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ABSTRACT

Event-driven contexts in manufacturing occur pervasively as a result of interactions among involved
entities such as machines, workers, materials, and environment. One of the primary tasks in smart
manufacturing is to derive a context-aware system conveniently incorporating worker knowledge for
generating timely actionable intelligence for workers on factory floor and supervisors to respond. In
this paper, we propose to design a human-and-machine interaction recognition framework by using
a causality concept to collect contextual data for classifications of normal and abnormal machine
operations. The causes and effects are between workers and machines for this initial research. To
apply the causality to recognize worker interactions, initially a reliable way to identify the states
of machines is necessary. The proposed contextual sensor system, consisting of a power meter for
measuring machine operation conditions, a visual camera for capturing worker and machine interactions
via a finite state machine model, and an algorithm for determining power signatures of individual
components via energy disaggregation is implemented on semiconductor fabrication machines (manual
or PLC controlled) each with multiple components. The experiment results demonstrate its context
extraction capability such as components states and their corresponding energy usage in real time as

well as its ability to identify anomalous operation conditions.

1. Introduction

In smart manufacturing (SM), cyber physical systems
(CPS) call for the enhancement of context-awareness of
manufacturing machines and factory operations by contextu-
alizing the sensed signals, detected events, and recognized
surroundings so that it is capable of providing actionable
intelligence to improve operational integrity, energy pro-
ductivity, and machine prognostics and health management
(PHM) [1. 2|. To transform the data into actionable in-
telligence, two popular frameworks have been proposed
and conceptually implemented. One is to leverage the data
generated in current manufacturing systems and transfer
them to computing services for contextual machine learning
(ML) [3, 4]. Another is to design a context-aware system
with manufacturing engineers by incorporating additional
IoT sensors into available information from manufacturing
execution systems for ML [5, 6]. However, both frameworks
have not leveraged the contextual sensing capability of
workers in real time on factory floors to complement the data
generated by IoT sensors and existing manufacturing systems.
Thus, an alternative contextual system design capable of
incorporating the intelligence of shop floor workers, i.e.,
human senses and knowledge/experience, in real time is
worthwhile exploring.

While systems allowing workers on the floor to input
information via computers have been developed, they have
not been successfully integrated into existing manufacturing
systems due to natural language inputs not compatible with
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data from machines. Additionally, workers are required to
proactively input readable information, but it is not well
accepted by workers due to sociological reasons according to
a questionnaire [7]. These barriers motivate us to search an
alternative way of connecting workers. In fact, workers are
naturally connected to manufacturing systems through their
active and reactive interactions with machines [8]. Workers’
active and reactive interactions contain meaningful context
values in the form of causes and effects. For example, workers
as causes by following standard operation procedures (SOP)
actively operate machines and machines change states as
effects. On the other hand, machines behaving abnormally
as causes result in workers reactively responding to machine
operation conditions. By understanding worker interactions
in the active and reactive aspects, the contextual information
regarding regular operation and anomalies can be extracted.

To understand the worker machine interactions (WMI),
a methodology to reliably to capture and confirm workers’
intended inputs via gesture recognition is proposed in this
work for capturing the time and location of happenings on the
floor, which can commensurate real time data from existing
manufacturing systems. The interaction data captured on the
floor can then be used in ML for developing classifications of
manufacturing conditions such as normal operation, operator
errors, and machine warnings. This set of manufacturing
classifications can further support an existing manufacturing
system in dynamically adjusting its execution commands for
the machine fault prevention, workflow optimization, and
energy productivity improvement.

The development of the WMI recognition system is based
on the concept of well-established causality between workers
and machines rather than supervised ML routines of manual
data labeling and model training. A causally correlated Finite
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State Machine (FSM) model is established in this study to
model the timing and causal behaviors of machines and
workers during manufacturing processes. The design of FSM
can leverage not only existing knowledge and experience from
workers but also documented standard operating procedures
(SOP) and machine operation manuals to extract the known
causes and effects. The WMI recognition developed from
FSM at normal operation conditions offers a class of various
human gestures representing the contextual information of
active healthy interactions. The anomaly detection of floor
operation can then be determined when the worker reactive
gestures fall out of the norms or the machine operates out of
its functional states.

Conventionally, the reliable understanding of WMI re-
quires advanced ML models with well-labeled dataset for
training [9]. With the causality between workers and ma-
chines identified, the confirmation from the machine side as
causes or effects provides an adaptive way of capturing WMI
contexts as training data. Thus, initially a reliable method
of observing machine states to automatically capture the
data of causally related worker interactions becomes more
applicable as the first step. The captured WMI contexts
can then be used for the ML training of WMI recognition.
For situation awareness of machine operation in the cause-
and-effect method, machine states with their corresponding
observable quantified contents are needed. For example,
power signatures of individual components at states of active,
idle, and off in each machine can be measured and presented
as a cause of deviation from norms for workers to react.

To illustrate the concept of the causality-inspired contex-
tual WMI recognition system, as the first step, this paper
builds a contextual sensor system with a security video
camera for capturing WMI contexts in identifying causes
of interaction and a power meter for observing the effects
of interaction for establishing norms of worker gestures.
Conversely, it can also use the same power meter via an energy
desegregation technique in identifying the power levels and
states of machine individual components as causes to observe
effects of worker responses via video cameras. This study
serves as the first step towards the causality-inspired con-
textual WMI recognition system. This paper presents a case
study of semiconductor fabrication processes to demonstrate
the capability to capture the sequence of contextual machine
events with WMI contexts. In addition to the use of FSM
modeling for the timing and causal behaviors of workers
and machines, a novel energy disaggregation technique by
exploring the logic states of machine components and their
corresponding working principles is researched for analyzing
power signals with fast-varying pulses caused by bang-bang
control at a low sampling frequency, resulting in identification
of power signature of individual components at various state.
Finally, the contextual awareness of anomaly detection of
workers and machines is illustrated.

2. Related Work

2.1. Context-aware Manufacturing Systems and
CPS

Context-aware manufacturing systems have become a
vibrant research area recently. Several studies focus on
system-level designs by using IoT-based multi-sensor fusion
and ML to achieve context-awareness [10, 11, 12, 13]. For
example, Alexopoulos et al. utilizing massive sensor data
designed a context-aware information distribution system
that has visibility of shop floor processes and provides
relevant recommendation information to relevant people [14].
In addition, the existing knowledge from humans can be
provided to assist the design of a context-aware system.
Horvath conceptualized a context-driven and knowledge-
driven CPS modeling and system design methodology [15].
Emmanouilidis et al. proposed a conceptual context-based
framework for maintenance management that integrates
expert knowledge to a classification model where humans can
identify unknown data or conditions and subsequently include
the unseen information into a knowledge pool for future uses
[16]. Wang et al. leveraged the known contextual information
about a CNC machine to classify the collected data from
CNC and mounted sensors into different machine states [17].
Inspired by these previous research work, this paper further
leverages the documented knowledge from interaction-based
SOP and the instrumentation working principles of machines
in the software design phase to expedite the contextual system
development in CPS.

2.2. Machines and Their Components Monitoring
Technologies for monitoring multiple machines status
have been reported using RFID [25, 26], Wireless Sensor
Networks [27, 28], or interfacing with PLC [29]. On the
other hand, the component characteristics of an individual
machine in real time is information of interest for gaining its
operation visibility, since in general a manufacturing machine
has multiple components (e.g., pump, heater, spindle). Drake
et al. proposed a framework to characterize the energy
consumption of machines and their components in real time
by utilizing one power meter to monitor the total power
of an individual machine and by analyzing its components’
power based on the prior dataset collected from operating the
components in a sequential order [30]. Panten et al. correlated
the machine condition data from PLC with aggregated
power data to identify the energy consumption of machine
components in an online manner [21]. Tan et al. correlated the
production data with power consumption to monitor machine
status in real time [31]. Cheng proposed an alternative by
monitoring machine operation states through current analysis
eliminating a need to interface with PLC [22]. Han et al.
discussed using non-intrusive high-frequency audio and
vibration signals to classify faults of a cutting machine [32].
In this paper, a knowledge transfer CPS is proposed to address
both machine and components monitoring. The hardware uses
a combined camera and power meter for the real time visual
and energy information respectively. The software facilitates
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Table 1

A comparison with some previous work

Contextual Machine Status Monitoring

Ref. | Year | Monitoring | PLC/Intrusive | Submetering | Technology Description Context-aware
18 2020 | Yes Yes N/A MT Connect+Petri Net No
19 2020 | Yes Yes N/A Combined with Digital Twin No
20 2020 | Yes No N/A Computer vision based panel recognition No
21 2016 | Yes Yes No Energy disaggregation with PLC control variables | No
22 2018 | Yes No No Frequency spectrum signal analysis No
23 2019 | Yes No No Kalman Filter No
[24] | 2020 | Yes No Yes Supervised machine learning No
Ours | - Yes No No Knowledge enhanced unsupervised way Yes

the correlation between the finite states defined by interaction-
based SOP and the real time visual and energy information.
As listed in table 1 comparison with several previous studies
of using PLC or energy states [18, 19, 20, 21, 22, 23, 24], this
novel approach can be easily implemented without requiring
interfacing with customized PLC, massive sensors, and labor-
intensive dataset collections for model training. Furthermore,
with the correlated SOP model and visual information from
cameras, WMI contexts can be extracted effortlessly.

