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A Note on Thermal History Kernel for Unsteady Heat Transfer of a
Spherical Particle
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Abstract

When a particle is subjected to an unsteady ambient flow, in terms of either time-dependent
relative velocity or time-dependent temperature difference, the net heat transfer from the particle
cannot be calculated based on the quasi-steady heat transfer correlation alone. Due to unsteady
evolution of the thermal boundary layer, there is also a history contribution to heat transfer. The
history contribution to heat transfer is expressed as a convolution integral of past evolution of
temperature difference between the particle and the surrounding. While Basset history force and
its finite Reynolds number extension have been well studied, similar understanding of unsteady
heat transfer and thermal history kernel is lacking. We use existing particle-resolved simulation
results of [2] to develop a finite Peclet number thermal history kernel, which when used with the
convolution integral is demonstrated to accurately predict unsteady heat transfer over a range
of Peclet numbers and particle-to-fluid heat capacity ratio.

1 Introduction

In many applications, heat transfer between a particle and its surrounding is in the context of
significant unsteadiness. For example, a particle suddenly injected into a hot (or cold) stream will
undergo unsteady heat transfer as it is heated (or cooled). In a turbulent flow, even a particle that
has been in the system for a long time will undergo unsteady heat transfer as it moves between
different regions of the turbulent flow. In the above examples, the term unsteady refers to the
fact that as heat is being exchanged between the particle and the surrounding fluid, the condition
under which the transfer is occurring is changing. This change can be in the form of either the
relative velocity changing in magnitude or direction, or the temperature difference between the
particle and the ambient changing over time. The purpose of this paper is to address the intrinsic
effect of unsteadiness on the rate of heat transfer. If the unsteady effects are unimportant, then
at each instance the heat transfer rate can be taken to be the same as that would exist had the
problem been held steady at the instantaneous relative velocity and temperature difference - this
heat transfer can be termed the quasi-steady contribution. If the actual heat transfer rate deviates
from the quasi-steady contribution, then the difference is the intrinsic effect of unsteadiness and
can be termed the unsteady contribution.

In the modeling of momentum exchange between a particle and the surrounding fluid, the
unsteady effects appear as three different force contributions in addition to the quasi-steady force:
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(i) the undisturbed flow force (or the stress-divergence), (ii) the added-mass force and (iii) the
Basset history force. The undisturbed flow force is the simplest of the three and it arises even in
the absence of the particle and it is the momentum exchange between the volume occupied by the
particle and the surrounding fluid. The added-mass force is due to the inviscid perturbation flow
induced by the no-penetration condition on the surface of the particle, and the inviscid perturbation
flow develops rapidly on the acoustic timescale [24,25]. Thus, the added-mass force depends on
the instantaneous relative acceleration between the particle and the surrounding fluid. The Basset
history force is due to the viscous perturbation flow induced by the no-slip condition on the surface
of the particle and the perturbation develops on vorticity diffusional timescale. Thus, the Basset
history force depends on the past history of relative acceleration and is represented as a convolution
integral [14,19,26].

In the modeling of heat exchange between a particle and the surrounding fluid, the unsteady
effects appear only as two additional contributions to quasi-steady heat transfer: (i) undisturbed
flow and (ii) history heat transfer [10,22]. The undisturbed flow heat transfer arises even in
the absence of the particle and it represents the thermal exchange between the volume occupied
by the particle and the surrounding fluid. The history heat transfer is analogous to the Basset
history force and it is due to the perturbation thermal field induced by the thermal boundary
condition imposed on the surface of the particle. This perturbation thermal field develops on
thermal diffusion timescale and depends on the past history of temperature difference between the
particle and the surrounding fluid. As a result of this memory effect, the history heat transfer
appears as a convolution integral. There is no added-mass term for heat transfer, since there is no
analog of no-penetration condition for the temperature field.

