
1 **Incorporating point defect generation due to jog formation into the**
2 **vector density-based continuum dislocation dynamics approach**

3
4 Peng Lin¹, Vignesh Vivekanandan¹, Benjamin Anglin², Clint Geller², Anter El-Azab¹

5 ¹ Purdue University, West Lafayette, IN 47907, USA

6 ² Naval Nuclear Laboratory, West Mifflin, PA 15122, USA

7
8 **Abstract.** During plastic deformation of crystalline materials, point defects such as vacancies and
9 interstitials are generated by jogs on moving dislocations. A detailed model for jog formation
10 and transport during plastic deformation was developed within the vector density-based
11 continuum dislocation dynamics framework (Lin and El-Azab, 2020; Xia and El-Azab, 2015).
12 As a part of this model, point defect generation associated with jog transport was formulated in
13 terms of the volume change due to the non-conservative motion of jogs. Balance equations for
14 the vacancies and interstitials including their rate of generation due to jog transport were also
15 formulated. A two-way coupling between point defects and dislocation dynamics was then
16 completed by including the stress contributed by the eigen-strain of point defects. A jog drag
17 stress was further introduced into the mobility law of dislocations to account for the energy
18 dissipation during point defects generation. A number of test problems and a fully coupled
19 simulation of dislocation dynamics and point defect generation and diffusion were performed.
20 The results show that there is an asymmetry of vacancy and interstitial generation due to the
21 different formation energies of the two types of defects. The results also show that a higher
22 hardening rate and a higher dislocation density are obtained when the point defect generation
23 mechanism is coupled to dislocation dynamics.

24
25 **Keywords:** Continuum Dislocation Dynamics; Dislocation jogs; Point defects; Finite Element
26 Method

27

28 **1 Introduction**

29 Defects and their mutual interactions dominate the mechanical behavior of crystalline solids.
30 Point defects such as vacancies are known to interact with dislocations and the study of such
31 interactions is now a classic topic of dislocation theory (Hirth and Lothe, 1982; Hull and Bacon,
32 2011). Vacancies can affect the performance of crystalline materials in many ways. Vacancy
33 condensation plays an important role in the growth of voids leading to a transition from brittle to
34 ductile fracture (Cuitiño and Ortiz, 1996). Vacancy diffusion can assist dislocation climb, which
35 is an important creep/plastic deformation mechanism in materials such as nickel-based
36 superalloys at high temperature (Gao et al., 2017; Wang et al., 2020; Yang et al., 2015; Yuan et
37 al., 2018). The mobility of dislocations moving via glide can also be affected by vacancies. For
38 example, a so-called vacancy lubrication effect on dislocation motion was discovered (Lu and
39 Kaxiras, 2002) that explains the observed softening in cold-worked high-purity aluminum at low
40 temperatures. Moreover, vacancies seem to play a crucial role in hydrogen embrittlement in
41 metals. Hydrogen-vacancy complexes are stable defect structures that can act as void nucleation
42 sites during plastic deformation (Li et al., 2015). The mobility of hydrogen is greatly impeded by
43 the presence of vacancies (Hayward and Fu, 2013), and dislocations can be locked by
44 hydrogenated vacancies (Xie et al., 2016).

45 Large numbers of vacancies have been observed in crystalline metals during plastic flow
46 (Klein and Gager, 1966; Seitz, 1952, 1950). It has been pointed out that the average temperature
47 increase due to energy dissipation of dislocation motion is probably not sufficiently high to
48 increase vacancy and interstitial concentrations as a result of thermal effects alone (Seitz, 1952).
49 In fact, theoretical studies have shown that vacancies or interstitials can be generated by purely
50 geometrical means during dislocation motion (Hornstra, 1962; Seeger, 1955; Seitz, 1952, 1950;
51 Zhou et al., 1999; Zsoldos, 1963). The non-conservative motion of dislocations, which is
52 characterized by the motion of dislocations outside of their glide planes, is responsible for the
53 generation of vacancies and interstitials (Hirth and Lothe, 1982; Hull and Bacon, 2011).
54 Different mechanisms can cause the non-conservative motion of dislocations. At high
55 temperature, edge dislocations are able to climb by the addition or deletion of atoms from their
56 cores (Niu et al., 2017). In this case, the dislocation velocity has a component that is
57 perpendicular to the glide plane of the dislocation. Non-conservative motion of dislocations also
58 happen during annihilation of edge dislocations on two closely separated glide planes (Ohashi,

59 2018; Wang, 2017). This process is similar to dislocation climb, since it can be thought of as if
60 dislocations first climb to the same slip plane and then annihilate. Another important mechanism
61 of point defect generation is the non-conservative motion of jogs (Hornstra, 1962; Hull and
62 Bacon, 2011; Seeger, 1955; Zsoldos, 1963). Dislocations in highly deformed crystals and in
63 crystals under cyclic loading are expected to contain many jogs, which are formed primarily
64 during intersection with other dislocations (Zhou, 1998; Zhou et al., 1999). As a dislocation
65 moves under the action of a stress field, it drags along the jogs that were previously formed on it.
66 The motion of the jogs is non-conservative, since the jog itself does not lie in the glide plane of
67 the dislocation. The non-conservative jog motion may be a major mechanism for vacancy or
68 interstitial generation at low temperature, which is the case we considered in this work. In
69 addition to generating vacancies or interstitials, the presence of jogs can also limit the motion of
70 dislocations (Zhou et al., 1999). Therefore, it is important to study the interactions among
71 dislocations, jogs and point defects, and as such the formation and evolution of jogs should be
72 considered in theoretical models aimed at studying materials containing point defects and
73 dislocations.

74 Many theoretical models have been used to study the interactions among dislocations, jogs,
75 and point defects in the past. Molecular dynamics (MD) was used to study jog formation (Justo
76 et al., 1997; Zhou, 1998) and vacancy formation (Iyer et al., 2014; Zhou et al., 1999) by
77 dislocation intersection, as well as the energetics of vacancies under different conditions (Gavini,
78 2008; Iyer et al., 2014; Li et al., 2015). Discrete dislocation dynamics (DDD) is also a practical
79 tool to study dislocation-vacancy interactions (Cui et al., 2018; Po and Ghoniem, 2014; Raabe,
80 1998). This method was successfully applied to simulate vacancy-assisted dislocation climb in
81 creep behavior of nickel-based superalloy (Gao et al., 2017; Wang et al., 2020), self-climb of
82 dislocation loops by vacancy pipe diffusion (Gao et al., 2011; Pineau et al., 2016; Zhou, 1998).
83 On the other hand, plasticity models at continuum level have also been established to consider
84 the effect of vacancies on plastic deformation of materials (Cuitiño and Ortiz, 1996; Lindgren et
85 al., 2008; Patra and McDowell, 2012; Sahoo, 1984; Yang et al., 2015; Yuan et al., 2018). Even
86 with these successes in understanding the interactions between dislocations and vacancies, there
87 remains two issues to be solved. Due to the computational cost, the length scale and time scale of
88 MD simulations are always limited. The simulation domain can only hold a few dislocation lines.
89 In the meantime, continuum plasticity models usually use a scalar dislocation density quantity to

90 represent dislocation structures, which loses the description of line-like character of dislocations.
91 The line-like character of dislocations is important in modeling the formation and evolution of
92 jogs, and new models are needed to fill the gap between atomistic and continuum descriptions of
93 dislocation-vacancy interactions. Another issue is that the DDD models mentioned above mainly
94 focus on the effect of vacancies on dislocation climb, where thermal activation dominates the
95 behavior of the defect system, while jog formation and vacancy generation by moving jogs are
96 seldom included. As such, when deformation of crystals at low temperature is considered, a
97 proper way for jogs to form with the associated athermal vacancy generation should be included.
98 The above concerns motivate the current work, in which we focus on incorporating the
99 mechanisms of jog formation and vacancy generation into our continuum dislocation dynamics
100 (CDD) framework (Lin and El-Azab, 2020; Xia and El-Azab, 2015).

101 Continuum dislocation dynamics (CDD) uses density-like field variables to track the
102 evolution of curved dislocation line ensembles. Following the introduction of the dislocation
103 density tensor α by Kröner (1958) and Nye (1953), the time evolution of this tensor was
104 formulated in the form $\dot{\alpha} = \nabla \times (\mathbf{v} \times \alpha)$ by Mura (1963) and Kosevich (1965). Such a form is
105 only applicable to families of dislocations of the same Burgers vector and line direction at small
106 resolution since the dislocation velocity field \mathbf{v} is only meaningful at that level. In recent years,
107 several attempts have been made to obtain an average, statistical description of dislocation
108 microstructure evolution. Groma, Zaizer and co-workers (Groma, 1997; Groma et al., 2003;
109 Zaizer et al., 2001) developed statistical approaches in 2D for the evolution of straight edge
110 dislocations; see also the relatively recent works by Kooiman (2014). Arsenlis et al. (2004),
111 Reuber et al. (2014), and Leung et al. (2015) who developed 3D models by including additional
112 line orientation information. However, extending 2D approaches to 3D systems in which
113 dislocations are interconnected curved lines that move perpendicular to their line direction has
114 proven to be challenging. Another approach has been proposed by Hochrainer et al. (2007) to
115 describe the 3D curved dislocation lines by using a higher dimensional phase space containing
116 line direction variables as extra dimensions, so densities can carry additional information about
117 their line direction and curvature. The latter work was motivated by that of El-Azab (2000a,
118 2000b). A simplified variant of Hochrainer's formulation has been introduced, which considers
119 only low-order moments of the dislocation direction distribution (Sandfeld et al., 2011; Sandfeld
120 and Zaizer, 2015). A further development of this theory has been achieved by defining a

121 hierarchy of evolution equations of the so-called alignment tensors, which contains information
122 on the directional distribution of dislocation density and dislocation curvature (Hochrainer, 2015;
123 Monavari and Zaiser, 2018). The CDD models just mentioned represent important contributions
124 toward describing dislocation transport in crystals while preserving the linear character of
125 dislocations, as in DDD methods. However, the non-conservative effects of dislocation motion
126 are usually neglected, and only dislocations gliding on their slip planes are considered. In order
127 to study dislocation-vacancy interactions, the formation of jogs and its non-conservative motion
128 must be incorporated properly into the CDD framework. Recently, the work done by Hochrainer
129 (2020) showed the vacancy generation by considering the non-conservative motion of
130 dislocations in the CDD framework.

131 In this paper, the CDD model formulated recently by Xia and El-Azab (2015) is used as a
132 starting point. In this model, the so-called bundle representation of the dislocation density is
133 considered. In this representation, dislocations on each slip system are described by a vector field
134 $\rho^{(k)}$ in such a way that, at the appropriate resolution, the dislocation density has a unique line
135 direction at each point in the crystal. The mesh size required for solving such a model must be
136 sufficiently small to enable the accurate geometric cancellation of dislocations of opposite
137 directions, thus coinciding with the physical annihilation of dislocations. The magnitude of
138 vector $\rho^{(k)}$ gives the scalar dislocation density at each point on the k th slip system. The vector
139 field $\rho^{(k)}$ on each slip system evolves via dislocation transport (Xia and El-Azab, 2015), cross
140 slip (Xia et al., 2016), and junction reactions (Lin and El-Azab, 2020). The stress field that drives
141 dislocation transport is fixed by solving an eigen-strain boundary value problem in which the
142 eigen-strain itself is the plastic strain induced by the motion of dislocations. In the present work,
143 the CDD model is augmented by introducing the jog density $\rho_{\text{jog}}^{(k)}$ as an additional dislocation
144 field. A set of equations describing the evolution of the jog density $\rho_{\text{jog}}^{(k)}$ is formulated, in which
145 the rate of jog generation is found from the rate at which dislocations on various slip systems
146 intersect each other. Then the non-conservative motion of the jog density $\rho_{\text{jog}}^{(k)}$ is used to
147 calculate the generation of vacancies and interstitials. The equations describing vacancy and
148 interstitial diffusion and recombination are also established. The effects of both jogs and point
149 defects on the evolution of dislocations are included by adding suitably chosen resistive terms to
150 the dislocation mobility law.

2 Vector density-based continuum dislocation dynamics

152 In the vector density-based CDD approach, the evolution of the dislocation density field is
 153 obtained in two steps. The first step is to reduce the classical form of the equation governing the
 154 evolution of the dislocation density tensor to that for the corresponding vector density using the
 155 dislocation bundle view of the density field. The second step is to build into the resulting
 156 evolution equations the rate terms corresponding to cross slip and dislocation reactions. We
 157 begin by introducing the definition of the dislocation density tensor, α , as given by Kröner
 158 (1958) and Nye (1953),

$$\alpha = -\nabla \times \beta^d, \quad (1)$$

160 with β^d being the plastic distortion tensor. Both tensors can be decomposed into slip system
 161 contributions,

$$\alpha = \sum_k \alpha^{(k)}, \quad (2)$$

$$\beta^d = \sum_k \beta^{d(k)}, \quad (3)$$

164 where k is a slip system index. As dislocations move, the plastic distortion will evolve. And its
 165 rate can be obtained by Orowan's law,

$$\beta^{d(k)} = -\mathbf{v}^{(k)} \times \alpha^{(k)} \quad (4)$$

167 where $\mathbf{v}^{(k)}$ is the dislocation velocity on slip system k . Here, we assume the resolution is high
 168 enough so that dislocations at a material point have a unique line direction. Hence, the direction
 169 of the dislocation velocity $\mathbf{v}^{(k)}$ is taken to be perpendicular to the dislocation line. The
 170 dislocation density vector $\mathbf{p}^{(k)}$ is used to represent the oriented dislocation density at all points,
 171 and the relation between the dislocation density vector $\mathbf{p}^{(k)}$ and the dislocation density tensor
 172 $\mathbf{q}^{(k)}$ is

$$\alpha^{(k)} = \rho^{(k)} \otimes \mathbf{b}^{(k)}, \quad (5)$$

174 where $\mathbf{b}^{(k)}$ is the Burgers vector of dislocations on slip system k . Combining Eqs. (1) through (5),
 175 the evolution equation for dislocation density vector $\mathbf{p}^{(k)}$ in the absence of reactions and cross
 176 slip can be formulated as (Xia and El-Azab, 2015).

$$\dot{\rho}^{(k)} = \nabla \times (\mathbf{v}^{(k)} \times \rho^{(k)}). \quad (6)$$

178 For multiple slip systems, each slip system has its own dislocation evolution equation in the form
179 of Eq. (6).

180 In addition to the dislocation glide described by Eq. (6), dislocation reactions among
181 different slip systems also contribute to the dislocation density vector $\rho^{(k)}$. Therefore, additional
182 terms must be added to account for cross slip (Xia et al., 2016; Xia and El-Azab, 2015), collinear
183 annihilation and junction reactions (Lin and El-Azab, 2020) in the evolution equations. For
184 dislocation cross slip from slip system k to slip system l , the coupling term is defined as (Xia et
185 al., 2016; Xia and El-Azab, 2015)

