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Abstract. During plastic deformation of crystalline materials, point defects such as vacancies and 8 

interstitials are generated by jogs on moving dislocations. A detailed model for jog formation 9 

and transport during plastic deformation was developed within the vector density-based 10 

continuum dislocation dynamics framework (Lin and El-Azab, 2020; Xia and El-Azab, 2015). 11 

As a part of this model, point defect generation associated with jog transport was formulated in 12 

terms of the volume change due to the non-conservative motion of jogs. Balance equations for 13 

the vacancies and interstitials including their rate of generation due to jog transport were also 14 

formulated. A two-way coupling between point defects and dislocation dynamics was then 15 

completed by including the stress contributed by the eigen-strain of point defects. A jog drag 16 

stress was further introduced into the mobility law of dislocations to account for the energy 17 

dissipation during point defects generation. A number of test problems and a fully coupled 18 

simulation of dislocation dynamics and point defect generation and diffusion were performed. 19 

The results show that there is an asymmetry of vacancy and interstitial generation due to the 20 

different formation energies of the two types of defects. The results also show that a higher 21 

hardening rate and a higher dislocation density are obtained when the point defect generation 22 

mechanism is coupled to dislocation dynamics. 23 
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1 Introduction 28 

Defects and their mutual interactions dominate the mechanical behavior of crystalline solids. 29 

Point defects such as vacancies are known to interact with dislocations and the study of such 30 

interactions is now a classic topic of dislocation theory (Hirth and Lothe, 1982; Hull and Bacon, 31 

2011). Vacancies can affect the performance of crystalline materials in many ways. Vacancy 32 

condensation plays an important role in the growth of voids leading to a transition from brittle to 33 

ductile fracture (Cuitiño and Ortiz, 1996). Vacancy diffusion can assist dislocation climb, which 34 

is an important creep/plastic deformation mechanism in materials such as nickel-based 35 

superalloys at high temperature (Gao et al., 2017; Wang et al., 2020; Yang et al., 2015; Yuan et 36 

al., 2018). The mobility of dislocations moving via glide can also be affected by vacancies. For 37 

example, a so-called vacancy lubrication effect on dislocation motion was discovered (Lu and 38 

Kaxiras, 2002)  that explains the observed softening in cold-worked high-purity aluminum at low 39 

temperatures. Moreover, vacancies seem to play a crucial role in hydrogen embrittlement in 40 

metals. Hydrogen-vacancy complexes are stable defect structures that can act as void nucleation 41 

sites during plastic deformation (Li et al., 2015). The mobility of hydrogen is greatly impeded by 42 

the presence of vacancies (Hayward and Fu, 2013), and dislocations can be locked by 43 

hydrogenated vacancies (Xie et al., 2016). 44 

Large numbers of vacancies have been observed in crystalline metals during plastic flow 45 

(Klein and Gager, 1966; Seitz, 1952, 1950). It has been pointed out that the average temperature 46 

increase due to energy dissipation of dislocation motion is probably not sufficiently high to 47 

increase vacancy and interstitial concentrations as a result of thermal effects alone (Seitz, 1952). 48 

In fact, theoretical studies have shown that vacancies or interstitials can be generated by purely 49 

geometrical means during dislocation motion (Hornstra, 1962; Seeger, 1955; Seitz, 1952, 1950; 50 

Zhou et al., 1999; Zsoldos, 1963). The non-conservative motion of dislocations, which is 51 

characterized by the motion of dislocations outside of their glide planes, is responsible for the 52 

generation of vacancies and interstitials (Hirth and Lothe, 1982; Hull and Bacon, 2011). 53 

Different mechanisms can cause the non-conservative motion of dislocations. At high 54 

temperature, edge dislocations are able to climb by the addition or deletion of atoms from their 55 

cores (Niu et al., 2017). In this case, the dislocation velocity has a component that is 56 

perpendicular to the glide plane of the dislocation. Non-conservative motion of dislocations also 57 

happen during annihilation of edge dislocations on two closely separated glide planes (Ohashi, 58 
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2018; Wang, 2017). This process is similar to dislocation climb, since it can be thought of as if 59 

dislocations first climb to the same slip plane and then annihilate. Another important mechanism 60 

of point defect generation is the non-conservative motion of jogs (Hornstra, 1962; Hull and 61 

Bacon, 2011; Seeger, 1955; Zsoldos, 1963). Dislocations in highly deformed crystals and in 62 

crystals under cyclic loading are expected to contain many jogs, which are formed primarily 63 

during intersection with other dislocations (Zhou, 1998; Zhou et al., 1999). As a dislocation 64 

moves under the action of a stress field, it drags along the jogs that were previously formed on it. 65 

The motion of the jogs is non-conservative, since the jog itself does not lie in the glide plane of 66 

the dislocation. The non-conservative jog motion may be a major mechanism for vacancy or 67 

interstitial generation at low temperature, which is the case we considered in this work. In 68 

addition to generating vacancies or interstitials, the presence of jogs can also limit the motion of 69 

dislocations (Zhou et al., 1999). Therefore, it is important to study the interactions among 70 

dislocations, jogs and point defects, and as such the formation and evolution of jogs should be 71 

considered in theoretical models aimed at studying materials containing point defects and 72 

dislocations. 73 

Many theoretical models have been used to study the interactions among dislocations, jogs, 74 

and point defects in the past. Molecular dynamics (MD) was used to study jog formation (Justo 75 

et al., 1997; Zhou, 1998) and vacancy formation (Iyer et al., 2014; Zhou et al., 1999) by 76 

dislocation intersection, as well as the energetics of vacancies under different conditions (Gavini, 77 

2008; Iyer et al., 2014; Li et al., 2015). Discrete dislocation dynamics (DDD) is also a practical 78 

tool to study dislocation-vacancy interactions (Cui et al., 2018; Po and Ghoniem, 2014; Raabe, 79 

1998). This method was successfully applied to simulate vacancy-assisted dislocation climb in 80 

creep behavior of nickel-based superalloy (Gao et al., 2017; Wang et al., 2020), self-climb of 81 

dislocation loops by vacancy pipe diffusion (Gao et al., 2011; Pineau et al., 2016; Zhou, 1998). 82 

On the other hand, plasticity models at continuum level have also been established to consider 83 

the effect of vacancies on plastic deformation of materials (Cuitiño and Ortiz, 1996; Lindgren et 84 

al., 2008; Patra and McDowell, 2012; Sahoo, 1984; Yang et al., 2015; Yuan et al., 2018). Even 85 

with these successes in understanding the interactions between dislocations and vacancies, there 86 

remains two issues to be solved. Due to the computational cost, the length scale and time scale of 87 

MD simulations are always limited. The simulation domain can only hold a few dislocation lines. 88 

In the meantime, continuum plasticity models usually use a scalar dislocation density quantity to 89 
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represent dislocation structures, which loses the description of line-like character of dislocations. 90 

The line-like character of dislocations is important in modeling the formation and evolution of 91 

jogs, and new models are needed to fill the gap between atomistic and continuum descriptions of 92 

dislocation-vacancy interactions. Another issue is that the DDD models mentioned above mainly 93 

focus on the effect of vacancies on dislocation climb, where thermal activation dominates the 94 

behavior of the defect system, while jog formation and vacancy generation by moving jogs are 95 

seldom included. As such, when deformation of crystals at low temperature is considered, a 96 

proper way for jogs to form with the associated athermal vacancy generation should be included. 97 

The above concerns motivate the current work, in which we focus on incorporating the 98 

mechanisms of jog formation and vacancy generation into our continuum dislocation dynamics 99 

(CDD) framework (Lin and El-Azab, 2020; Xia and El-Azab, 2015). 100 

Continuum dislocation dynamics (CDD) uses density-like field variables to track the 101 

evolution of curved dislocation line ensembles. Following the introduction of the dislocation 102 

density tensor α  by Krӧner (1958) and Nye (1953), the time evolution of this tensor was 103 

formulated in the form ( )∇× ×vα = α&  by Mura (1963) and Kosevich (1965). Such a form is 104 

only applicable to families of dislocations of the same Burgers vector and line direction at small 105 

resolution since the dislocation velocity field v  is only meaningful at that level. In recent years, 106 

several attempts have been made to obtain an average, statistical description of dislocation 107 

microstructure evolution. Groma, Zaiser and co-workers (Groma, 1997; Groma et al., 2003; 108 

Zaiser et al., 2001) developed statistical approaches in 2D for the evolution of straight edge 109 

dislocations; see also the relatively recent works by Kooiman (2014). Arsenlis et al. (2004), 110 

Reuber et al. (2014), and Leung et al. (2015) who developed 3D models by including additional 111 

line orientation information. However, extending 2D approaches to 3D systems in which 112 

dislocations are interconnected curved lines that move perpendicular to their line direction has 113 

proven to be challenging. Another approach has been proposed by Hochrainer et al. (2007) to 114 

describe the 3D curved dislocation lines by using a higher dimensional phase space containing 115 

line direction variables as extra dimensions, so densities can carry additional information about 116 

their line direction and curvature. The latter work was motivated by that of El-Azab (2000a, 117 

