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Abstract. During plastic deformation of crystalline materials, point defects such as vacancies and
interstitials are generated by jogs on moving dislocations. A detailed model for jog formation
and transport during plastic deformation was developed within the vector density-based
continuum dislocation dynamics framework (Lin and El-Azab, 2020; Xia and El-Azab, 2015).
As a part of this model, point defect generation associated with jog transport was formulated in
terms of the volume change due to the non-conservative motion of jogs. Balance equations for
the vacancies and interstitials including their rate of generation due to jog transport were also
formulated. A two-way coupling between point defects and dislocation dynamics was then
completed by including the stress contributed by the eigen-strain of point defects. A jog drag
stress was further introduced into the mobility law of dislocations to account for the energy
dissipation during point defects generation. A number of test problems and a fully coupled
simulation of dislocation dynamics and point defect generation and diffusion were performed.
The results show that there is an asymmetry of vacancy and interstitial generation due to the
different formation energies of the two types of defects. The results also show that a higher
hardening rate and a higher dislocation density are obtained when the point defect generation

mechanism is coupled to dislocation dynamics.
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1 Introduction

Defects and their mutual interactions dominate the mechanical behavior of crystalline solids.
Point defects such as vacancies are known to interact with dislocations and the study of such
interactions is now a classic topic of dislocation theory (Hirth and Lothe, 1982; Hull and Bacon,
2011). Vacancies can affect the performance of crystalline materials in many ways. Vacancy
condensation plays an important role in the growth of voids leading to a transition from brittle to
ductile fracture (Cuitifio and Ortiz, 1996). Vacancy diffusion can assist dislocation climb, which
is an important creep/plastic deformation mechanism in materials such as nickel-based
superalloys at high temperature (Gao et al., 2017; Wang et al., 2020; Yang et al., 2015; Yuan et
al., 2018). The mobility of dislocations moving via glide can also be affected by vacancies. For
example, a so-called vacancy lubrication effect on dislocation motion was discovered (Lu and
Kaxiras, 2002) that explains the observed softening in cold-worked high-purity aluminum at low
temperatures. Moreover, vacancies seem to play a crucial role in hydrogen embrittlement in
metals. Hydrogen-vacancy complexes are stable defect structures that can act as void nucleation
sites during plastic deformation (Li et al., 2015). The mobility of hydrogen is greatly impeded by
the presence of vacancies (Hayward and Fu, 2013), and dislocations can be locked by
hydrogenated vacancies (Xie et al., 2016).

Large numbers of vacancies have been observed in crystalline metals during plastic flow
(Klein and Gager, 1966; Seitz, 1952, 1950). It has been pointed out that the average temperature
increase due to energy dissipation of dislocation motion is probably not sufficiently high to
increase vacancy and interstitial concentrations as a result of thermal effects alone (Seitz, 1952).
In fact, theoretical studies have shown that vacancies or interstitials can be generated by purely
geometrical means during dislocation motion (Hornstra, 1962; Seeger, 1955; Seitz, 1952, 1950;
Zhou et al., 1999; Zsoldos, 1963). The non-conservative motion of dislocations, which is
characterized by the motion of dislocations outside of their glide planes, is responsible for the
generation of vacancies and interstitials (Hirth and Lothe, 1982; Hull and Bacon, 2011).
Different mechanisms can cause the non-conservative motion of dislocations. At high
temperature, edge dislocations are able to climb by the addition or deletion of atoms from their
cores (Niu et al., 2017). In this case, the dislocation velocity has a component that is
perpendicular to the glide plane of the dislocation. Non-conservative motion of dislocations also

happen during annihilation of edge dislocations on two closely separated glide planes (Ohashi,
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2018; Wang, 2017). This process is similar to dislocation climb, since it can be thought of as if
dislocations first climb to the same slip plane and then annihilate. Another important mechanism
of point defect generation is the non-conservative motion of jogs (Hornstra, 1962; Hull and
Bacon, 2011; Seeger, 1955; Zsoldos, 1963). Dislocations in highly deformed crystals and in
crystals under cyclic loading are expected to contain many jogs, which are formed primarily
during intersection with other dislocations (Zhou, 1998; Zhou et al., 1999). As a dislocation
moves under the action of a stress field, it drags along the jogs that were previously formed on it.
The motion of the jogs is non-conservative, since the jog itself does not lie in the glide plane of
the dislocation. The non-conservative jog motion may be a major mechanism for vacancy or
interstitial generation at low temperature, which is the case we considered in this work. In
addition to generating vacancies or interstitials, the presence of jogs can also limit the motion of
dislocations (Zhou et al., 1999). Therefore, it is important to study the interactions among
dislocations, jogs and point defects, and as such the formation and evolution of jogs should be
considered in theoretical models aimed at studying materials containing point defects and
dislocations.

Many theoretical models have been used to study the interactions among dislocations, jogs,
and point defects in the past. Molecular dynamics (MD) was used to study jog formation (Justo
et al., 1997; Zhou, 1998) and vacancy formation (Iyer et al., 2014; Zhou et al., 1999) by
dislocation intersection, as well as the energetics of vacancies under different conditions (Gavini,
2008; Iyer et al., 2014; Li et al., 2015). Discrete dislocation dynamics (DDD) is also a practical
tool to study dislocation-vacancy interactions (Cui et al., 2018; Po and Ghoniem, 2014; Raabe,
1998). This method was successfully applied to simulate vacancy-assisted dislocation climb in
creep behavior of nickel-based superalloy (Gao et al., 2017; Wang et al., 2020), self-climb of
dislocation loops by vacancy pipe diffusion (Gao et al., 2011; Pineau et al., 2016; Zhou, 1998).
On the other hand, plasticity models at continuum level have also been established to consider
the effect of vacancies on plastic deformation of materials (Cuitifio and Ortiz, 1996; Lindgren et
al., 2008; Patra and McDowell, 2012; Sahoo, 1984; Yang et al., 2015; Yuan et al., 2018). Even
with these successes in understanding the interactions between dislocations and vacancies, there
remains two issues to be solved. Due to the computational cost, the length scale and time scale of
MD simulations are always limited. The simulation domain can only hold a few dislocation lines.

In the meantime, continuum plasticity models usually use a scalar dislocation density quantity to
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represent dislocation structures, which loses the description of line-like character of dislocations.
The line-like character of dislocations is important in modeling the formation and evolution of
jogs, and new models are needed to fill the gap between atomistic and continuum descriptions of
dislocation-vacancy interactions. Another issue is that the DDD models mentioned above mainly
focus on the effect of vacancies on dislocation climb, where thermal activation dominates the
behavior of the defect system, while jog formation and vacancy generation by moving jogs are
seldom included. As such, when deformation of crystals at low temperature is considered, a
proper way for jogs to form with the associated athermal vacancy generation should be included.
The above concerns motivate the current work, in which we focus on incorporating the
mechanisms of jog formation and vacancy generation into our continuum dislocation dynamics
(CDD) framework (Lin and El-Azab, 2020; Xia and El-Azab, 2015).