186
$$\dot{\rho}_{cs}^{(k,l)} = i^{(k,l)} c_{cs}^{(k,l)} (\rho^{(k)} \cdot \tilde{\mathbf{e}}^{(k,l)}) \tilde{\mathbf{e}}^{(k,l)}, \quad (7)$$

187 In the above, $i^{(k,l)}$ is an indicator, which is unity when the cross slip conditions are satisfied, and
188 zero otherwise (Xia and El-Azab, 2015), $c_{cs}^{(k,l)}$ is the cross slip rate obtained by coarse graining
189 DDD data (Xia et al., 2016), and $\tilde{\mathbf{e}}^{(k,l)}$ is a unit vector along the intersection of the two cross slip
190 planes. For the two slip systems involved in cross slip, the Burgers vector is also along the
191 intersection. So $\rho^{(k)} \cdot \tilde{\mathbf{e}}$ is the screw component of the dislocation density vector. For collinear
192 annihilation between slip system k and slip system l , the coupling terms for one time step are
193 defined as (Lin and El-Azab, 2020):

194
$$\begin{aligned} \Delta\rho_{col}^{(k)} &= i_{col}^{(k,l)} \min(|\rho^{(k)} \cdot \tilde{\mathbf{e}}^{(k,l)}|, |\rho^{(l)} \cdot \tilde{\mathbf{e}}^{(k,l)}|) \operatorname{sgn}(\rho^{(k)} \cdot \tilde{\mathbf{e}}^{(k,l)}) \tilde{\mathbf{e}}^{(k,l)} \\ \Delta\rho_{col}^{(l)} &= i_{col}^{(k,l)} \min(|\rho^{(k)} \cdot \tilde{\mathbf{e}}^{(k,l)}|, |\rho^{(l)} \cdot \tilde{\mathbf{e}}^{(k,l)}|) \operatorname{sgn}(\rho^{(l)} \cdot \tilde{\mathbf{e}}^{(k,l)}) \tilde{\mathbf{e}}^{(k,l)}, \end{aligned} \quad (8)$$

195 where $i_{col}^{(k,l)}$ is an indicator function taking on the value of unity when the annihilation reaction is
196 possible and zero otherwise, and $\tilde{\mathbf{e}}^{(k,l)}$ is the unit vector along the intersection of the slip planes
197 of systems k and l (Lin and El-Azab, 2020). The sign function $\operatorname{sgn}(\cdot)$ is used to ensure that
198 $\Delta\rho_{col}^{(k)}$ or $\Delta\rho_{col}^{(l)}$ always form an acute angle with $\rho^{(k)}$ or $\rho^{(l)}$, respectively. Eq. (8) is based on the
199 idea that the rate of collinear annihilation is taken to be the maximum possible rate, fully
200 annihilating the screw component of the smaller density (Lin and El-Azab, 2020). For a glissile
201 junction reaction $\rho^{(k)} + \rho^{(l)} \rightarrow \rho^{(m)}$, the reaction rates are defined as follows (Lin and El-Azab,
202 2020),

203
$$\dot{\rho}_g^{(kl,m)} = \pm i_g^{(k,l)} c_g^{(k,l)} (\rho^{(k)} \cdot \tilde{\mathbf{e}}^{(k,l)}) (\rho^{(l)} \cdot \tilde{\mathbf{e}}^{(k,l)}) \tilde{\mathbf{e}}^{(k,l)} \quad (9)$$

204 where, again, $i_g^{(k,l)}$ is an indicator function that takes on a value of unity when the reaction
205 criterion is satisfied and zero otherwise (Lin and El-Azab, 2020). Here $c_g^{(k,l)}$ is the glissile
206 junction reaction rate, and $\tilde{\mathbf{e}}^{(k,l)}$ is a unit vector along the interaction line of the slip planes of the
207 two reacting slip systems. An energy criterion is used to ensure that $\mathbf{p}^{(k)} \cdot \tilde{\mathbf{e}}^{(k,l)}$ and $\mathbf{p}^{(l)} \cdot \tilde{\mathbf{e}}^{(k,l)}$ have
208 the same sign. When they are positive, the positive sign is chosen in Eq. (9). When they are
209 negative, the negative sign is chosen. Coupling these dislocation reactions with dislocation
210 transport, the final form controlling the evolution of dislocations in CDD is

211
$$\dot{\mathbf{p}}^{(k)} = \nabla \times (\mathbf{v}^{(k)} \times \mathbf{p}^{(k)}) - \dot{\mathbf{p}}_{cs}^{(k,l)} + \dot{\mathbf{p}}_{cs}^{(l,k)} - \dot{\mathbf{p}}_{col}^{(k)} - \dot{\mathbf{p}}_g^{(kl,m)} + \dot{\mathbf{p}}_g^{(lm,k)} \quad (10)$$

212 The last two terms in Eq. (10) should include all glissile junctions involving slip system k .

213 **3 Theoretical development of point defects generation in continuum dislocation
214 dynamics**

215 **3.1 Point defects generated by non-conservative dislocation motion**

216 There are two types of dislocation motion, conservative and non-conservative (Hirth and Lothe,
217 1982; Hull and Bacon, 2011). Conservative motion is associated with dislocation glide on the
218 plane containing both its line and Burgers vector. Motion of dislocations outside of this plane has
219 a climb component and is considered non-conservative. The latter type of motion leads to local
220 volume changes in the material, which results in point defect generation (or consumption). In this
221 regard, both vacancies and interstitials can be generated depending on the direction of the non-
222 conservative motion. For example, the formation of vacancies (consumption of interstitials)
223 occurs when edge dislocations climb to extend the extra half-plane (negative climb), while the
224 formation of interstitials (consumption of vacancies) occurs when an edge dislocation climbs to
225 shrink the extra half-plane (positive climb). The number of point defects generated during the
226 non-conservative motion of dislocations can be related to the volume change caused by that
227 motion. If a small dislocation line segment \mathbf{l} undergoes a small non-conservative displacement \mathbf{s} ,
228 the local volume change is (Hull and Bacon, 2011)

229
$$\Delta V = \mathbf{b} \cdot (\mathbf{l} \times \mathbf{s}) = \mathbf{s} \cdot (\mathbf{b} \times \mathbf{l}), \quad (11)$$

230 where \mathbf{b} is the Burgers vector of the segment. The number of generated point defects compatible
231 with this volume change is given by

$$232 \quad N = \frac{\Delta V}{\Omega} , \quad (12)$$

233 where Ω is the volume of an atom. The sign of ΔV determines the type of point defect. When
234 the Burgers vector is defined by right-hand/finish-start convention, $\mathbf{I} \times \mathbf{b}$ always points to the
235 extra half plane of the edge dislocation. Combined with the definition of negative and positive
236 climb, vacancy generation occurs when ΔV is positive and interstitial generation occurs when
237 ΔV is negative.

238 Eqs. (11) and (12) link the point defect generation to the motion of a discrete dislocation line.
239 In CDD, dislocations are represented by a dislocation density vector ρ . Point defects can be
240 measured by their concentration c_d . As such, the rate of generation of point defects due to non-
241 conservative dislocation motion can be expressed in terms of the dislocation density vector as

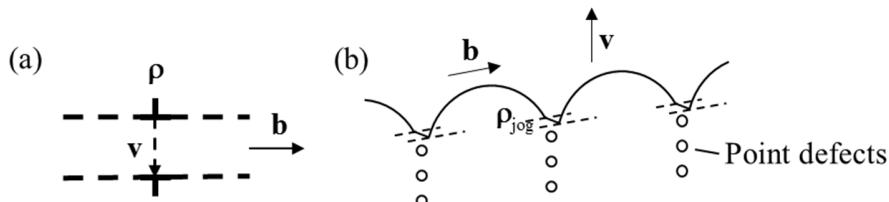
$$242 \quad \dot{c}_d = \frac{\mathbf{b} \cdot (\rho \times \mathbf{v})}{\Omega} \quad (13)$$

243 where \mathbf{v} is the dislocation velocity. Eq. (13) is valid for all dislocation characters, pure edge, pure
244 screw, or mixed. For a screw dislocation, \mathbf{b} is parallel to ρ , so Eq. (13) yields zero rate of defect
245 production, meaning the motion of pure screw dislocation is always conservative and no point
246 defects will be generated.

247 When the temperature is too low, thermally activated dislocation climb is unlikely to occur
248 (Hirth and Lothe, 1982; Hull and Bacon, 2011). However, two mechanisms of non-conservative
249 dislocation motion that may operate at any temperature (not requiring thermal activation) are the
250 edge dipole annihilation (Aslanides and Pontikis, 2000; Brinckmann et al., 2011) and jog motion
251 (Hornstra, 1962; Seeger, 1955; Seitz, 1952; Zsoldos, 1963), see Figure 1. A pair of opposite edge
252 dislocations on closely separated glide planes can approach each other, annihilate and generate
253 point defects. This process can be considered as a climb of one dislocation to the slip plane of the
254 other dislocation resulting in mutual annihilation. Another athermal deformation mechanism is
255 the movement of a jogged screw dislocation (Hornstra, 1962; Seeger, 1955; Seitz, 1952; Zsoldos,
256 1963). Jogs are steps on the dislocation line that move it from one atomic slip plane to another.
257 The jog on a screw dislocation has edge character. When a screw dislocation glides under an
258 applied stress, it drags the jogs along. Such a motion requires jog climb, which generates a point
259 defect trail behind the jog. Therefore, jogs can be considered as sources for point defects. Eq. (13)
260 is valid for both the dipole annihilation and jog drag mechanisms. The current work mainly

261 focuses on point defect generation by moving jogs. In what follows, a jog density ρ_{jog} will be
 262 introduced and used to replace ρ in Eq. (13) in order to determine the defect generation rate due
 263 to jog motion.

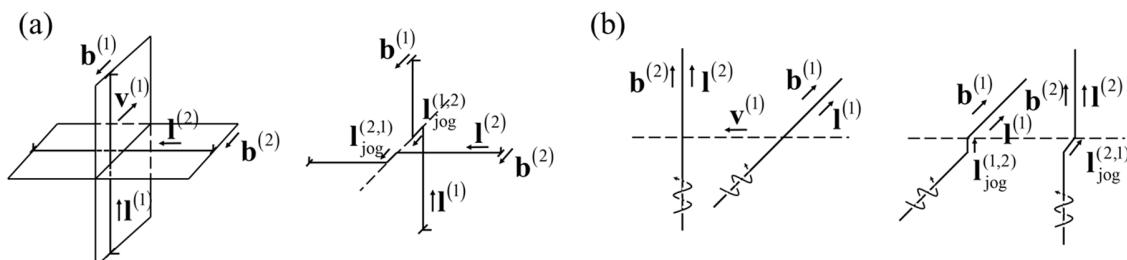
264
 265



266
 267 **Figure 1.** Two mechanisms of non-conservative dislocation motion at room temperature. (a)
 268 Annihilation of an edge dipole on closely separated glide planes. (b) Motion of a jogged screw
 269 dislocation.

270 **3.2 Joggs formed by intersection of dislocations**

271 Joggs on dislocations in deforming crystals are formed by intersections of dislocations, as shown
 272 in Figure 2. When one dislocation is cut by another dislocation a jog forms at the intersection.
 273 The jog segment is equal to the Burgers vector of the cutting dislocation. In Figure 2, a
 274 dislocation segment $\mathbf{l}^{(1)}$ moves with velocity $\mathbf{v}^{(1)}$ and a second dislocation segment $\mathbf{l}^{(2)}$ is
 275 stationary. The corresponding Burgers vectors are $\mathbf{b}^{(1)}$ and $\mathbf{b}^{(2)}$ and the arrows indicate their
 276 directions.



277
 278 **Figure 2.** Joggs formed by intersection of dislocations. (a) Intersection of edge dislocations with
 279 parallel Burgers vector. (b) Intersection of two right-handed screw dislocations.

280 From Figure 2, it is easy to see that the jog formed on each dislocation line upon dislocation
 281 intersection can be expressed as

282 $\mathbf{l}_{\text{jog}}^{(1,2)} = \mathbf{b}^{(2)}, \quad \mathbf{l}_{\text{jog}}^{(2,1)} = \mathbf{b}^{(1)}, \quad (14)$

283 where $\mathbf{l}_{\text{jog}}^{(k,l)}$ denotes the jog segment on dislocation k cut by dislocation l . Eq. (14) is valid for the
 284 case shown in Figure 2. However, there can be a negative sign in Eq. (14). Imagining a different
 285 case from Figure 2 (a) with $\mathbf{l}^{(1)}$ moving in the opposite direction, $\mathbf{l}_{\text{jog}}^{(1,2)}$ will be equal to $-\mathbf{b}^{(2)}$.
 286 Whether the jog formed is $+\mathbf{b}^{(2)}$ or $-\mathbf{b}^{(2)}$ is determined by the direction of three vectors, the line
 287 direction of the two dislocations, $\mathbf{l}^{(1)}$ and $\mathbf{l}^{(2)}$, and the relative velocity of the two dislocations,
 288 $(\mathbf{v}^{(2)} - \mathbf{v}^{(1)})$, i.e., the direction of the relative displacement. A triple vector product of these three
 289 vectors can be used to calculate the sign (Hornstra, 1962; Zsoldos, 1963). So, instead of Eq. (14),
 290 the jog segments in the general case should be

291 $\mathbf{l}_{\text{jog}}^{(k,l)} = \text{sgn}((\mathbf{v}^{(l)} - \mathbf{v}^{(k)}) \cdot (\mathbf{l}^{(k)} \times \mathbf{l}^{(l)})) \mathbf{b}^{(l)}, \quad (15)$

292 where $\text{sgn}(x)$ is the sign function, and k and l are slip system indices.