The undisturbed flow heat transfer is given by mc; DTy /Dt, where my is the mass of the fluid
displaced by the particle, ¢ the specific heat capacity of the fluid, and DT/Dt the total derivative
of the fluid temperature at the particle location. The above model for undisturbed flow heat transfer
is exact even under nonlinear conditions of finite Reynolds number. In contrast, an accurate model
of history contribution to heat transfer has been rigorously derived only in the linear limit of zero
Peclet number [10,22]. Their derivation mirrored the analytical approach pursued by [5,6,19, 23]
for the history force in the limit of zero Reynolds number. In the zero Reynolds and Peclet number
limit, both the force history and the thermal history kernels decay as 1/v/t. In the case of history
force, finite Reynolds number extension has been pursued by a number of researchers [13,17,18,20].
The general agreement is that the 1/4/t decay of the kernel is appropriate at small time and at
larger time the kernel undergoes a faster decay, whose precise form somewhat depends on the precise
nature of relative acceleration or deceleration [11]. Nevertheless, force history kernels, as a function
time, applicable at finite Re, have been proposed and successfully used in force calculation [20]. A
corresponding finite Peclet number extension to the thermal history kernel is still lacking. Without
such a finite Peclet number kernel we cannot reliably calculate the unsteady heat transfer of a
particle at finite Peclet numbers. Obtaining a finite Peclet number thermal history kernel is the
focus of this paper.

The work of Balachandar and Ha [2] is of relevance to the present work. They considered
the problem of unsteady heat transfer at finite Peclet number using particle-resolved numerical
simulations. Three different problems were considered: (i) unsteady heat transfer and free thermal
evolution of a spherical particle suddenly injected into a uniform flow of different temperature, (ii)
heat transfer from a particle in a uniform flow with a sudden change in particle temperature, and
(iii) a particle subjected to a uniform flow of oscillatory temperature variation. All three problems



considered finite Peclet number effect with the focus on unsteady heat transfer. Here we will use
the results of the first set of particle-resolved simulations to obtain a close form expression for
the thermal history kernel. We will then use this kernel to predict the unsteady heat transfer
in the context of oscillatory temperature variation and compare the results with the third set of
particle-resolved simulation results.

2 Conditions of Unsteadiness

We start with the following question: under what conditions heat transfer between a particle
and the surrounding can be treated as quasi-steady? If these conditions are not satisfied, then the
unsteady contribution is significant and must be included in the heat transfer analysis. To answer
this question we define the following timescales, and a comparison of these timescales can be used
to evaluate the importance of unsteadiness. There are three primary ways by which the conditions
of heat transfer changes: (i) change in particle temperature, (ii) change in particle velocity and (iii)
change in ambient flow temperature or velocity seen by the particle.

The thermal timescale of the particle is given by 70 = d%/ (6yx¢Nu) [3,16], where d), is the
particle diameter, v = prcy/(ppcp) the fluid-to-particle specific heat capacity ratio, sy the thermal
diffusivity of the fluid and Nu the Nusselt number. Thermal timescale represents the time over
which the difference in temperature between the particle and the surrounding fluid decreases by a
factor of 1/e or becomes 36.8% of the initial value [4,26]. Provided the ambient fluid temperature
and the relative velocity between the particle and the surrounding remain the same, 77 is the
timescale on which the conditions of heat transfer changes.

Instead, if the ambient fluid velocity and the temperature difference between the particle and
the surrounding are held independent of time, then unsteadiness can only be due to the acceleration
(or deceleration) of the particle towards the surrounding fluid velocity. This momentum timescale
of the particle is given by 7, = pdg/ (18vf @), where p is particle-to-fluid density ratio, vy the
kinematic viscosity of the fluid and ® the finite Reynold number correction to Stokes drag. The
momentum timescale represents the time over which the difference in velocity between the particle
and the surrounding fluid decreases by a factor of approximately 1/e.

As the third source of unsteadiness we consider either the velocity or temperature of the sur-
rounding fluid seen by the particle changing on the timescale 7;. While 77 and 7y, are determined
by the thermodynamic and transport properties of the fluid and the particle, 7 is dependent on the
nature of the flow in which the particle is immersed in, and therefore must be carefully evaluated
in any given problem. We now define the timescale of unsteadiness to be the smallest of the three
as

Tun = min{TT7 TV, Tf}a (1)

since the smallest timescale will dictate the unsteady nature of heat transfer.