Continuum dislocation dynamics (CDD) uses density-like field variables to track the
evolution of curved dislocation line ensembles. Following the introduction of the dislocation
density tensor o by Kroner (1958) and Nye (1953), the time evolution of this tensor was
formulated in the form & =[x (vXxd) by Mura (1963) and Kosevich (1965). Such a form is
only applicable to families of dislocations of the same Burgers vector and line direction at small
resolution since the dislocation velocity field v is only meaningful at that level. In recent years,
several attempts have been made to obtain an average, statistical description of dislocation
microstructure evolution. Groma, Zaiser and co-workers (Groma, 1997; Groma et al., 2003;
Zaiser et al., 2001) developed statistical approaches in 2D for the evolution of straight edge
dislocations; see also the relatively recent works by Kooiman (2014). Arsenlis et al. (2004),
Reuber et al. (2014), and Leung et al. (2015) who developed 3D models by including additional
line orientation information. However, extending 2D approaches to 3D systems in which
dislocations are interconnected curved lines that move perpendicular to their line direction has
proven to be challenging. Another approach has been proposed by Hochrainer et al. (2007) to
describe the 3D curved dislocation lines by using a higher dimensional phase space containing
line direction variables as extra dimensions, so densities can carry additional information about
their line direction and curvature. The latter work was motivated by that of El-Azab (2000a,
2000b). A simplified variant of Hochrainer’s formulation has been introduced, which considers
only low-order moments of the dislocation direction distribution (Sandfeld et al., 2011; Sandfeld

and Zaiser, 2015). A further development of this theory has been achieved by defining a
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hierarchy of evolution equations of the so-called alignment tensors, which contains information
on the directional distribution of dislocation density and dislocation curvature (Hochrainer, 2015;
Monavari and Zaiser, 2018). The CDD models just mentioned represent important contributions
toward describing dislocation transport in crystals while preserving the linear character of
dislocations, as in DDD methods. However, the non-conservative effects of dislocation motion
are usually neglected, and only dislocations gliding on their slip planes are considered. In order
to study dislocation-vacancy interactions, the formation of jogs and its non-conservative motion
must be incorporated properly into the CDD framework. Recently, the work done by Hochrainer
(2020) showed the vacancy generation by considering the non-conservative motion of
dislocations in the CDD framework.

In this paper, the CDD model formulated recently by Xia and El-Azab (2015) is used as a
starting point. In this model, the so-called bundle representation of the dislocation density is

considered. In this representation, dislocations on each slip system are described by a vector field
p"in such a way that, at the appropriate resolution, the dislocation density has a unique line
direction at each point in the crystal. The mesh size required for solving such a model must be

sufficiently small to enable the accurate geometric cancellation of dislocations of opposite

directions, thus coinciding with the physical annihilation of dislocations. The magnitude of

(k)

vector p'*’ gives the scalar dislocation density at each point on the kth slip system. The vector

field p*’ on each slip system evolves via dislocation transport (Xia and El-Azab, 2015), cross

slip (Xia et al., 2016), and junction reactions (Lin and El-Azab, 2020). The stress field that drives
dislocation transport is fixed by solving an eigen-strain boundary value problem in which the

eigen-strain itself is the plastic strain induced by the motion of dislocations. In the present work,

the CDD model is augmented by introducing the jog density pj(O"; as an additional dislocation

field. A set of equations describing the evolution of the jog density pj(Ok; is formulated, in which

the rate of jog generation is found from the rate at which dislocations on various slip systems
intersect each other. Then the non-conservative motion of the jog density pj(okg) is used to
calculate the generation of vacancies and interstitials. The equations describing vacancy and
interstitial diffusion and recombination are also established. The effects of both jogs and point

defects on the evolution of dislocations are included by adding suitably chosen resistive terms to

the dislocation mobility law.
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2 Vector density-based continuum dislocation dynamics
In the vector density-based CDD approach, the evolution of the dislocation density field is
obtained in two steps. The first step is to reduce the classical form of the equation governing the
evolution of the dislocation density tensor to that for the corresponding vector density using the
dislocation bundle view of the density field. The second step is to build into the resulting
evolution equations the rate terms corresponding to cross slip and dislocation reactions. We
begin by introducing the definition of the dislocation density tensor, O, as given by Kroner
(1958) and Nye (1953),

a=-0xp’, ey
with Bbeing the plastic distortion tensor. Both tensors can be decomposed into slip system

contributions,

a=>a", 2)
k

B'=28". (3)
k

where k is a slip system index. As dislocations move, the plastic distortion will evolve. And its

rate can be obtained by Orowan’s law,
Bd(k) =y xg® 4

where v\*' is the dislocation velocity on slip system k. Here, we assume the resolution is high

enough so that dislocations at a material point have a unique line direction. Hence, the direction

)

of the dislocation velocity v?*’ is taken to be perpendicular to the dislocation line. The

dislocation density vector p*’ is used to represent the oriented dislocation density at all points,

(k)

and the relation between the dislocation density vector p**’ and the dislocation density tensor

a® is

a(k) - p(k) H b(k) (5)
where b is the Burgers vector of dislocations on slip system k. Combining Egs. (1) through (5),
the evolution equation for dislocation density vector p*’ in the absence of reactions and cross

slip can be formulated as (Xia and El-Azab, 2015),
pY = 0x (v xp™). (6)
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For multiple slip systems, each slip system has its own dislocation evolution equation in the form
of Eq. (6).

In addition to the dislocation glide described by Eq. (6), dislocation reactions among
different slip systems also contribute to the dislocation density vector p'*’. Therefore, additional
terms must be added to account for cross slip (Xia et al., 2016; Xia and El-Azab, 2015), collinear
annihilation and junction reactions (Lin and El-Azab, 2020) in the evolution equations. For

dislocation cross slip from slip system k to slip system /, the coupling term is defined as (Xia et

al., 2016; Xia and El-Azab, 2015)
p;k,m = kD <k t)(pm D YEED | (7)

p(k.l)

In the above, i is an indicator, which is unity when the cross slip conditions are satisfied, and

zero otherwise (Xia and El-Azab, 2015), ¢ is the cross slip rate obtained by coarse graining

DDD data (Xia et al., 2016), and €*" is a unit vector along the intersection of the two cross slip

planes. For the two slip systems involved in cross slip, the Burgers vector is also along the
intersection. So p*’ [@ is the screw component of the dislocation density vector. For collinear

annihilation between slip system k and slip system [/, the coupling terms for one time step are

defined as (Lin and El-Azab, 2020):
Ap®) = i) min(| p® B |,| p® B [)sgn(p®® B*" )e*"

co col

; (®)
AR =i min(| p® B |, p® B ) sgn(p” BV )<

)

where i is an indicator function taking on the value of unity when the annihilation reaction is

¢“" is the unit vector along the intersection of the slip planes

possible and zero otherwise, and €
of systems k and / (Lin and El-Azab, 2020). The sign function sgn([)] is used to ensure that

(k) 0

ApY or Ap!) always form an acute angle with p* or p'”, respectively. Eq. (8) is based on the

idea that the rate of collinear annihilation is taken to be the maximum possible rate, fully
annihilating the screw component of the smaller density (Lin and El-Azab, 2020). For a glissile
junction reaction p® +p® - p“, the reaction rates are defined as follows (Lin and El-Azab,
2020),

plm = 4 ig("’”cék”)(p“‘) B (P BED ek )

g
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p(k.l)

where, again, I, is an indicator function that takes on a value of unity when the reaction

(k.I)

criterion is satisfied and zero otherwise (Lin and El-Azab, 2020). Here c,

is the glissile

a(k.D)

junction reaction rate, and €’ is a unit vector along the interaction line of the slip planes of the

two reacting slip systems. An energy criterion is used to ensure that p**’ [8“" and p"” [@*" have

the same sign. When they are positive, the positive sign is chosen in Eq. (9). When they are
negative, the negative sign is chosen. Coupling these dislocation reactions with dislocation

transport, the final form controlling the evolution of dislocations in CDD is
B = DX (v ) =Lt + L0 =y (1 10
The last two terms in Eq. (10) should include all glissile junctions involving slip system k.