293 Eq. (15) describes the jogs formed by intersection of two dislocation lines. To incorporate
 294 this result into CDD, a continuum description of the jogs in terms of dislocation density vectors
 295 must be established. As discussed earlier, the dislocation density vector $\rho^{(k)}$ locally represents a
 296 bundle of dislocations with the same line direction. Thus when two dislocation bundles cut each
 297 other at a material point, all jog segments formed on one dislocation bundle have the same length
 298 and direction, which can be obtained by Eq. (15). Then a jog density $\rho_{\text{jog}}^{(k,l)}$ can be defined as the
 299 oriented length of the jog segments per unit volume. This jog density is given by

300 $\dot{\rho}_{\text{jog}}^{(k,l)} = \frac{N_{\text{jog}}^{(k,l)}}{V\Delta t} \mathbf{l}_{\text{jog}}^{(k,l)} \quad (16)$

301 with $N_{\text{jog}}^{(k,l)}$ being the number of jogs formed on slip system k by slip system l in a control volume
 302 V during time Δt . We now explain this formula and fix $N_{\text{jog}}^{(k,l)}$ in terms of $\rho^{(k)}$ and $\rho^{(l)}$.
 303 Consider a control volume element V as shown in Figure 3(a), with the x -axis taken along the
 304 dislocation density vector $\rho^{(1)}$ and corresponding edge of l_x , y -axis along $\rho^{(2)}$ and corresponding
 305 edge of l_y , and the z -axis along the relative velocity $(\mathbf{v}^{(2)} - \mathbf{v}^{(1)})$ with the corresponding edge l_z .
 306 The volume V of this control volume is the magnitude of the triple product of the three vectors
 307 forming its edges,

308
$$V = |l_z \frac{(\mathbf{v}^{(2)} - \mathbf{v}^{(1)})}{\|\mathbf{v}^{(2)} - \mathbf{v}^{(1)}\|} \cdot l_x \frac{\mathbf{p}^{(1)}}{\|\mathbf{p}^{(1)}\|} \times l_y \frac{\mathbf{p}^{(2)}}{\|\mathbf{p}^{(2)}\|}| = l_x l_y l_z \frac{|(\mathbf{v}^{(2)} - \mathbf{v}^{(1)}) \cdot (\mathbf{p}^{(1)} \times \mathbf{p}^{(2)})|}{\|\mathbf{v}^{(2)} - \mathbf{v}^{(1)}\| \cdot \|\mathbf{p}^{(1)}\| \cdot \|\mathbf{p}^{(2)}\|}. \quad (17)$$

309 In Figure 3(b) and Figure 3(c), the red and green arrows represent the two intersecting
310 dislocation bundles. By the definition of dislocation density, the number of dislocations in the
311 bundles can be calculated as

312
$$N^{(1)} = \frac{\|\mathbf{p}^{(1)}\| V}{l_x}, \quad N^{(2)} = \frac{\|\mathbf{p}^{(2)}\| V}{l_y} \quad (18)$$

313 For a given time increment, Δt , the displacement of $\mathbf{p}^{(2)}$ relative to $\mathbf{p}^{(1)}$ is $(\mathbf{v}^{(2)} - \mathbf{v}^{(1)})\Delta t$. Here
314 we assume that the dislocations are uniformly distributed in this small control volume. Each
315 dislocation in the $\mathbf{p}^{(2)}$ field will then intersect with $N^{(1)} \frac{\|\mathbf{v}^{(2)} - \mathbf{v}^{(1)}\| \Delta t}{l_z}$ dislocations in the $\mathbf{p}^{(1)}$

316 field, so the total number of jogs formed on $\mathbf{p}^{(1)}$ will be

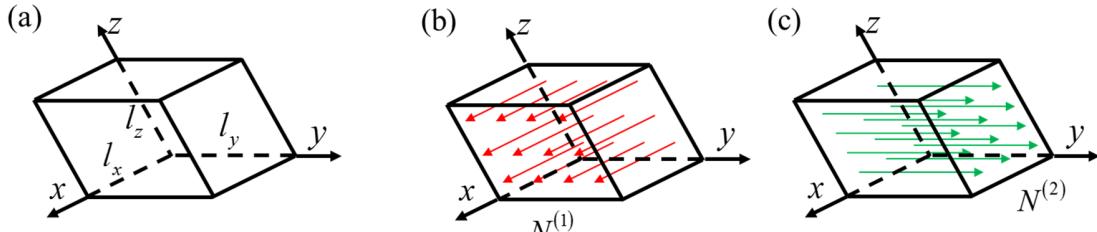
317
$$N_{\text{jog}}^{(1,2)} = N^{(1)} N^{(2)} \frac{\|\mathbf{v}^{(2)} - \mathbf{v}^{(1)}\| \Delta t}{l_z} = \frac{V^2 \Delta t}{l_x l_y l_z} \|\mathbf{v}^{(2)} - \mathbf{v}^{(1)}\| \cdot \|\mathbf{p}^{(1)}\| \cdot \|\mathbf{p}^{(2)}\|. \quad (19)$$

318 By substituting Eqs. (15), (17) and (19) into Eq. (16), and replacing 1 and 2 by k and l , we reach

319
$$\dot{\mathbf{p}}_{\text{jog}}^{(k,l)} = (\mathbf{v}^{(l)} - \mathbf{v}^{(k)}) \cdot (\mathbf{p}^{(k)} \times \mathbf{p}^{(l)}) \mathbf{b}^{(l)}, \quad (20)$$

320 which is the continuum rate form for jog formation of the density $\mathbf{p}^{(k)}$ by intersection with the
321 density $\mathbf{p}^{(l)}$ that is compatible with the CDD formulation.

322



323
324 Figure 3. (a) Representative volume used to calculate the number of jogs at a material point. The
325 axes are along the unit vectors $\mathbf{e}_x = \mathbf{p}^{(1)} / \|\mathbf{p}^{(1)}\|$, $\mathbf{e}_y = \mathbf{p}^{(2)} / \|\mathbf{p}^{(2)}\|$ and
326 $\mathbf{e}_z = (\mathbf{v}^{(2)} - \mathbf{v}^{(1)}) / \|\mathbf{v}^{(2)} - \mathbf{v}^{(1)}\|$. (b) Number of dislocation lines in dislocation bundle $\mathbf{p}^{(1)}$ is $N^{(1)}$;
327 (c) Number of dislocation lines in dislocation bundle $\mathbf{p}^{(2)}$ is $N^{(2)}$.

328 [3.3 Transport equations for jog densities](#)

329 As discussed in Section 3.1, the non-conservative motion of jogs leads to point defect generation
 330 at a rate proportional to the instantaneous density of jogs. As such, establishing the evolution
 331 equations of jog density is important to connecting plastic deformation and point defect
 332 generation. Generally speaking, as jogs are small steps (only a Burgers vector height) on the
 333 dislocation line, the jog density $\rho_{\text{jog}}^{(k,l)}$ is significantly smaller than the glide dislocation density
 334 $\rho^{(k)}$. Therefore, although the existence of jogs may change the average direction of the
 335 dislocation lines, the jogs are treated as “particles” tied to the parent dislocations and the
 336 dislocations are assumed to remain smooth and planar as far as glide motion is concerned. The
 337 concentration of a certain type of jog $c_{\text{jog}}^{(k,l)}$ can be defined as the number of jogs per volume,
 338 which is defined by the relation $\rho_{\text{jog}}^{(k,l)} = c_{\text{jog}}^{(k,l)} \mathbf{b}^{(l)}$. If jog migration along the dislocation line is
 339 ignored, jogs will move with the same velocity as dislocations. That is, all type of jogs $c_{\text{jog}}^{(k,l)}$ on
 340 dislocation $\rho^{(k)}$ have velocity $\mathbf{v}^{(k)}$ of the line. Hence the evolution of the jog concentration $c_{\text{jog}}^{(k,l)}$
 341 follows the transport equation

342
$$\dot{c}_{\text{jog}}^{(k,l)} + \nabla \cdot (c_{\text{jog}}^{(k,l)} \mathbf{v}^{(k)}) = (\mathbf{v}^{(l)} - \mathbf{v}^{(k)}) \cdot (\rho^{(k)} \times \rho^{(l)}) \quad (21)$$

343 The right hand side of Eq. (21) is a source term for jogs, see Eq. (20). The point defect
 344 generation rate is the sum over all jogs from Eq. (13),

345
$$\dot{c}_d = \sum_k \sum_l \frac{\mathbf{b}^{(k)} \cdot (\rho_{\text{jog}}^{(k,l)} \times \mathbf{v}^{(k)})}{\Omega} = \sum_k \frac{\mathbf{b}^{(k)} \cdot (\sum_l \rho_{\text{jog}}^{(k,l)} \times \mathbf{v}^{(k)})}{\Omega} \quad (22)$$

346 It can be seen from Eq. (22) that the evolution of each type of jog is not necessarily needed to
 347 calculate the point defect generation rate. What matters is the sum of the jog densities on a
 348 specific dislocation since they all have the same velocity and Burgers vector. This approximation
 349 takes the vector sum of the jogs on a dislocation line, which is valid at small resolution, and is
 350 indeed the case for our CDD model. We now define $\rho_{\text{jog}}^{(k)} = \sum_l \rho_{\text{jog}}^{(k,l)}$ to be the vector jog density
 351 on dislocations belonging to slip system k . The evolution equations of $\rho_{\text{jog}}^{(k)}$ can be derived using
 352 the definition $\rho_{\text{jog}}^{(k,l)} = c_{\text{jog}}^{(k,l)} \mathbf{b}^{(l)}$ and Eq. (21),

353
$$\dot{\rho}_{\text{jog}}^{(k)} + \nabla \cdot (\mathbf{v}^{(k)} \otimes \rho_{\text{jog}}^{(k)}) = \sum_l (\mathbf{v}^{(l)} - \mathbf{v}^{(k)}) \cdot (\rho^{(k)} \times \rho^{(l)}) \mathbf{b}^{(l)} \quad (23)$$

354 Then the point defect generation rate can be written in terms of $\rho_{\text{jog}}^{(k)}$ as

355

$$\dot{c}_d = \frac{1}{\Omega} \sum_k \mathbf{b}^{(k)} \cdot (\rho_{\text{jog}}^{(k)} \times \mathbf{v}^{(k)}) \quad (24)$$

356 Eqs. (23) and (24), respectively, describe the jog density evolution and the rate of point defect
357 generation by jogs on dislocation lines during plastic deformation.

358 **3.4 Point defect balance equations**

359 Vacancies and interstitials can be lost either through recombination or by reaction with a defect
360 sink such as a dislocation, a grain boundary, or a precipitate. The local change in defect
361 concentration of the defect species is the net result of the local production rate, reactions with
362 other species, and diffusion. In our model, the source for point defect production is the non-
363 conservative motion of dislocation jogs as described by Eq. (24). In the current model, and for
364 the sake of an initial implementation, only recombination of vacancies and interstitials is
365 considered besides generation by jogs and diffusion. The recombination rate is given by (Was,
366 2016)

367

$$\dot{c}_v = \dot{c}_i = -K_{\text{iv}} c_i c_v \quad (25)$$

368 where K_{iv} is vacancy-interstitial recombination rate constant, which is given in terms of the
369 diffusivities of vacancies and interstitials as follows:

370

$$K_{\text{iv}} = 4\pi r_{\text{iv}} (D_i + D_v) \approx 4\pi r_{\text{iv}} D_i, \quad (26)$$

371 with D_i and D_v being the diffusivities of interstitials and vacancies, respectively. r_{iv} is the
372 interaction radius. The random walk of defects in the lattice give rise to diffusive fluxes for
373 vacancies, \mathbf{J}_v , and interstitial, \mathbf{J}_i , which are expressed in terms of the concentration and
374 pressure gradients in the form

375

$$\mathbf{J}_v = -D_v (\nabla c_v - \frac{c_v \Delta \Omega_v \nabla p}{k_B T}) \quad \text{and} \quad \mathbf{J}_i = -D_i (\nabla c_i - \frac{c_i \Delta \Omega_i \nabla p}{k_B T}) \quad (27)$$

376 where the pressure $p = -\sigma_{ii}/3$, with σ_{ii} being the trace of the stress tensor. Combining the
377 point defect source from jog motion, Eq. (24), and recombination of vacancies and interstitials
378 Eq. (25), the balance equations for vacancies and interstitials are obtained,

379

$$\begin{aligned}\dot{c}_v &= \nabla \cdot (D_v \nabla c_v - \frac{D_v c_v \Delta \Omega_v \nabla p}{k_B T}) + \dot{c}_{v,s} - k_{iv} c_i c_v, \\ \dot{c}_i &= \nabla \cdot (D_i \nabla c_i - \frac{D_i c_i \Delta \Omega_i \nabla p}{k_B T}) + \dot{c}_{i,s} - k_{iv} c_i c_v.\end{aligned}\quad (28)$$

380 In the above equations, $\dot{c}_{v,s}$ and $\dot{c}_{i,s}$ are the generation rates of vacancies and interstitials by jogs.
 381 It is to be noted that, at any given point in space, jogs can either generate vacancies or
 382 interstitials but not both.

383 **4 Coupling dislocation dynamics and mechanics**

384 **4.1 Stress field stemming from lattice defects system**

385 For a crystal with lattice defects, the stress field includes contributions due to the boundary
 386 conditions and the internal defects fields. In order to determine the stress state, the kinematics of
 387 crystal deformation in terms of defect contributions first is fixed. The crystal distortion β is
 388 related to the displacement field \mathbf{u} by

389
$$\beta = \nabla \mathbf{u} . \quad (29)$$

390 This distortion is decomposed into four parts (Po and Ghoniem, 2014),

391
$$\beta = \beta^e + \beta^d + \beta^v + \beta^i \quad (30)$$

392 where β^e is elastic distortion and β^d , β^v , and β^i are the inelastic distortions induced by
 393 dislocations, vacancies, and interstitials, respectively. The dislocation distortion β^d is updated by
 394 the method of field dislocation mechanics (Acharya and Roy, 2006; Roy and Acharya, 2006)
 395 where it is expressed in the form $\beta^d = \nabla \mathbf{z} - \chi$, with $\nabla \mathbf{z}$ and χ being the compatible and
 396 incompatible parts of β^d , respectively. These two components of the plastic distortion are
 397 governed by the following boundary value problems:

398

$$\begin{cases} \nabla \times \chi = \sum_k \rho^{(k)} \otimes \mathbf{b}^{(k)} & \text{in } V \\ \nabla \cdot \chi = 0 & \text{in } V \\ \mathbf{n} \cdot \chi = 0 & \text{on } \partial V \end{cases} \quad (31)$$

399 and,

400

$$\begin{cases} \nabla \cdot \nabla \dot{\mathbf{z}} = \nabla \cdot \sum_k (-\mathbf{v}^{(k)} \times \boldsymbol{\rho}^{(k)} \otimes \mathbf{b}^{(k)}) & \text{in } V \\ \mathbf{n} \cdot \nabla \dot{\mathbf{z}} = \mathbf{n} \cdot \sum_k (-\mathbf{v}^{(k)} \times \boldsymbol{\rho}^{(k)} \otimes \mathbf{b}^{(k)}) & \text{on } \partial V \\ \dot{\mathbf{z}} = \dot{\mathbf{z}}_o \text{ (arbitrary value) at one point in } V \end{cases} \quad (32)$$

401 Here, V is the simulation domain with boundary ∂V . It has been shown that updating $\boldsymbol{\beta}^d$ by
 402 field dislocation mechanics is more accurate than directly integrating Orowan's equation (Lin et
 403 al., 2021). To calculate the eigen-distortions due to vacancies and interstitials, point defects are
 404 considered as spherical inclusions in the crystal (Cai et al., 2014), that is, inserting defects into
 405 the lattice results in volumetric expansion or contraction. Suppose the volume of the crystal
 406 increases by $\Delta\Omega_i$ due to one interstitial, the eigen-distortion field of interstitials can be related to
 407 its volume concentration by (Hull and Bacon, 2011; Po and Ghoniem, 2014)

408

$$\boldsymbol{\beta}^i = \frac{1}{3} c_i \Delta\Omega_i \mathbf{I}, \quad (33)$$

409 where c_i is the volumetric concentration of interstitials. Similarly, if the volume changes by $\Delta\Omega_v$
 410 due to one vacancy, the corresponding eigen-distortion is given by

411

$$\boldsymbol{\beta}^v = \frac{1}{3} c_v \Delta\Omega_v \mathbf{I}, \quad (34)$$

412 where c_v is the volume concentration of vacancies. It should be pointed out that $\Delta\Omega_v$ is negative
 413 for vacancy.