This timescale of unsteadiness must be compared with both the advection timescale d),/U and
the diffusion timescales d2/ky and d3 /vy of the flow, where U is the relative velocity between the
particle and the flow. For Peclet and Reynolds numbers Pe = d,U/ks,Re = d,U/vy > 1, the
diffusion timescales are larger than the advection timescale, while for Pe, Re < 1 the advection
timescale is larger than the other two. In order for heat transfer to be considered quasi-steady (i.e.,
to ignore unsteady effects), 7,, must be much larger than the advection and diffusion timescales.
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Table 1: The rows represent conditions where 7p, 7y and 7; are smaller than the other two,
while the three columns represent the largest of convective, thermal-diffusion, momentum-diffusion
timescales. The corresponding conditions for considering heat transfer to be quasi-steady are given
in the table entries. In this work we focus on the case of thermal timescale of the particle being
the smallest, which has been highlighted in gray in the table.

IL.e., the condition for validity of quasi-steady heat transfer is

d, d> d?
Tun > Max{ —, =, £ 5, (2)
U Ky vy

Only then, the inertial and diffusional adjustment of the velocity and temperature fields of the fluid
can be considered faster than the change in the conditions of heat transfer. The above compactly-
expressed condition can be more explicitly expressed as the nine different conditions given in Table
1.

In this work we will primarily consider unsteadiness in the simpler context of a particle subjected
to a steady ambient stream of uniform velocity at a constant temperature different from that of
the particle. The relative velocity between the particle and the ambient will be held fixed and
the temperature of the particle is allowed to evolve towards that of the ambient stream. Thus, we
consider the case 7 < (7v,7¢). In this limit, for quasi-steady approximation to be valid we require
the volumetric heat capacity of the fluid to be significantly smaller than that of the particle (i.e.,
the ratio v must be substantially smaller than the smallest of 1/(6Nu), Pe/(6Nu) and Pr /(6Nu)).

3 Unsteady Heat Transfer Model

Consider a particle of diameter d, freely moving with time-dependent velocity V(¢) and tem-
perature T)(t) in an ambient fluid of velocity u(¢) and temperature T4 (t). If the particle velocity
differs from the fluid velocity (i.e., V. —u # 0), then the particle will experience a drag force and
the particle velocity will evolve towards the fluid velocity. Similarly, if the particle temperature
differs from the fluid temperature (i.e., T, — T # 0), due to heat transfer, the particle temperature
will evolve towards the fluid temperature. The time evolution of particle velocity is given by the
Basset-Boussinesq-Oseen equation of motion [5,6,19,23]. The corresponding equation of thermal



evolution of the particle is given by [10,21, 22]
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(3)
where m,, is the mass of the particle, ¢, the specific heat capacity of the particle, ky the thermal
conductivity of the fluid and py the density of the fluid. On the right hand side, the three terms
correspond to undisturbed flow heat transfer g, quasi-steady heat transfer ¢, which depends
on the instantaneous temperature difference between the particle and the surrounding, and the
history heat transfer gp;, which is the quantity of interest here. In the above, K79 = 1/+/€ is the
thermal history kernel, and the argument d(7Ty — T},)/dt in the convolution integral is evaluated
at time (¢ — &) and at the particle location as indicated by the subscript @(¢ — £). The notation
[]a indicates the fluid quantity being evaluated at the particle location and at time ¢, while [-]¢
indicates the kernel being evaluated at time &.

The above rigorous expression was derived under two important assumptions: (i) It is appropri-
ate only in the zero Peclet limit. At finite Peclet number both the quasi-steady heat transfer and
history kernel will depend on the value of Peclet number. (ii) The particle diameter dj, is assumed
to be much smaller than the length scales of the ambient flow. As a result, fluid-related quantities
such as Ty, DTy/Dt and dTy/dt are taken to be spatially uniform on the scale of the particle
and evaluated at the particle center. The latter assumption has been relaxed by [22] following the
approach of Maxey and Riley [19] to obtain unsteady heat transfer from a particle of finite size,
in the zero Peclet number limit. In contrast, the assumption of linearity is hard to relax, since a
rigorous nonlinear solution is not possible. Nevertheless, an empirical expression for unsteady heat
transfer at finite Peclet number, for a finite-sized particle can be expressed as
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(4)
Three important differences from (3) can be observed. First, the fluid related quantities are not
evaluated at the center of the particle. Since the particle is not restricted to be small anymore, T’
and its derivatives vary over the volume occupied by the particle. Therefore, in the above equation,
the fluid quantities are evaluated as averages over the particle surface or volume, and indicated