3 Theoretical development of point defects generation in continuum dislocation

dynamics

3.1 Point defects generated by non-conservative dislocation motion
There are two types of dislocation motion, conservative and non-conservative (Hirth and Lothe,
1982; Hull and Bacon, 2011). Conservative motion is associated with dislocation glide on the
plane containing both its line and Burgers vector. Motion of dislocations outside of this plane has
a climb component and is considered non-conservative. The latter type of motion leads to local
volume changes in the material, which results in point defect generation (or consumption). In this
regard, both vacancies and interstitials can be generated depending on the direction of the non-
conservative motion. For example, the formation of vacancies (consumption of interstitials)
occurs when edge dislocations climb to extend the extra half-plane (negative climb), while the
formation of interstitials (consumption of vacancies) occurs when an edge dislocation climbs to
shrink the extra half-plane (positive climb). The number of point defects generated during the
non-conservative motion of dislocations can be related to the volume change caused by that
motion. If a small dislocation line segment 1 undergoes a small non-conservative displacement s,
the local volume change is (Hull and Bacon, 2011)

AV =b {1 xs) =sl(bx]), (11)
where b is the Burgers vector of the segment. The number of generated point defects compatible

with this volume change is given by
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N=—, 12
5 (12)

where Q is the volume of an atom. The sign of AV determines the type of point defect. When
the Burgers vector is defined by right-hand/finish-start convention, 1Xb always points to the
extra half plane of the edge dislocation. Combined with the definition of negative and positive
climb, vacancy generation occurs when AV is positive and interstitial generation occurs when
AV is negative.

Egs. (11) and (12) link the point defect generation to the motion of a discrete dislocation line.

In CDD, dislocations are represented by a dislocation density vector p. Point defects can be
measured by their concentration ¢, . As such, the rate of generation of point defects due to non-

conservative dislocation motion can be expressed in terms of the dislocation density vector as

. _bllpxv)

where v is the dislocation velocity. Eq. (13) is valid for all dislocation characters, pure edge, pure

(13)

screw, or mixed. For a screw dislocation, b is parallel to p, so Eq. (13) yields zero rate of defect
production, meaning the motion of pure screw dislocation is always conservative and no point
defects will be generated.

When the temperature is too low, thermally activated dislocation climb is unlikely to occur
(Hirth and Lothe, 1982; Hull and Bacon, 2011). However, two mechanisms of non-conservative
dislocation motion that may operate at any temperature (not requiring thermal activation) are the
edge dipole annihilation (Aslanides and Pontikis, 2000; Brinckmann et al., 2011) and jog motion
(Hornstra, 1962; Seeger, 1955; Seitz, 1952; Zsoldos, 1963), see Figure 1. A pair of opposite edge
dislocations on closely separated glide planes can approach each other, annihilate and generate
point defects. This process can be considered as a climb of one dislocation to the slip plane of the
other dislocation resulting in mutual annihilation. Another athermal deformation mechanism is
the movement of a jogged screw dislocation (Hornstra, 1962; Seeger, 1955; Seitz, 1952; Zsoldos,
1963). Jogs are steps on the dislocation line that move it from one atomic slip plane to another.
The jog on a screw dislocation has edge character. When a screw dislocation glides under an
applied stress, it drags the jogs along. Such a motion requires jog climb, which generates a point
defect trail behind the jog. Therefore, jogs can be considered as sources for point defects. Eq. (13)

is valid for both the dipole annihilation and jog drag mechanisms. The current work mainly
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focuses on point defect generation by moving jogs. In what follows, a jog density P,,, will be

introduced and used to replace p in Eq. (13) in order to determine the defect generation rate due

to jog motion.

v! — ° ° g —Point defects

Figure 1. Two mechanisms of non-conservative dislocation motion at room temperature. (a)
Annihilation of an edge dipole on closely separated glide planes. (b) Motion of a jogged screw

dislocation.

3.2 Jogs formed by intersection of dislocations
Jogs on dislocations in deforming crystals are formed by intersections of dislocations, as shown
in Figure 2. When one dislocation is cut by another dislocation a jog forms at the intersection.

The jog segment is equal to the Burgers vector of the cutting dislocation. In Figure 2, a
dislocation segment 1 moves with velocity v and a second dislocation segment 1? is

stationary. The corresponding Burgers vectors are b" and b and the arrows indicate their

directions.

Figure 2. Jogs formed by intersection of dislocations. (a) Intersection of edge dislocations with

parallel Burgers vector. (b) Intersection of two right-handed screw dislocations.

From Figure 2, it is easy to see that the jog formed on each dislocation line upon dislocation

intersection can be expressed as
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1(1’2) - b(2) 1(2’1) - b(l) , (14)

jog ’ jog

k.l
where 1%

g denotes the jog segment on dislocation k cut by dislocation /. Eq. (14) is valid for the

case shown in Figure 2. However, there can be a negative sign in Eq. (14). Imagining a different

1(1,2)

case from Figure 2 (a) with 1 moving in the opposite direction, I, " will be equal to b

Whether the jog formed is +b? or -b"® is determined by the direction of three vectors, the line

direction of the two dislocations, 1’ and 1¥, and the relative velocity of the two dislocations,
(v? =v"), i.e., the direction of the relative displacement. A triple vector product of these three

vectors can be used to calculate the sign (Hornstra, 1962; Zsoldos, 1963). So, instead of Eq. (14),

the jog segments in the general case should be

lﬁ';jg” =sen((v?? =v*)[@® x17)) b, (15)
where sgn(x) is the sign function, and k and / are slip system indices.

Eq. (15) describes the jogs formed by intersection of two dislocation lines. To incorporate
this result into CDD, a continuum description of the jogs in terms of dislocation density vectors

must be established. As discussed earlier, the dislocation density vector p* locally represents a

bundle of dislocations with the same line direction. Thus when two dislocation bundles cut each

other at a material point, all jog segments formed on one dislocation bundle have the same length
and direction, which can be obtained by Eq. (15). Then a jog density pj((f‘g’” can be defined as the

oriented length of the jog segments per unit volume. This jog density is given by

NF/{,[)
k) — Pog gk
Piog _ﬁljog (16)

with Nj(fél) being the number of jogs formed on slip system k by slip system / in a control volume

V during time Ar. We now explain this formula and fix Nj(fg’” in terms of p*’ and p“.

Consider a control volume element V as shown in Figure 3(a), with the x-axis taken along the
dislocation density vector p" and corresponding edge of [, y-axis along p'” and corresponding

(2)

edge of [, and the z-axis along the relative velocity (v —v") with the corresponding edge [.