2000b). A simplified variant of Hochrainer’s formulation has been introduced, which considers 118 

only low-order moments of the dislocation direction distribution (Sandfeld et al., 2011; Sandfeld 119 

and Zaiser, 2015). A further development of this theory has been achieved by defining a 120 
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hierarchy of evolution equations of the so-called alignment tensors, which contains information 121 

on the directional distribution of dislocation density and dislocation curvature (Hochrainer, 2015; 122 

Monavari and Zaiser, 2018). The CDD models just mentioned represent important contributions 123 

toward describing dislocation transport in crystals while preserving the linear character of 124 

dislocations, as in DDD methods. However, the non-conservative effects of dislocation motion 125 

are usually neglected, and only dislocations gliding on their slip planes are considered. In order 126 

to study dislocation-vacancy interactions, the formation of jogs and its non-conservative motion 127 

must be incorporated properly into the CDD framework. Recently, the work done by Hochrainer 128 

(2020) showed the vacancy generation by considering the non-conservative motion of 129 

dislocations in the CDD framework. 130 

In this paper, the CDD model formulated recently by Xia and El-Azab (2015) is used as a 131 

starting point. In this model, the so-called bundle representation of the dislocation density is 132 

considered. In this representation, dislocations on each slip system are described by a vector field 133 

( )kρ in such a way that, at the appropriate resolution, the dislocation density has a unique line 134 

direction at each point in the crystal. The mesh size required for solving such a model must be 135 

sufficiently small to enable the accurate geometric cancellation of dislocations of opposite 136 

directions, thus coinciding with the physical annihilation of dislocations. The magnitude of 137 

vector ( )kρ gives the scalar dislocation density at each point on the kth slip system. The vector 138 

field ( )kρ  on each slip system evolves via dislocation transport (Xia and El-Azab, 2015), cross 139 

slip (Xia et al., 2016), and junction reactions (Lin and El-Azab, 2020). The stress field that drives 140 

dislocation transport is fixed by solving an eigen-strain boundary value problem in which the 141 

eigen-strain itself is the plastic strain induced by the motion of dislocations. In the present work, 142 

the CDD model is augmented by introducing the jog density ( )
jog

kρ as an additional dislocation 143 

field. A set of equations describing the evolution of the jog density ( )
jog

kρ  is formulated, in which 144 

the rate of jog generation is found from the rate at which dislocations on various slip systems 145 

intersect each other. Then the non-conservative motion of the jog density ( )
jog

kρ  is used to 146 

calculate the generation of vacancies and interstitials. The equations describing vacancy and 147 

interstitial diffusion and recombination are also established. The effects of both jogs and point 148 

defects on the evolution of dislocations are included by adding suitably chosen resistive terms to 149 

the dislocation mobility law.  150 
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2 Vector density-based continuum dislocation dynamics 151 

In the vector density-based CDD approach, the evolution of the dislocation density field is 152 

obtained in two steps. The first step is to reduce the classical form of the equation governing the 153 

evolution of the dislocation density tensor to that for the corresponding vector density using the 154 

dislocation bundle view of the density field. The second step is to build into the resulting 155 

evolution equations the rate terms corresponding to cross slip and dislocation reactions. We 156 

begin by introducing the definition of the dislocation density tensor, α , as given  by Krӧner 157 

(1958) and Nye (1953), 158 

 d∇×α = − β , (1) 159 

with dβ being the plastic distortion tensor. Both tensors can be decomposed into slip system 160 

contributions, 161 

 ( )k

k

∑α = α , (2) 162 

 d d(k)

k

=∑β β , (3) 163 

where k is a slip system index. As dislocations move, the plastic distortion will evolve. And its 164 

rate can be obtained by Orowan’s law,  165 

 d( ) ( ) ( )k k k= − ×vβ α  (4) 166 

where ( )k
v  is the dislocation velocity on slip system k. Here, we assume the resolution is high 167 

enough so that dislocations at a material point have a unique line direction. Hence, the direction 168 

of the dislocation velocity ( )k
v  is taken to be perpendicular to the dislocation line. The 169 

dislocation density vector ( )kρ  is used to represent the oriented dislocation density at all points, 170 

and the relation between the dislocation density vector ( )kρ  and the dislocation density tensor 171 

( )kα  is  172 

 ( ) ( ) ( )k k k= ⊗ bα ρ , (5) 173 

where ( )k
b  is the Burgers vector of dislocations on slip system k. Combining Eqs. (1) through (5), 174 

the evolution equation for dislocation density vector ( )kρ  in the absence of reactions and cross 175 

slip can be formulated as (Xia and El-Azab, 2015), 176 

 ( ) ( ) ( )( )k k k= ∇ × ×vρ ρ& . (6) 177 
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For multiple slip systems, each slip system has its own dislocation evolution equation in the form 178 

of Eq. (6).  179 

In addition to the dislocation glide described by Eq. (6), dislocation reactions among 180 

different slip systems also contribute to the dislocation density vector ( )kρ . Therefore, additional 181 

terms must be added to account for cross slip (Xia et al., 2016; Xia and El-Azab, 2015), collinear 182 

annihilation and junction reactions (Lin and El-Azab, 2020) in the evolution equations. For 183 

dislocation cross slip from slip system k to slip system l, the coupling term is defined as (Xia et 184 

al., 2016; Xia and El-Azab, 2015) 185 

 ( , ) ( , ) ( , ) ( ) ( , ) ( , )
cs cs ( )k l k l k l k k l k l

i c= ⋅e e& % %ρ ρ ,  (7) 186 

In the above, ( , )k l
i  is an indicator, which is unity when the cross slip conditions are satisfied, and 187 

zero otherwise (Xia and El-Azab, 2015), ( , )
cs

k l
c is the cross slip rate obtained by coarse graining 188 

DDD data (Xia et al., 2016), and 
( , )k l

e%  is a unit vector along the intersection of the two cross slip 189 

planes. For the two slip systems involved in cross slip, the Burgers vector is also along the 190 

intersection. So ( )k ⋅eρ %  is the screw component of the dislocation density vector. For collinear 191 

annihilation between slip system k and slip system l, the coupling terms for one time step are 192 

defined as (Lin and El-Azab, 2020): 193 

 
( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( , )
col col

( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( , )
col col

min(| |, | |) sgn( )

min(| |,| |) sgn( )

k k l k k l l k l k k l k l

l k l k k l l k l l k l k l

i

i

∆ = ⋅ ⋅ ⋅

∆ = ⋅ ⋅ ⋅

e e e e

e e e e

% % % %

% % % %

ρ ρ ρ ρ

ρ ρ ρ ρ
, (8) 194 

where ( , )
col

k l
i  is an indicator function taking on the value of unity when the annihilation reaction is 195 

possible and zero otherwise, and ( , )k l
e%  is the unit vector along the intersection of the slip planes 196 

of systems k  and l  (Lin and El-Azab, 2020). The sign function sgn( )⋅  is used to ensure that 197 

( )
col

k∆ρ  or ( )
col

l∆ρ  always form an acute angle with ( )kρ  or ( )lρ , respectively. Eq. (8) is based on the 198 

idea that the rate of collinear annihilation is taken to be the maximum possible rate, fully 199 

annihilating  the screw component of the smaller density (Lin and El-Azab, 2020). For a glissile 200 

junction reaction ( ) ( ) ( )k l m+ →ρ ρ ρ , the reaction rates are defined as follows (Lin and El-Azab, 201 

2020), 202 

 ( , ) ( , ) ( , ) ( ) ( , ) ( ) ( , ) ( , )
g g g ( )( )kl m k l k l k k l l k l k li c= ± ⋅ ⋅e e eρ ρ ρ& % % %  (9) 203 



 
 

Page | 8 
 

where, again, ( , )
g

k l
i  is an indicator function that takes on a value of unity when the reaction 204 

criterion is satisfied and zero otherwise (Lin and El-Azab, 2020). Here ( , )
g

k lc  is the glissile 205 

junction reaction rate, and ( , )k l
e%  is a unit vector along the interaction line of the slip planes of the 206 

two reacting slip systems. An energy criterion is used to ensure that ( ) ( , )k k l⋅eρ %  and ( ) ( , )l k l⋅eρ %  have 207 

the same sign. When they are positive, the positive sign is chosen in Eq. (9). When they are 208 

negative, the negative sign is chosen. Coupling these dislocation reactions with dislocation 209 

transport, the final form controlling the evolution of dislocations in CDD is  210 

 ( ) ( ) ( ) ( , ) ( , ) ( ) ( , ) ( , )
cs cs col g g( )k k k k l l k k kl m lm k= ∇× × − + − − +vρ ρ ρ ρ ρ ρ ρ& & & & & &  (10) 211 