414 With all eigen-distortions known in terms of the corresponding densities of defects, the stress
 415 field $\boldsymbol{\sigma}$ can be calculated by a standard Cauchy equilibrium equation,

416

$$\begin{cases} \nabla \cdot \boldsymbol{\sigma} = \mathbf{0} & \text{in } V \\ \boldsymbol{\sigma} = \mathbf{C} : (\nabla \mathbf{u} - \boldsymbol{\beta}^d - \boldsymbol{\beta}^v - \boldsymbol{\beta}^i)_{\text{sym}} & \text{in } V \\ \mathbf{u} = \bar{\mathbf{u}} & \text{on } \partial V_u \\ \mathbf{n} \cdot \boldsymbol{\sigma} = \bar{\mathbf{t}} & \text{on } \partial V_\sigma \end{cases} \quad (35)$$

417 where ∂V_u and ∂V_σ are the parts of the boundaries corresponding to displacement and traction
 418 constraints, respectively, and \mathbf{C} is the elastic stiffness tensor. By solving Eq. (35), the stress field
 419 combining both boundary conditions and defect effects can be found and used to calculate the
 420 velocity of dislocations and the pressure gradient terms in the diffusion equations.

421 [4.2 Dislocation mobility law and jog drag](#)

422 The dislocation velocity is required to close the dislocation transport-reaction equations (10), the
 423 jog transport equations (23), and the point defect generation rate expression (24). The dislocation
 424 velocity $\mathbf{v}^{(k)}$ is expressed in the form

425
$$\mathbf{v}^{(k)} = v^{(k)} \boldsymbol{\eta}^{(k)} \quad (36)$$

426 with $v^{(k)}$ being the scalar velocity and $\boldsymbol{\eta}^{(k)}$ a unit vector in the direction of dislocation motion,
 427 which is determined in terms of the slip plane normal $\mathbf{m}^{(k)}$ and the dislocation line direction
 428 $\boldsymbol{\xi}^{(k)} = \mathbf{p}^{(k)} / \rho^{(k)}$ by the following expression

429
$$\boldsymbol{\eta}^{(k)} = \mathbf{m}^{(k)} \times \boldsymbol{\xi}^{(k)}. \quad (37)$$

430 The scalar velocity $v^{(k)}$ is assumed to depend linearly on the resolved shear, $\tau^{(k)}$,

431
$$v^{(k)} = \text{sgn}(\tau^{(k)}) \frac{b}{B} [|\tau^{(k)}| - (\tau_0^{(k)} + \tau_p^{(k)} + \tau_{\text{jd}}^{(k)})] \quad (38)$$

432 where $\text{sgn}(\cdot)$ is the sign function, b is the magnitude of Burgers vector, B is the drag coefficient,
 433 and $\tau_0^{(k)}$, $\tau_p^{(k)}$ and $\tau_{\text{jd}}^{(k)}$, respectively, are contributions to the friction stress discussed below. In
 434 the above expression, $b\tau^{(k)}$ corresponds to the magnitude of the Peach-Koehler force (Peach and
 435 Koehler, 1950), and the resolved shear stress itself is given by

436
$$\tau^{(k)} = \mathbf{s}^{(k)} \cdot \boldsymbol{\sigma} \cdot \mathbf{m}^{(k)} \quad (39)$$

437 where $\mathbf{s}^{(k)} = \mathbf{b}^{(k)} / b$ is the unit slip direction. The resolved shear stress accounts for the long-
 438 range interactions between dislocations and the dislocation-defect interaction, as well as the
 439 boundary effects.

440 The friction stress $\tau_0^{(k)}$ is the threshold stress for dislocation motion (Hirth and Lothe, 1982;
 441 Hull and Bacon, 2011), while $\tau_p^{(k)}$ is the resistance caused by short-range interactions with
 442 dislocation junctions (Deng and El-Azab, 2010; El-Azab, 2000a; Hochrainer, 2016; Sandfeld
 443 and Zaiser, 2015). This stress is assumed here to take the form of a Taylor hardening law of the
 444 form (Devincre et al., 2006; Franciosi et al., 1980; Kubin et al., 2008):

445
$$\tau_p^{(k)} = \mu b \sqrt{a^{kl} \rho^{(l)}} \quad (40)$$

446 with μ being the shear modulus and a^{kl} an interaction matrix representing the average strength
 447 of the mutual interactions between slip systems k and l . The number of distinct interaction

448 coefficients between 12 mutually interacting slip systems in a FCC crystal is reduced to only six
 449 due to symmetry. These are the self, coplanar, and collinear interactions and glissile, Lomer, and
 450 Hirth junction (Devincre et al., 2006; Kubin et al., 2008; Madec, 2003). Finally, $\tau_{\text{jd}}^{(k)}$ is the drag
 451 stress due to jogs on dislocations. The work done against this drag stress corresponds to the
 452 energy used to produce point defects during jog motion. The point defect generation rate is
 453 shown in Eq. (24), so the rate of energy used in the process by jogs on dislocations on a given
 454 slip system can be easily obtained as

455
$$\dot{E}^{(k)} = \frac{E_{\text{d}}}{\Omega} |\mathbf{b}^{(k)} \cdot (\mathbf{p}_{\text{jog}}^{(k)} \times \mathbf{v}^{(k)})| \quad (41)$$

456 where E_{d} is the point defect formation energy, and the defect itself can be either vacancy or
 457 interstitial based on the sign of $\mathbf{b}^{(k)} \cdot (\mathbf{p}_{\text{jog}}^{(k)} \times \mathbf{v}^{(k)})$. The rate of work done against the jog drag
 458 stress $\tau_{\text{jd}}^{(k)}$ is (Hirth and Lothe, 1982; Hull and Bacon, 2011)

459
$$\dot{W}^{(k)} = \tau_{\text{jd}}^{(k)} b^{(k)} \rho^{(k)} v^{(k)}. \quad (42)$$

460 By equating $\dot{E}^{(k)}$ with $\dot{W}^{(k)}$ from the last two expressions, the jog drag stress is found to have the
 461 form

462
$$\tau_{\text{jd}}^{(k)} = \frac{E_{\text{d}}}{\Omega} \cdot \left| \frac{\mathbf{b}^{(k)}}{b} \cdot \frac{\mathbf{p}_{\text{jog}}^{(k)}}{\rho^{(k)}} \times \frac{\mathbf{v}^{(k)}}{v^{(k)}} \right|. \quad (43)$$

463 Substituting Eqs. (36) and (37) into Eq. (43), leads to the following final form of the jog drag
 464 stress

465
$$\tau_{\text{jd}}^{(k)} = \frac{E_{\text{d}}}{(\rho^{(k)})^2 \Omega} \cdot \left| \mathbf{s}^{(k)} \cdot (\mathbf{p}_{\text{jog}}^{(k)} \times (\mathbf{m}^{(k)} \times \mathbf{p}^{(k)})) \right|. \quad (44)$$

466 As mentioned earlier, a jog can either generate vacancies or interstitials based upon its character
 467 and direction of motion. However, the formation energy of an interstitial is larger than the
 468 formation energy of a vacancy. As such, for the same dislocation speed, a jog generating
 469 interstitials will move slower and generate less interstitials than one generating vacancies.

470 5 Numerical implementation

471 The finite element method (FEM) is used to solve coupled crystal mechanics, dislocation
 472 transport, jog transport, and point defect diffusion problems. The standard Galerkin finite
 473 element method (SGFEM) (Belytschko et al., 2013) and the least squares finite element method

474 (LSFEM) (Jiang, 2013) were both used in solving the coupled problem. The compatible part of
475 plastic distortion of dislocations, stress equilibrium, and point defect diffusion problems was
476 solved by the SGFEM method. The incompatible part of the plastic distortion of dislocations,
477 dislocation transport, and the jog transport equations problems was solved by the LSFEM
478 method, which yields stable and accurate solution for the div-curl type and convective transport
479 equations (Jiang, 2013; Varadhan et al., 2006). Details of the numerical formulations can be
480 found in our earlier work (Lin et al., 2021; Lin and El-Azab, 2020; Xia and El-Azab, 2015).

481 At a given time step, the dislocation density and point defect concentrations from the
482 previous time step are used to update the eigen-distortions of these fields. The stress field is then
483 computed, from which the dislocation velocity follows. The mobility law is employed in which
484 the resolved shear stress from the stress field and the jog drag stress are used. Then the evolution
485 of dislocation densities is computed. The intersection of the dislocation densities on various slip
486 systems are considered as source terms for the jog evolution equations. The non-conservative
487 motion of dislocation jogs is calculated to generate point defects, which is then used to solve the
488 diffusion equations of point defects. As all the variables are updated, the simulation proceeds to a
489 new time step.

490 The mesh for the FEM is a hybrid mesh with pyramid and tetrahedron elements (Xia and El-
491 Azab, 2015). This mesh enables us to obtain accurate results of dislocation transport in FCC
492 crystals, since the slip planes can be represented by the faces of the finite elements exactly. The
493 time step Δt is adapted using the maximum dislocation velocity, v_{\max} , over the simulation
494 domain as follows

$$495 \quad \frac{v_{\max} \Delta t}{l_{\text{mesh}}} = C. \quad (45)$$

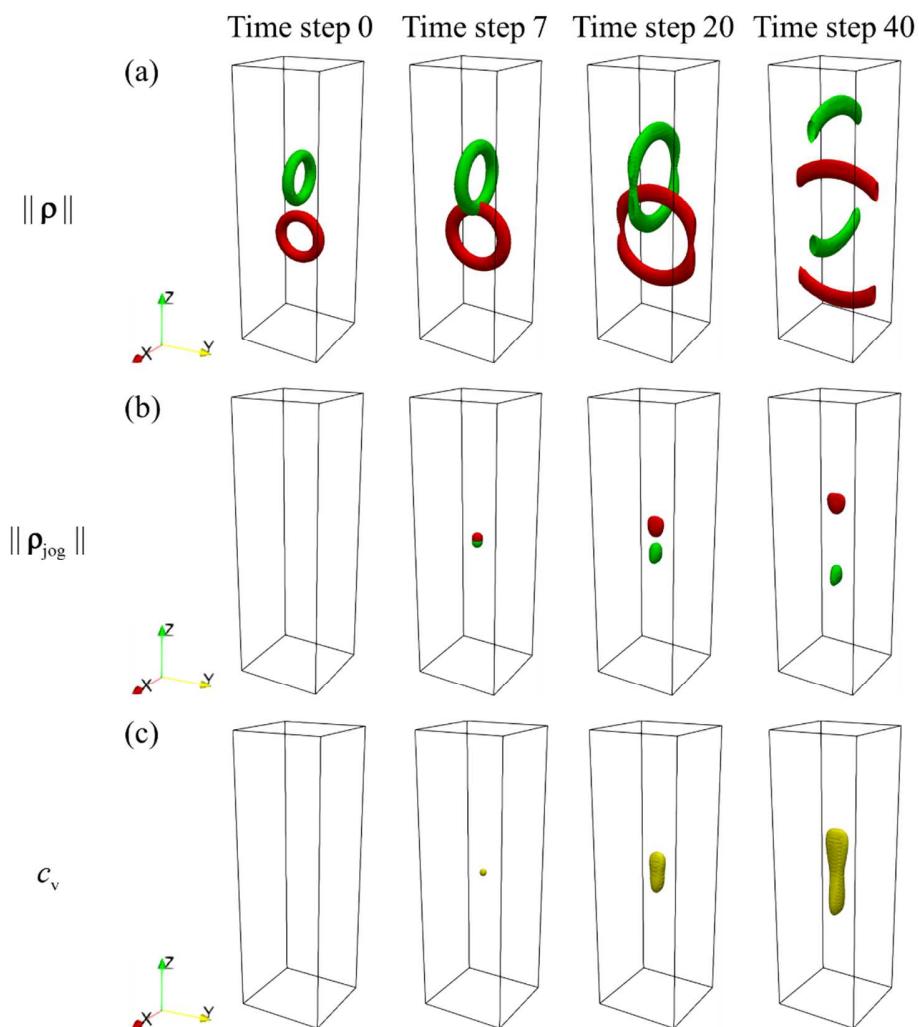
496 with l_{mesh} being the mesh size and C the Courant number, which is taken here to be 0.45.

497 **6 Results and discussion**

498 To verify the coupled model established in the previous sections, simple test simulations were
499 performed, which illustrate how point defects are generated by jogs on moving dislocations.
500 Bulk simulations of a FCC crystal under uniaxial loading were then performed to elucidate the
501 differences in the mechanical behavior of the crystal when jog drag and the point defect
502 generation mechanism is taken into consideration.

503 [6.1 Jogs and vacancies generated by two intersecting dislocation loop bundles](#)

504 Initially, there are two dislocation bundles in the form of loops, which we will call loops for
505 brevity, placed on two different slip planes in a $2\mu\text{m} \times 2\mu\text{m} \times 6.364\mu\text{m}$ simulation volume, as
506 shown in Figure 4. Over a cross section of the loop the density exhibits a gaussian distribution in
507 the radial direction in the slip plane and in the direction normal to the slip plane. The red loop is
508 on a slip plane with normal along the x -axis and with Burgers vector along the y -axis, while the
509 green loop is on a slip plane with normal along the y -axis and with Burgers vector along the x -
510 axis. In this test, the slip systems do not coincide with those of a FCC crystal. They are rather
511 chosen to make the analysis easier in this test problem. The dislocation velocity for both loops is
512 assigned a constant value of $0.03\mu\text{m/ns}$ such that they expand to intersect each other. Periodic
513 boundary conditions are also employed.