The volume V of this control volume is the magnitude of the triple product of the three vectors

forming its edges,
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(V(Z) _ V(l)) p(l) p(2) | (V(Z) _ V(l)) mp(l) % p(z)) |
, ! =111 .
AvE =y e e e =y e e |l

In Figure 3(b) and Figure 3(c), the red and green arrows represent the two intersecting

V=l (17)

dislocation bundles. By the definition of dislocation density, the number of dislocations in the
bundles can be calculated as
yo eIV e e v (1s)
X ’ ly
For a given time increment, Az, the displacement of p*® relative to p’ is (v® —v")Ar . Here

we assume that the dislocations are uniformly distributed in this small control volume. Each

—v o

@
dislocation in the p* field will then intersect with N I o)

dislocations in the p

4

field, so the total number of jogs formed on p" will be

N0 = O @ [v? -v" A - VA

J% l IV = e e (19)
2 X'y z

By substituting Egs. (15), (17) and (19) into Eq. (16), and replacing 1 and 2 by k and [/, we reach
pj(é;l) - (V(l) - V(k)) mp(k) X p(l))b(l) , (20)

which is the continuum rate form for jog formation of the density p*’ by intersection with the

density p'" that is compatible with the CDD formulation.
@

(b) .\z (©)
-
AN : :
X (2)
X X N(l) N

Figure 3. (a) Representative volume used to calculate the number of jogs at a material point. The

axes are along the unit vectors e, = p"/||p" ||, e, =p®/||p? || and
e. =(v?® =v")/ || v® = v ||. (b) Number of dislocation lines in dislocation bundle p is N,

(c) Number of dislocation lines in dislocation bundle p(z) is N,
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3.3 Transport equations for jog densities

As discussed in Section 3.1, the non-conservative motion of jogs leads to point defect generation
at a rate proportional to the instantaneous density of jogs. As such, establishing the evolution
equations of jog density is important to connecting plastic deformation and point defect

generation. Generally speaking, as jogs are small steps (only a Burgers vector height) on the

dislocation line, the jog density p'

e ' is significantly smaller than the glide dislocation density

p") . Therefore, although the existence of jogs may change the average direction of the

dislocation lines, the jogs are treated as “particles” tied to the parent dislocations and the

dislocations are assumed to remain smooth and planar as far as glide motion is concerned. The

(kl)

concentration of a certain type of jog c¢,,.’ can be defined as the number of jogs per volume,

kD = (kDR D
which is defined by the relation p_" =c;,;’b"". If jog migration along the dislocation line is
ignored, jogs will move with the same velocity as dislocations. That is, all type of jogs c*" on

Jog

(k.D)

dislocation p** have velocity v**’ of the line. Hence the evolution of the jog concentration Ciog

follows the transport equation

(kl) +Dmc(kl) (k)) (V(l)_v(k))mp(k)xp(l)) (21)

JOg Jjog
The right hand side of Eq. (21) is a source term for jogs, see Eq. (20). The point defect
generation rate is the sum over all jogs from Eq. (13),

b(k) mp(k D % V(k)) b(k) QZ pj((j;l) X V(k))
G L (22)

k

=l

It can be seen from Eq. (22) that the evolution of each type of jog is not necessarily needed to
calculate the point defect generation rate. What matters is the sum of the jog densities on a
specific dislocation since they all have the same velocity and Burgers vector. This approximation

takes the vector sum of the jogs on a dislocation line, which is valid at small resolution, and is

indeed the case for our CDD model. We now define p!*) = z p."” to be the vector jog density

Jog

on dislocations belonging to slip system k . The evolution equations of pj((f‘g) can be derived using
the definition p},;"” =c;;."b"” and Eq. (21),

JOg

J(fg) + mv(k) N pj(:g)) - Z (V(l) - V(k)) mp(k) X p(l))b(l) (23)
!
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Then the point defect generation rate can be written in terms of pj((f; as
.1
¢ =5 b R x v ) @24
k

Egs. (23) and (24), respectively, describe the jog density evolution and the rate of point defect

generation by jogs on dislocation lines during plastic deformation.

3.4 Point defect balance equations
Vacancies and interstitials can be lost either through recombination or by reaction with a defect
sink such as a dislocation, a grain boundary, or a precipitate. The local change in defect
concentration of the defect species is the net result of the local production rate, reactions with
other species, and diffusion. In our model, the source for point defect production is the non-
conservative motion of dislocation jogs as described by Eq. (24). In the current model, and for
the sake of an initial implementation, only recombination of vacancies and interstitials is
considered besides generation by jogs and diffusion. The recombination rate is given by (Was,
2016)

¢c. =¢, =—-K. cc (25)

where K, is vacancy-interstitial recombination rate constant, which is given in terms of the
diffusivities of vacancies and interstitials as follows:
K, =4mr (D . +D,) =4 D, (26)

v

with D, and D, being the diffusivities of interstitials and vacancies, respectively. r, is the

interaction radius. The random walk of defects in the lattice give rise to diffusive fluxes for

vacancies, J , and interstitial, J, , which are expressed in terms of the concentration and

pressure gradients in the form

AQ [ AQ.
3. =-D (Oc, ~SEEP) g 5 =D (O - SBAR, 27)
k,T k,T
where the pressure p =- g,/3, with g, being the trace of the stress tensor. Combining the

point defect source from jog motion, Eq. (24), and recombination of vacancies and interstitials

Eq. (25), the balance equations for vacancies and interstitials are obtained,
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In the above equations, ¢, and ¢, are the generation rates of vacancies and interstitials by jogs.
It is to be noted that, at any given point in space, jogs can either generate vacancies or
interstitials but not both.

4 Coupling dislocation dynamics and mechanics

4.1 Stress field stemming from lattice defects system
For a crystal with lattice defects, the stress field includes contributions due to the boundary
conditions and the internal defects fields. In order to determine the stress state, the kinematics of

crystal deformation in terms of defect contributions first is fixed. The crystal distortion 3 is
related to the displacement field u by
B=Cu. (29)
This distortion is decomposed into four parts (Po and Ghoniem, 2014),
B=p +B'+B"+P (30)
where Be is elastic distortion and Bd, BV, and Bi are the inelastic distortions induced by

dislocations, vacancies, and interstitials, respectively. The dislocation distortion Bd is updated by

the method of field dislocation mechanics (Acharya and Roy, 2006; Roy and Acharya, 2006)

where it is expressed in the form Bd:[h—x, with [ and X being the compatible and

. . d . L .
incompatible parts of B, respectively. These two components of the plastic distortion are

governed by the following boundary value problems:
Oxx=>p*0Ob* inV
k

O0X=0 inV (31)
nx=0 ondV

and,

Page | 15



400

401
402
403
404
405
406

407

408

409
410

411

412

413
414
415

416

417

418
419
420

OMz=00 (-v*xp®0Ob*)  inV
k

nlz=n @(—V(k) xp(k) ] b(k)) ondV (32)
k

z =1z (arbitrary value) at one pointin V

Here, V is the simulation domain with boundary 0V . It has been shown that updating Bd by
field dislocation mechanics is more accurate than directly integrating Orowan’s equation (Lin et
al., 2021). To calculate the eigen-distortions due to vacancies and interstitials, point defects are
considered as spherical inclusions in the crystal (Cai et al., 2014), that is, inserting defects into
the lattice results in volumetric expansion or contraction. Suppose the volume of the crystal

increases by AQI due to one interstitial, the eigen-distortion field of interstitials can be related to

its volume concentration by (Hull and Bacon, 2011; Po and Ghoniem, 2014)

B = %ciAQiI , (33)

where c; is the volumetric concentration of interstitials. Similarly, if the volume changes by &

due to one vacancy, the corresponding eigen-distortion is given by

B = %chQVI, (34)

where cy is the volume concentration of vacancies. It should be pointed out that & is negative

for vacancy.
With all eigen-distortions known in terms of the corresponding densities of defects, the stress
field O can be calculated by a standard Cauchy equilibrium equation,
Uo=0 inV
o=C:(Ou-B'-p" —Bi)sym inV
u=u ondV,
nlo=t ondV,

(35)

where aVu and aVJare the parts of the boundaries corresponding to displacement and traction

constraints, respectively, and C is the elastic stiffness tensor. By solving Eq. (35), the stress field
combining both boundary conditions and defect effects can be found and used to calculate the

velocity of dislocations and the pressure gradient terms in the diffusion equations.
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4.2 Dislocation mobility law and jog drag
The dislocation velocity is required to close the dislocation transport-reaction equations (10), the
jog transport equations (23), and the point defect generation rate expression (24). The dislocation

velocity v’ is expressed in the form

V(k) - V(k) r](k) (36)

with v being the scalar velocity and r]( " a unit vector in the direction of dislocation motion,

which is determined in terms of the slip plane normal m* and the dislocation line direction
E(k) =p(k) / ,0( © by the following expression

N® =m® x§© (37)

The scalar velocity v’ is assumed to depend linearly on the resolved shear, 7",

v® = sgn(T“‘))%H T =" + 1 + )] (38)

where sgn([) is the sign function, b is the magnitude of Burgers vector, B is the drag coefficient,

s . o _ .
and Té), Ték) and Tj(é{ ), respectively, are contributions to the friction stress discussed below. In

the above expression, b’ corresponds to the magnitude of the Peach-Koehler force (Peach and
Koehler, 1950), and the resolved shear stress itself is given by

r' =s"“ [ ™" (39)
where s’ =b™ /b is the unit slip direction. The resolved shear stress accounts for the long-
range interactions between dislocations and the dislocation-defect interaction, as well as the

boundary effects.