The last two terms in Eq. (10) should include all glissile junctions involving slip system k. 212 

3 Theoretical development of point defects generation in continuum dislocation 213 

dynamics 214 

3.1 Point defects generated by non-conservative dislocation motion 215 

There are two types of dislocation motion, conservative and non-conservative (Hirth and Lothe, 216 

1982; Hull and Bacon, 2011). Conservative motion is associated with dislocation glide on the 217 

plane containing both its line and Burgers vector. Motion of dislocations outside of this plane has 218 

a climb component and is considered non-conservative. The latter type of motion leads to local 219 

volume changes in the material, which results in point defect generation (or consumption). In this 220 

regard, both vacancies and interstitials can be generated depending on the direction of the non-221 

conservative motion. For example, the formation of vacancies (consumption of interstitials) 222 

occurs when edge dislocations climb to extend the extra half-plane (negative climb), while the 223 

formation of interstitials (consumption of vacancies) occurs when an edge dislocation climbs to 224 

shrink the extra half-plane (positive climb). The number of point defects generated during the 225 

non-conservative motion of dislocations can be related to the volume change caused by that 226 

motion. If a small dislocation line segment l undergoes a small non-conservative displacement s, 227 

the local volume change is (Hull and Bacon, 2011) 228 

 ( ) ( )V∆ = ⋅ × = ⋅ ×b l s s b l , (11) 229 

where b is the Burgers vector of the segment. The number of generated point defects compatible 230 

with this volume change is given by  231 



 
 

Page | 9 
 

 V
N

∆=
Ω

 , (12) 232 

where Ω  is the volume of an atom. The sign of V∆  determines the type of point defect. When 233 

the Burgers vector is defined by right-hand/finish-start convention, ×l b  always points to the 234 

extra half plane of the edge dislocation. Combined with the definition of negative and positive 235 

climb, vacancy generation occurs when V∆  is positive and interstitial generation occurs when 236 

V∆  is negative.  237 

Eqs. (11) and (12) link the point defect generation to the motion of a discrete dislocation line. 238 

In CDD, dislocations are represented by a dislocation density vector ρ . Point defects can be 239 

measured by their concentration 
dc . As such, the rate of generation of point defects due to non-240 

conservative dislocation motion can be expressed in terms of the dislocation density vector as  241 

 
( )

dc
⋅ ×=

Ω
b v

&
ρ

  (13) 242 

where v is the dislocation velocity. Eq. (13) is valid for all dislocation characters, pure edge, pure 243 

screw, or mixed. For a screw dislocation, b is parallel to ρ , so Eq. (13) yields zero rate of defect 244 

production, meaning the motion of pure screw dislocation is always conservative and no point 245 

defects will be generated.  246 

When the temperature is too low, thermally activated dislocation climb is unlikely to occur 247 

(Hirth and Lothe, 1982; Hull and Bacon, 2011). However, two mechanisms of non-conservative 248 

dislocation motion that may operate at any temperature (not requiring thermal activation) are the 249 

edge dipole annihilation (Aslanides and Pontikis, 2000; Brinckmann et al., 2011) and jog motion 250 

(Hornstra, 1962; Seeger, 1955; Seitz, 1952; Zsoldos, 1963), see Figure 1. A pair of opposite edge 251 

dislocations on closely separated glide planes can approach each other, annihilate and generate 252 

point defects. This process can be considered as a climb of one dislocation to the slip plane of the 253 

other dislocation resulting in mutual annihilation. Another athermal deformation mechanism is 254 

the movement of a jogged screw dislocation (Hornstra, 1962; Seeger, 1955; Seitz, 1952; Zsoldos, 255 

1963). Jogs are steps on the dislocation line that move it from one atomic slip plane to another. 256 

The jog on a screw dislocation has edge character. When a screw dislocation glides under an 257 

applied stress, it drags the jogs along.  Such a motion requires jog climb, which generates a point 258 

defect trail behind the jog. Therefore, jogs can be considered as sources for point defects. Eq. (13) 259 

is valid for both the dipole annihilation and jog drag mechanisms. The current work mainly 260 
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focuses on point defect generation by moving jogs. In what follows, a jog density jogρ  will be 261 

introduced and used to replace ρ  in Eq. (13) in order to determine the defect generation rate due 262 

to jog motion.  263 

 264 

 265 

 266 

Figure 1. Two mechanisms of non-conservative dislocation motion at room temperature. (a) 267 

Annihilation of an edge dipole on closely separated glide planes. (b) Motion of a jogged screw 268 

dislocation.  269 

3.2 Jogs formed by intersection of dislocations 270 

Jogs on dislocations in deforming crystals are formed by intersections of dislocations, as shown 271 

in Figure 2. When one dislocation is cut by another dislocation a jog forms at the intersection. 272 

The jog segment is equal to the Burgers vector of the cutting dislocation. In Figure 2, a 273 

dislocation segment (1)
l  moves with velocity 

(1)
v  and a second dislocation segment (2)

l  is 274 

stationary. The corresponding Burgers vectors are 
(1)

b  and 
(2)

b  and the arrows indicate their 275 

directions. 276 

 277 

Figure 2. Jogs formed by intersection of dislocations. (a) Intersection of edge dislocations with 278 

parallel Burgers vector. (b) Intersection of two right-handed screw dislocations.  279 

From Figure 2, it is easy to see that the jog formed on each dislocation line upon dislocation 280 

intersection can be expressed as 281 
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 (1,2) (2) (2,1) (1)
jog jog,    = =l b l b , (14) 282 

where 
( , )
jog
k l

l  denotes the jog segment on dislocation k cut by dislocation l. Eq. (14) is valid for the 283 

case shown in Figure 2. However, there can be a negative sign in Eq. (14). Imagining a different 284 

case from Figure 2 (a) with ( )1
l  moving in the opposite direction, (1,2)

jogl  will be equal to (2)−b . 285 

Whether the jog formed is 
(2)+b  or 

(2)−b  is determined by the direction of three vectors, the line 286 

direction of the two dislocations, (1)
l and (2)

l , and the relative velocity of the two dislocations, 287 

(2) (1)( )−v v , i.e., the direction of the relative displacement. A triple vector product of these three 288 

vectors can be used to calculate the sign (Hornstra, 1962; Zsoldos, 1963). So, instead of Eq. (14), 289 

the jog segments in the general case should be  290 

 
( , ) ( ) ( ) ( ) ( ) ( )
jog sgn(( ) ( )) k l l k k l l= − ⋅ ×l v v l l b ,  (15) 291 

where sgn(x) is the sign function, and k and l are slip system indices.  292 

Eq. (15) describes the jogs formed by intersection of two dislocation lines. To incorporate 293 

this result into CDD, a continuum description of the jogs in terms of dislocation density vectors 294 

must be established. As discussed earlier, the dislocation density vector ( )kρ  locally represents a 295 

bundle of dislocations with the same line direction. Thus when two dislocation bundles cut each 296 

other at a material point, all jog segments formed on one dislocation bundle have the same length 297 

and direction, which can be obtained by Eq. (15). Then a jog density ( , )
jog

k lρ  can be defined as the 298 

oriented length of the jog segments per unit volume. This jog density is given by  299 

 
( , )
jog( , ) ( , )

jog jog

k l

k l k l
N

V t
=

∆
lρ&  (16) 300 

with ( , )
jog
k l

N  being the number of jogs formed on slip system k by slip system l in a control volume 301 

V  during time t∆ . We now explain this formula and fix ( , )
jog
k l

N  in terms of ( )kρ and ( )lρ . 302 

Consider a control volume element V  as shown in Figure 3(a), with the x-axis taken along the 303 

dislocation density vector (1)ρ  and corresponding edge of xl , y-axis along (2)ρ and corresponding 304 

edge of 
y

l , and the z-axis along the relative velocity (2) (1)( )−v v  with the corresponding edge zl . 305 

The volume V  of this control volume is the magnitude of the triple product of the three vectors 306 

forming its edges, 307 
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(2) (1) (1) (2) (2) (1) (1) (2)

(2) (1) (1) (2) (2) (1) (1) (2)

( ) | ( ) ( ) |
 | |

|| || || || || || || || || || || ||
z x y x y zV l l l l l l

− − ⋅ ×= ⋅ × =
− − ⋅ ⋅

v v v v

v v v v

ρ ρ ρ ρ
ρ ρ ρ ρ

.  (17) 308 

In Figure 3(b) and Figure 3(c), the red and green arrows represent the two intersecting 309 

dislocation bundles. By the definition of dislocation density, the number of dislocations in the 310 

bundles can be calculated as 311 

 
( )2(1)

(1) (2)|| || || ||
,    

x y

V V
N N

l l
= =ρ ρ

  (18) 312 

For a given time increment, t∆ , the displacement of (2)ρ  relative to ( )lρ  is (2) (1)( ) t− ∆v v . Here 313 

we assume that the dislocations are uniformly distributed in this small control volume. Each 314 

dislocation in the (2)ρ  field will then intersect with 
(2) (1)