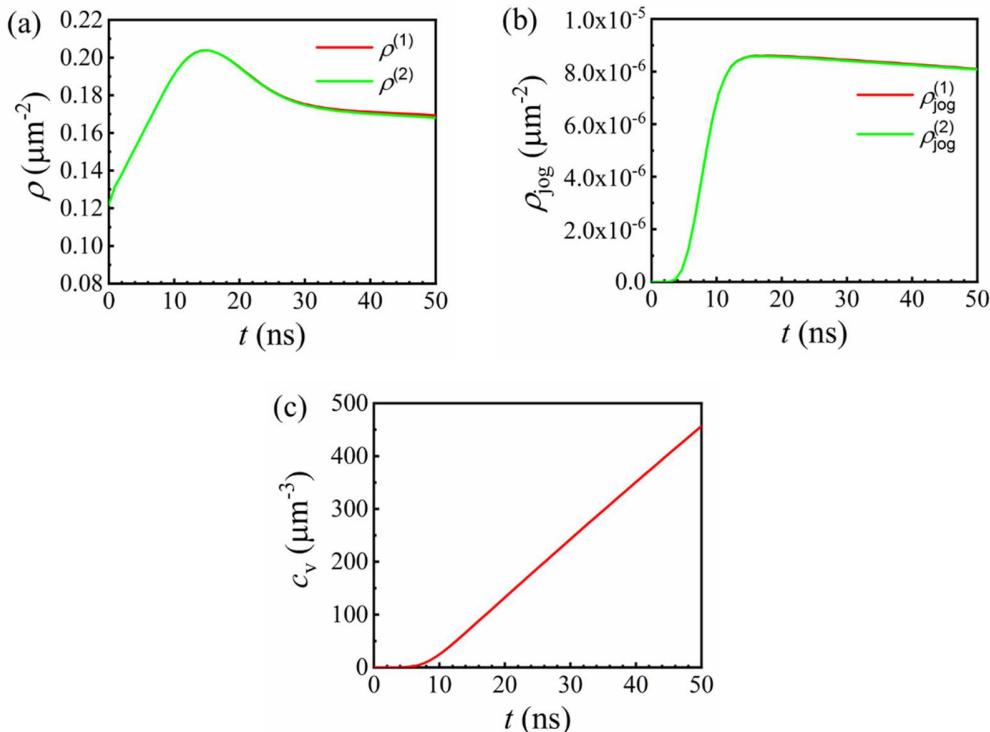
515 **Figure 4. Evolution of (a) dislocation densities, (b) jog densities and (c) vacancy concentration as**
516 **two dislocation loop bundles expanding and intersecting with each other. Contour surfaces are used**
517 **in these figures to show the results in 3D.**

518 Figure 4 shows the evolution of the dislocation density, jog density, and point defect
519 concentration. Before the two loops intersected with each other there were no jogs and no
520 vacancies in the domain. At the onset of intersection, jogs start to form at the places where the
521 two loops intersect. As more of the bundles intersect, the region with jogs becomes larger. After
522 the two dislocation loops pass each other, no more jogs form and the existing jogs move together
523 with the corresponding dislocations. In Figure 4 (a) and (b), the same color is used for
524 dislocations and jogs on the same slip system. The intersecting parts of the two dislocation
525 bundles have screw character, and the jogs on them have edge character. The motion of screw
526 dislocations with jogs having edge character will result in point defect generation during slip
527 (Hull and Bacon, 2011). As can be seen in Figure 4 (c), vacancies start to form after the presence
528 of jogs. As the jogs move, trails of vacancies are generated behind them. Similar results have
529 been reported for MD simulations (Zhou et al., 1999).

530 In the above test, the dislocation density vectors of the intersecting parts are $\rho^{(1)} = (0, \rho^{(1)}, 0)$
531 and $\rho^{(2)} = (-\rho^{(2)}, 0, 0)$ and the corresponding dislocation velocity vectors are $\mathbf{v}^{(1)} = (0, 0, v)$ and
532 $\mathbf{v}^{(2)} = (0, 0, -v)$. The Burgers vectors are $\mathbf{b}^{(1)} = (0, b, 0)$ and $\mathbf{b}^{(2)} = (b, 0, 0)$. According to Eq. (20),
533 the jogs generated during a time increment Δt are $\Delta \rho_{\text{jog}}^{(1)} = (-2vb\rho^{(1)}\rho^{(2)}\Delta t, 0, 0)$ and
534 $\Delta \rho_{\text{jog}}^{(2)} = (0, -2vb\rho^{(1)}\rho^{(2)}\Delta t, 0)$. Based on Eq. (24), both $\mathbf{b}^{(1)} \cdot (\rho_{\text{jog}}^{(1)} \times \mathbf{v}^{(1)})$ and $\mathbf{b}^{(2)} \cdot (\rho_{\text{jog}}^{(2)} \times \mathbf{v}^{(2)})$ have
535 positive sign and so all jogs produce vacancies. A similar analysis shows that changing the
536 direction of only one of the dislocation loops makes the jogs on both loops produce interstitials.

537 Figure 5 shows the evolution of the average dislocation density, jog density and vacancy
538 concentration in the domain. Dislocation density increases initially due to the expansion of the
539 loops. Then it decreases because the loops reach the periodic boundaries and self-annihilate with
540 their images. The initial values of jog densities are zero, and they start to increase at about $t = 4$
541 ns when the two dislocation loops first begin to intersect. The jog densities continue to increase
542 until $t = 16$ ns when the two dislocation loops completely pass each other. Then the jog densities
543 remain nearly constant as the separated jogs only move in space. The small decrease in jog
544 density is attributed to numerical diffusion. The evolution of the dislocation and jog densities is

545 identical because of the identical initial conditions and speeds on both slip systems. The vacancy
 546 concentration increases after jogs are formed. When no more jogs are formed and the separated
 547 jogs move with a constant velocity, the vacancy concentration increases linearly over time.



548
 549

Figure 5. Average dislocation density, jog density and vacancy concentration as functions of time.

550 6.2 Evolution of expanding dislocation loop with jogs

551 A simple test problem is solved in this section to show the effect of the drag stress due to jogs on
 552 the evolution of a dislocation loop. This problem involves a dislocation loop with a radius of
 553 1 μm placed at the center of the simulation volume, as shown in Figure 6. The size of the
 554 simulation volume is 5 μm \times 5 μm \times 5.303 μm , with edges along [110], [110] and [001]
 555 crystallographic directions. The dislocation loop is on the (111) slip plane with its Burgers
 556 vector along the [110] direction. Initial jogs are assigned to the screw sides of the dislocation
 557 loop, and the jog density corresponds to cutting the dislocation loop by dislocation lines on slip
 558 plane (111) with Burgers vector [110] (along x-axis), as shown in Figure 6(b). The jog density
 559 vector $\mathbf{p}_{\text{jog}} = (\rho_{\text{jog}}, 0, 0)$ has only one nonzero component, whose magnitude is proportional to the
 560 dislocation density described by Gaussian distribution around the screw parts of the dislocation

561 loop with a scale factor of 5×10^{-4} . Material parameters are shown in Table 1 and Table 2. These
 562 parameters correspond to stainless steel (Ghoniem and Cho, 1979; Surh et al., 2004).
 563

Young's modulus (GPa)	189	Burgers vector b (nm)	0.254
Poisson's ratio	0.26	Drag coefficient (Pa.s)	7.12×10^{-6}

564 **Table 1. Material properties.**

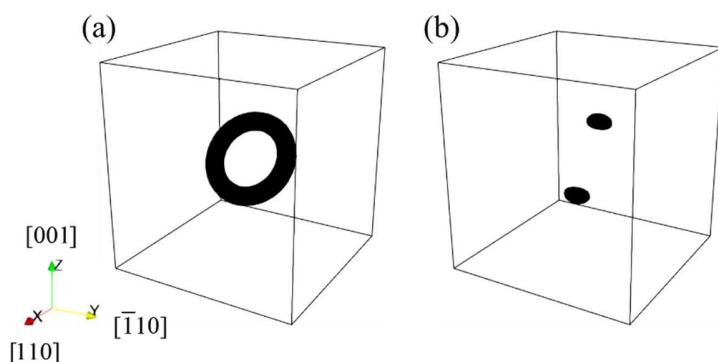
565

Vacancy formation energy (eV)	1.60	Relaxation volume of a vacancy	-0.2Ω
Interstitial formation energy (eV)	4.08	Relaxation volume of an interstitial	1.5Ω
Atom volume Ω (m ³)	1.18×10^{-29}		

566 **Table 2. Parameters for point defect generation.**

567

568

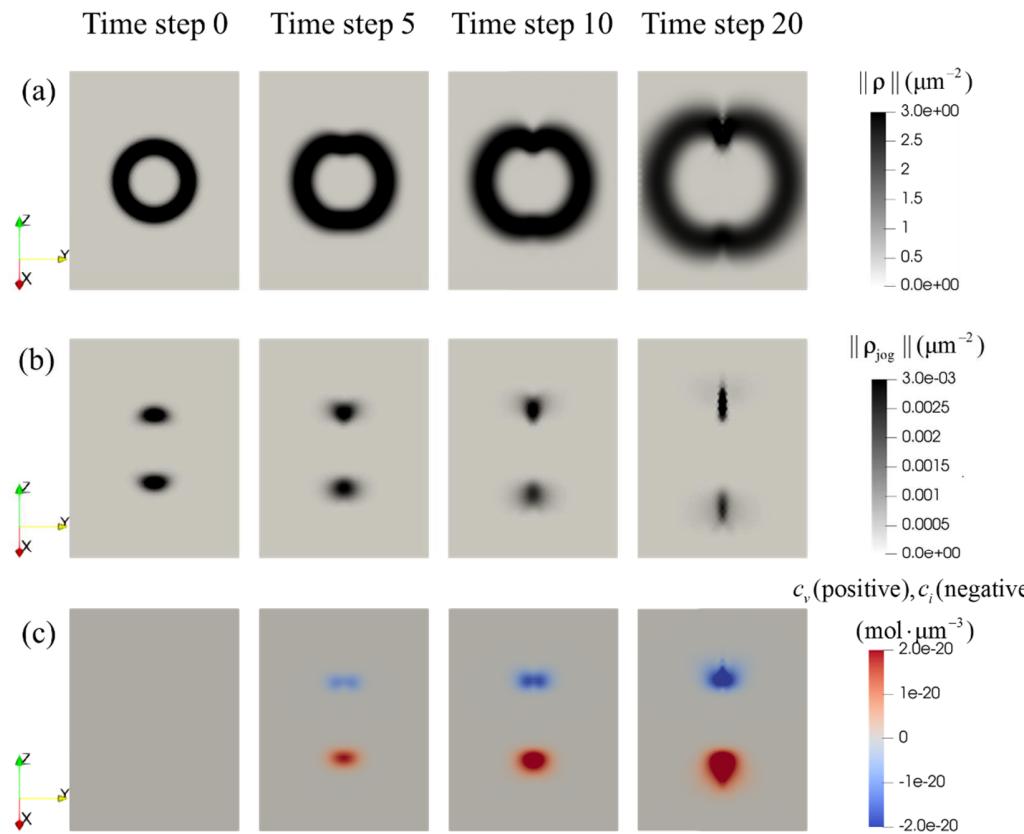


569
 570 **Figure 6. (a) A dislocation loop is placed on (111) plane with Burgers vector along [1-10] direction.**
 571 **(b) Jog density is assigned on the screw part of the dislocation loop.**

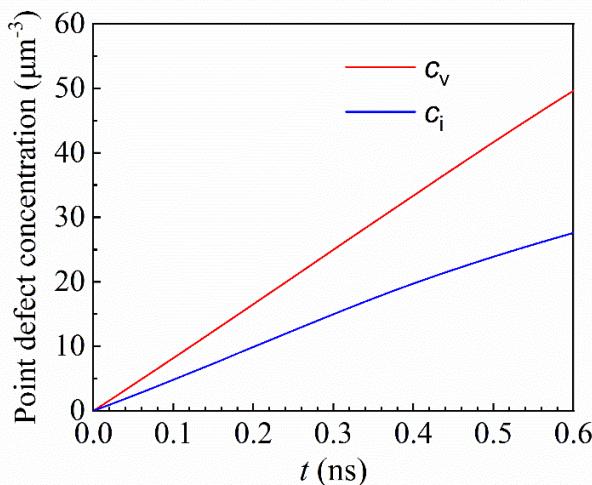
572 An external load is applied to make the loop expand. The external load results in a resolved
573 shear stress of 50 MPa on the dislocation loop. It is obvious that if there were no jogs, the
574 dislocation loop would retain its initial circular shape during its expansion. However, by
575 considering jog drag and point defect generation, the dislocation loop was found to evolve quite
576 differently. This difference is shown below in Figure 7. As can be seen in the figure, the
577 dislocation velocity is reduced where the jogs exist. The behavior is similar to that of a
578 dislocation pinned by an obstacle; the dislocation line bows out near the parts where there are
579 jogs. From the evolution of the jog density, it can be seen that the distance between upper and
580 lower parts increases as the dislocation loop expands, since the jogs are tied to the dislocation
581 line. Also, the region in which the jog density is non-trivial becomes thinner as the dislocation
582 line continues to bow out.

583 The motion of the jog density is non-conservative and so, according to Eq. (24), point defects
584 are produced in conjunction with the jog motion. Since the dislocation velocities are opposite at
585 the upper and lower parts of the dislocation loop, the upper part generates interstitials and the
586 lower part generates vacancies. As the region of jog density becomes thinner during loop
587 evolution, the shapes of the regions where the interstitials and vacancies are generated change
588 accordingly. On the other hand, since the formation energy of interstitials is larger than that of
589 vacancies, vacancies are more easily generated and as such there will be more vacancies than
590 interstitials at the end of the simulation. The result is clearly shown in Figure 8. In consequence,
591 the jogs that generate interstitials are seen to impede the motion of the dislocation line more than
592 the jogs that generate vacancies.

593



594
595 Figure 7. Dislocation loop expansion under the action of an external stress with jog drag on both the
596 screw sides. Evolution of (a) dislocation density, (b) jog density, and (c) point defects (positive for
597 vacancies and negative for interstitials).

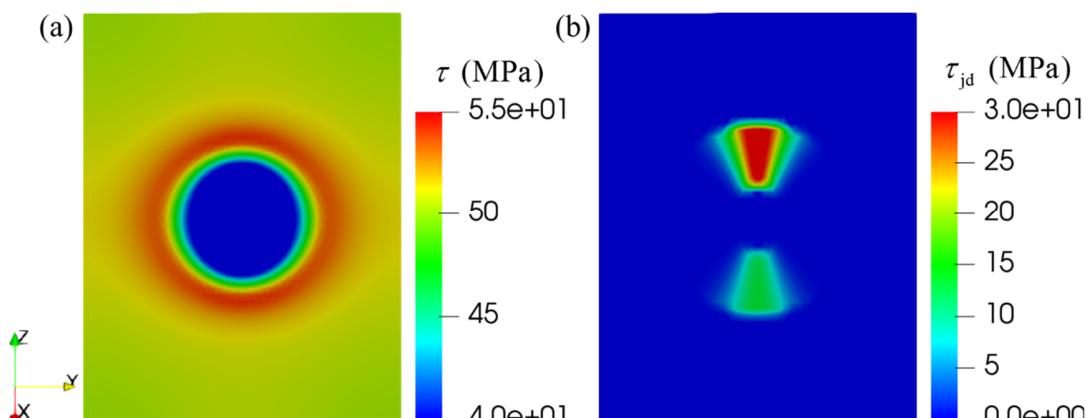


598
599 Figure 8. Evolution of the vacancy and interstitial concentration with time. More vacancies are
600 generated than interstitials due to the lower formation energy of vacancies.