2.3. Energy Disaggregation In Machines and Their
Components

With a great number of non-intrusive load monitoring
(NILM) solutions for energy disaggregation being developed
and evaluated on residential applications in recent years [33],
researchers have begun to explore its potential in industrial
sectors [34, 35]. There are typically three types of loads:
single state (on/off), multi-state, and continuously varying
[36]. Energy event detectors serve as major modules for
the first two types to extract steady-state features, and the
third type demands high sampling rates at kHz for capturing
transient and high-order harmonics features [37, 38]. Several
window-based event detectors are proposed by studying
statistical features, e.g. Chi-squared test [39], generalized
likelihood ratio detector [40], Teager—Kaiser energy operator
[41], variance and absolute deviation[42]. Many of the exist-
ing energy event detectors are evaluated on kHz signals or
less oscillating signals for residential appliances, whereas in
this study we develop a detector on low sampling rate signals
superposed with fast-varying pulses for manufacturing equip-
ment. Furthermore, we explore the use of human knowledge
in instrumentation designs for machine component control
such as temperature, spinning, heating, flow, etc., and their
corresponding electrical signatures for energy disaggregation.
This is done by correlating a main power reading from
FSM-based SOP with electrical signatures of components to
identify the power consumption of individual components. It
is of interest to note that the main power reading is a result of
context awareness of repetitive measured signals from a main
power meter. While beyond the current scope of this paper, it
is worth mentioning that the same methodology can be easily
extended towards energy disaggregation of multiple machines
for an entire manufacturing floor with a single power meter.

2.4. Operator 4.0

In the context of Industry 4.0, several frameworks of
operator 4.0 have been proposed to empower workers’ capa-
bility, monitor workers’ behaviors, and identify operators’
new roles. For example, Segura et al. introduced visual
computing technologies to assist worker operations [43].
Zolotova et al. discussed how operators and cyber-physical
production systems interact with new trending technologies
[44]. In addition, Kaasinen et al. analyzed user expectations
and worker concerns regarding the adoption of operator 4.0
technologies [45]. Cimini et al. conceptualized a human-in-
the-loop framework to discuss humans’ critical roles in inter-
actions and enhanced decision making with manufacturing
systems as a socio-technical system [46]. In this work, the
contextual sensor system will enable the real time training of
machine operation for workers, the operational fault detection,
and the prevention of occupation injuries, since the WMI are
constantly under surveillance in a non-intrusive manner.

3. Contextual Sensor System Design

As depicted in figure 1, the proposed contextual sensor
system is based on an FSM model built from the SOP in-
cluding workers and machines, which are correlated through
state transition functions. The system hardware consists of
a visual camera and a power meter to collect real-time data,
and a contextual software to process the sensed contents to
generate contextual information. The system implementation
incorporates a knowledge transfer framework that leverages
human knowledge and documented knowledge to initialize
the contextual software design with these two simple sensors.
A case study of a semiconductor fabrication machine is
successfully demonstrated using the proposed contextual
sensor system hardware and software architecture.

3.1. A Context-Centric SOP Model and Knowledge
Transfer Framework

For a single manufacturing machine or workstation, the
standard operation procedures (SOP) provided by equipment
vendors define a sequence of operations a worker needs to
accomplish, which can be modeled as a sequence of inter-
active events {eg, e, ....,e,}. The interactive events define
the actions or information a worker needs to take and the
expected result a machine will provide, which forms cause-
effect pairs. The contextual information underneath an event
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Figure 1: (a) An example of the FSM-based SOP model ab-
straction. The SOP defines an event-based operation sequence
with worker state and machine state. Material state is changed
by machine processing via a recipe developed by human. In (b),
the proposed knowledge transfer framework in CPS. Note that
this paper focuses on the worker machine interaction only.

can be modeled as e = {x,t, P}, where x is the location,
t is the timestamp, and P represents the event properties
including both sides (workers and machines). The worker
and machine status can be modeled as a Finite State Machine
(FSM) respectively to represent the consistent state transition.
The SOP provides such state transition information as shown
in figure 1(a). The machine (or its component) states g
can be the operation states such as off, standby, on, and
material loaded etc., and the worker states v can be operating
actions. It is worthwhile mentioning that the operation states
of a machine include multiple functional instrumentation
modules, i.e., heating, pumping, spinning, etc., which are
independently processed by various machine components
and can operate in sequence or simultaneously. The machine
states and worker states are correlated through the transition
function é defined by SOP as

g1 =0(0;,9,),g € Q,VEYV 1)

where Q and V are the predefined machine state space and
worker state space from SOP respectively. The SOP event
context becomes e = {x, 1, v, q}, in which the machine state
change is a result of different worker states. For example,
a manually controlled machine is turned on because a
worker presses the switch a few moments ago. By using
this correlated SOP model as the basis, machine events and
worker events can be detected independently and correlated

uniformly to uncover the WMI contexts. In this study, we
focus on the machine energy state determination.

In addition to the related worker and machine state
transitions, materials can also transit their states u after a
worker controls a machine to process. The material state
transitions can be additive or subtractive to a part (e.g., wafer)
to show shape changes, phase changes (e.g., metal refining
from solid to liquid), or chemical reactions with byproducts.
The material state transition can also provide the contextual
information similar to the WMI but is beyond the scope of
this study.

The correlated SOP model serves as the basis of the
knowledge transfer framework and the contextual sensor
system. The correlated SOP model defines two entities to
be measured, worker states and machine states. In order to
capture signals from both sides, a visual camera (can be
a security camera) and a power meter are selected as the
hardware sensors for the contextual sensor systems. Visual
Cameras are readily available sensors and contain meaningful
contexts of workers and surroundings, which are selected to
determine worker states and side channel information from
the surrounding environments and machines. On the other
side, the machine or component energy state change can
be directly reflected on the energy consumption, which is
measured by a main power meter in real time.

Based on the SOP model, a knowledge transfer framework
is built to define a workflow to transfer the implicit engineer-
ing knowledge from workers and documented prior knowl-
edge to the system design loop as illustrated in figure 1(b).
Basically, a shop floor includes three major elements: people,
machines, and materials, among which direct or indirect
interactions occur to proceed the manufacturing processes
in a way of state transitions. For example, machines interact
with materials to process a recipe (e.g., deposition, etching)
for changing product states [47]. A Worker interacts with a
machine through an interface to control process parameters,
start running processes, and change the machine state. A
human observer is introduced in this framework to serve as a
knowledge accumulator by watching the always-happening
interactions through cameras in accordance with the SOP,
instrumentation principles, and the sensed power signals. In
fact, the human observer can be senior process engineers
and does not need to in-person watch the process since the
engineer has already established their knowledge database
during the long-term career. Initially, with prior knowledge,
the human observer is to acknowledge the variation of
power signals by analyzing the recent observable interaction
sequence with corresponding power outputs to confirm
the relevance and consistency among SOP, power signals,
and realistic human-machine interactions. The observer can
follow the SOP to recognize the worker state (from WMI)
and thus understand the corresponding machine state and
power signals. The corresponding segment of power signals
can be attributed to a certain component or a group of them
with respect to the SOP. Finally, the obtained and summa-
rized knowledge from this observation can be leveraged
and transferred to boost and append the context extraction
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Figure 2: The hardware and software structure of the imple-
mented contextual sensor system. (a) shows a semiconductor
processing machine, the PlasmaTherm with 4 instrumentation
modules (see the text) with their corresponding components
connections with various power supplies. A visual camera is
mounted from a near ceiling view to monitor the entire machine.
(b) outlines the data processing pipe.

capability to the software design process. After few iterations,
a contextual sensor software can be developed to act as
an artificial human observer to recognize component state
transitions from aggregated power signals. Moreover, the
knowledge of human observer can be abstracted and encoded
into a context library where several known consequences of
the interaction processes and events are stored, and which
can be used as a look-up database to search for possible
reasons when some typical sequences of events are detected.
The proposed knowledge transfer framework based on the
correlated SOP avoids the submetering data collection to
identify component power signals. It is also noted that the
deviation of typical sequences of events could be used to
identify anomalies of machine operation, which might be
attributed to gradual performance degradation of functioning
components or undetected intrusions in cyber-attacks.

In addition, with many component state transitions being
detected, the WMI videos can be annotated in a label-
free manner according to the FSM-defined state transition
correlation to train a ML model to recognize the interactions,
which will be addressed by another publication from the
authors.