The friction stress Zék) is the threshold stress for dislocation motion (Hirth and Lothe, 1982;

Hull and Bacon, 2011), while Tf(,k) is the resistance caused by short-range interactions with

dislocation junctions (Deng and El-Azab, 2010; El-Azab, 2000a; Hochrainer, 2016; Sandfeld
and Zaiser, 2015). This stress is assumed here to take the form of a Taylor hardening law of the
form (Devincre et al., 2006; Franciosi et al., 1980; Kubin et al., 2008):

r® = pbyJa" p" (40)

1

with M being the shear modulus and 4" an interaction matrix representing the average strength

of the mutual interactions between slip systems k and /. The number of distinct interaction
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coefficients between 12 mutually interacting slip systems in a FCC crystal is reduced to only six

due to symmetry. These are the self, coplanar, and collinear interactions and glissile, Lomer, and
Hirth junction (Devincre et al., 2006; Kubin et al., 2008; Madec, 2003). Finally, Tj(c]f ) is the drag

stress due to jogs on dislocations. The work done against this drag stress corresponds to the
energy used to produce point defects during jog motion. The point defect generation rate is
shown in Eq. (24), so the rate of energy used in the process by jogs on dislocations on a given

slip system can be easily obtained as

EO = b0 ap x v 0

og
where E is the point defect formation energy, and the defect itself can be either vacancy or
interstitial based on the sign of b mpﬁg xv"). The rate of work done against the jog drag
stress T,y is (Hirth and Lothe, 1982; Hull and Bacon, 2011)

W = T;[]f)b(k) LANCE (42)

By equating E©” with W® from the last two expressions, the jog drag stress is found to have the

form

(k)
E b(k) EPJ% V(k)

n =g U im (43)

Substituting Eqs. (36) and (37) into Eq. (43), leads to the following final form of the jog drag
stress

W= g <k>) o I8 [ x@m™ xp™))]. (44)

As mentioned earlier, a jog can either generate vacancies or interstitials based upon its character
and direction of motion. However, the formation energy of an interstitial is larger than the
formation energy of a vacancy. As such, for the same dislocation speed, a jog generating

interstitials will move slower and generate less interstitials than one generating vacancies.

5 Numerical implementation

The finite element method (FEM) is used to solve coupled crystal mechanics, dislocation
transport, jog transport, and point defect diffusion problems. The standard Galerkin finite

element method (SGFEM) (Belytschko et al., 2013) and the least squares finite element method
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(LSFEM) (Jiang, 2013) were both used in solving the coupled problem. The compatible part of
plastic distortion of dislocations, stress equilibrium, and point defect diffusion problems was
solved by the SGFEM method. The incompatible part of the plastic distortion of dislocations,
dislocation transport, and the jog transport equations problems was solved by the LSFEM
method, which yields stable and accurate solution for the div-curl type and convective transport
equations (Jiang, 2013; Varadhan et al., 2006). Details of the numerical formulations can be
found in our earlier work (Lin et al., 2021; Lin and El-Azab, 2020; Xia and El-Azab, 2015).

At a given time step, the dislocation density and point defect concentrations from the
previous time step are used to update the eigen-distortions of these fields. The stress field is then
computed, from which the dislocation velocity follows. The mobility law is employed in which
the resolved shear stress from the stress field and the jog drag stress are used. Then the evolution
of dislocation densities is computed. The intersection of the dislocation densities on various slip
systems are considered as source terms for the jog evolution equations. The non-conservative
motion of dislocation jogs is calculated to generate point defects, which is then used to solve the
diffusion equations of point defects. As all the variables are updated, the simulation proceeds to a
new time step.

The mesh for the FEM is a hybrid mesh with pyramid and tetrahedron elements (Xia and EI-
Azab, 2015). This mesh enables us to obtain accurate results of dislocation transport in FCC

crystals, since the slip planes can be represented by the faces of the finite elements exactly. The

time step Ar is adapted using the maximum dislocation velocity, V., over the simulation

domain as follows
[

C. (45)

mesh

with [, being the mesh size and C the Courant number, which is taken here to be 0.45.

6 Results and discussion

To verify the coupled model established in the previous sections, simple test simulations were
performed, which illustrate how point defects are generated by jogs on moving dislocations.
Bulk simulations of a FCC crystal under uniaxial loading were then performed to elucidate the
differences in the mechanical behavior of the crystal when jog drag and the point defect

generation mechanism is taken into consideration.
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6.1 Jogs and vacancies generated by two intersecting dislocation loop bundles

Initially, there are two dislocation bundles in the form of loops, which we will call loops for
brevity, placed on two different slip planes in a2um x2pm x6.364pum simulation volume, as
shown in Figure 4. Over a cross section of the loop the density exhibits a gaussian distribution in
the radial direction in the slip plane and in the direction normal to the slip plane. The red loop is
on a slip plane with normal along the x-axis and with Burgers vector along the y-axis, while the
green loop is on a slip plane with normal along the y-axis and with Burgers vector along the x-
axis. In this test, the slip systems do not coincide with those of a FCC crystal. They are rather
chosen to make the analysis easier in this test problem. The dislocation velocity for both loops is

assigned a constant value of 0.03pm/ns such that they expand to intersect each other. Periodic

boundary conditions are also employed.

Time step 0 Time step 7 Time step 20 Time step 40

(a)
el
X Y
(b) ]
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(©)
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Page | 20



515
516
517

518
519
520
521
522
523
524
525
526
527
528
529

530
531
532

533

534

535
536
537
538
539
540
541
542
543
544

Figure 4. Evolution of (a) dislocation densities, (b) jog densities and (c) vacancy concentration as
two dislocation loop bundles expanding and intersecting with each other. Contour surfaces are used

in these figures to show the results in 3D.

Figure 4 shows the evolution of the dislocation density, jog density, and point defect
concentration. Before the two loops intersected with each other there were no jogs and no
vacancies in the domain. At the onset of intersection, jogs start to form at the places where the
two loops intersect. As more of the bundles intersect, the region with jogs becomes larger. After
the two dislocation loops pass each other, no more jogs form and the existing jogs move together
with the corresponding dislocations. In Figure 4 (a) and (b), the same color is used for
dislocations and jogs on the same slip system. The intersecting parts of the two dislocation
bundles have screw character, and the jogs on them have edge character. The motion of screw
dislocations with jogs having edge character will result in point defect generation during slip
(Hull and Bacon, 2011). As can be seen in Figure 4 (c), vacancies start to form after the presence
of jogs. As the jogs move, trails of vacancies are generated behind them. Similar results have

been reported for MD simulations (Zhou et al., 1999).