(1) || ||

z

t
N

l

− ∆v v
 dislocations in the (1)ρ  315 

field, so the total number of jogs formed on (1)ρ  will be 316 

 
(2) (1) 2

(1,2) (1) (2) (2) (1) (1) (2)
jog

|| ||
|| || || || || ||

z x y z

t V t
N N N

l l l l

− ∆ ∆= = − ⋅ ⋅v v
v v ρ ρ .  (19) 317 

By substituting Eqs. (15), (17) and  (19) into Eq. (16), and replacing 1 and 2 by k and l, we reach  318 

 ( , ) ( ) ( ) ( ) ( ) ( )
jog ( ) ( )k l l k k l l= − ⋅ ×v v bρ ρ ρ& ,  (20) 319 

which is the continuum rate form for jog formation of the density ( )kρ  by intersection with the 320 

density ( )lρ  that is compatible with the CDD formulation. 321 

 322 

 323 

Figure 3. (a) Representative volume used to calculate the number of jogs at a material point. The 324 

axes are along the unit vectors (1) (1)/ || ||
x

=e ρ ρ , 
(2) (2)/ || ||

y
=e ρ ρ  and 325 

(2) (1) (2) (1)( )/ || ||
z

= − −e v v v v . (b) Number of dislocation lines in dislocation bundle (1)ρ  is 
(1)

N ; 326 

(c) Number of dislocation lines in dislocation bundle (2)ρ  is 
(2)

N . 327 
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3.3 Transport equations for jog densities 328 

As discussed in Section 3.1, the non-conservative motion of jogs leads to point defect generation 329 

at a rate proportional to the instantaneous density of jogs. As such, establishing the evolution 330 

equations of jog density is important to connecting plastic deformation and point defect 331 

generation. Generally speaking, as jogs are small steps (only a Burgers vector height) on the 332 

dislocation line, the jog density ( , )
jog

k lρ  is significantly smaller than the glide dislocation density 333 

( )kρ . Therefore, although the existence of jogs may change the average direction of the 334 

dislocation lines, the jogs are treated as “particles” tied to the parent dislocations and the 335 

dislocations are assumed to remain smooth and planar as far as glide motion is concerned. The 336 

concentration of a certain type of jog ( , )
jog
k l

c  can be defined as the number of jogs per volume, 337 

which is defined by the relation ( , ) ( , ) ( )
jog jog

k l k l l
c= bρ . If jog migration along the dislocation line is 338 

ignored, jogs will move with the same velocity as dislocations. That is, all type of jogs ( , )
jog
k l

c  on 339 

dislocation ( )kρ  have velocity ( )k
v  of the line. Hence the evolution of the jog concentration ( , )

jog
k l

c  340 

follows the transport equation 341 

 ( , ) ( , ) ( ) ( ) ( ) ( ) ( )
jog jog( ) ( ) ( )k l k l k l k k l

c c+ ∇⋅ = − ⋅ ×v v v ρ ρ&   (21) 342 

The right hand side of Eq. (21) is a source term for jogs, see Eq. (20). The point defect 343 

generation rate is the sum over all jogs from Eq. (13),  344 

 

( ) ( , ) ( )
( ) ( , ) ( ) jog

jog

( )
( )

k k l k
k k l k

l
d

k l k

c

⋅ ×⋅ ×
= =

Ω Ω

∑
∑∑ ∑

b v
b v

ρρ
&   (22) 345 

It can be seen from Eq. (22) that the evolution of each type of jog is not necessarily needed to 346 

calculate the point defect generation rate. What matters is the sum of the jog densities on a 347 

specific dislocation since they all have the same velocity and Burgers vector. This approximation 348 

takes the vector sum of the jogs on a dislocation line, which is valid at small resolution, and is 349 

indeed the case for our CDD model. We now define ( ) ( , )
jog jog

k k l

l
=∑ρ ρ  to be the vector jog density 350 

on dislocations belonging to slip system k . The evolution equations of ( )
jog

kρ  can be derived using 351 

the definition ( , ) ( , ) ( )
jog jog

k l k l l
c= bρ and Eq. (21),  352 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
jog jog( ) ( ) ( )k k k l k k l l

l

+ ∇ ⋅ ⊗ = − ⋅ ×∑v v v bρ ρ ρ ρ&   (23) 353 
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Then the point defect generation rate can be written in terms of ( )
jog

kρ  as  354 

                                               ( ) ( ) ( )
jog

1
( )k k k

d

k

c = ⋅ ×
Ω∑

b v& ρ   (24) 355 

Eqs. (23) and (24), respectively, describe the jog density evolution and the rate of point defect 356 

generation by jogs on dislocation lines during plastic deformation. 357 

3.4 Point defect balance equations 358 

Vacancies and interstitials can be lost either through recombination or by reaction with a defect 359 

sink such as a dislocation, a grain boundary, or a precipitate. The local change in defect 360 

concentration of the defect species is the net result of the local production rate, reactions with 361 

other species, and diffusion. In our model, the source for point defect production is the non-362 

conservative motion of dislocation jogs as described by Eq. (24). In the current model, and for 363 

the sake of an initial implementation, only recombination of vacancies and interstitials is 364 

considered besides generation by jogs and diffusion. The recombination rate is given by (Was, 365 

2016) 366 

 v i iv i vc c K c c= = −& &  (25) 367 

where ivK  is vacancy-interstitial recombination rate constant, which is given in terms of the 368 

diffusivities of vacancies and interstitials as follows: 369 

 iv iv i v iv i4 ( ) 4K r D D r Dπ π= + ≈ , (26) 370 

with iD  and vD  being the diffusivities of interstitials and vacancies, respectively. ivr  is the 371 

interaction radius. The random walk of defects in the lattice give rise to diffusive fluxes for 372 

vacancies, vJ , and interstitial, iJ , which are expressed in terms of the concentration and 373 

pressure gradients in the form 374 

 v v i i
v v v i i i

B B

( )     and      ( )
c p c p

D c D c
k T k T

∆Ω ∇ ∆Ω ∇= − ∇ − = − ∇ −J J  (27) 375 

where the pressure  / 3iip σ= − , with 
iiσ  being the trace of the stress tensor. Combining the 376 

point defect source from jog motion, Eq. (24), and recombination of vacancies and interstitials 377 

Eq. (25), the balance equations for vacancies and interstitials are obtained, 378 
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v v v
v v v v,s iv i v

B

i i i
i i i i,s iv i v

B

( ) ,

( ) .

D c p
c D c c k c c

k T

D c p
c D c c k c c

k T

∆Ω ∇= ∇⋅ ∇ − + −

∆Ω ∇= ∇⋅ ∇ − + −

& &

& &

  (28) 379 

In the above equations, v,sc&  and i,sc& are the generation rates of vacancies and interstitials by jogs. 380 

It is to be noted that, at any given point in space, jogs can either generate vacancies or 381 

interstitials but not both. 382 

4 Coupling dislocation dynamics and mechanics 383 

4.1 Stress field stemming from lattice defects system 384 

For a crystal with lattice defects, the stress field includes contributions due to the boundary 385 

conditions and the internal defects fields. In order to determine the stress state, the kinematics of 386 

crystal deformation in terms of defect contributions first is fixed. The crystal distortion β  is 387 

related to the displacement field u by 388 

 ∇uβ = . (29) 389 

This distortion is decomposed into four parts (Po and Ghoniem, 2014),  390 

 e d v i+ + +β = β β β β  (30) 391 

where 
eβ  is elastic distortion and 

dβ , 
vβ , and 

iβ  are the inelastic distortions induced by 392 

dislocations, vacancies, and interstitials, respectively. The dislocation distortion 
dβ  is updated by 393 

the method of field dislocation mechanics (Acharya and Roy, 2006; Roy and Acharya, 2006) 394 

where it is expressed in the form 
d =∇ −zβ χ , with ∇z  and χ  being the compatible and 395 

incompatible parts of 
dβ , respectively. These two components of the plastic distortion are 396 

governed by the following boundary value problems: 397 

 

( ) ( )       in 

      in 

      on 

k k

k

V

V

V

∇× ⊗

 ∇⋅
 ⋅ ∂



∑ b

n

χ = ρ

χ = 0
χ = 0

 (31) 398 

and,  399 
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( ) ( ) ( )

( ) ( ) ( )