3.2. Contextual Sensor System Architecture

We applied the proposed knowledge transfer framework
to develop and implement a contextual sensor system on a
typical semiconductor fabrication equipment, PlasmaTherm,

Table 2
A generalized SOP of PlasmaTherm with dual functions
Step Process PECVD RIE
Pump RF Heater Pump RF Heater

1 Set temp. on STBY on - - -
2 Vent on STBY on on STBY off
3 Load on STBY on on STBY off
4 Pump down low vac | STBY on low-vac | STBY off
5 Run Process on on on on on off
6 Purge & Vent on STBY on on STBY off
7 Unload on STBY on on STBY off
8 Reset temp. on STBY off - -
9 Pump down low vac | STBY off low vac | STBY off

located in a cleanroom facility. PlasmaTherm is a PLC-
controlled machine with dual chambers and functionalities:
PECVD (plasma enhanced chemical vapor deposition) and
RIE (reactive ion etching), by using the generated gas plasma.
Several gases can be used to generate plasma for different
purposes. The machine is equipped with multiple instrumen-
tation functions: the creation of desired vacuum conditions
for semiconductor processing, the generation of plasma from
gases and RF sources, the control of semiconductor substrate
temperature, the electronics for PLC and user interfaces.
These instrumentation functions have corresponding com-
ponents: mechanical vacuum pump (roughing pump), RF
generator, heater with controller, and main body with PLC
and PC etc., respectively. These components can be in various
states at each process step for different functions. The two pro-
cessing chambers are driven by the same set of components.
RIE side does not require an elevated temperature setting,
while PECVD requires a constant elevated temperature
during deposition. The simplified and generalized SOP for
the two functions is illustrated in Table 2 (STBY stands
for standby states, and low-vac represents the chamber low-
vacuum states). A worker is required to execute the SOP
through the machine interface (a monitor with keyboard). For
example, at step 5 a worker operates the keyboard to choose
a product recipe and hits “RUN” button to start the process,
which results in the RF state changed from standby to on
when the inflow and removal rate of gases (by vacuum pump)
reach a steady state.

Figure 2(a) depicts the hardware and data acquisition
and transmission settings. A visual camera is mounted to
capture the real-time image stream through WiFi connection
and TCP protocol. The image size is set to be 640 x 480
with the frame rate of 10 fps. A clip-on power meter with
current transformers (CTs) are installed on the circuit breaker
to monitor the main power feed for the entire machine. The
meter we used is easily installed by clipping on the CTs to
the power lines with voltage sensing wires connected to the
power lines. The meter is reconfigurable to monitor three-
phase, split-phase, or single-phase load. Since other single-
phase components, e.g., PC, PLC, and valves, consume less
power and maintain insignificant power change compared
with main parts, they are omitted in this study. The power
meter samples the active power signal at 1 Hz frequency and
transmits JSON-format data through MQTT, the data is stored
in a local PostgreSQL database. The developed contextual
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Table 3
PlasmaTherm power states and corresponding response time
Name Attr. States
off on
Body | Power (W) 0 900
T. 0 - 1
off on
Heater Power 0 1300
Tres - 30
off on low vac
Pump Power 0 750 1100
Tres - - 2
STBY | 30W | 70W | 125W | 175W | 300W
Power 50 300 400 500 600 850
RF [ T..(CF,) - 90 | 90 | 90 90 90
T,..(0,) - 65 | 65 65 65 65
T, (SiH,) - 215 | 215 | 215 | 215 | 215

sensor software system queries the database every second to
fetch the power data and accepts the real-time image stream
to process.

The data processing pipeline is illustrated in figure
2(b). There are two streams for the image data and power
data processing respectively. The power data processing
stream analyzes the main power to extract different types of
power events and disaggregate them to derive the individual
component states with predicted individual signals. The
details of this power signal processing will be addressed
in section 4. Since the visible light emission depends on the
type of gases in use for plasma, a color detection module
based on the chamber window color intensity is developed
to detect the plasma gas type. With the contents of power
signatures and chamber color detected, a context capture
module is developed to correlate the contents into contexts.

Since the SOP model defines the correlation between ma-
chine states and worker states as visible in WMI video snaps,
one design aspect of the captured context is the response
time 7,,, between WMI and machine state transitions. The
response time is common for PLC-controlled manufacturing
machines to conduct a self parameter inspection or adjustment
before a process starts. Using PlasmaTherm as an example,
when a user selects the processing recipe and hits the “RUN”
button, the machine will first adjust the gas flow rate to
reach steady states for a fixed period of time after which
the RF is turned on and the manufacturing process begins.
The corresponding response time is composed of a static
segment and a transitional period depending on the gas flow.
The response time for PlasmaTherm is listed in table 3, where
T,,s is derived from its inactive state (heater: off, pump:
on, RF: STBY) to operational (active) states. RF has three
T, distinctive on the gas type since the gas flow rate and
the time to steady states are different. In reality, since the
gas flow rate varies, T,,, can be regarded as a normally
distributed random variable depending on multiple factors
(e.g., gas valve leakage, gas inventory, pressure). After several
iterations in measurements, an averaged response time over
measurements is selected as T,,,. If the interaction starts at
time 0, the machine state change will be recognized at time
Ty + T,,,, where T is the interaction duration. Therefore,

the time period (0, T;) containing WMI contexts needs to be
pinpointed.

The other design aspect of the captured contexts is to
analyze the sequence of detected events with timestamps and
compare them with the context library to determine possible
consequences. For example, following the expert experience,
a 30-min oxygen clean should be conducted to clean the inner
chamber before any etching or deposition process begins. If
a worker forgot to do it and failed to obtain the expected
processed material, the contextual sensor system can provide
a likely cause that the oxygen clean was not performed.
Moreover, by comparing the duration or the magnitude of
the low-vac state pump power signals, the system is able to
estimate the efficiency of the pump or whether the pump or
valves have unusual leakage. With the context library built
upon expertise from humans and documented knowledge,
the contextual information and actionable intelligence can
be supported by the system. In this study, to illustrate the
proposed framework, three predefined contexts are abstracted
from facility staff’s knowledge and SOP with reference to
the event sequence: 1) A regular operation should follow a
sequence of RF on (optional O, clean), pump low-vac, RF on
(can be multiple times), pump low-vac, and RF on (optional
O, clean), where over 60-minute continuous RF running is
prohibited; 2) While it is rare that two consecutive pump
low-vac states are detected, this sequence may indicate a
pump malfunction during first low-vac state; 3) a small bump
of the pump power signal during inactive pump on states can
indicate an unusual gas leakage from the enclosed chamber,
valves, or pipes.

4. Software Defined Sensor for Power Event
Detection and Classification

In this section, the prior knowledge from SOP and the
working principles of instrumentation engineering designs for
functional modules are utilized to design the software defined
sensor system, which is capable of detecting power events and
reporting the individual components’ energy consumption.
As illustrated in the power signal processing in figure 2(b), it
includes preprocessing, Combinatorial Optimization (CO),
and post-processing. It is worthwhile mentioning that the
knowledge of instrumentation principles and their corre-
sponding components can highlight the anticipated power
waveform during normal operation.

4.1. Working Principles of Functioning
Instrumentation Modules and Their
Components

4.1.1. Design of a Vacuum System

The rotary-vane vacuum pump, a type of mechanical
pump, is typically used in semiconductor fabrication equip-
ment as the roughing pump for creation of low vacuum.

The pump is driven by a three-phase motor and its power

consumption is related to the amount of gas in the enclosed

chamber according to the working principle. When the

machine chamber pressure is always low at idle states, e.g.,
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10 mTorr, the power consumption of the motor is relatively
constant and low. When the chamber is vented to atmosphere
for sample loading and needs to be vacuumed again, the
motor load increases abruptly, which will cause a power surge
of the motor. With more gas being pumped out and lower
chamber pressure, the motor load will gradually decrease,
which reduces the power consumption to the constant level.
From the prior knowledge about the working principle, we
can derive an educated guess of the pump power signature
during operation.

4.1.2. Design of RF Plasma Generator

RF plasma generators are pervasively applied in semi-
conductor fabrication to generate reactive gas plasma for dry
etch, PECVD, and inert gas for sputtering etc. In general,
a RF plasma generator includes a RF power supply, a RF
matching network and a reactor (torch) [48]. The generation
of gas plasma depends on the gas type, gas flow, pressure,
temperature, humidity, and RF power [49]. One of the
key processing requirements of the generated plasma is to
maintain a constant plasma power and density to stabilize the
etching or deposition process. Therefore, the power supply
of the plasma generator is designed to provide a stable power
during the process and can be tuned to control the generated
plasma property. PlasmTherm has a PLC to control the
process with stable RF power using predetermined process
recipes, allowing a user to select a recipe with specific plasma
power and duration.