601 The jog drag stress and resolved shear stress corresponding to interstitial and vacancy
602 generation are compared in Figure 9. It is obvious that the jog drag stress for generating
603 interstitials is higher than the jog drag stress for generating vacancies. The resolved shear stress
604 in Figure 9 includes the external stress (which is 50 MPa) and the stress due to eigen-strain
605 induced by the dislocation loop under a periodic boundary condition. So one may [ask](#): under
606 what circumstance will the drag stress have a prominent effect compared with the resolved shear
607 stress? The drag stress expression, Eq. (43) can be rewritten as

608
$$\tau_{\text{jd}}^{(k)} = \frac{E_d}{\Omega} |\mathbf{s}^{(k)} \cdot (\boldsymbol{\xi}_{\text{jog}}^{(k)} \times \boldsymbol{\eta}^{(k)})| \frac{\rho_{\text{jog}}^{(k)}}{\rho^{(k)}} \quad (46)$$

609 where $\mathbf{s}^{(k)}$, $\boldsymbol{\xi}_{\text{jog}}^{(k)}$ and $\boldsymbol{\eta}^{(k)}$ are unit vectors along the Burgers vector, jog direction, and dislocation
610 velocity, respectively. $|\mathbf{s}^{(k)} \cdot (\boldsymbol{\xi}_{\text{jog}}^{(k)} \times \boldsymbol{\eta}^{(k)})|$ is always less than or equal to unity. Regardless of
611 these orientations, the maximum drag stress is $E_d \rho_{\text{jog}}^{(k)} / \Omega \rho^{(k)}$. So, for a given material, the ratio
612 of jog density to dislocation density determines the magnitude of drag stress. For the material
613 properties used in this simulation, taking the vacancy formation energy as an example,
614 $E_d / \Omega = 2.17 \times 10^4$ MPa. So, to generate 10 MPa drag stress, $\rho_{\text{jog}}^{(k)} / \rho^{(k)}$ should be at least
615 4.61×10^{-4} .



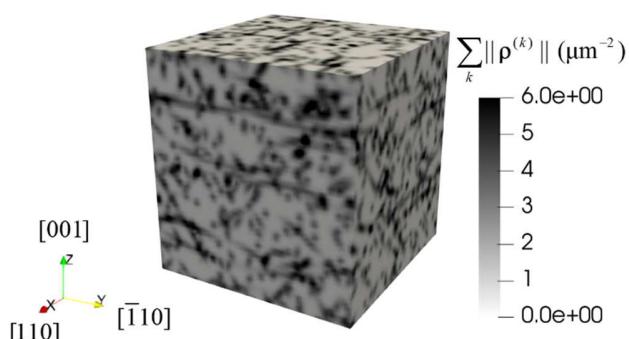
616
617 Figure 9. The (a) resolved shear stress and (b) jog drag stress at the first step of the simulation.

618 6.3 Effects of jog drag and defect generation on the mechanical response of single crystals

619 Two bulk crystal simulations were performed to study the mechanical response of a FCC crystal
620 under uniaxial loading. In one simulation jogs and point defects are produced by the moving

621 dislocations but the effects on dislocation motion of the eigen-strain of point defects and the drag
622 stress of jogs were ignored. This model is referred to as the one-way coupling model. In the
623 second simulation, the eigen-strain of point defects and drag stress of jogs were considered in
624 dislocation dynamics, whereby point defects and dislocation jogs can also affect the evolution of
625 dislocations. This model is referred to as the two-way coupling model.

626 The simulation domain is a $5 \text{ }\mu\text{m} \times 5 \text{ }\mu\text{m} \times 5.303 \text{ }\mu\text{m}$ box, discretized by a hybrid mesh of
627 pyramid and tetrahedron elements. The mesh size is 62.5 nm. All 12 slip systems of FCC crystal
628 are considered. The edges of the simulation domain are along $[110]$, $[\bar{1}10]$ and $[001]$
629 crystallographic directions. An initial dislocation density of $1.5 \times 10^{12} \text{ m}^{-2}$ is distributed across all
630 12 slip systems as loops. These loops have radii ranging from 2 μm to 6 μm , and they are
631 placed randomly in the domain with periodic boundary (the part of the loop exiting the domain
632 will be re-entered from the opposite boundary). The initial dislocation configuration is shown in
633 Figure 10. It is used in both the one-way and the two-way coupled simulations. The crystal is
634 then loaded along the $[001]$ direction with a strain rate of 20 s^{-1} . Periodic boundary conditions
635 are applied on the six surfaces of the domain. Most material parameters are the same as in Table
636 1 and Table 2, except that a different drag coefficient was used, which is $B = 2.5 \times 10^{-4} \text{ Pa} \cdot \text{s}$.
637 This value was obtained from recent molecular dynamic simulations at a temperature at $T=573 \text{ K}$.
638 Additional parameters regarding the diffusion equations of point defect are listed in Table 3.
639



640
641 [Figure 10. Initial dislocation configuration for the 3D bulk simulations.](#)

642
643

Gas constant (J/mol K)	8.314	Diffusivity of vacancy (m ² /s)	3.28×10 ⁻¹⁸
Temperature (K)	573	Diffusivity of interstitial (m ² /s)	5.76×10 ⁻⁹
Recombination coefficient (m ³ /s)	6.25×10 ⁻¹⁷		

644 **Table 3. Parameters for point defect diffusion and recombination (Ghoniem and Cho, 1979; Surh et**
 645 **al., 2004).**

646

647 The stress-strain curves and dislocation density evolutions of the one-way and two-way
 648 coupled simulations are shown in Figure 11. In part (b) of the figure, the scalar dislocation
 649 density, $\rho = \sum_k \|\mathbf{p}^{(k)}\|$, is displayed. It clearly shows that the two-way coupling between jogs,
 650 defects and dislocations results in a higher hardening rate than the one-way coupling (Figure
 651 11(a)). There are two main reasons accounting for this difference. First, as the jog drag stress is
 652 considered in the two-way coupling, it is obvious that higher stress is required to move
 653 dislocations. Second, the dislocation density is also higher in the two-way coupling simulation
 654 (Figure 11(b)), which leads to stronger dislocation-dislocation interactions and a higher
 655 resistance to dislocation motion as per Taylor hardening Eq. (40). The higher dislocation density
 656 in the two-way coupled model can be explained by the result of the test simulation in section 6.2.
 657 The jog drag stress impedes the motion of part of the dislocation density thus forcing the
 658 dislocation lines to bow out and increase their length. This effect is similar to that of dislocations
 659 passing obstacles.

660 The relation between the flow stress and the square root of dislocation density is plotted in
 661 Figure 12 for both the one-way and two-way coupling cases. The stress and the density data are
 662 extracted from Figure 11. Despite the difference in the dislocation density evolution between the
 663 two cases, the evolution in both cases exhibit a linear relationship between the flow stress and
 664 square root of the total dislocation density, which indicates that the Taylor law is preserved albeit
 665 with a slight difference in slope, which is expected due to the presence of jogs in the two-way
 666 coupling model.

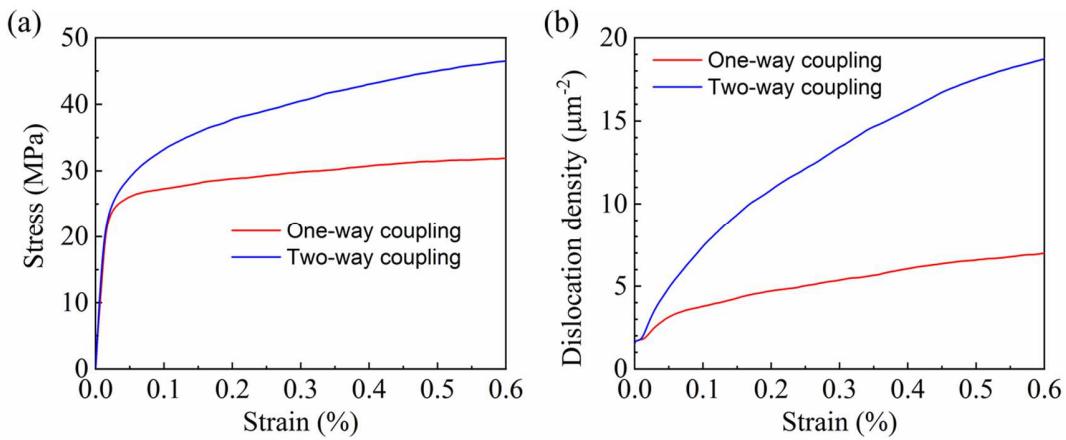


Figure 11. Stress-strain curves, (a), and the dislocation density versus strain, (b). Part (b) displays the scalar dislocation density, $\rho = \sum_k \|\mathbf{p}^{(k)}\|$.

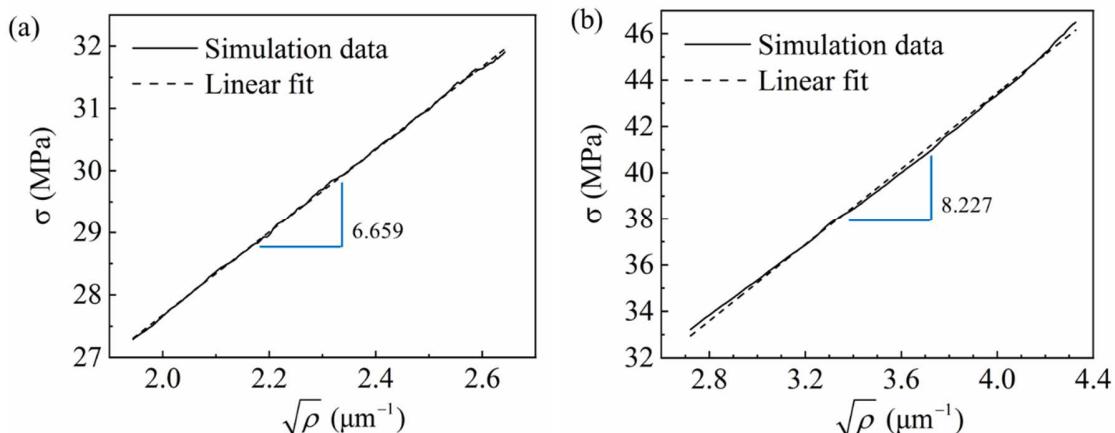
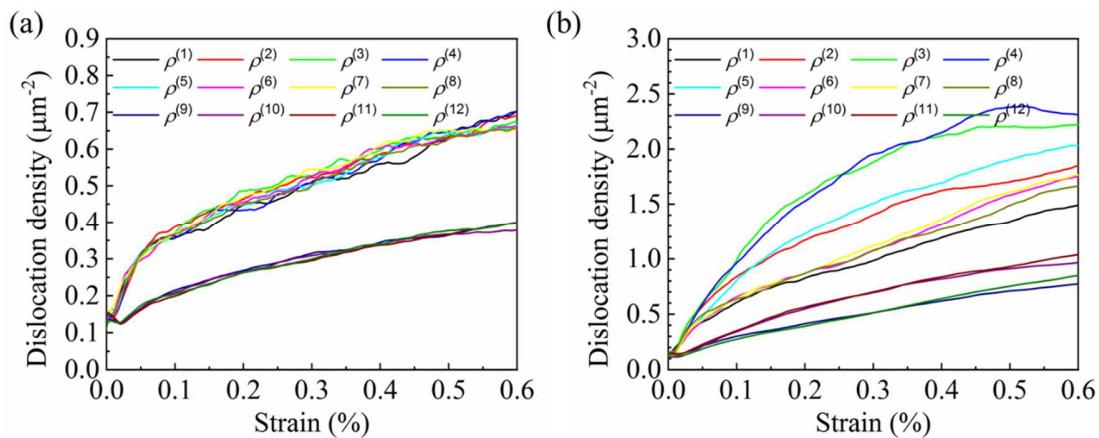


Figure 12. The Taylor law relation in the (a) one-way and (b) two-way coupling simulations.

The dislocation density evolutions on the individual slip systems for both the one-way and two-way coupled simulations are compared in Figure 13. The scalar density $\rho^{(k)} = \|\mathbf{p}^{(k)}\|$ is displayed in both parts of the figure. For the case of one-way coupling under [001] type loading, the density evolution on the eight active slip systems and the four inactive ones is clearly distinct. The dislocation densities on the active slip systems increase faster than their counterparts on the inactive ones. Also, within each group of slip systems, the densities are closer to one another due

680 to the symmetry of the slip systems relative to the loading axis. In the case of two-way coupling,
 681 the dislocation densities on the inactive slip systems are relatively lower than the dislocation
 682 densities on the active slip systems as well. **However, the density increases at different rates on**
 683 **the active slip systems.** Such differences are observed dislocation dynamics frequently, and are
 684 usually attributed to differences in initial densities on various slip systems or differences in
 685 resistance to dislocation motion. For the one-way coupling case, dislocations on different slip
 686 system are weakly coupled via the stress field, and so the resistance to slip due to jogs is absent.
 687 For the two-way coupling case, the condition of forming jogs can largely depend on the
 688 dislocation distributions on both slip system, and in return, the jog drag stress can be different on
 689 different slip systems due to the stochastic initial configuration. Actually, the different density
 690 multiplying rates can also be observed in discrete dislocation dynamics simulations, and the
 691 phenomenon results from the variability of the dislocation density on various slip systems along
 692 with the smallness of the volumes being simulated.

693



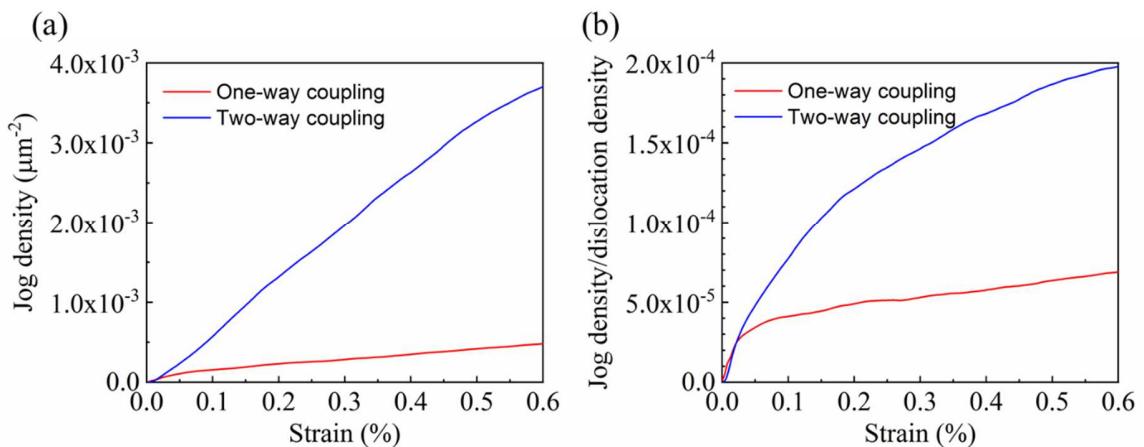
694
 695
 696
 697

Figure 13. Dislocation density evolutions on individual slip systems. (a) One-way coupling case. (b) Two-way coupling case. The scalar dislocation density on each slip system, $\rho^{(k)} = \|\mathbf{p}^{(k)}\|$, is displayed.