by the notations () and (-) . Note that in the small Peclet number limit, we can approximate
Tfs ~ [Tflq + (d2/6) [V*Tf| o and this is the form presented in [22]. Second, quasi-steady heat
transfer is a function of both Reynolds and Peclet numbers and this functional dependence appears
through the Nusselt number Nu(Re, Pr). In the zero Peclet number limit, Nu = 2 and quasi-steady
heat transfer reduces to that in (3). Third, the thermal history kernel K7 will be not only a function
of time, but also depend on the Peclet number.

3.1 Nu and Kt for Small Pe

In this subsection we will consider analytical solutions for small Peclect number (i.e., for Pe <
1). Acrivos & Taylor [1] solved the problem of steady heat transfer from a spherical particle using



singular perturbation and obtained the following result
1 1
Small—Pe limit : Nu=2+ iPe + ZPe2 In(Pe) + O(Pe?) . (5)

The above solution correctly approaches the conduction value of Nu = 2 as Pe — 0. The above
expression has been verified to be accurate for Pe in the range from 0 to 0.7 [22].

The small-Pe form of the thermal history kernel has been established by considering the exact
solution of the temperature field around a spherical particle subjected to Stokes flow. The particle
and the surrounding fluid are initially at the same temperature but at ¢ = 0 the temperature
of the particle is suddenly decreased and thereafter the temperature difference is maintained at
Ty — T, = AT. From the exact solution of the governing equations, the non-dimensional heat
transfer to the particle is obtained as

myc, dI, Pe 1_, 2v/Pe Pet Pe VPet
T TP 94 T 4 ZPe? In(Pe) + —— — ) — = erh
cd kAT dt S 2 1 ¢ n(Pe) + —= exp ( ~ 75 yotel——) ©

Qqs/(mdpk AT)=Nu

ani/ (wdpk s AT)

where erfc is the complementary error function and ¢ = tU/ d, is the non-dimensional time. We
compare the above to the three heat transfer contributions given on the right hand side of the
unsteady model given in (4). Since the ambient flow is at constant temperature, the undisturbed
flow heat transfer is zero (i.e., gun = 0). The other two contributions are clearly identified above.
When non-dimensionalized by (7dyk;AT) the quasi-steady contribution to heat transfer is simply
the Nusselt number Nu. In the present problem, for ¢ > 0, the temperature difference between
the ambient and the particle remains a constant and as a result the quasi-steady heat transfer
is time independent. Immediately after the change in particle temperature, unsteady effects will
contribute to gp; and in non-dimensional terms this contribution can be obtained by performing the
convolution integral in (4). In evaluating the integral, we can set [d(Ty — T},)/dt], . = AT6(t — &),
where ¢ is the delta function. We then obtain the third term on the right hand side of (4) to be

dhi Pe -
N i °¢ 7
mdok, AT~ N 2 Q

where Ky = d,K7/U is the non-dimensional kernel. Comparing the above with (6) we obtain the
thermal history kernel to be

Small—Pe limit : Kp(t) = —ex BT 5 1 (8)

L2 p( Pef)_\/merf(:(@)'

For a wide range of Pe it can be verified that the first term on the right is much larger than the
second term. Henceforth, we will ignore the second term and simply consider the small-Pe thermal
history kernel to be given by the first term.

3.2 Nu and Ky for Finite Re, Pe

We first consider empirical correlations of Nusselt number obtained from experiments performed
under steady conditions at finite values of Reynolds and Prandtl numbers, where Pr = v¢/k; (Note



Pe = Re Pr). The two most popular finite-Re Nusselt number correlations are [27,29]
Nu = 2 + (0.4Re'/? 4+ 0.06Re*?) Pr’* and Nu =2+ 0.6Re!/?Pr!/3. (9)

For a fluid of Pr = 0.7, particle-resolved simulations over a wide range of Reynolds number from
10 to 500 [2] yielded Nusselt number values that were in between the above two correlations. This
illustrates the level of uncertainty in the prediction of quasi-steady heat transfer.