4.1.3. Constant Elevated Temperature Controller

In many industrial applications, a stable temperature
control is important for product yield and thus tools are
equipped with self-regulating heaters. With thermocouples to
sense temperature for a feedback control, a heater is designed
to be turned on and off when the temperature is low or
high respectively for stabilizing a preset temperature. At the
beginning of ramping up the temperature from 25 °C to a
user selected temperature, such as 250 °C, the heater operates
at a constant power mode until the temperature gets close
to the set value. During elevated temperature stabilization, a
feedback control mode kicks in to turn the heater on and off
frequently. Compared with other instrumentation functions,
the pulse-like waveform is unique for the heater and the
harmonic features can be extracted to detect such a pulse
signal with higher-order frequency components.

The knowledge from these three instrumentation function
modules will be explored in the design of data processing in
software defined sensors for identification of three machine
components, i.e., pump, RF generator, and heater.

4.2. Two-stage Data Preprocessing

In order to deal with the 3 components with similar
or different power events, a hybrid two-stage algorithm is
designed to pre-process the aggregated raw power signal
and detect the power events of different types in real time.
There are basically two types of power events, one for the
pump, RF generator, and constant power heater with steady
state features, the other for the heater in the pulsing mode.

(a) Raw active power signal
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Figure 3: An example with the measured raw signal going
through the first-stage preprocessing algorithm (based on the
instrumentation functions) to show the performance. (a) an
active power signal captured from the main power meter with
heater, RF and pump at different states. (b) the signal after
differential filter with signal variation being amplified. (c) the
derived signal after first-stage pre-process to remove the pulses.
The red lines in (c) indicates the detected power event from
second-stage pre-process.
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Figure 4: An illustration of a power signal with the SW-based
second-stage preprocessing techniques to detect power events.
In the middle, the two red boxes represent two windows right
before and after the power ramp with the small variance,
whereas the green dashed box represent the window capturing
the edge with large signal variance. The two red windows also
capture the steady state powers and the random noise or spikes
can be avoided through comparison with steady power values.

Figure 3(a) shows a raw power signal captured from the
main power meter during PECVD operation and consists
of different combinations of the pump, RF, constant power
heater, and pulsing heater at different states. There is a rather
challenging case where the pump is in low-vac state and
the heater turns on to the constant power mode and then
transits to the pulsing mode or vice versa, increasing the
difficulty to detect all types of power events. To overcome
this challenging task, we segregate the detection of the two
event types: pulsing states based on raw signals, and steady
states based on filtered (removing the pulses) signals.

To detect the pulsing state from a raw signal, the raw
signal is first partitioned into sliding windows (SW) with a
width of 20 and a stride of 1. A differential filter is applied
on the windowed signal to calculate the signal difference
between adjacent timestamps, which can be represented as
P, = P, — P,. The frequency domain feature is calculated
within the windowed P, by Fast Fourier Transform (FFT).
The 2nd and 4th order frequency components are extracted
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and a threshold (th ;) is applied to determine whether the
signal includes fast-varying pulses.

With the capability of detecting the pulsing mode, one
can remove the pulsing component and extract the remaining
waveform for the steady state power event analysis. The
complete two-stage preprocessing method is illustrated in
Algorithm 1. When no pulses are detected by FFT, the raw
signal value is kept in the filtered signal. When there is a pulse,
athreshold (bound derived from the heater on-off power value
in table 3) is applied on P, to filter the fast-varying data
points. The remaining signal is compared with the maximum
possible value (¢4,,,, derived from table 3) at non-pulse states
to determine whether to keep the raw value or subtract the
heater on-state power from the raw value. Then the filtered
signal P; is derived. Note that the Py is also experienced
re-sampling as the fast-varying pulses are removed instead of
filtered. Figure 3(b) and (c) show an example of signals after
the first-stage preprocessing. We can observe in figure 3(c)
most of pulses are removed and the steady-state waveform
including RF, pump, and constant power heater is preserved.
There are still a few non-filtered spikes in P, which can
be eliminated in the second stage signal processing with a
noise-tolerant feature.

The second stage of the preprocessing method is designed
to detect the edges and steady state values from P;. We
apply a sliding window with a width of 5 and a stride of
1 on P, as illustrated in figure 4. The signal variance of
each window is calculated and a variance threshold (th,,,)
is applied to filter event windows and non-event windows.
This is based on an assumption that in industrial environment
power events do not happen more frequently than the window
width. Therefore, two non-event windows with steady-state
power values should be right before and after a series of
continuous event windows. When the difference between
these two steady state values is greater than a threshold (t4,,)
that can be derived from the minimum power difference
during any possible state changes in table 3, a power event can
be determined, resulting in automatically eliminating the non-
filtered spikes (noise) to enhance the robustness. In addition,
a complementary checking is included to always verify the
current steady-state values during non-event windows to
avoid any missing events.

4.3. Energy Disaggregation

The basic idea of energy disaggregation is to solve an
optimization problem by using the power signatures of each
device as

M
P =) P (1) +e(t) @)
m=0
where P,,, (1) represents the aggregated power signal, P, (?) is

the individual component power signature, and e(f) represents
the realistic power deviation from the power signature. In
this study, the components (main body, pump, RF generator
and heater) of PlasmaTherm are regarded as the individual
device for disaggregation. The main body is always on and
consumes 900W power. The other component states are

Algorithm 1: A Hybrid Two-stage Preprocessing
and Event Detection Method
Input: P, and predefined thresholds
Output: event type, time, steady state power, Py
Pd = (Pruw[l 1= Praw[: —11);
freqy,, = FFT(Py);
if freq,,, > thy; then
Output pulsing heater event;
if abs(P;[—1]) < bound then
if P, [—-1] < th,,,, then
| P;.append(P,,,[—1]);

else
L P .append(P,,,,[—1] -
HeaterOnPower);
else
| Py.append(P,,,,[—1]);

# Second Stage;
Calculate signal Variance var on Pf;
if var > th,,, then

eventFlag = 1;
else

if event Flag == 1 then
s =mean(P,[0 : 2]);
if abs(s — s;,5 > th,, then
Output event type, time, steady state
L power;

else
s = mean(Pf);
if abs(s — s;,;) > th,, then
Output event type, time, steady state
L power;

B eventFlag = 0,

illustrated in Table 3. As process recipes set different RF
power and processing time, the distinguishable power states
include different RF power levels.

CO is a simple and generic technique for solving such
a combination problem in the energy disaggregation field
[50]. The basic idea of CO is to combine the possible power
signatures to find the closest combined signal compared
with the real aggregated signal. One drawback of the CO
is that it only considers the steady state power values rather
than a sequence of power signatures, which can cause mis-
classification when the power fluctuates beyond the allowable
range or several combinations of the steady-state values are
similar or even identical. In Plasmatherm example, the low-
vac pump state has the same steady-state power as the 70W
RF state, which cannot be resolved by CO. To distinguish
this case, we leverage the prior knowledge about working
principle differences. The power of pump low-vac state shows
a time-varying decrease while the power of RF states is
stabilized. We leverage this feature in the post-processing
module to distinguish the low-vac state and the 70W RF
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state and to disaggregate the pump signal with this specific
ramp-down waveform. Furthermore, the deviation e(?) is
distributed to individual components by considering the
instrumentation working principles and operation sequence.
The SOP provides the sequence of components being turned
active and the prohibited combinations of active components.
For example, active pump and active RF are not allowed to
occur simultaneously, which is used to distribute e(f) when a
component is active. By doing so, the individual component
power signal is recovered.

5. Experiment Results and Discussions

The proposed contextual sensor system is evaluated by
using PlasmaTherm and demonstrates its capability of the
power signal pre-process and machine event classification
with the WMI context extraction. In addition, we tested the
disaggregation method on another machine (E-Beam) to
further validate its performance.

5.1. Machine Event Detection and Disaggregation.
We tested the proposed method on three different cases:
PlasmaTherm for PECVD, PlasmaTherm for RIE, and Elec-
tron Beam Evaporation (E-Beam) tool, to show the effective-
ness of the machine event detection and disaggregation.

5.1.1. PlasmaTherm for PECVD

We deployed the contextual sensor system on PlasmaTh-
erm to extract events without human interventions. It is noted
that the extracted events of PlasmaTherm represent the power
events of steady state transitions, including pump, RF, and
constant power heater. The pulsing mode power events will
be pointed out separately since the pulsing events do not
involve WMI but are attributed to the automatic temperature
control. Figure 3(c) plots the filtered signal during a PECVD
process with SiH, gas and several O, clean involved. There
are 28 power events during this process and the software
defined sensor algorithm detects 34 power events including
all the 28 ground truth power events with additional 6 events.
The extra detected events do not affect the disaggregation
result as they are not classified as machine state transitions
in disaggregation.