698 Figure 14 shows the evolution of the jog density, $\rho_{\text{jog}} = \sum_k \|\mathbf{p}_{\text{jog}}^{(k)}\|$, in both the one-way and
 699 two-way coupling cases. Figure 14(a) shows that the jog density increases almost linearly with
 700 strain in both cases. However, the jog density in the two-way coupled simulation is much higher
 701 than its counterpart in the one-way coupled simulation. This difference is due to the feedback

702 mechanisms between jog drag, the increase in the dislocation density, and the subsequent
 703 increase in the jog density due to more dislocation-dislocation cutting when the density is higher.
 704 The ratio of jog density to dislocation density is shown in Figure 14(b). This ratio also increases
 705 with strain and is higher in the case of two-way coupling than for the one-way coupling. It is
 706 important to mention here that the dislocation density is often proportional to the square root of
 707 strain or to the strain to some power less than 1, see Figure 11(b), but the jog density is
 708 proportional to strain itself as shown Figure 14(a). The latter dependence has to do with the fact
 709 that jogs are formed via the dislocation motion and intersection, i.e., with the accumulation of
 710 strain. From the strain dependence of both the dislocation density and the jog density, it can be
 711 concluded that the jog density is proportional to the square of dislocation density or to the
 712 density to some power higher than unity. This behavior is consistent with the jog density
 713 generation equation Eq. (20), in which the jog generation rate involves a density product. As
 714 discussed in section 6.2, the ratio of jog density to dislocation density determines the drag stress
 715 of jogs. According to the analysis there, a value of $\rho_{\text{jog}} / \rho = 2 \times 10^{-4}$ at 0.6% strain will result in
 716 an average jog drag stress of 4.34 MPa.

717



718
 719
 720

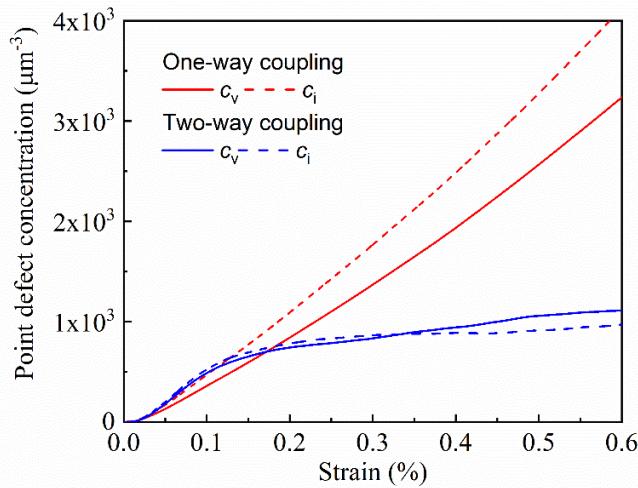
Figure 14. Jog density evolution. (a) Jog density versus strain, (b) The ratio of jog density to dislocation density versus strain.

721 Figure 15 shows the evolution of point defects. For the one-way coupled simulation, since
 722 point defects and jogs have no effect on dislocations, the increase of point defect density follows
 723 a constant trend – nearly following the jog density. For the two-way coupled simulation, the

724 evolution of point defect densities exhibits two regimes. Initially, point defect density increases
725 with the same rate as in the one-way coupled simulation, since the jog density is low and the jog
726 drag stress is not sufficiently high to affect the dislocation velocity. Beyond 0.1% strain, as the
727 ratio of jog density to dislocation density reaches about 8×10^{-5} , the generation rate of point
728 defect decreases significantly. Although the jog density in the two-way coupled simulation is
729 much higher than the jog density in the one-way coupled simulation, there are far fewer point
730 defects generated in the two-way coupled simulation. This means that jogs have a much smaller
731 average velocity in the two-way coupled simulation even though their density is higher. On the
732 other hand, from theory, it is expected that the difference in defect formation energy will create
733 an asymmetry of drag on dislocations resulting in the production of more vacancies than
734 interstitials. In the one-way coupling simulation, the effect of jog drag stress on dislocations is
735 not accounted for, and hence the difference in formation energies of different point defects does
736 not affect their production, which in this case only depends on the densities of jogs producing the
737 two types of defects. The bias due to initial configuration of dislocations favors the generation of
738 interstitials. In the two-way coupling simulation, although there are more interstitials in the
739 beginning, vacancies are generated faster than interstitials beyond about 0.35% strain. This
740 would have important implications as far as void nucleation is concerned and its role in ductile
741 fracture of metals.

742 The stress field arising from the eigenstrain of point defects can be analyzed by their
743 concentrations. At 0.6% strain, the point defect concentrations are about $10^3/\mu\text{m}^3$, so the
744 corresponding eigenstrains are in the order of $10^{-8} \sim 10^{-9}$ according to Eqs. (33) and (34), and,
745 by Hooke's law, the corresponding stress is in the order of $10^{-3} \sim 10^{-4}$ MPa. This estimate
746 represents the stress corresponding to a uniform eigenstrain in a constrained solid, which is an
747 upper bound. As can be seen, this stress is quite small compared with the jog drag stress derived
748 earlier. As such, in the current deformation simulation, the additional hardening in the two-way
749 coupling case mainly comes from the jog drag stress.

750

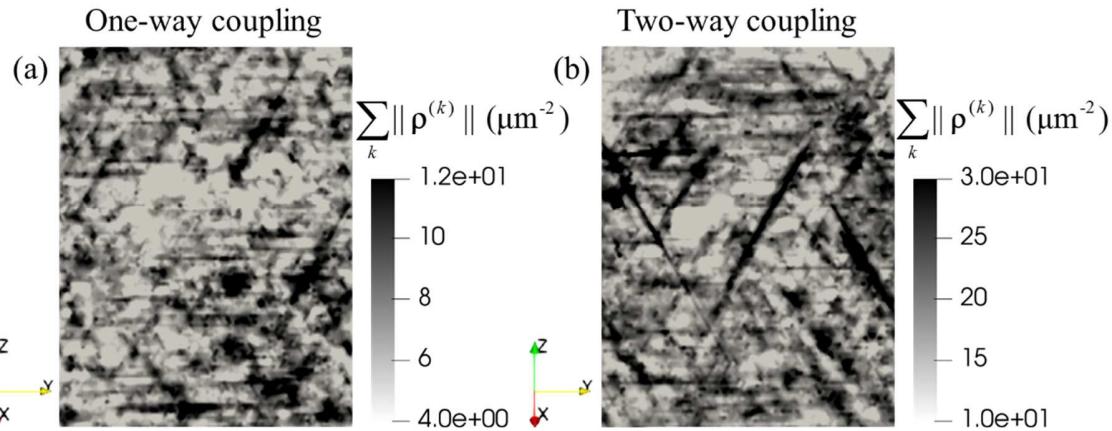


751
 752 **Figure 15. Evolution of the vacancy and interstitial concentration in the one-way and two-way**
 753 **coupled simulation of dislocations, jogs and point defects.**

754 Figure 16 compares the dislocation microstructure for the two simulations. The dislocation
 755 density is shown on a (111) slip plane at 0.6% strain for the one-way coupling in Figure 16(a)
 756 and the two-way coupling in Figure 16(b). In both cases, the heterogeneity of the dislocation
 757 density is anticipated. Dislocations are likely to accumulate in a pattern along three specific
 758 directions. One preferred direction is horizontal and the other two are oriented $\pm\pi/3$ from the
 759 horizontal line. These directions are the intersections of the slip plane with the other three slip
 760 planes of the FCC crystal. The dislocation density pattern is more obvious in the two-way
 761 coupled case. As shown in Section 6.2, the drag stress of jogs tends to retard dislocation motions,
 762 and the dislocation density will increase as dislocations bow out more. The intersections of the
 763 slip plane are the places where jogs are more likely to be formed. For this reason, in the two-way
 764 coupled case, localized dislocation densities of a larger magnitude are more likely.

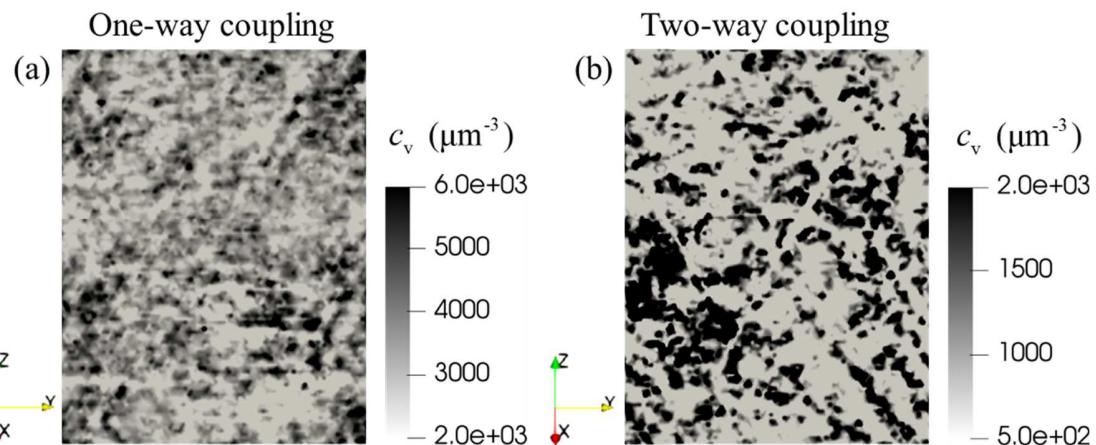
765 The vacancy concentration on the same slip plane are shown in Figure 17 for the one-way
 766 and two-way coupled cases. The vacancy pattern appears to have a finer structure in the case of
 767 one-way coupled simulation than in the two-way coupled case. In the one-way coupling case the
 768 drag stress of dislocation jogs is not considered. Once the jogs are formed by dislocation
 769 intersections they move together with dislocations. As dislocation intersections happen
 770 everywhere in the domain, point defects can also be generated at the places where jogs have
 771 moved. For the two-way coupling case, to generate point defects, the local resolved shear stress
 772 must be large enough to overcome the drag stress caused by the jogs. For the locations where the

773 stress does not satisfy this criterion, the jogs are not able to move. Consequently, fewer point
 774 defects are generated and the resulting deformation patterns exhibit larger wavelengths on
 775 average.



776
 777 Figure 16. Dislocation density on (111) slip plane at 0.6% strain. (a) One-way coupled simulation,
 778 and (b) two-way coupled simulation.

779



780
 781 Figure 17. Vacancy concentration on (111) slip plane at 0.6% strain. (a) One-way coupled simulation,
 782 and (b) two-way coupled simulation.

783 In in the coupled continuum dislocation dynamics/point defect generation model developed
 784 and solved in this work, jog formation and transport serve as the mechanism of point defect
 785 generation and drag on dislocations. In our formulation, the line direction of dislocations and
 786 jogs are considered as well as the Burgers vectors, as in Eqs. (20) and (24). It is usually not

787 possible to do this in crystal plasticity at the mesoscale, since dislocations are represented by
788 scalar dislocation densities. Even in discrete dislocation dynamics, modelling of the jog
789 formation and evolution is a challenging and cumbersome exercise since it requires the tracking
790 of the individual jogs and perhaps also the individual point defects generated. The test problem
791 presented in Section 6.1 clearly shows how effective continuum modeling of dislocations is in
792 describing the process of point defect generation by moving dislocations, a new advantage
793 offered by the current development. Dislocation jogs are formed first by intersecting dislocation
794 lines. As dislocation jogs move, trailing point defects are generated along their path. This is
795 exactly what we expect from the proposed model. On the other hand, the existence of jogs can
796 change the evolution of dislocations due to drag stress. The drag stress is carefully formulated by
797 considering the energy consumption for the type of point defect generated. As shown in the
798 example in Section 6.2, jogs are similar to obstacles that impede the motion of dislocations,
799 leading to the bow out of dislocations. This fact implies that, by considering the effect of jogs,
800 the length of the dislocation line will increase, resulting in a higher dislocation density.
801 Furthermore, a higher dislocation density will contribute more to strain hardening. This
802 conclusion is confirmed by the bulk simulation in Section 6.3, as shown in Figure 11. Another
803 important observation is that the asymmetry in the jog drag stress for jogs oriented for vacancy
804 versus interstitial generation leads to an asymmetry of the rate of the point defects generated,
805 essentially leading to a higher vacancy generation rate than for interstitials, which shows in the
806 cumulative average defect concentrations in the deformed crystal. This asymmetry explains why
807 there are often more vacancies than interstitials in plastically deformed metals. The current
808 results demonstrate that the model presented here may help to understand void nucleation during
809 plastic deformation.

810 **7 Concluding remarks**

811 To summarize, a model for point defect generation by the jog formation and transport
812 mechanism during plasticity is proposed within the framework of vector density-based
813 continuum dislocation dynamics. As a part of this model, detailed equations for jog formation
814 and transport were developed as a part of continuum dislocation dynamics. Jogs were assumed to
815 form as a result of intersection of dislocations on various slip systems. Jogs were also assumed to
816 be quasi-particles attached to dislocations that move together with the dislocations with the same
817 speed and direction. The rate of point defect generation associated with jog transport was

818 formulated in terms of the volume non-conservation associated with jog motion, i.e., with the
819 non-glide part of the motion of the dislocations in the crystal. Balance equations for the
820 vacancies and interstitials including their rate of generation due to jog transport, recombination
821 and diffusion were also established. The effect of point defects on dislocations was further
822 included via the stress induced by their eigen-distortion. Finally, a jog drag stress was introduced
823 into the mobility law of dislocations thus accounting for the energy expended in producing the
824 point defects. All model equations were coded in conjunction with continuum dislocation
825 dynamics using the finite element method and implicit time integration. Test problems were
826 presented, including jog formation and transport and the associated vacancy and interstitial
827 generation, and the effect of jog drag stress on the dislocation evolution. Coupled solutions of the
828 plasticity and point defect generation problem under uniaxial load were presented.

829 The results show that fully coupled dislocation and point defect dynamics via jog drag results
830 in a higher dislocation density and a higher hardening rate. The results also show that the
831 asymmetry of jog drag stress between jogs oriented for vacancy versus interstitial generation
832 leads to higher vacancy generation and accumulation past the initial straining of the crystal. The
833 dislocation and point defect patterns are also found to exhibit longer wavelengths in the case of
834 fully coupled dislocation and point defect dynamics. The model as it currently stands is
835 considered a first step toward generalized defect dynamics modeling of plasticity of metals in
836 which point defect generation plays an important role, e.g., in situations involving hydrogen
837 effects, and in cases where ductile fracture via void formation is important.