( )         in 

( )          on  

(arbitrary value)  at one point in 

k k k

k

k k k

k

o

V

V

V

∇⋅∇ = ∇⋅ − × ⊗

 ⋅∇ = ⋅ − × ⊗ ∂

 =

∑

∑

z v b

n z n v b

z z

ρ

ρ

&

&

& &

. (32) 400 

Here, V is the simulation domain with boundary V∂ . It has been shown that updating 
dβ  by 401 

field dislocation mechanics is more accurate than directly integrating Orowan’s equation (Lin et 402 

al., 2021).  To calculate the eigen-distortions due to vacancies and interstitials, point defects are 403 

considered as spherical inclusions in the crystal (Cai et al., 2014), that is, inserting defects into 404 

the lattice results in volumetric expansion or contraction. Suppose the volume of the crystal 405 

increases by i∆Ω  due to one interstitial, the eigen-distortion field of interstitials can be related to 406 

its volume concentration by (Hull and Bacon, 2011; Po and Ghoniem, 2014) 407 

 i
i i

1

3
c= ∆Ω Iβ , (33) 408 

where ci is the volumetric concentration of interstitials. Similarly, if the volume changes by v∆Ω  409 

due to one vacancy, the corresponding eigen-distortion is given by 410 

 v
v v

1

3
c= ∆Ω Iβ , (34) 411 

where cv is the volume concentration of vacancies. It should be pointed out that v∆Ω  is negative 412 

for vacancy.  413 

With all eigen-distortions known in terms of the corresponding densities of defects, the stress 414 

field σ  can be calculated by a standard Cauchy equilibrium equation,  415 

 
d v i

sym

    in 

: ( )     in 

    on 

    on 
u

V

V

V

Vσ

∇ ⋅ =
 = ∇ − −
 = ∂
 ⋅ ∂

0

C u

u u

n t

σ
σ β β − β

σ =

 (35) 416 

where u
V∂  and Vσ∂ are the parts of the boundaries corresponding to displacement and traction 417 

constraints, respectively, and C is the elastic stiffness tensor. By solving Eq. (35), the stress field 418 

combining both boundary conditions and defect effects can be found and used to calculate the 419 

velocity of dislocations and the pressure gradient terms in the diffusion equations. 420 
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4.2 Dislocation mobility law and jog drag  421 

The dislocation velocity is required to close the dislocation transport-reaction equations (10), the 422 

jog transport equations (23), and the point defect generation rate expression (24). The dislocation 423 

velocity ( )k
v  is expressed in the form  424 

     
( ) ( ) ( )k k kv=v η           (36) 425 

with ( )k
v  being the scalar velocity and 

( )kη  a unit vector in the direction of dislocation motion, 426 

which is determined in terms of the slip plane normal ( )k
m  and the dislocation line direction 427 

( ) ( ) ( )/k k kρ=ξ ρ  by the following expression 428 

 
( ) ( ) ( )k k k×mη = ξ . (37) 429 

The scalar velocity ( )k
v  is assumed to depend linearly on the resolved shear, ( )kτ ,  430 

 ( ) ( ) ( ) ( ) ( ) ( )
0 p jdsgn( ) [| | ( )]k k k k k kb

v
B

τ τ τ τ τ= − + +  (38) 431 

where sgn( )⋅  is the sign function, b is the magnitude of Burgers vector, B is the drag coefficient, 432 

and 
( )
0
kτ , 

( )
p

kτ  and 
( )
jd
kτ , respectively, are contributions to the friction stress discussed below.  In 433 

the above expression, ( )k
bτ  corresponds to the magnitude of the Peach-Koehler force (Peach and 434 

Koehler, 1950), and the resolved shear stress itself is given by 435 

 ( ) ( ) ( )k k kτ = ⋅ ⋅s mσ  (39) 436 

where ( ) ( ) /k k
b=s b  is the unit slip direction. The resolved shear stress accounts for the long-437 

range interactions between dislocations and the dislocation-defect interaction, as well as the 438 

boundary effects.  439 

The friction stress 
( )
0
kτ  is the threshold stress for dislocation motion (Hirth and Lothe, 1982; 440 

Hull and Bacon, 2011), while 
( )
p

kτ  is the resistance caused by short-range interactions with 441 

dislocation junctions  (Deng and El-Azab, 2010; El-Azab, 2000a; Hochrainer, 2016; Sandfeld 442 

and Zaiser, 2015). This stress is assumed here to take the form of a Taylor hardening law of the 443 

form (Devincre et al., 2006; Franciosi et al., 1980; Kubin et al., 2008): 444 

 ( ) ( )
p

k kl l
b aτ µ ρ=  (40) 445 

with µ  being the shear modulus and kl
a   an interaction matrix representing the average strength 446 

of the mutual interactions between slip systems k and l. The number of distinct interaction 447 
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coefficients between 12 mutually interacting slip systems in a FCC crystal is reduced to only six 448 

due to symmetry. These are the self, coplanar, and collinear interactions and glissile, Lomer, and 449 

Hirth junction (Devincre et al., 2006; Kubin et al., 2008; Madec, 2003). Finally, 
( )
jd
kτ  is the drag 450 

stress due to jogs on dislocations. The work done against this drag stress corresponds to the 451 

energy used to produce point defects during jog motion. The point defect generation rate is 452 

shown in Eq. (24),  so the rate of energy used in the process by jogs on dislocations on a given 453 

slip system can be easily obtained as  454 

 ( ) ( ) ( ) ( )d
jog| ( ) |k k k kE

E = ⋅ ×
Ω

b vρ&  (41) 455 

where dE  is the point defect formation energy, and the defect itself can be either vacancy or 456 

interstitial based on the sign of 
( ) ( ) ( )

jog( )k k k⋅ ×b vρ . The rate of work done against the jog drag 457 

stress 
( )
jd
kτ  is (Hirth and Lothe, 1982; Hull and Bacon, 2011) 458 

 
( ) ( ) ( ) ( ) ( )

jd
k k k k k

W b vτ ρ=& . (42) 459 

By equating ( )k
E&  with ( )k

W&  from the last two expressions, the jog drag stress is found to have the 460 

form  461 

 
( )( ) ( )
jog( ) d

jd ( ) ( )
| |

kk k
k

k k

E

b v
τ

ρ
= ⋅ ⋅ ×

Ω
b vρ

. (43) 462 

Substituting Eqs. (36) and (37) into Eq. (43), leads to the following final form of the jog drag 463 

stress 464 

 
( ) ( ) ( ) ( ) ( )d
jd jog( ) 2

| ( ( )) |
( )

k k k k k

k

Eτ
ρ

= ⋅ ⋅ × ×
Ω

s mρ ρ . (44) 465 

As mentioned earlier, a jog can either generate vacancies or interstitials based upon its character 466 

and direction of motion. However, the formation energy of an interstitial is larger than the 467 

formation energy of a vacancy. As such, for the same dislocation speed, a jog generating 468 

interstitials will move slower and generate less interstitials than one generating vacancies. 469 

5 Numerical implementation 470 

The finite element method (FEM) is used to solve coupled crystal mechanics, dislocation 471 

transport, jog transport, and point defect diffusion problems. The standard Galerkin finite 472 

element method (SGFEM) (Belytschko et al., 2013) and the least squares finite element method 473 
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(LSFEM) (Jiang, 2013) were both used in solving the coupled problem. The compatible part of 474 

plastic distortion of dislocations, stress equilibrium, and point defect diffusion problems was 475 

solved by the SGFEM method. The incompatible part of the plastic distortion of dislocations, 476 

dislocation transport, and the jog transport equations problems was solved by the LSFEM 477 

method, which yields stable and accurate solution for the div-curl type and convective transport 478 

equations (Jiang, 2013; Varadhan et al., 2006). Details of the numerical formulations can be 479 

found in our earlier work (Lin et al., 2021; Lin and El-Azab, 2020; Xia and El-Azab, 2015).  480 

At a given time step, the dislocation density and point defect concentrations from the 481 

previous time step are used to update the eigen-distortions of these fields. The stress field is then 482 

computed, from which the dislocation velocity follows. The mobility law is employed in which 483 

the resolved shear stress from the stress field and the jog drag stress are used. Then the evolution 484 

of dislocation densities is computed. The intersection of the dislocation densities on various slip 485 

systems are considered as source terms for the jog evolution equations. The non-conservative 486 

motion of dislocation jogs is calculated to generate point defects, which is then used to solve the 487 

diffusion equations of point defects. As all the variables are updated, the simulation proceeds to a 488 

new time step. 489 

The mesh for the FEM is a hybrid mesh with pyramid and tetrahedron elements (Xia and El-490 

Azab, 2015). This mesh enables us to obtain accurate results of dislocation transport in FCC 491 

crystals, since the slip planes can be represented by the faces of the finite elements exactly. The 492 

time step t∆  is adapted using the maximum dislocation velocity, maxv , over the simulation 493 

domain as follows 494 

 max

mesh

v t
C

l

∆ = . (45) 495 

with meshl  being the mesh size and C the Courant number, which is taken here to be 0.45. 496 

6 Results and discussion 497 

To verify the coupled model established in the previous sections, simple test simulations were 498 

performed, which illustrate how point defects are generated by jogs on moving dislocations. 499 