To evaluate the energy disaggregation performance, we
collect the actual individual power signals for each com-
ponent as the ground truth data.Figure 5 depicts a typical
segment of the machine event detection and component
energy disaggregation results in PECVD case. The specific
waveform of the pump is successfully disaggregated. For the
RF signals, there are relatively small deviations between the
ground truth and disaggregated data since in practice the
RF generator needs to adjust its power slightly depending
on operational conditions to maintain the generated plasma
power constant. Figure 5(e) displays the disaggregated signal
for the heater observing that the constant power heater signals
are recovered. For the pulsing mode heater, the proposed
approach can identify the start and end of the pulses with the
capability of roughly extracting the pulsing heater signal.

5.1.2. PlasmaTherm for RIE

Figure 6 illustrates an example of a RIE process per-
formed in PlasmaTherm, where RIE does not require elevated
temperature setting but in fact heater is active for a few
seconds. The reason is that during non-PECVD processes
including RIE and machine standby, the heater temperature
is set to be 23 °C close to the cleanroom temperature. When
the thermocouple detects temperature deviations (below 23
°C), it will trigger the heater to be on, resulting in several
spikes in the heater power and main power. Other spikes
belong to noise from the CTs. Without the pulsing heater
involved, power events in RIE are easier to recognize than
those in PECVD. Figure 6(b) and (c) show the successful
disaggregation of power signals for the pump and RF during
RIE respectively.

From Feb. 19, 2021 to Mar. 24, 2021, there are 17-time
PlasmaTherm usages with 15 for RIE and 2 for PECVD. In
total 103688 data points (around 29 hours) of raw signals
during active machine usages are collected from a power
meter. Table 4 lists the usage information during this period
with time, process, the number of events (in the column,
the values stand for pump, RF, and constant power heater
in order), the number of detected events, and the number
of data in active modes for each component. To provide
a quantitative evaluation, the mean absolute error (MAE),
root mean square error (RMSE), and mean percentage error
(MPE) are calculated for comparing predicted signals and
ground truth signals. Table 4 also shows the MAE (Watt),
RMSE (Watt), and MPE (%) of each usage with the average
values of all the data points. Since the heater signals have
0 values which cannot be used to calculate MPE, MPE is
omitted for the heater. In total there are 47 pump events, 67 RF
events, and 11 constant power heater events, and they are all
successfully detected and classified by the proposed method
with related event contexts being extracted. During each
usage, the active RF states account for most of the usage time
and power consumption as workers prefer running long-time
oxygen clean before and after the process. For the PECVD
processes, even though there are in total 11 constant power
heater events, in practice a user only sets the temperature once
at the beginning and the rest of the constant power heater
events are due to the temperature change when a user opens
chamber to load and unload a semiconductor wafer and thus
decreasing chamber temperature sharply.

An interesting observation can be derived from table
4. An average time for pumping down during RIE can be
derived which is 66.6 second. However, the mean pumping
down time of usage ID 11 is 90 second, which is significantly
longer, indicating a possibility of lower efficiency in the pump
or a virtual leak in the machine. It is noted that the time
information extracted from power events with our proposed
contextual sensor system, e.g., time for pumping down, can
be used as a reference for the system to identify unusual pump
behaviors, which is of great context value in operation.
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Figure 5: An example of the measured raw power signal during a PECVD process and its disaggregated component signals. (a) the
captured raw signal with pump, RF and heater being active. (b) the signal after removing pulses by the first stage of preprocessing.
In (c), (d), and (e), the disaggregated component signal (in blue) and the ground truth signal (in orange) are plotted for pump,

RF, and heater respectively. Orange lines are lifted for better views.

Table 4
Usage information of PlasmaTherm with detected component events results
. Pum RF Heater
D Time Process | sfdata | ffevt | didet. evt | T riRE RNVISE T WPE #act. | MAE | RMSE | MPE | #act. | MAE | RMSE
1 | 02/19 10:12-11:53 | RIE 5478 | 2,5,0 | 2,50 118 | 286 | 317 | 3.6 | 1809 | 11.7 | 409 | 132 | 41 45 | 503
2 | 02/23 13:40-16:05 | RIE 7448 [ 0,8,0 | 0,80 0 245 | 254 | 31 | 3787 | 163 | 400 | 136 | 51 590 | 525
3 | 02/24 11:35-1225 | RIE 2441 [ 2,2,0| 2,20 117 | 323 | 358 | 40 | 1694 | 106 | 343 | 7.6 14 6.9 | 524
4 | 02/25 00:17-10:00 | RIE 2318 | 2,2,0| 2,20 110 | 343 | 381 | 43 | 1358 | 165 | 352 | 100 | 18 6.8 | 544
5 | 03/01 10:00-14:00 | PECVD | 12010 | 6,5, 5 6,5, 5 542 335 40.6 4.2 5520 37.1 58.1 18.9 5895 | 367.4 | 596.4
6 | 03/10 14:14-16:14 | RIE 6384 | 4,40 | 440 227 | 21.9 | 27.1 | 28 | 2411 | 21.2 | 451 | 149 | 25 48 | 471
7 | 03/11 11:18-14:15 | RIE 9197 | 4,5,0 | 4,50 222 | 235 | 274 | 30 | 3758 | 162 | 327 | 132 | 82 25 | 313
8 | 03/11 15:06-15:21 | RIE 818 |2,1,0| 21,0 115 | 303 | 398 | 3.7 55 | 140 | 482 | 17.8 5 74 | 549
9 | 03/11 15:57-17:21 | RIE 4620 | 2,4,0| 2,40 118 | 220 | 253 | 2.8 | 1956 | 179 | 468 | 13.7 | 31 43 | 406
10 | 03/15 09:43-11:07 RIE 4504 | 3,4,0 3,4,0 191 23.8 28.4 3.0 1738 17.8 36.5 14.7 41 6.5 51.3
11 | 03/15 11:08-12:32 | RIE 4618 | 2,3,0 | 2,30 180 | 216 | 25.7 | 2.8 | 3026 | 17.7 | 393 | 105 | 37 58 | 481
12 | 03/16 11:36-13:06 RIE 4616 | 2,3,0 2,30 131 22.3 25.8 2.9 3136 15.6 348 8.8 41 2.7 33.6
13 | 03/17 13:10-15:40 | PECVD 8184 | 4,4,6 4,4,6 275 21.3 25.7 2.7 2321 249 50.1 18.7 3753 | 165.5 | 367.0
14 | 03/19 12:48-17:18 RIE 14439 | 3,5, 0 3,50 257 23.7 27.3 31 5015 37.6 40.1 16.5 95 5.3 54.0
15 | 03/22 12:12-13:50 RIE 5454 | 3,6,0 3,6,0 232 24.4 30.0 31 3000 20.3 447 13.9 49 4.9 45.2
16 | 03/23 13:05-15:37 RIE 8259 | 4,4,0 4,4,0 307 221 26.4 2.8 3662 16.7 30.9 13.1 49 4.9 45.6
17 | 03/24 13:21-14:14 RIE 2897 | 2,2,0 2,2,0 140 24.6 29.3 31 1629 14.4 395 11.5 21 6.3 51.8
18 Mean - - - - - 25.6 30.0 3.2 - 18.3 41.0 13.4 - 36.0 98.6
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Figure 6: An example of a RIE process. (a) the captured raw signal with pump, RF generator, and heater. The red lines show the
detected power events. In (b), (c) and (d), the disaggregated component signal (in blue) and the ground truth signal (in orange)
are plotted for pump, RF and heater respectively. Orange lines are lifted for better views.

5.1.3. E-Beam

To evaluate the usability of the proposed machine event
detection and disaggregation method, we further test the
contextual sensor system on an E-beam deposition tool with
Pump, Electron-gun (E-gun) and Controller as components
for metal thin film deposition. This E-Beam is chosen not
to be equipped with a PLC, i.e., manually controlled. The
E-gun serves as the major processing component to provide
high-voltage electron beams to melt metal and its current
is adjusted manually by a worker using a built-in current
meter. A simplified SOP of E-Beam is venting, hoist up,
hoist down, pumping down, turning on controller, turning
on E-gun, turning off E-gun and controller, venting, hoist up,
hoist down, and pumping down again. The pump controls
the vacuum steps, and the controller controls the hoists.
Compared to PlasmaTherm with PLC, the processing time
for E-Beam is manually controlled by a worker meaning that
more WMIs are needed to turn off any active components
as opposed to a PLC-controlled machine turning off active
components automatically. Similarly, from the knowledge
of human observer and SOP regarding the WMI sequence
and measured power signals, the contextual sensor system
is initialized on E-Beam. We used the same algorithm in
Section 4 but adjusted the threshold parameters to better

accommodate individual components. To disaggregate E-
gun power signals in the post-processing module, we applied
the SOP knowledge that the E-gun will be turned on after
controller is turned on. The disaggregated power signals from
the measured raw signal are plotted in figure 7. In figure 7(d),
the two spikes around 13:00 correspond to the hoist-up and
hoist-down steps for loading and unloading wafers, which
are successfully detected. This experiment further validates
the effectiveness of the proposed method.

