampling frequency of 16 Hz. The experimental
database was compiled under various machine settings, that resulted in the 27
data sets of single-pass circular cuts shown in Table 9. Tool wear became sig-
nificant (defined here as problematic for the stability of machining, i.e., leading
to intense vibrations) in the last run (Run #27) with a value of W = 0.1461
mm, and was regarded as the failure, which the algorithms presented earlier
needed to detect. This data collection system continuously recorded the power
consumption at a 0.0625 s sampling interval.

Table 9: Settings of machining experiments from the experiments: a, = 2.54mm, ae. =
10.16mm

No. Cutting Speed vs (RPM) | Feed rate f (mm/min)
1-16 2330 710
17-27 3184 970.5

A comparison of actual spindle power measurement and physics-based model
estimation of the power consumption (for Run #18) is shown in Fig. 12. It was
noted that the estimated power consumption of the physics-based model did not
match the actual measured data during transients and it also underestimated the
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power consumption. This could be due to dynamic effects in the progression of
cutting. Also erroneous was potentially the model accuracy in representing the
effect of spindle speed, which changed at Run #16, whereas the physics-based
model was calibrated with experiments with a new tool only (Run #1). The
mismatch was corrected by the hybrid model, which provided a better estimate
of spindle power.
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Figure 12: Example of the physics-based model prediction, M7, and hybrid model prediction
for Run #18 of the tests reported in Table 8

The tool wear detection results obtained by the physics-based and the hybrid
models considered in this study are shown in Fig. 13. The CUSUM statistics
based on physics-based model mislabeled the change in operating conditions
and gave a false alarm at Run #18. However, the proposed hybrid model was
able to deal with the change in spindle speed and detected a 0.07 mm tool wear
at Run #25, before the cutting tool actually failed at Run #27.
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Figure 13: Tool wear detection for Haas data
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5. Conclusions

We proposed an inferential anomaly detector for tool wear monitoring in
precision machining using power or force measurements. The anomaly detector
uses a model composed of a physics-based model and decision trees or neu-
ral networks for incremental error correction. The hybrid model was coupled
with a Page’s CUSUM test of the residuals for incipient tool wear detection.
Healthy data was used to train the regression models and the training residuals
yield the mean and standard deviation values of their distribution under nor-
mal conditions, termed the baseline. The residuals from the test sets (healthy
and faulty datasets) were used in a CUSUM detector. The framework enabled
optimizing the sensors via an optimal feature ranking algorithm and to quan-
tify the minimal detectable tool wear. The goal was to optimize the detector
architecture via sensor optimization, minimize the cost of poor quality of parts
and avoid machine downtime. With this approach, the prediction is updated
using the measurements and eliminates the error in the physics-based model.
Data from 20 experiments and 11,000 simulations (1000 simulation runs each
for the healthy and ten tool wear conditions) were used to validate the anomaly
detection approaches. The following conclusions can be drawn from the results
presented earlier: 1) all four features, the width of cut, a., depth of cut, a,, feed
rate, f, and spindle speed, v, are needed to build an accurate model, which di-
rectly affect the power consumption and forces; 2) compared with the results of
the standalone physics-based or data-driven model, the MSE in machine power
prediction decreases from 0.04315 to 0.02405, and 0.0445 to 0.0246, respectively;
3) the hybrid approach was able to achieve an overall 92% accuracy in data with
1% noise; 4) the proposed approach is also validated on a Haas Mini Mill CNC
machine dataset with progressive tool wear, and the approach demonstrated the
ability to compensate for errors in physics-based model predictions. In the fu-
ture, we plan to pursue a number of research avenues, including 1) introducing
different types of tool failures and diagnosing the fault types; and 2) couple the
anomaly detector with a prognostic algorithm to estimate the residual useful
life of the tool.
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