Bulk simulations of a FCC crystal under uniaxial loading were then performed to elucidate the 500 

differences in the mechanical behavior of the crystal when jog drag and the point defect 501 

generation mechanism is taken into consideration. 502 
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6.1 Jogs and vacancies generated by two intersecting dislocation loop bundles 503 

Initially, there are two dislocation bundles in the form of loops, which we will call loops for 504 

brevity, placed on two different slip planes in a 2μm 2μm 6.364μm× × simulation volume, as 505 

shown in Figure 4. Over a cross section of the loop the density exhibits a gaussian distribution in 506 

the radial direction in the slip plane and in the direction normal to the slip plane. The red loop is 507 

on a slip plane with normal along the x-axis and with Burgers vector along the y-axis, while the 508 

green loop is on a slip plane with normal along the y-axis and with Burgers vector along the x-509 

axis. In this test, the slip systems do not coincide with those of a FCC crystal. They are rather 510 

chosen to make the analysis easier in this test problem. The dislocation velocity for both loops is 511 

assigned a constant value of 0.03μm /ns  such that they expand to intersect each other. Periodic 512 

boundary conditions are also employed. 513 

 514 
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Figure 4. Evolution of (a) dislocation densities, (b) jog densities and (c) vacancy concentration as 515 

two dislocation loop bundles expanding and intersecting with each other. Contour surfaces are used 516 

in these figures to show the results in 3D. 517 

Figure 4 shows the evolution of the dislocation density, jog density, and point defect 518 

concentration.  Before the two loops intersected with each other there were no jogs and no 519 

vacancies in the domain. At the onset of intersection, jogs start to form at the places where the 520 

two loops intersect. As more of the bundles intersect, the region with jogs becomes larger. After 521 

the two dislocation loops pass each other, no more jogs form and the existing jogs move together 522 

with the corresponding dislocations. In Figure 4 (a) and (b), the same color is used for 523 

dislocations and jogs on the same slip system. The intersecting parts of the two dislocation 524 

bundles have screw character, and the jogs on them have edge character. The motion of screw 525 

dislocations with jogs having edge character will result in point defect generation during slip 526 

(Hull and Bacon, 2011). As can be seen in Figure 4 (c), vacancies start to form after the presence 527 

of jogs. As the jogs move, trails of vacancies are generated behind them. Similar results have 528 

been reported for MD simulations (Zhou et al., 1999). 529 

In the above test, the dislocation density vectors of the intersecting parts are (1) (1)(0, ,0)ρ=ρ  530 

and (2) (2)( ,0,0)ρ= −ρ  and the corresponding dislocation velocity vectors are (1) (0,0, )v=v  and 531 

(2) (0,0, )v= −v . The Burgers vectors are (1) (0, ,0)b=b  and (2) ( ,0,0)b=b . According to Eq. (20), 532 

the jogs generated during a time increment t∆  are (1) (1) (2)
jog ( 2 ,0,0)vb tρ ρ∆ = − ∆ρ  and 533 

(2) (1) (2)
jog (0, 2 ,0)vb tρ ρ∆ = − ∆ρ . Based on Eq. (24), both (1) (1) (1)

jog( )⋅ ×b vρ  and (2) (2) (2)
jog( )⋅ ×b vρ  have 534 

positive sign and so all jogs produce vacancies. A similar analysis shows that changing the 535 

direction of only one of the dislocation loops makes the jogs on both loops produce interstitials. 536 

Figure 5 shows the evolution of the average dislocation density, jog density and vacancy 537 

concentration in the domain. Dislocation density increases initially due to the expansion of the 538 

loops. Then it decreases because the loops reach the periodic boundaries and self-annihilate with 539 

their images. The initial values of jog densities are zero, and they start to increase at about t = 4 540 

ns when the two dislocation loops first begin to intersect. The jog densities continue to increase 541 

until t = 16 ns when the two dislocation loops completely pass each other. Then the jog densities 542 

remain nearly constant as the separated jogs only move in space. The small decrease in jog 543 

density is attributed to numerical diffusion. The evolution of the dislocation and jog densities is 544 
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identical because of the identical initial conditions and speeds on both slip systems. The vacancy 545 

concentration increases after jogs are formed. When no more jogs are formed and the separated 546 

jogs move with a constant velocity, the vacancy concentration increases linearly over time. 547 

 548 

Figure 5. Average dislocation density, jog density and vacancy concentration as functions of time. 549 

6.2 Evolution of expanding dislocation loop with jogs 550 

A simple test problem is solved in this section to show the effect of the drag stress due to jogs on 551 

the evolution of a dislocation loop. This problem involves a dislocation loop with a radius of 552 

1μm placed at the center of the simulation volume, as shown in Figure 6. The size of the 553 

simulation volume is 5μm×5μm×5.303μm, with edges along [110] , [110]  and [001]  554 

crystallographic directions. The dislocation loop is on the (111)  slip plane with its Burgers 555 

vector along the [110]  direction. Initial jogs are assigned to the screw sides of the dislocation 556 

loop, and the jog density corresponds to cutting the dislocation loop by dislocation lines on slip 557 

plane (111)  with Burgers vector [110]  (along x-axis), as shown in Figure 6(b). The jog density 558 

vector jog jog( ,0,0)ρ=ρ  has only one nonzero component, whos magnitude is proportional to the 559 

dislocation density described by Gaussian distribution around the screw parts of the dislocation 560 
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loop with a scale factor of 45 10−× .  Material parameters are shown in Table 1 and Table 2. These 561 

parameters correspond to stainless steel (Ghoniem and Cho, 1979; Surh et al., 2004). 562 

 563 

Young’s modulus (GPa) 189 Burgers vector b (nm) 0.254 

Poisson’s ratio 0.26 Drag coefficient (Pa.s) 7.12×10-6 

Table 1. Material properties. 564 

 565 

Vacancy formation energy 

(eV) 
1.60 

Relaxation volume of a 

vacancy 
-0.2Ω 

Interstitial formation energy 

(eV) 
4.08 

Relaxation volume of an 

interstitial 
1.5Ω 

Atom volume Ω (m3) 1.18×10-29 

  

Table 2. Parameters for point defect generation. 566 

 567 

 568 

 569 

Figure 6. (a) A dislocation loop is placed on (111)  plane with Burgers vector along [ 1 1 0 ]  direction. 570 

(b) Jog density is assigned on the screw part of the dislocation loop. 571 
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An external load is applied to make the loop expand. The external load results in a resolved 572 

shear stress of 50 MPa on the dislocation loop. It is obvious that if there were no jogs, the 573 

dislocation loop would retain its initial circular shape during its expansion. However, by 574 

considering jog drag and point defect generation, the dislocation loop was found to evolve quite 575 

differently. This difference is shown below in Figure 7. As can be seen in the figure, the 576 

dislocation velocity is reduced where the jogs exist. The behavior is similar to that of a 577 

dislocation pinned by an obstacle; the dislocation line bows out near the parts where there are 578 

jogs. From the evolution of the jog density, it can be seen that the distance between upper and 579 

lower parts increases as the dislocation loop expands, since the jogs are tied to the dislocation 580 

line. Also, the region in which the jog density is non-trivial becomes thinner as the dislocation 581 

line continues to bow out. 582 

The motion of the jog density is non-conservative and so, according to Eq. (24), point defects 583 

are produced in conjunction with the jog motion. Since the dislocation velocities are opposite at 584 

the upper and lower parts of the dislocation loop, the upper part generates interstitials and the 585 

lower part generates vacancies. As the region of jog density becomes thinner during loop 586 

evolution, the shapes of the regions where the interstitials and vacancies are generated change 587 

accordingly. On the other hand, since the formation energy of interstitials is larger than that of 588 

vacancies, vacancies are more easily generated and as such there will be more vacancies than 589 

interstitials at the end of the simulation. The result is clearly shown in Figure 8. In consequence, 590 

the jogs that generate interstitials are seen to impede the motion of the dislocation line more than 591 

the jogs that generate vacancies. 592 

 593 
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 594 

Figure 7. Dislocation loop expansion under the action of an external stress with jog drag on both the 595 

screw sides. Evolution of (a) dislocation density, (b) jog density, and (c) point defects (positive for 596 

vacancies and negative for interstitials). 597 

 598 

Figure 8. Evolution of the vacancy and interstitial concentration with time. More vacancies are 599 

generated than interstitials due to the lower formation energy of vacancies. 600 
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The jog drag stress and resolved shear stress corresponding to interstitial and vacancy 601 

generation are compared in Figure 9. It is obvious that the jog drag stress for generating 602 

interstitials is higher than the jog drag stress for generating vacancies. The resolved shear stress 603 

in Figure 9 includes the external stress (which is 50 MPa) and the stress due to eigen-strain 604 

induced by the dislocation loop under a periodic boundary condition. So one may ask: under 605 

what circumstance will the drag stress have a prominent effect compared with the resolved shear 606 

stress? The drag stress expression, Eq. (43) can be rewritten as  607 

 
( )
jog( ) ( ) ( ) ( )d

jd jog ( )
| ( ) |

k

k k k k

k

E ρ
τ

ρ
= ⋅ ×

Ω
s ξ η  (46) 608 

where ( )k
s , ( )

jog
kξ  and ( )kη  are unit vectors along the Burgers vector, jog direction, and dislocation 609 

velocity, respectively. ( ) ( ) ( )
jog| ( ) |k k k⋅ ×s ξ η  is always less than or equal to unity. Regardless of 610 

these orientations, the maximum drag stress is ( ) ( )
d jog /k k

E ρ ρΩ . So, for a given material, the ratio 611 

of jog density to dislocation density determines the magnitude of drag stress. For the material 612 

properties used in this simulation, taking the vacancy formation energy as an example, 613 