5.2. WMI Context Capture

Since PlasmaTherm is a PLC-controlled machine, the
fabrication process can be turned off automatically depending
on the process time set by users. Only the positive leading
edges, which indicate a component transits from inactive to
active modes, can trigger the WMI context capture. There
is a distinctive worker gesture difference between changing
pump state and RF state as illustrated in figure 8 that the
worker tends to put their hand on the chamber handle to push
down when performing the chamber pumping down. This is
because the chamber cannot be completely sealed by its own
gravity and hence requires extra force to push down. This
distinctive WMI context is useful as well. For example, when
a worker finishes the process and conducts the pumping down
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Figure 7: An example of a manually operated E-beam metal deposition tool is shown. (a) the measured raw E-beam signal. (b) to
(d) the disaggregated (in blue) and ground truth (in orange) power signal for pump, E-gun, and controller respectively. The orange
lines are intentionally lifted by 2000 W to keep the curves apart for easier views.

again to keep the chamber under vacuum for protecting its
integrity but he/she forgets to push down the chamber handle
to tighten the gap, the gas in the chamber cannot be vacuumed
to the set pressure. With the WMI context being captured and
recognized, this information can be provided to the user to
check the machine chamber status and to avoid this incorrect
operation.

5.3. Event Sequence Context Capture

Figure 9 illustrates an example of the first type context
the system can capture, which is a typical machine usage
following SOP. During this usage, a user first conducts a
30-min oxygen clean using 300W plasma power, then opens

the chamber to load a wafer and conducts pumping down.

A 70W oxygen photoresist ashing process is carried out for
1 minute in the RIE chamber, after which the user opens

the chamber to take out the wafer and pumps down again.

At last, another 30-min oxygen clean at 300W is applied to
clean the chamber for the next user. During this operation, the
component state with realistic power, the recipe information
(including gas type, running time and plasma power), and
the sequence of the operation are extracted and stored in
a database. Accordingly, the WMI video clips during each
interaction are captured and saved in the local file system

according to the response time of each component and gas
type.

Figure 10 shows a captured example of a combination
of the second and third type context related to pump issues.
After a typical RF process, a user conducts pumping down
as usual after which an irregular bump is detected by the
contextual sensor system. Then, a second pumping down is
conducted again by the user. The corresponding contexts
during this period are captured. After the first pumping
down, from the monitor the user noticed abnormal pressure
value and informed the facility staff. From the disaggregated
pump power signal, the bump corresponds to the abnormal
pressure noticed by the user, which indicates that the gas
inside the chamber is not vacuumed to the expected pressure
and the air-tightness of the vacuum system is likely faulty.
After a second-time pumping down, the pressure becomes
normal. The extracted context is saved in the database and
can be used as a reference when the same event sequence is
met. One of the significances of this captured context is to
be potentially used to conduct predictive maintenance and
anomaly detection in the future.
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Figure 8: Example images of interaction with PlasmaTherm by

different users captured through WMI context capture process.

The right column shows different interaction gestures to initiate
pump or RF generator. Upright is referred as pump action and
bottom right is RF action. The upleft indicates the locations
of the smart meter installation and the chamber windows used
for plasma color detection.
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Figure 9: A first type of captured context during a RIE process is
illustrated. The measured main power signal with disaggregated
signals and ground truth signals are plotted. The heater signal is
absent as RIE does not need heater. 5 positive edges correspond
to 5 events with components from inactive mode to active
modes. The extracted event contexts with UNIX timestamp,
machine (component) name, state and actual power, and worker
state are formulated in a JSON-format. The 5 corresponding
WMI contexts are shown with the captured timestamp.

5.4. Comparison and Discussion

Comparison: To further validate the efficacy of the
proposed machine event detection methods, we compared
our method with some typical previous work with only the
machine event detector replaced. We further tested on more
data: 80 pump events and 105 RF events for PlasmaTherm
RIE, 68 pump events, 80 E-gun events and 220 controller
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Figure 10: A combination of the second and third type of
contexts is captured and illustrated. Between two pumping
down (low-vac state), a small bump with actual power deviates
from the average of pump on state. The corresponding WMI
contexts are shown. During the anomaly occurrence, the facility
staff is informed and checks the machine status.

events for E-Beam, and the two PECVD usages. We consid-
ered the precision (P) and recall (R) as the metric for the
machine event classification. As shown in table 5, 6, and 7,
our approach achieved better performance on all the three
test cases. Particularly, the proposed method can handle the
heater pulses while other methods fail to detect the pulsing
mode heater as well as other events with heater pulses in a
low sampling frequency. This is achieved by the segregation
of the heater pulses and steady state signals. Statistical
methods are widely used for abrupt steady state changes but
are not effective with the heater pulses in this study as the
statistical features of the signals are not stable. To extract the
contextual information, it is essential to extract the signal
envelope and keep the signal envelope undistorted while
detecting the heater pulsing states at the same time. Because
the WMI context requires reliable detection of component
state transition time and the context of abnormal machine
states (as the example in figure 10) requires disaggregated
component-level power signals. We further tested the wavelet
thresholding to remove the heater pulses as shown in figure
11. Compared with our method in figure 5(b), the wavelet
thresholding as well as other regular low-pass filters can
remove the pulses in some regions but highly distort the
underlying signal of steady state machine components. The
reason is that the pulses are not the true noise but the result
of feedback control of temperature. Sometimes the heater
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Table 5
PlasmaTherm RIE Event Classification Comparison
Pump RF
Method 3 R 3 R
GLR[40] 0.896 | 0.863 | 0.864 | 0.848
Chi square[39] 0.951 | 0.963 | 0.970 | 0.914
Rehman et al.[51] | 0.950 | 0.950 | 0.981 | 0.971
Ours 1 1 0.99 0.99
Table 6
PlasmaTherm PECVD Event Classification Comparison
Pump RF Heater Pulsing
Method P [R| P R P R Heater
GLRJ[40] 0.75 | 0.6 failed 0.526 | 0.909 not able
Chi square[39] 0.667 | 0.6 failed failed not able
Rehmanetal[51] | 07 |07 | 0120333 | 0524 1 not able
Ours 1 1 1 | 1 1 | 1 can process
Table 7
E-Beam Event Classification Comparison
Pump E-gun Controller
Method P R P R P R
GLR[40] 0.853 | 0.941 | 0.923 | 0.900 | 0.867 | 0.950
Chi Square[39 0.958 1 0.963 | 0.963 | 0.882 | 0.955
Rehman et al.[51] | 0.932 1 0.904 | 0.938 | 0.932 | 0.932
Ours 0.986 1 1 0.975 1 0.964
~ 3000
E
5 2500
5
€ 2000
14125 14330 14335 14740

Time

Figure 11: An example of the processed raw signal by wavelet
thresholding.

stays active longer than several seconds as we can observe
in figure 5, which causes that in some regions the heater
pulses can have similar frequency as the base signal. In
fact, the pulses have different frequency distributions with
the true sensor noise (e.g., white noise), are not random,
and are correlated through the feedback control. In our two-
stage preprocessing method, we use the frequency analysis
to identify the start and end of pulses and apply the prior
knowledge of machine components to provide thresholds for
removing the pulses from the base signal, instead of filtering
the pulses in frequency domain.

Discussion: The FSM model generated from SOP defines
the state transitions of machines and workers, and the
causality between worker and machine states. This model
not only helps the determination of machine component
states and worker states independently, but also opens a
new way of leveraging the causality to capture the contexts
and further to achieve automated data labeling for ML. This
paper demonstrates the effective state detection and energy
disaggregation of machine components and the context
capture capability by using the FSM-based SOP model.
The prior knowledge of SOP and instrumentation principles

alleviates the requirement of data collection for supervised
energy disaggregation and the requirement of high sampling
rate of power meters. The automated data labeling can be
achieved by extending this study leveraging the causality
between worker actions and machine responses defined
in the FSM-based SOP model. For example, recognizing
worker gestures for interacting with machines is important for
operation integrity. An ML model for action recognition can
be trained with the collected video snaps of worker interaction
moments effortlessly without any manual data collection and
annotation. More importantly, each machine can have a totally
different interface requiring different gestures for worker
interactions. This automated data labeling method enabled
by the proposed FSM-based SOP model can enhance the
adaptability of ML models to dynamically adjust to different
machine interfaces during deployment. The underlying con-
cept of the causality induced automated labeling can easily be
extended to various interactive activities between two objects
in manufacturing. It brings a new angle of understanding man-
ufacturing interactions. Given an assembly line as an example,
materials are processed by workers or machines stage by
stage with intermediate quality inspection to sense material
properties. If the response time between worker/machine-
material interactions and material state transitions can be
derived, the proposed concept can be applied to use the
material state change to capture the worker/machine-material
interaction contexts and environmental contexts to assist the
product quality inspection and potential automated labeling.