In the above test, the dislocation density vectors of the intersecting parts are p’ = (0, p,0)
and p® =(-p”,0,0) and the corresponding dislocation velocity vectors are v =(0,0,v) and
v? =(0,0,-v). The Burgers vectors are b’ =(0,5,0) and b*® =(b,0,0). According to Eq. (20),

the jogs generated during a time increment Ar are Apl) =(-2vbp" p'”At,0,0) and

Jog

Ap? =(0,2vbp" pPAt,0) . Based on Eq. (24), both b [ip) x v") and b® [Ip!> xv*’) have

Jog Jog Jog
positive sign and so all jogs produce vacancies. A similar analysis shows that changing the
direction of only one of the dislocation loops makes the jogs on both loops produce interstitials.

Figure 5 shows the evolution of the average dislocation density, jog density and vacancy
concentration in the domain. Dislocation density increases initially due to the expansion of the
loops. Then it decreases because the loops reach the periodic boundaries and self-annihilate with
their images. The initial values of jog densities are zero, and they start to increase at about t = 4
ns when the two dislocation loops first begin to intersect. The jog densities continue to increase
until # = 16 ns when the two dislocation loops completely pass each other. Then the jog densities
remain nearly constant as the separated jogs only move in space. The small decrease in jog

density is attributed to numerical diffusion. The evolution of the dislocation and jog densities is
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identical because of the identical initial conditions and speeds on both slip systems. The vacancy

concentration increases after jogs are formed. When no more jogs are formed and the separated

jogs move with a constant velocity, the vacancy concentration increases linearly over time.

(a) 0.22 T (b) 1.0x10°
20} =y — ]
LI N 2) - 8.0x10°
~ 018} / \\\~»__fi__ < / —
” | £ soxioff | =
g 0.16f / = Plog
3o 2 4.0x10F |
0.12f S
o.10} 2.0x10° |
. T e
008 =020 30 40 50 0 10 20 30 40 50
t (ns) 1 (ns)
(c) 500
400}
(‘g—\
= 300}
=
~ 200f
Q
100}
0

0 10 20 30 40 50
t (ns)

Figure 5. Average dislocation density, jog density and vacancy concentration as functions of time.

6.2 Evolution of expanding dislocation loop with jogs
A simple test problem is solved in this section to show the effect of the drag stress due to jogs on
the evolution of a dislocation loop. This problem involves a dislocation loop with a radius of

Ium placed at the center of the simulation volume, as shown in Figure 6. The size of the
simulation volume is 5pumx5umx5.303pum, with edges along [110] , [110] and [001]
crystallographic directions. The dislocation loop is on the (111) slip plane with its Burgers
vector along the [110] direction. Initial jogs are assigned to the screw sides of the dislocation
loop, and the jog density corresponds to cutting the dislocation loop by dislocation lines on slip
plane (111) with Burgers vector [110] (along x-axis), as shown in Figure 6(b). The jog density
vector p,,, =(0,,,0,0) has only one nonzero component, whos magnitude is proportional to the

dislocation density described by Gaussian distribution around the screw parts of the dislocation
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561  loop with a scale factor of 5x10™. Material parameters are shown in Table 1 and Table 2. These
562  parameters correspond to stainless steel (Ghoniem and Cho, 1979; Surh et al., 2004).
563

Young’s modulus (GPa) 189 Burgers vector b (nm) 0.254

Poisson’s ratio 0.26 Drag coefficient (Pa.s) 7.12x10°
564 Table 1. Material properties.
565

Vacancy formation energy Relaxation volume of a

1.60 -0.2Q
eV) vacancy
Interstitial formation energy Relaxation volume of an
4.08 ) o 1.5Q

(eV) interstitial

Atom volume Q (m?) 1.18x10%°
566 Table 2. Parameters for point defect generation.
567
568

(a) (b)
[001]
174
= Y110

569 [110]
570 Figure 6. (a) A dislocation loop is placed on (111) plane with Burgers vector along [110] direction.
571 (b) Jog density is assigned on the screw part of the dislocation loop.
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An external load is applied to make the loop expand. The external load results in a resolved
shear stress of 50 MPa on the dislocation loop. It is obvious that if there were no jogs, the
dislocation loop would retain its initial circular shape during its expansion. However, by
considering jog drag and point defect generation, the dislocation loop was found to evolve quite
differently. This difference is shown below in Figure 7. As can be seen in the figure, the
dislocation velocity is reduced where the jogs exist. The behavior is similar to that of a
dislocation pinned by an obstacle; the dislocation line bows out near the parts where there are
jogs. From the evolution of the jog density, it can be seen that the distance between upper and
lower parts increases as the dislocation loop expands, since the jogs are tied to the dislocation
line. Also, the region in which the jog density is non-trivial becomes thinner as the dislocation
line continues to bow out.

The motion of the jog density is non-conservative and so, according to Eq. (24), point defects
are produced in conjunction with the jog motion. Since the dislocation velocities are opposite at
the upper and lower parts of the dislocation loop, the upper part generates interstitials and the
lower part generates vacancies. As the region of jog density becomes thinner during loop
evolution, the shapes of the regions where the interstitials and vacancies are generated change
accordingly. On the other hand, since the formation energy of interstitials is larger than that of
vacancies, vacancies are more easily generated and as such there will be more vacancies than
interstitials at the end of the simulation. The result is clearly shown in Figure 8. In consequence,
the jogs that generate interstitials are seen to impede the motion of the dislocation line more than

the jogs that generate vacancies.
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Figure 7. Dislocation loop expansion under the action of an external stress with jog drag on both the
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screw sides. Evolution of (a) dislocation density, (b) jog density, and (c) point defects (positive for

vacancies and negative for interstitials).

o
=]

Ln

)
—
<

C.

N
]
—

b
(=]
—

Point defect concentration (pm™)
(S
(]

—
j s
——

00 01 02 03 04 05 06
t(ns)

Figure 8. Evolution of the vacancy and interstitial concentration with time. More vacancies are

generated than interstitials due to the lower formation energy of vacancies.
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The jog drag stress and resolved shear stress corresponding to interstitial and vacancy
generation are compared in Figure 9. It is obvious that the jog drag stress for generating
interstitials is higher than the jog drag stress for generating vacancies. The resolved shear stress
in Figure 9 includes the external stress (which is 50 MPa) and the stress due to eigen-strain
induced by the dislocation loop under a periodic boundary condition. So one may ask: under
what circumstance will the drag stress have a prominent effect compared with the resolved shear

stress? The drag stress expression, Eq. (43) can be rewritten as
()
E %
*) = Ld | 0 ek 5 qt)y | Hiog
Z-jd - 5 | S |]Ejog X n ) | p(k) (46)
where s, Ejﬁ; and N are unit vectors along the Burgers vector, jog direction, and dislocation

velocity, respectively. |s*’ migﬁé xn*)| is always less than or equal to unity. Regardless of

these orientations, the maximum drag stress is E, ,Oj((fg) /Qp" . So, for a given material, the ratio

of jog density to dislocation density determines the magnitude of drag stress. For the material

properties used in this simulation, taking the vacancy formation energy as an example,

E,/Q=2.17x10* MPa . So, to generate 10 MPa drag stress, ,Oj(fg) / p% should be at least

4.61x107".
(a) (b)

7 (MPa) 7,y (MPa)
. 5.5e+01 . 3.0e+01

25

— 50 — 20

— 15

_ 45 — 10

V4
i i,

o« 4.0e+01 0.0e+00

Figure 9. The (a) resolved shear stress and (b) jog drag stress at the first step of the simulation.