4
d / 2.17 10  MPaE Ω = × . So, to generate 10 MPa drag stress, ( ) ( )

jog /k kρ ρ  should be at least 614 

44.61 10−× .  615 

 616 

Figure 9. The (a) resolved shear stress and (b) jog drag stress at the first step of the simulation. 617 

6.3 Effects of jog drag and defect generation on the mechanical response of single crystals 618 

Two bulk crystal simulations were performed to study the mechanical response of a FCC crystal 619 

under uniaxial loading. In one simulation jogs and point defects are produced by the moving 620 
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dislocations but the effects on dislocation motion of the eigen-strain of point defects and the drag 621 

stress of jogs were ignored. This model is referred to as the one-way coupling model. In the 622 

second simulation, the eigen-strain of point defects and drag stress of jogs were considered in 623 

dislocation dynamics, whereby point defects and dislocation jogs can also affect the evolution of 624 

dislocations. This model is referred to as the two-way coupling model. 625 

The simulation domain is a 5 μm 5 μm 5.303 μm× × box, discretized by a hybrid mesh of 626 

pyramid and tetrahedron elements. The mesh size is 62.5 nm. All 12 slip systems of FCC crystal 627 

are considered. The edges of the simulation domain are along [110] , [110]  and [001]628 

crystallographic directions. An initial dislocation density of 12 21.5 10  m −×  is distributed across all 629 

12 slip systems as loops. These loops have radii ranging from 2 μm  to 6 μm , and they are 630 

placed randomly in the domain with periodic boundary (the part of the loop exiting the domain 631 

will be re-entered from the opposite boundary). The initial dislocation configuration is shown in 632 

Figure 10. It is used in both the one-way and the two-way coupled simulations. The crystal is 633 

then loaded along the [001] direction with a strain rate of 20 s-1. Periodic boundary conditions 634 

are applied on the six surfaces of the domain. Most material parameters are the same as in Table 635 

1 and Table 2, except that a different drag coefficient was used, which is 42.5 10  Pa sB
−= × ⋅ . 636 

This value was obtained from recent molecular dynamic simulations at a temperature at T=573 K. 637 

Additional parameters regarding the diffusion equations of point defect are listed in Table 3. 638 

 639 

 640 

Figure 10. Initial dislocation configuration for the 3D bulk simulations. 641 

 642 

 643 
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Gas constant (J/mol K) 8.314 Diffusivity of vacancy (m2/s) 3.28×10-18 

Temperature (K) 573 Diffusivity of interstitial (m2/s) 5.76×10-9 

Recombination coefficient 

(m3/s) 
6.25×10-17 

  

Table 3. Parameters for point defect diffusion and recombination (Ghoniem and Cho, 1979; Surh et 644 

al., 2004). 645 

 646 

The stress-strain curves and dislocation density evolutions of the one-way and two-way 647 

coupled simulations are shown in Figure 11. In part (b) of the figure, the scalar dislocation 648 

density, ( )|| ||k

k
ρ =∑ ρ , is displayed. It clearly shows that the two-way coupling between jogs, 649 

defects and dislocations results in a higher hardening rate than the one-way coupling (Figure 650 

11(a)). There are two main reasons accounting for this difference. First, as the jog drag stress is 651 

considered in the two-way coupling, it is obvious that higher stress is required to move 652 

dislocations. Second, the dislocation density is also higher in the two-way coupling simulation 653 

(Figure 11(b)), which leads to stronger dislocation-dislocation interactions and a higher 654 

resistance to dislocation motion as per Taylor hardening Eq. (40). The higher dislocation density 655 

in the two-way coupled model can be explained by the result of the test simulation in section 6.2. 656 

The jog drag stress impedes the motion of part of the dislocation density thus forcing the 657 

dislocation lines to bow out and increase their length. This effect is similar to that of dislocations 658 

passing obstacles.  659 

The relation between the flow stress and the square root of dislocation density is plotted in 660 

Figure 12 for both the one-way and two-way coupling cases. The stress and the density data are 661 

extracted from Figure 11. Despite the difference in the dislocation density evolution between the 662 

two cases, the evolution in both cases exhibit a linear relationship between the flow stress and 663 

square root of the total dislocation density, which indicates that the Taylor law is preserved albeit 664 

with a slight difference in slope, which is expected due to the presence of jogs in the two-way 665 

coupling model. 666 
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 667 

 668 

Figure 11. Stress-strain curves, (a), and the dislocation density versus strain, (b). Part (b) displays the 669 

scalar dislocation density, 
( )|| ||k

k
ρ =∑ ρ . 670 

 671 

Figure 12. The Taylor law relation in the (a) one-way and (b) two-way coupling simulations. 672 

 673 

The dislocation density evolutions on the individual slip systems for both the one-way and 674 

two-way coupled simulations are compared in Figure 13. The scalar density 
( ) ( ) || ||k kρ = ρ   is 675 

displayed in both parts of the figure. For the case of one-way coupling under [001] type loading, 676 

the density evolution on the eight active slip systems and the four inactive ones is clearly distinct. 677 

The dislocation densities on the active slip systems increase faster than their counterparts on the 678 

inactive ones. Also, within each group of slip systems, the densities are closer to one another due 679 
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to the symmetry of the slip systems relative to the loading axis. In the case of two-way coupling, 680 

the dislocation densities on the inactive slip systems are relatively lower than the dislocation 681 

densities on the active slip systems as well. However, the density increases at different rates on 682 

the active slip systems. Such differences are observed dislocation dynamics frequently, and are 683 

usually attributed to differences in initial densities on various slip systems or differences in 684 

resistance to dislocation motion. For the one-way coupling case, dislocations on different slip 685 

system are weakly coupled via the stress field, and so the resistance to slip due to jogs is absent. 686 

For the two-way coupling case, the condition of forming jogs can largely depend on the 687 

dislocation distributions on both slip system, and in return, the jog drag stress can be different on 688 

different slip systems due to the stochastic initial configuration. Actually, the different density 689 

multiplying rates can also be observed in discrete dislocation dynamics simulations, and the 690 

phenomenon results from the variability of the dislocation density on various slip systems along 691 

with the smallness of the volumes being simulated. 692 

 693 

 694 

Figure 13. Dislocation density evolutions on individual slip systems. (a) One-way coupling case.  (b) 695 

Two-way coupling case. The scalar dislocation density on each slip system, ( ) ( ) || ||k kρ = ρ , is 696 

displayed. 697 

Figure 14 shows the evolution of the jog density, ( )
jog jog|| ||k

k
ρ =∑  ρ , in both the one-way and 698 

two-way coupling cases. Figure 14(a) shows that the jog density increases almost linearly with 699 

strain in both cases. However, the jog density in the two-way coupled simulation is much higher 700 

than its counterpart in the one-way coupled simulation. This difference is due to the feedback 701 
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mechanisms between jog drag, the increase in the dislocation density, and the subsequent 702 

increase in the jog density due to more dislocation-dislocation cutting when the density is higher. 703 