Furthermore, the sequence of machine component events
with anomalies are extracted with the corresponding WMI
contexts. The context extracted by the proposed novel method
is important in terms of several practical applications. For
example, the extracted event contexts can be used to identify
the integrity of worker and machine operation compared
with SOP at the component level. Any deviations can lead
to immediate malfunctions or unnoticed tool wear and
tear accumulated to cause a serious machine breakdown
in the future. The captured anomaly contexts due to the
effective disaggregation of component signals can assist the
development of prognosis applications. On the other hand,
the disaggregated power signals with the color information
from gas plasma emission can be exploited for identifying
the gas type, processing duration and plasma power level,
implicating a stable processing condition for manufacturing
quality control.

Application Restrictions: The proposed context capture
is based on the SOP-defined worker and machine state domain.
There are two constraints. The first constraint is that if some
unknown state occurs beyond the SOP, the system could
fail in detecting the state. A perspective is to leverage the
worker intelligence and predefined worker states indicating
abnormal machine states and followed by unsupervised
clustering methods to detect the data similarity to form a
new class data for the machine and worker state detection.
The second constraint is that while this study uses power
signals to successfully detect machine responses of energy
states, there are some cases that machines do not respond in
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a way of energy consumption, such as the state of material
loading. Other responsive sensors for these undetected states,
such as acoustic and IR sensors, can be selected to detect
the machine operation within the same cause-and-effect
concept. Similarly, the corresponding worker interactions
can be captured by using these additional channels of sensors.
While these limitations may impede the application of the
contextual sensor system, the proposed remedies shed a light
on new research directions for future improvement.

6. Conclusion

In this paper, we first propose a context-centric knowledge
transfer framework to address the methodology of designing
a contextual SM system with the information injection
from a human observer and the documented knowledge. An
event-driven contextual sensor system developed upon the
knowledge transfer approach is implemented and tested on
multiple semiconductor fabrication machines with or without
PLC and each with multiple components. The experiment
results demonstrate the capability of event recognition and
context awareness by using proposed processing techniques
over video frame and power meter signal. We envision many
potential applications as discussed in the paper could be
developed.

Acknowledgement

This study is sponsored by Clean Energy Smart Manufac-
turing Innovation Institute (CESMII) through U.S. Depart-
ment of Energy under the Award Number DE-EE0007613.
The authors thank Jake Hes, Richard Chang, C. Y. Lee, and
Marc Palazzo from Integrated Nanosystems Research Facility
(INRF) at UCI for their technical insights of equipment and
efforts to conduct several test runs for the data collection.
The authors are also grateful to Dr. Richard Donovan and
Dr. Michael Klopfer for their technical assistance and helpful
discussions. Y. Ren wants to thank Broadcom foundation for
fellowship support.

References

[1] Y. Lu, X. Xu, L. Wang, Smart manufacturing process and system
automation — a critical review of the standards and envisioned
scenarios, J Manuf Syst 56 (2020) 312-325. doi:https://doi.org/
10.1016/3. jmsy.2020.06.010.

[2] F.Tao, Q. Qi, A. Liu, A. Kusiak, Data-driven smart manufacturing, J
Manuf Syst 48 (2018) 157-169. doi:https://doi.org/10.1016/3.jmsy.
2018.01.006.

[3] Z.Wang, M. Ritou, C. D. Cunha, B. Furet, Contextual classification for
smart machining based on unsupervised machine learning by gaussian
mixture model, Int J Comput Integr Manuf 33 (2020) 1042-1054.
doi:10.1080/0951192X.2020.1775302.

[4] J. Wang, S. Gao, Z. Tang, D. Tan, B. Cao, J. Fan,
aware recommendation system for improving manufacturing process
modeling, J Intell Manuf (2021). doi:10.1007/s10845-021-01854-4.

[5] K. Alexopoulos, K. Sipsas, E. Xanthakis, S. Makris, D. Mourtzis,
An industrial internet of things based platform for context-aware
information services in manufacturing, Int J Comput Integr Manuf 31
(2018) 1111-1123. doi:10.1080/0951192X.2018.1500716.

A context-

[6] J. Leng, P. Jiang, C. Liu, C. Wang, Contextual self-organizing of
manufacturing process for mass individualization: a cyber-physical-
social system approach, Enterp Inf Syst 14 (2020) 1124-1149.
doi:10.1080/17517575.2018.1470259.

[7]1 E.Kaasinen, S. Aromaa, P. Heikkild, M. Liinasuo, Empowering and

engaging solutions for operator 4.0 — acceptance and foreseen impacts

by factory workers, in: F. Ameri, K. E. Stecke, G. von Cieminski,

D. Kiritsis (Eds.), Advances in Production Management Systems.

Production Management for the Factory of the Future, Springer

International Publishing, Cham, 2019, pp. 615-623.

D. Sahinel, C. Akpolat, O. C. Goriir, F. Sivrikaya, S. Albayrak, Human

modeling and interaction in cyber-physical systems: A reference

framework, J Manuf Syst 59 (2021) 367-385. doi:https://doi.org/10.
1016/j.jmsy.2021.03.002.

Q. Xiong, J. Zhang, P. Wang, D. Liu, R. X. Gao, Transferable two-

stream convolutional neural network for human action recognition, J

Manuf Syst 56 (2020) 605-614. doi:https://doi.org/10.1016/3j.jmsy.

2020.04.007.

[10] N.Azouz, H. Pierreval, Adaptive smart card-based pull control systems
in context-aware manufacturing systems: Training a neural network
through multi-objective simulation optimization, Appl Soft Comput
75 (2019) 46-57. doi:https://doi.org/10.1016/j.asoc.2018.10.051.

[11] A. Al-Shdifat, C. Emmanouilidis, Development of a context-aware
framework for the integration of internet of things and cloud computing
for remote monitoring services, Procedia Manuf 16 (2018) 31-38.
doi:https://doi.org/10.1016/j.promfg.2018.10.155.

[12] P. Wang, H. Liu, L. Wang, R. X. Gao, Deep learning-based
human motion recognition for predictive context-aware human-robot
collaboration, CIRP Annals 67 (2018) 17-20. doi:https://doi.org/10.
1016/j.cirp.2018.04.066.

[13] J. Wan, S. Tang, Q. Hua, D. Li, C. Liu, J. Lloret, Context-aware cloud
robotics for material handling in cognitive industrial internet of things,
IEEE Internet Things J 5 (2018) 2272-2281. doi:10.1109/J10T.2017.
2728722.

[14] K. Alexopoulos, S. Makris, V. Xanthakis, K. Sipsas, G. Chryssolouris,
A concept for context-aware computing in manufacturing: the white
goods case, Int J Comput Integr Manuf 29 (2016) 839-849. doi:1e.
1080/0951192X.2015.1130257.

[15] L. Horvéth, Contextual knowledge content driving for model of cyber
physical system, in: 2018 15th International Conference on Control,
Automation, Robotics and Vision (ICARCV), 2018, pp. 1845-1850.
doi:10.1109/ICARCY.2018.8581371.

[16] C. Emmanouilidis, P. Pistofidis, A. Fournaris, M. Bevilacqua,
I. Durazo-Cardenas, P. N. Botsaris, V. Katsouros, C. Koulamas,
A. G. Starr, Context-based and human-centred information fusion
in diagnostics, IFAC-PapersOnLine 49 (2016) 220-225. doi:https:
//doi.org/10.1016/j.ifacol.2016.11.038.

[17] Z.Wang, M. Ritou, C. D. Cunha, B. Furet, Contextual classification for
smart machining based on unsupervised machine learning by gaussian
mixture model, Int J Comput Integr Manuf 33 (2020) 1042-1054.
doi:10.1080/0951192X.2020.1775302.

[18] Y. Guo, Y. Sun, K. Wu, Research and development of monitoring
system and data monitoring system and data acquisition of cnc machine
tool in intelligent manufacturing, Int J Adv Robot Syst 17 (2020).
d0i:10.1177/1729881419898017.

[19] K.-J. Wang, Y.-H. Lee, S. Angelica, Digital twin design for real-time
monitoring — a case study of die cutting machine, IntJ Prod Res 0
(2020) 1-15. doi:10.1080/00207543.2020.1817999.

[20] A. M. Deshpande, A. K. Telikicherla, V. Jakkali, D. A. Wickelhaus,
M. Kumar, S. Anand, Computer vision toolkit for non-invasive
monitoring of factory floor artifacts, Procedia Manuf 48 (2020) 1020-
1028. doi:https://doi.org/10.1016/7.promfg.2020.05.141.

[21] N. Panten, E. Abele, S. Schweig, A power disaggregation approach
for fine-grained machine energy monitoring by system identification,
Procedia CIRP 48 (2016) 325 — 330. doi:https://doi.org/10.1016/3.
procir.2016.03.025.

[22] C.-Y. Cheng, A novel approach of information visualization for
machine operation states in industrial 4.0, Comput Ind Eng 125 (2018)

[8

—_

[9

—

Ren et al.: Preprint submitted to Elsevier

Page 15 of 16



(23]

[24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

[37]

(38]

(39]

Contextual Machine Status Monitoring

563 — 573. doi:https://doi.org/10.1016/j.cie.2018.05.024.