6.3 Effects of jog drag and defect generation on the mechanical response of single crystals
Two bulk crystal simulations were performed to study the mechanical response of a FCC crystal

under uniaxial loading. In one simulation jogs and point defects are produced by the moving
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dislocations but the effects on dislocation motion of the eigen-strain of point defects and the drag
stress of jogs were ignored. This model is referred to as the one-way coupling model. In the
second simulation, the eigen-strain of point defects and drag stress of jogs were considered in
dislocation dynamics, whereby point defects and dislocation jogs can also affect the evolution of
dislocations. This model is referred to as the two-way coupling model.

The simulation domain is a 5 um x5 pm x5.303 pm box, discretized by a hybrid mesh of
pyramid and tetrahedron elements. The mesh size is 62.5 nm. All 12 slip systems of FCC crystal
are considered. The edges of the simulation domain are along [110], [110] and [001]

crystallographic directions. An initial dislocation density of 1.5x10" m™ is distributed across all
12 slip systems as loops. These loops have radii ranging from 2 pym to 6 um, and they are
placed randomly in the domain with periodic boundary (the part of the loop exiting the domain
will be re-entered from the opposite boundary). The initial dislocation configuration is shown in
Figure 10. It is used in both the one-way and the two-way coupled simulations. The crystal is
then loaded along the [001] direction with a strain rate of 20 s™!. Periodic boundary conditions
are applied on the six surfaces of the domain. Most material parameters are the same as in Table
1 and Table 2, except that a different drag coefficient was used, which is B =2.5x10™ Pal3.
This value was obtained from recent molecular dynamic simulations at a temperature at 7=573 K.

Additional parameters regarding the diffusion equations of point defect are listed in Table 3.

2P (um™)
k
6.08+00

[001]

74

¥ M0 — 0.0e+00

[110]

Figure 10. Initial dislocation configuration for the 3D bulk simulations.
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666

Gas constant (J/mol K) 8.314 Diffusivity of vacancy (m%/s) | 3.28x10"'8

Temperature (K) 573 Diffusivity of interstitial (m?/s) | 5.76x10"

Recombination  coefficient

(m3/s)

6.25%1017

Table 3. Parameters for point defect diffusion and recombination (Ghoniem and Cho, 1979; Surh et

al., 2004).

The stress-strain curves and dislocation density evolutions of the one-way and two-way

coupled simulations are shown in Figure 11. In part (b) of the figure, the scalar dislocation

density, p= 2 Rl p® ||, is displayed. It clearly shows that the two-way coupling between jogs,

defects and dislocations results in a higher hardening rate than the one-way coupling (Figure
11(a)). There are two main reasons accounting for this difference. First, as the jog drag stress is
considered in the two-way coupling, it is obvious that higher stress is required to move
dislocations. Second, the dislocation density is also higher in the two-way coupling simulation
(Figure 11(b)), which leads to stronger dislocation-dislocation interactions and a higher
resistance to dislocation motion as per Taylor hardening Eq. (40). The higher dislocation density
in the two-way coupled model can be explained by the result of the test simulation in section 6.2.
The jog drag stress impedes the motion of part of the dislocation density thus forcing the
dislocation lines to bow out and increase their length. This effect is similar to that of dislocations
passing obstacles.

The relation between the flow stress and the square root of dislocation density is plotted in
Figure 12 for both the one-way and two-way coupling cases. The stress and the density data are
extracted from Figure 11. Despite the difference in the dislocation density evolution between the
two cases, the evolution in both cases exhibit a linear relationship between the flow stress and
square root of the total dislocation density, which indicates that the Taylor law is preserved albeit
with a slight difference in slope, which is expected due to the presence of jogs in the two-way

coupling model.
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Figure 11. Stress-strain curves, (a), and the dislocation density versus strain, (b). Part (b) displays the
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Figure 12. The Taylor law relation in the (a) one-way and (b) two-way coupling simulations.

The dislocation density evolutions on the individual slip systems for both the one-way and

two-way coupled simulations are compared in Figure 13. The scalar density ,O(k) = || P(k) || is
displayed in both parts of the figure. For the case of one-way coupling under [001] type loading,
the density evolution on the eight active slip systems and the four inactive ones is clearly distinct.
The dislocation densities on the active slip systems increase faster than their counterparts on the

inactive ones. Also, within each group of slip systems, the densities are closer to one another due
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to the symmetry of the slip systems relative to the loading axis. In the case of two-way coupling,
the dislocation densities on the inactive slip systems are relatively lower than the dislocation
densities on the active slip systems as well. However, the density increases at different rates on
the active slip systems. Such differences are observed dislocation dynamics frequently, and are
usually attributed to differences in initial densities on various slip systems or differences in
resistance to dislocation motion. For the one-way coupling case, dislocations on different slip
system are weakly coupled via the stress field, and so the resistance to slip due to jogs is absent.
For the two-way coupling case, the condition of forming jogs can largely depend on the
dislocation distributions on both slip system, and in return, the jog drag stress can be different on
different slip systems due to the stochastic initial configuration. Actually, the different density
multiplying rates can also be observed in discrete dislocation dynamics simulations, and the
phenomenon results from the variability of the dislocation density on various slip systems along

with the smallness of the volumes being simulated.
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Figure 13. Dislocation density evolutions on individual slip systems. (a) One-way coupling case. (b)
Two-way coupling case. The scalar dislocation density on each slip system, p® = ||p® ||, is

displayed.

(k)

Figure 14 shows the evolution of the jog density, o, = z P |l in both the one-way and

two-way coupling cases. Figure 14(a) shows that the jog density increases almost linearly with
strain in both cases. However, the jog density in the two-way coupled simulation is much higher

than its counterpart in the one-way coupled simulation. This difference is due to the feedback
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mechanisms between jog drag, the increase in the dislocation density, and the subsequent
increase in the jog density due to more dislocation-dislocation cutting when the density is higher.
The ratio of jog density to dislocation density is shown in Figure 14(b). This ratio also increases
with strain and is higher in the case of two-way coupling than for the one-way coupling. It is
important to mention here that the dislocation density is often proportional to the square root of
strain or to the strain to some power less than 1, see Figure 11(b), but the jog density is
proportional to strain itself as shown Figure 14(a). The latter dependence has to do with the fact
that jogs are formed via the dislocation motion and intersection, i.e., with the accumulation of
strain. From the strain dependence of both the dislocation density and the jog density, it can be
concluded that the jog density is proportional to the square of dislocation density or to the
density to some power higher than unity. This behavior is consistent with the jog density
generation equation Eq. (20), in which the jog generation rate involves a density product. As

discussed in section 6.2, the ratio of jog density to dislocation density determines the drag stress
of jogs. According to the analysis there, a value of O,/ 0= 2x10™ at 0.6% strain will result in

an average jog drag stress of 4.34 MPa.
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Figure 14. Jog density evolution. (a) Jog density versus strain, (b) The ratio of jog density to

dislocation density versus strain.