838 [Acknowledgements](#)

839 The authors are grateful for the support from the Naval Nuclear Laboratory, operated by Fluor
840 Marine Propulsion, LLC for the US Naval Reactors Program. A. El-Azab assisted with the
841 theoretical formulation of the problem with support from the US Department of Energy, Office
842 of Science, Division of Materials Sciences and Engineering, through award number DE-
843 SC0017718 at Purdue University.

844 [References](#)

845 Acharya, A., Roy, A., 2006. Size effects and idealized dislocation microstructure at small scales:
846 Predictions of a Phenomenological model of Mesoscopic Field Dislocation Mechanics: Part
847 I. *J. Mech. Phys. Solids* 54, 1687–1710.

848 Arsenlis, A., Parks, D.M., Becker, R., Bulatov, V. V., 2004. On the evolution of crystallographic
849 dislocation density in non-homogeneously deforming crystals. *J. Mech. Phys. Solids* 52,
850 1213–1246.

851 Aslanides, A., Pontikis, V., 2000. Numerical study of the athermal annihilation of edge-
852 dislocation dipoles. *Philos. Mag. A* 80, 2337–2353.

853 Belytschko, T., Liu, W.K., Moran, B., Elkhodary, K., 2013. Nonlinear finite elements for
854 continua and structures. John Wiley & Sons.

855 Brinckmann, S., Sivaneshapillai, R., Hartmaier, A., 2011. On the formation of vacancies by edge
856 dislocation dipole annihilation in fatigued copper. *Int. J. Fatigue* 33, 1369–1375.

857 Cai, W., Sills, R.B., Barnett, D.M., Nix, W.D., 2014. Modeling a distribution of point defects as
858 misfitting inclusions in stressed solids. *J. Mech. Phys. Solids* 66, 154–171.

859 Cui, Y., Po, G., Ghoniem, N.M., 2018. A coupled dislocation dynamics-continuum barrier field
860 model with application to irradiated materials. *Int. J. Plast.* 104, 54–67.

861 Cuitiño, A.M., Ortiz, M., 1996. Ductile fracture by vacancy condensation in f.c.c. single crystals.
862 *Acta Mater.* 44, 427–436.

863 Deng, J., El-Azab, A., 2010. Temporal statistics and coarse graining of dislocation ensembles.
864 *Philos. Mag.* 90, 3651–3678.

865 Devincre, B., Kubin, L., Hoc, T., 2006. Physical analyses of crystal plasticity by DD simulations.
866 *Scr. Mater.* 54, 741–746.

867 El-Azab, A., 2000a. Statistical mechanics treatment of the evolution of dislocation distributions
868 in single crystals. *Phys. Rev. B - Condens. Matter Mater. Phys.* 61, 11956–11966.

869 El-Azab, A., 2000b. Boundary value problem of dislocation dynamics. *Model. Simul. Mater. Sci.*
870 *Eng.* 8, 37–54.

871 Franciosi, P., Berveiller, M., Zaoui, A., 1980. Latent hardening in copper and aluminium single
872 crystals. *Acta Metall.* 28, 273–283.

873 Gao, S., Fivel, M., Ma, A., Hartmaier, A., 2017. 3D discrete dislocation dynamics study of creep
874 behavior in Ni-base single crystal superalloys by a combined dislocation climb and vacancy
875 diffusion model. *J. Mech. Phys. Solids* 102, 209–223.

876 Gao, Y., Zhuang, Z., Liu, Z.L., You, X.C., Zhao, X.C., Zhang, Z.H., 2011. Investigations of
877 pipe-diffusion-based dislocation climb by discrete dislocation dynamics. *Int. J. Plast.* 27,
878 1055–1071.

879 Gavini, V., 2008. Role of Macroscopic Deformations in Energetics of Vacancies in Aluminum.
880 *Phys. Rev. Lett.* 101, 205503.

881 Ghoniem, N.M., Cho, D.D., 1979. The Simultaneous Clustering of Point Defects during
882 Irradiation. *Phys. Status Solidi* 54, 171–178.

883 Groma, I., 1997. Link between the microscopic and mesoscopic length-scale description of the
884 collective behavior of dislocations. *Phys. Rev. B - Condens. Matter Mater. Phys.* 56, 5807–
885 5813.

886 Groma, I., Csikor, F.F., Zaiser, M., 2003. Spatial correlations and higher-order gradient terms in
887 a continuum description of dislocation dynamics. *Acta Mater.* 51, 1271–1281.

888 Hayward, E., Fu, C.-C., 2013. Interplay between hydrogen and vacancies in α -Fe. *Phys. Rev. B*
889 87, 174103.

890 Hirth, J., Lothe, J., 1982. *Theory of Dislocations*. John Wiley & Sons, New York.

891 Hochrainer, T., 2016. Thermodynamically consistent continuum dislocation dynamics. *J. Mech.*
892 *Phys. Solids* 88, 12–22.

893 Hochrainer, T., 2015. Multipole expansion of continuum dislocations dynamics in terms of
894 alignment tensors. *Philos. Mag.* 95, 1321–1367.

895 Hochrainer, T., Weger, B., 2020. Is crystal plasticity non-conservative? Lessons from large
896 deformation continuum dislocation theory. *J. Mech. Phys. Solids* 141, 103957.

897 Hochrainer, T., Zaiser, M., Gumbsch, P., 2007. A three-dimensional continuum theory of
898 dislocation systems: Kinematics and mean-field formulation. *Philos. Mag.* 87, 1261–1282.

899 Hornstra, J., 1962. On the type of point defects formed after crossing of dislocations. *Acta Metall.*
900 10, 987–988.

901 Hull, D., Bacon, D.J., 2011. *Introduction to dislocations*. Butterworth-Heinemann.

902 Iyer, M., Gavini, V., Pollock, T.M., 2014. Energetics and nucleation of point defects in
903 aluminum under extreme tensile hydrostatic stresses. *Phys. Rev. B* 89, 014108.

904 Jiang, B., 2013. *The least-squares finite element method: theory and applications in
905 computational fluid dynamics and electromagnetics*. Springer Science & Business Media.

906 Justo, J.F., Bulatov, V.V., Yip, S., 1997. Core effects in dislocation intersection. *Scr. Mater.* 36,
907 707–712.

908 Klein, M.J., Gager, W.B., 1966. Generation of Vacancies in MgO by Deformation. *J. Appl. Phys.*
909 37, 4112–4116.

910 Kooiman, M., Hütter, M., Geers, M.G.D., 2014. Collective behaviour of dislocations in a finite
911 medium. *J. Stat. Mech. Theory Exp.* 2014, P04028.

912 Kosevich, A.M., 1965. DYNAMICAL THEORY OF DISLOCATIONS. *Sov. Phys. Uspekhi* 7,
913 837–854.

914 Kröner, E., 1958. Kontinuums theorie der Versetzungen und Eigenspannungen. Springer.

915 Kubin, L., Devincre, B., Hoc, T., 2008. Toward a physical model for strain hardening in fcc
916 crystals. *Mater. Sci. Eng. A* 483–484, 19–24.

917 Leung, H.S., Leung, P.S.S., Cheng, B., Ngan, A.H.W., 2015. A new dislocation-density-function
918 dynamics scheme for computational crystal plasticity by explicit consideration of
919 dislocation elastic interactions. *Int. J. Plast.* 67, 1–25.

920 Li, S., Li, Y., Lo, Y.C., Neeraj, T., Srinivasan, R., Ding, X., Sun, J., Qi, L., Gumbsch, P., Li, J.,
921 2015. The interaction of dislocations and hydrogen-vacancy complexes and its importance
922 for deformation-induced proto nano-voids formation in α -Fe. *Int. J. Plast.* 74, 175–191.

923 Lin, P., El-Azab, A., 2020. Implementation of annihilation and junction reactions in vector
924 density-based continuum dislocation dynamics. *Model. Simul. Mater. Sci. Eng.* 28, 045003.

925 Lin, P., Vivekanandan, V., Starkey, K., Anglin, B., Geller, C., El-Azab, A., 2021. On the
926 computational solution of vector-density based continuum dislocation dynamics models: a
927 comparison of two plastic distortion and stress update algorithms. *Int. J. Plast.* 102943.

928 Lindgren, L.-E., Domkin, K., Hansson, S., 2008. Dislocations, vacancies and solute diffusion in
929 physical based plasticity model for AISI 316L. *Mech. Mater.* 40, 907–919.

930 Lu, G., Kaxiras, E., 2002. Can Vacancies Lubricate Dislocation Motion in Aluminum? *Phys.*
931 *Rev. Lett.* 89, 105501.

932 Madec, R., 2003. The Role of Collinear Interaction in Dislocation-Induced Hardening. *Science*
933 (80-.). 301, 1879–1882.

934 Monavari, M., Zaiser, M., 2018. Annihilation and sources in continuum dislocation dynamics.
935 *Mater. Theory* 2, 3.

936 Mura, T., 1963. Continuous distribution of moving dislocations. *Philos. Mag.* 8, 843–857.

937 Niu, X., Luo, T., Lu, J., Xiang, Y., 2017. Dislocation climb models from atomistic scheme to
938 dislocation dynamics. *J. Mech. Phys. Solids* 99, 242–258.

939 Nye, J.F., 1953. Some geometrical relations in dislocated crystals. *Acta Metall.* 1, 153–162.

940 Ohashi, T., 2018. Generation and accumulation of atomic vacancies due to dislocation movement
941 and pair annihilation. *Philos. Mag.* 98, 2275–2295.

942 Patra, A., McDowell, D.L., 2012. Crystal plasticity-based constitutive modelling of irradiated
943 bcc structures. *Philos. Mag.* 92, 861–887.

944 Peach, M., Koehler, J.S., 1950. The Forces Exerted on Dislocations and the Stress Fields
945 Produced by Them. *Phys. Rev.* 80, 436–439.

946 Pineau, A., Benzerga, A.A., Pardoën, T., 2016. Failure of metals I: Brittle and ductile fracture.
947 *Acta Mater.* 107, 424–483.

948 Po, G., Ghoniem, N., 2014. A variational formulation of constrained dislocation dynamics
949 coupled with heat and vacancy diffusion. *J. Mech. Phys. Solids* 66, 103–116.

950 Raabe, D., 1998. On the consideration of climb in discrete dislocation dynamics. *Philos. Mag. A*
951 77, 751–759.

952 Reuber, C., Eisenlohr, P., Roters, F., Raabe, D., 2014. Dislocation density distribution around an
953 indent in single-crystalline nickel: Comparing nonlocal crystal plasticity finite-element
954 predictions with experiments. *Acta Mater.* 71, 333–348.

955 Roy, A., Acharya, A., 2006. Size effects and idealized dislocation microstructure at small scales:
956 Predictions of a Phenomenological model of Mesoscopic Field Dislocation Mechanics: Part
957 II. *J. Mech. Phys. Solids* 54, 1711–1743.

958 Sahoo, D., 1984. Elastic continuum theories of lattice defects: a review. *Bull. Mater. Sci.* 6, 775–
959 798.

960 Sandfeld, S., Hochrainer, T., Zaiser, M., Gumbsch, P., 2011. Continuum modeling of dislocation
961 plasticity: Theory, numerical implementation, and validation by discrete dislocation
962 simulations. *J. Mater. Res.* 26, 623–632.

963 Sandfeld, S., Zaiser, M., 2015. Pattern formation in a minimal model of continuum dislocation
964 plasticity. *Model. Simul. Mater. Sci. Eng.* 23, 065005.

965 Seeger, A., 1955. CXXXII. The generation of lattice defects by moving dislocations, and its
966 application to the temperature dependence of the flow-stress of F.C.C. crystals. London,
967 Edinburgh, Dublin *Philos. J. Sci.* 46, 1194–1217.

968 Seitz, F., 1952. On the generation of vacancies by moving dislocations. *Adv. Phys.* 1, 43–90.

969 Seitz, F., 1950. The Generation of Vacancies by Dislocations. *Phys. Rev.* 79, 1002–1003.

970 Surh, M.P., Sturgeon, J., Wolfer, W., 2004. Vacancy cluster evolution and swelling in irradiated
971 316 stainless steel. *J. Nucl. Mater.* 328, 107–114.

972 Varadhan, S.N., Beaudoin, A.J., Acharya, A., Fressengeas, C., 2006. Dislocation transport using
973 an explicit Galerkin/least-squares formulation. *Model. Simul. Mater. Sci. Eng.* 14, 1245–
974 1270.

975 Wang, H., 2017. On the annihilation of dislocation dipoles in metals. *AIMS Mater. Sci.* 4, 1231–
976 1239.

977 Wang, J., Huang, M., Zhu, Y., Liang, S., Li, Z., 2020. Vacancy diffusion coupled discrete
978 dislocation dynamic modeling of compression creep of micro-pillars at elevated temperature.
979 *Int. J. Solids Struct.* 193–194, 375–392.

980 Was, G.S., 2016. Fundamentals of radiation materials science: metals and alloys. Springer.

981 Xia, S., Belak, J., El-Azab, A., 2016. The discrete-continuum connection in dislocation dynamics:
982 I. Time coarse graining of cross slip. *Model. Simul. Mater. Sci. Eng.* 24, 075007.

983 Xia, S., El-Azab, A., 2015. Computational modelling of mesoscale dislocation patterning and
984 plastic deformation of single crystals. *Model. Simul. Mater. Sci. Eng.* 23, 055009.

985 Xie, D., Li, S., Li, M., Wang, Z., Gumbsch, P., Sun, J., Ma, E., Li, J., Shan, Z., 2016.
986 Hydrogenated vacancies lock dislocations in aluminium. *Nat. Commun.* 7, 13341.

987 Yang, H., Huang, M., Li, Z., 2015. The influence of vacancies diffusion-induced dislocation
988 climb on the creep and plasticity behaviors of nickel-based single crystal superalloy.
989 *Comput. Mater. Sci.* 99, 348–360.

990 Yuan, S., Huang, M., Zhu, Y., Li, Z., 2018. A dislocation climb/glide coupled crystal plasticity
991 constitutive model and its finite element implementation. *Mech. Mater.* 118, 44–61.

992 Zaiser, M., Miguel, M.-C., Groma, I., 2001. Statistical dynamics of dislocation systems: The
993 influence of dislocation-dislocation correlations. *Phys. Rev. B* 64, 224102.

994 Zhou, S.J., 1998. Large-Scale Molecular Dynamics Simulations of Dislocation Intersection in
995 Copper. *Science (80-.)* 279, 1525–1527.

996 Zhou, S.J., Preston, D.L., Louchet, F., 1999. Investigation of vacancy formation by a jogged
997 dissociated dislocation with large-scale molecular dynamics and dislocation energetics.
998 *Acta Mater.* 47, 2695–2703.

999 Zsoldos, L., 1963. On the Type of Jogs on Intersecting Screw Dislocations. *Phys. status solidi* 3,

1000 2127–2131.