J. Sossenheimer, T. Weber, D. Flum, N. Panten, E. Abele, T. Fuertjes,
Non-intrusive Load Monitoring on Component Level of a Machine
Tool Using a Kalman Filter-Based Disaggregation Approach, Springer
International Publishing, Cham, 2019, pp. 155-165. doi:10.1007/
978-3-030-02203-7_9.

J. Sossenheimer, O. Vetter, E. Abele, M. Weigold, Hybrid virtual
energy metering points — a low-cost energy monitoring approach
for production systems based on offline trained prediction models,
Procedia CIRP 93 (2020) 1269-1274. doi:https://doi.org/10.1016/3.
procir.2020.04.128.

C. Qian, Y. Zhang, C. Jiang, S. Pan, Y. Rong, A real-time data-
driven collaborative mechanism in fixed-position assembly systems for
smart manufacturing, Robot Comput Integr Manuf 61 (2020) 101841.
doi:https://doi.org/10.1016/3.rcim.2019.101841.

L. Hu, H. Zheng, L. Shu, S. Jia, W. Cai, K. Xu, An investigation into
the method of energy monitoring and reduction for machining systems,
J Manuf Syst 57 (2020) 390-399. doi:https://doi.org/10.1016/]. jmsy.
2020.10.012.

B. Lu, V. C. Gungor, Online and remote motor energy monitoring
and fault diagnostics using wireless sensor networks, IEEE Trans Ind
Electron 56 (2009) 4651-4659. doi:10.1109/TIE.2009.2028349.

R. Y. Zhong, L. Wang, X. Xu, An iot-enabled real-time machine status
monitoring approach for cloud manufacturing, Procedia CIRP 63
(2017) 709-714. doi:https://doi.org/10.1016/j.procir.2017.03.349.
B. Edrington, B. Zhao, A. Hansel, M. Mori, M. Fujishima, Machine
monitoring system based on mtconnect technology, Procedia CIRP 22
(2014) 92-97. doi:https://doi.org/10.1016/7.procir.2014.07.148.

R. Drake, M. Yildirim, J. Twomey, L. Whitman, J. Sheikh-Ahmad,
P. Lodhia, Data collection framework on energy consumption in
manufacturing, Proceedings of 2006 Institute of Industrial Engineering
Research Conference (2006).

Y. S. Tan, Y. T. Ng, J. S. C. Low, Internet-of-things enabled real-
time monitoring of energy efficiency on manufacturing shop floors,
Procedia CIRP 61 (2017) 376-381. doi:https://doi.org/10.1016/3.
procir.2016.11.242.

S. Han, N. Mannan, D. C. Stein, K. R. Pattipati, G. M. Bollas,
Classification and regression models of audio and vibration signals for
machine state monitoring in precision machining systems, J Manuf Syst
61 (2021) 45-53. doi:https://doi.org/10.1016/3. jmsy.2021.08.004.
S. S. Hosseini, K. Agbossou, S. Kelouwani, A. Cardenas, Non-
intrusive load monitoring through home energy management systems:
A comprehensive review, Renew Sust Energ Rev 79 (2017) 1266-1274.
doi:https://doi.org/10.1016/j.rser.2017.05.096.

L. Hattam, D. V. Greetham, Energy disaggregation for smes using
recurrence quantification analysis, in: Proceedings of the Ninth
International Conference on Future Energy Systems, 2018, p. 610-617.
doi:https://doi.org/10.1145/3208903.3210280.

P. B. M. Martins, J. G. R. C. Gomes, V. B. Nascimento, A. R. de Freitas,
Application of a deep learning generative model to load disaggregation
for industrial machinery power consumption monitoring, in: 2018
IEEE International Conference on Communications, Control, and
Computing Technologies for Smart Grids (SmartGridComm), 2018,
pp. 1-6. doi:16.1109/SmartGridComm. 2018.8587415.

A. Zoha, A. Gluhak, M. A. Imran, S. Rajasegarar, Non-intrusive load
monitoring approaches for disaggregated energy sensing: A survey,
Sensors 12 (2012) 16838—-16866. doi:10.3390/s121216838.

W. Wichakool, Z. Remscrim, U. A. Orji, S. B. Leeb, Smart metering
of variable power loads, IEEE Trans Smart Grid 6 (2015) 189-198.
doi:10.1109/TSG.2014.2352648.

P. A. Lindahl, M. T. Ali, P. Armstrong, A. Aboulian, J. Donnal,
L. Norford, S. B. Leeb, Nonintrusive load monitoring of variable
speed drive cooling systems, IEEE Access 8 (2020) 211451-211463.
doi:10.1109/ACCESS. 2020.3039408.

Y. Jin, E. Tebekaemi, M. Berges, L. Soibelman, Robust adaptive
event detection in non-intrusive load monitoring for energy aware
smart facilities, in: 2011 IEEE International Conference on Acoustics,
Speech and Signal Processing ICASSP), 2011, pp. 4340-4343. doi:1e.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

1109/ICASSP.2011.5947314.

K. D. Anderson, M. E. Bergés, A. Ocneanu, D. Benitez, J. M. Moura,
Event detection for non intrusive load monitoring, in: IECON 2012 -
38th Annual Conference on IEEE Industrial Electronics Society, 2012,
pp. 3312-3317. doi:10.1109/IECON. 2012.6389367.

R. Yadav, A. K. Pradhan, I. Kamwa, Real-time multiple event
detection and classification in power system using signal energy
transformations, IEEE Trans Industr Inform 15 (2019) 1521-1531.
doi:10.1109/TII.2018.2855428.

A. U. Rehman, T. T. Lie, B. Valles, S. R. Tito, Event-detection
algorithms for low sampling nonintrusive load monitoring systems
based on low complexity statistical features, IEEE Trans Instrum Meas
69 (2020) 751-759. doi:10.1109/TIM.2019.2904351.

Alvaro Segura, H. V. Diez, I. Barandiaran, A. Arbelaiz, H. Alvarez,
B. Simdes, J. Posada, A. Garcia-Alonso, R. Ugarte, Visual computing
technologies to support the operator 4.0, Comput Ind Eng 139 (2020)
105550. doi:https://doi.org/10.1016/j.cie.2018.11.060.

I. Zolotov4, P. Papcun, E. Kajati, M. Miskuf, J. Mocnej, Smart and
cognitive solutions for operator 4.0: Laboratory h-cpps case studies,
Comput Ind Eng 139 (2020) 105471. doi:https://doi.org/10.1016/3.
cie.2018.10.032.

E. Kaasinen, F. SchmalfuB, C. Ozturk, S. Aromaa, M. Boubekeur,
J. Heilala, P. Heikkil4d, T. Kuula, M. Liinasuo, S. Mach, R. Mehta,
with operator 4.0 solutions, Comput Ind Eng 139 (2020) 105678.
doi:https://doi.org/10.1016/j.cie.2019.01.052.

C. Cimini, F. Pirola, R. Pinto, S. Cavalieri, A human-in-
the-loop manufacturing control architecture for the next gen-
eration of production systems, J Manuf Syst 54 (2020)
258-271. URL: https://www.sciencedirect.com/science/article/pii/
50278612520300029. doi:https://doi.org/10.1016/3. jmsy.2020.01.002.
T. Wuest, C. Irgens, K.-D. Thoben, An approach to monitoring
quality in manufacturing using supervised machine learning on
product state data, J Intell Manuf 25 (2014) 1167-1180. doi:10.1007/
$10845-013-0761-y.

H.-C. Lee, Review of inductively coupled plasmas: Nano-applications
and bistable hysteresis physics, Appl Phys Rev 5 (2018) 011108.
doi:10.1063/1.5012001.

A. Merkhouf, M. I. Boulos, Integrated model for the radio frequency
induction plasma torch and power supply system, Plasma Sources Sci
Technol 7 (1998) 599-606. doi:10.1088/0963-0252/7/4/017.

N. Batra, R. Kukunuri, A. Pandey, R. Malakar, R. Kumar, O. Krys-
talakos, M. Zhong, P. Meira, O. Parson, Towards reproducible state-
of-the-art energy disaggregation, in: Proceedings of the 6th ACM
International Conference on Systems for Energy-Efficient Buildings,
Cities, and Transportation, 2019, p. 193-202. doi:https://doi.org/10.
1145/3360322.3360844.

A. U. Rehman, S. Rahman Tito, T. T. Lie, P. Nieuwoudt, N. Pandey,
D. Ahmed, B. Valles, Non-intrusive load monitoring: A computa-
tionally efficient hybrid event detection algorithm, in: 2020 IEEE
International Conference on Power and Energy (PECon), 2020, pp.
304-308. doi:10.1109/PECoN48942.2020.9314442.

Ren

et al.: Preprint submitted to Elsevier

Page 16 of 16