Figure 15 shows the evolution of point defects. For the one-way coupled simulation, since
point defects and jogs have no effect on dislocations, the increase of point defect density follows

a constant trend — nearly following the jog density. For the two-way coupled simulation, the
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evolution of point defect densities exhibits two regimes. Initially, point defect density increases
with the same rate as in the one-way coupled simulation, since the jog density is low and the jog
drag stress is not sufficiently high to affect the dislocation velocity. Beyond 0.1% strain, as the
ratio of jog density to dislocation density reaches about 8§ x107, the generation rate of point
defect decreases significantly. Although the jog density in the two-way coupled simulation is
much higher than the jog density in the one-way coupled simulation, there are far fewer point
defects generated in the two-way coupled simulation. This means that jogs have a much smaller
average velocity in the two-way coupled simulation even though their density is higher. On the
other hand, from theory, it is expected that the difference in defect formation energy will create
an asymmetry of drag on dislocations resulting in the production of more vacancies than
interstitials. In the one-way coupling simulation, the effect of jog drag stress on dislocations is
not accounted for, and hence the difference in formation energies of different point defects does
not affect their production, which in this case only depends on the densities of jogs producing the
two types of defects. The bias due to initial configuration of dislocations favors the generation of
interstitials. In the two-way coupling simulation, although there are more interstitials in the
beginning, vacancies are generated faster than interstitials beyond about 0.35% strain. This
would have important implications as far as void nucleation is concerned and its role in ductile
fracture of metals.

The stress field arising from the eigenstrain of point defects can be analyzed by their
concentrations. At 0.6% strain, the point defect concentrations are about 103/um3, so the
corresponding eigenstrains are in the order of 1078~107% according to Egs. (33) and (34), and,
by Hooke’s law, the corresponding stress is in the order of 1073~107%* MPa. This estimate
represents the stress corresponding to a uniform eigenstrain in a constrained solid, which is an
upper bound. As can be seen, this stress is quite small compared with the jog drag stress derived
earlier. As such, in the current deformation simulation, the additional hardening in the two-way

coupling case mainly comes from the jog drag stress.
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Figure 15. Evolution of the vacancy and interstitial concentration in the one-way and two-way

coupled simulation of dislocations, jogs and point defects.

Figure 16 compares the dislocation microstructure for the two simulations. The dislocation
density is shown on a (111) slip plane at 0.6% strain for the one-way coupling in Figure 16(a)
and the two-way coupling in Figure 16(b). In both cases, the heterogeneity of the dislocation
density is anticipated. Dislocations are likely to accumulate in a pattern along three specific
directions. One preferred direction is horizontal and the other two are oriented + 77/3 from the
horizontal line. These directions are the intersections of the slip plane with the other three slip
planes of the FCC crystal. The dislocation density pattern is more obvious in the two-way
coupled case. As shown in Section 6.2, the drag stress of jogs tends to retard dislocation motions,
and the dislocation density will increase as dislocations bow out more. The intersections of the
slip plane are the places where jogs are more likely to be formed. For this reason, in the two-way
coupled case, localized dislocation densities of a larger magnitude are more likely.

The vacancy concentration on the same slip plane are shown in Figure 17 for the one-way
and two-way coupled cases. The vacancy pattern appears to have a finer structure in the case of
one-way coupled simulation than in the two-way coupled case. In the one-way coupling case the
drag stress of dislocation jogs is not considered. Once the jogs are formed by dislocation
intersections they move together with dislocations. As dislocation intersections happen
everywhere in the domain, point defects can also be generated at the places where jogs have
moved. For the two-way coupling case, to generate point defects, the local resolved shear stress

must be large enough to overcome the drag stress caused by the jogs. For the locations where the

Page | 33



773
774
775

776
777

778

779

780
781

782

783
784
785
786

stress does not satisfy this criterion, the jogs are not able to move. Consequently, fewer point
defects are generated and the resulting deformation patterns exhibit larger wavelengths on

average.
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Figure 16. Dislocation density on (111) slip plane at 0.6% strain. (a) One-way coupled simulation,

and (b) two-way coupled simulation.
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Figure 17. Vacancy concentration on (1 11) slip plane at 0.6% strain. (a) One-way coupled simulation,

and (b) two-way coupled simulation.

In in the coupled continuum dislocation dynamics/point defect generation model developed
and solved in this work, jog formation and transport serve as the mechanism of point defect
generation and drag on dislocations. In our formulation, the line direction of dislocations and

jogs are considered as well as the Burgers vectors, as in Eqgs. (20) and (24). It is usually not
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possible to do this in crystal plasticity at the mesoscale, since dislocations are represented by
scalar dislocation densities. Even in discrete dislocation dynamics, modelling of the jog
formation and evolution is a challenging and cumbersome exercise since it requires the tracking
of the individual jogs and perhaps also the individual point defects generated. The test problem
presented in Section 6.1 clearly shows how effective continuum modeling of dislocations is in
describing the process of point defect generation by moving dislocations, a new advantage
offered by the current development. Dislocation jogs are formed first by intersecting dislocation
lines. As dislocation jogs move, trailing point defects are generated along their path. This is
exactly what we expect from the proposed model. On the other hand, the existence of jogs can
change the evolution of dislocations due to drag stress. The drag stress is carefully formulated by
considering the energy consumption for the type of point defect generated. As shown in the
example in Section 6.2, jogs are similar to obstacles that impede the motion of dislocations,
leading to the bow out of dislocations. This fact implies that, by considering the effect of jogs,
the length of the dislocation line will increase, resulting in a higher dislocation density.
Furthermore, a higher dislocation density will contribute more to strain hardening. This
conclusion is confirmed by the bulk simulation in Section 6.3, as shown in Figure 11. Another
important observation is that the asymmetry in the jog drag stress for jogs oriented for vacancy
versus interstitial generation leads to an asymmetry of the rate of the point defects generated,
essentially leading to a higher vacancy generation rate than for interstitials, which shows in the
cumulative average defect concentrations in the deformed crystal. This asymmetry explains why
there are often more vacancies than interstitials in plastically deformed metals. The current
results demonstrate that the model presented here may help to understand void nucleation during

plastic deformation.

7 Concluding remarks

To summarize, a model for point defect generation by the jog formation and transport
mechanism during plasticity is proposed within the framework of vector density-based
continuum dislocation dynamics. As a part of this model, detailed equations for jog formation
and transport were developed as a part of continuum dislocation dynamics. Jogs were assumed to
form as a result of intersection of dislocations on various slip systems. Jogs were also assumed to
be quasi-particles attached to dislocations that move together with the dislocations with the same

speed and direction. The rate of point defect generation associated with jog transport was
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formulated in terms of the volume non-conservation associated with jog motion, i.e., with the
non-glide part of the motion of the dislocations in the crystal. Balance equations for the
vacancies and interstitials including their rate of generation due to jog transport, recombination
and diffusion were also established. The effect of point defects on dislocations was further
included via the stress induced by their eigen-distortion. Finally, a jog drag stress was introduced
into the mobility law of dislocations thus accounting for the energy expended in producing the
point defects. All model equations were coded in conjunction with continuum dislocation
dynamics using the finite element method and implicit time integration. Test problems were
presented, including jog formation and transport and the associated vacancy and interstitial
generation, and the effect of jog drag stress on the dislocation evolution. Coupled solutions of the
plasticity and point defect generation problem under uniaxial load were presented.

The results show that fully coupled dislocation and point defect dynamics via jog drag results
in a higher dislocation density and a higher hardening rate. The results also show that the
asymmetry of jog drag stress between jogs oriented for vacancy versus interstitial generation
leads to higher vacancy generation and accumulation past the initial straining of the crystal. The
dislocation and point defect patterns are also found to exhibit longer wavelengths in the case of
fully coupled dislocation and point defect dynamics. The model as it currently stands is
considered a first step toward generalized defect dynamics modeling of plasticity of metals in
which point defect generation plays an important role, e.g., in situations involving hydrogen

effects, and in cases where ductile fracture via void formation is important.
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