The ratio of jog density to dislocation density is shown in Figure 14(b). This ratio also increases 704 

with strain and is higher in the case of two-way coupling than for the one-way coupling. It is 705 

important to mention here that the dislocation density is often proportional to the square root of 706 

strain or to the strain to some power less than 1, see Figure 11(b), but the jog density is 707 

proportional to strain itself as shown Figure 14(a). The latter dependence has to do with the fact 708 

that jogs are formed via the dislocation motion and intersection, i.e., with the accumulation of 709 

strain. From the strain dependence of both the dislocation density and the jog density, it can be 710 

concluded that the jog density is proportional to the square of dislocation density or to the 711 

density to some power higher than unity. This behavior is consistent with the jog density 712 

generation equation Eq. (20), in which  the jog generation rate involves a density product. As 713 

discussed in section 6.2, the ratio of jog density to dislocation density determines the drag stress 714 

of jogs. According to the analysis there, a value of 
4

jog / 2 10ρ ρ −= ×  at 0.6% strain will result in 715 

an average jog drag stress of 4.34 MPa.  716 

 717 

 718 

Figure 14. Jog density evolution. (a) Jog density versus strain, (b) The ratio of jog density to 719 

dislocation density versus strain. 720 

Figure 15 shows the evolution of point defects. For the one-way coupled simulation, since 721 

point defects and jogs have no effect on dislocations, the increase of point defect density follows 722 

a constant trend – nearly following the jog density. For the two-way coupled simulation, the 723 
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evolution of point defect densities exhibits two regimes. Initially, point defect density increases 724 

with the same rate as in the one-way coupled simulation, since the jog density is low and the jog 725 

drag stress is not sufficiently high to affect the dislocation velocity. Beyond 0.1% strain, as the 726 

ratio of jog density to dislocation density reaches about 58 10−× , the generation rate of point 727 

defect decreases significantly. Although the jog density in the two-way coupled simulation is 728 

much higher than the jog density in the one-way coupled simulation, there are far fewer point 729 

defects generated in the two-way coupled simulation. This means that jogs have a much smaller 730 

average velocity in the two-way coupled simulation even though their density is higher. On the 731 

other hand, from theory, it is expected that the difference in defect formation energy will create 732 

an asymmetry of drag on dislocations resulting in the production of more vacancies than 733 

interstitials. In the one-way coupling simulation, the effect of jog drag stress on dislocations is 734 

not accounted for, and hence the difference in formation energies of different point defects does 735 

not affect their production, which in this case only depends on the densities of jogs producing the 736 

two types of defects. The bias due to initial configuration of dislocations favors the generation of 737 

interstitials. In the two-way coupling simulation, although there are more interstitials in the 738 

beginning, vacancies are generated faster than interstitials beyond about 0.35% strain. This 739 

would have important implications as far as void nucleation is concerned and its role in ductile 740 

fracture of metals.  741 

The stress field arising from the eigenstrain of point defects can be analyzed by their 742 

concentrations. At 0.6% strain, the point defect concentrations are about 10�/μm� , so the 743 

corresponding eigenstrains are in the order of 10��~10�
 according to Eqs. (33) and (34), and, 744 

by Hooke’s law, the corresponding stress is in the order of 10��~10�� MPa.  This estimate 745 

represents the stress corresponding to a uniform eigenstrain in a constrained solid, which is an 746 

upper bound. As can be seen, this stress is quite small compared with the jog drag stress derived 747 

earlier. As such, in the current deformation simulation, the additional hardening in the two-way 748 

coupling case mainly comes from the jog drag stress. 749 

 750 
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 751 

Figure 15. Evolution of the vacancy and interstitial concentration in the one-way and two-way 752 

coupled simulation of dislocations, jogs and point defects. 753 

Figure 16 compares the dislocation microstructure for the two simulations. The dislocation 754 

density is shown on a (111) slip plane at 0.6% strain for the one-way coupling in Figure 16(a) 755 

and the two-way coupling in Figure 16(b). In both cases, the heterogeneity of the dislocation 756 

density is anticipated. Dislocations are likely to accumulate in a pattern along three specific 757 

directions. One preferred direction is horizontal and the other two are oriented 3π±  from the 758 

horizontal line. These directions are the intersections of the slip plane with the other three slip 759 

planes of the FCC crystal. The dislocation density pattern is more obvious in the two-way 760 

coupled case. As shown in Section 6.2, the drag stress of jogs tends to retard dislocation motions, 761 

and the dislocation density will increase as dislocations bow out more. The intersections of the 762 

slip plane are the places where jogs are more likely to be formed. For this reason, in the two-way 763 

coupled case, localized dislocation densities of a larger magnitude are more likely.  764 

The vacancy concentration on the same slip plane are shown in Figure 17 for the one-way 765 

and two-way coupled cases. The vacancy pattern appears to have a finer structure in the case of 766 

one-way coupled simulation than in the two-way coupled case. In the one-way coupling case the 767 

drag stress of dislocation jogs is not considered. Once the jogs are formed by dislocation 768 

intersections they move together with dislocations. As dislocation intersections happen 769 

everywhere in the domain, point defects can also be generated at the places where jogs have 770 

moved. For the two-way coupling case, to generate point defects, the local resolved shear stress 771 

must be large enough to overcome the drag stress caused by the jogs. For the locations where the 772 
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stress does not satisfy this criterion, the jogs are not able to move. Consequently, fewer point 773 

defects are generated and the resulting deformation patterns exhibit larger wavelengths on 774 

average. 775 

 776 

Figure 16. Dislocation density on (111) slip plane at 0.6% strain. (a) One-way coupled simulation, 777 

and (b) two-way coupled simulation. 778 

 779 

 780 

Figure 17. Vacancy concentration on (111) slip plane at 0.6% strain. (a) One-way coupled simulation, 781 

and (b) two-way coupled simulation. 782 

In in the coupled continuum dislocation dynamics/point defect generation model developed 783 

and solved in this work, jog formation and transport serve as the mechanism of point defect 784 

generation and drag on dislocations. In our formulation, the line direction of dislocations and 785 

jogs are considered as well as the Burgers vectors, as in Eqs. (20) and (24). It is usually not 786 
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possible to do this in crystal plasticity at the mesoscale, since dislocations are represented by 787 

scalar dislocation densities. Even in discrete dislocation dynamics, modelling of the jog 788 

formation and evolution is a challenging and cumbersome exercise since it requires the tracking 789 

of the individual jogs and perhaps also the individual point defects generated. The test problem 790 

presented in Section 6.1 clearly shows how effective continuum modeling of dislocations is in 791 

describing the process of point defect generation by moving dislocations, a new advantage 792 

offered by the current development. Dislocation jogs are formed first by intersecting dislocation 793 

lines. As dislocation jogs move, trailing point defects are generated along their path. This is 794 

exactly what we expect from the proposed model. On the other hand, the existence of jogs can 795 

change the evolution of dislocations due to drag stress. The drag stress is carefully formulated by 796 

considering the energy consumption for the type of point defect generated. As shown in the 797 

example in Section 6.2, jogs are similar to obstacles that impede the motion of dislocations, 798 

leading to the bow out of dislocations. This fact implies that, by considering the effect of jogs, 799 

the length of the dislocation line will increase, resulting in a higher dislocation density. 800 

Furthermore, a higher dislocation density will contribute more to strain hardening. This 801 

conclusion is confirmed by the bulk simulation in Section 6.3, as shown in Figure 11. Another 802 

important observation is that the asymmetry in the jog drag stress for jogs oriented for vacancy 803 

versus interstitial generation leads to an asymmetry of the rate of the point defects generated, 804 

essentially leading to a higher vacancy generation rate than for interstitials, which shows in the 805 

cumulative average defect concentrations in the deformed crystal. This asymmetry explains why 806 

there are often more vacancies than interstitials in plastically deformed metals. The current 807 

results demonstrate that the model presented here may help to understand void nucleation during 808 

plastic deformation. 809 

7 Concluding remarks 810 

To summarize, a model for point defect generation by the jog formation and transport 811 

mechanism during plasticity is proposed within the framework of vector density-based 812 

continuum dislocation dynamics. As a part of this model, detailed equations for jog formation 813 

and transport were developed as a part of continuum dislocation dynamics. Jogs were assumed to 814 

form as a result of intersection of dislocations on various slip systems. Jogs were also assumed to 815 

be quasi-particles attached to dislocations that move together with the dislocations with the same 816 

speed and direction. The rate of point defect generation associated with jog transport was 817 
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formulated in terms of the volume non-conservation associated with jog motion, i.e., with the 818 

non-glide part of the motion of the dislocations in the crystal. Balance equations for the 819 

vacancies and interstitials including their rate of generation due to jog transport, recombination 820 

and diffusion were also established. The effect of point defects on dislocations was further 821 

included via the stress induced by their eigen-distortion. Finally, a jog drag stress was introduced 822 

into the mobility law of dislocations thus accounting for the energy expended in producing the 823 

point defects. All model equations were coded in conjunction with continuum dislocation 824 

dynamics using the finite element method and implicit time integration. Test problems were 825 

presented, including jog formation and transport and the associated vacancy and interstitial 826 

generation, and the effect of jog drag stress on the dislocation evolution. Coupled solutions of the 827 

plasticity and point defect generation problem under uniaxial load were presented. 828 

The results show that fully coupled dislocation and point defect dynamics via jog drag results 829 

in a higher dislocation density and a higher hardening rate. The results also show that the 830 

asymmetry of jog drag stress between jogs oriented for vacancy versus interstitial generation 831 

leads to higher vacancy generation and accumulation past the initial straining of the crystal. The 832 

dislocation and point defect patterns are also found to exhibit longer wavelengths in the case of 833 

fully coupled dislocation and point defect dynamics. The model as it currently stands is 834 

considered a first step toward generalized defect dynamics modeling of plasticity of metals in 835 

which point defect generation plays an important role, e.g., in situations involving hydrogen 836 

effects, and in cases where ductile fracture via void formation is important. 837 
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