Here we will establish the finite-Pe thermal history kernel by considering the problem of heat
transfer from a spherical particle that is subjected to a steady uniform flow. The particle and the
surrounding fluid are initially at the same temperature, but at ¢ = 0 the temperature of the particle
is suddenly decreased. However, the temperature of the particle is allowed to freely evolve towards
the constant ambient fluid temperature. No analytic solution is possible at finite Reynolds number
and therefore we will consider the particle-resolved simulations of [2].

For a wide range of Reynolds number Re and heat capacity ratio 7, Balachandar and Ha [2]
observed the heat transfer coefficient to start at a large value and rapidly decrease to a constant
value. Correspondingly, the particle temperature initially increases more rapidly, but quickly settles
to an exponential approach to the surrounding constant fluid temperature. The time evolution of
the non-dimensional particle temperature can be expressed as

Ty — Tp(2) 67 Nueyspt
— Sl e F 1

where Nu,y is the heat transfer coefficient expressed as an effective Nusselt number. Here Nu,ys
is defined such that it accounts for both the quasi-steady and the unsteady heat transfer effects.
Therefore it is termed the effective Nusselt number. It was noted that Nu.;; was lower than the
corresponding quasi-state Nu and the reduction is due to unsteady heat transfer. Substituting the
above equation into (4) and simplifying we obtain the relation

6 Nueyy /E - 67 Nuerr €\ -
Nugsr=Nu—- —=> | K exp | ——=————>] d§. 11

The above relation holds only after the initial transient dies out, when the effective heat transfer
coefficient settles to the constant value of Nu.ss. Thus, for ¢ greater than the initial transient
period, the convolution integral on the right hand side converges to a time independent value (this
must be so, since the other two terms are time independent). This convergence to a constant value
is made possible by the rapid decay of the thermal history kernel. Motivated by the form of the
thermal history kernel in the small-Pe limit, we propose the following finite-Pe thermal history
kernel (here finite-Pe indicated Peclect numbers larger than unity)

Finite—Pe : Kr(t) = iexp(—bf) : (12)
Vi
By comparing the above with (8) it is clear that b = Pe/16 for small Pe, but the dependence of b on
Pe is to be determined for finite values of Pe. Substituting the above kernel into (11) and carrying
out the integral yields an error function solution, which for ¢ > Pe/(bPe — 6y Nu,sf) becomes time
independent. In this limit, we obtain the following expression

6y Nueyys
Pe

24y Nueyy

1+
(Nuess — Nu)2

(13)
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for the value of b. Thus, for each combination of Pe and v, the corresponding values of Nu.ys
and Nu obtained from the particle-resolved simulations of [2] can be used to obtain the value of b.
These results are plotted as symbols in Figure 1 for Pe ranging from 7 to 350 and for v = 0.004,
0.02 and 0.1 plotted in red, blue and green. Although the value of b evaluated from the simulations
show some variation with ~, the primary dependence seems to be on Pe. Based on the simulation
results and on the analytical small-Pe behavior given in (8), we propose the following curve fit for

b:

b= (1.63 — 0.92erf(0.017(Pe — 80))) [1 —0.4exp <—T§> — 0.6exp <—P62>] . (14)

The above expression for b when applied in (12) will yield a thermal history kernel that remains
appropriate over a wide range of Peclet numbers. For large Peclet number, the term within the
square parenthesis becomes 1 and the value of b is simply given by the expression within the first
parenthesis. On the other hand, for Pe < 1 the Taylor series expansion of the above correctly
approaches the limit b — 1/16.

2.5

15F

0 50 100 150 200 250 300 350
Pe

Figure 1: The value of the exponent b for varying combinations of Pe and v = 0.004, 0.02 and 0.1
are plotted in red, blue and green symbols. The black line shows the curve fit presented in (14)

3.3 Oscillatory Heat Transfer Problem

As a simple application of the above finite Peclet number thermal history kernel we will test it in
the problem of oscillatory particle temperature. In this problem, the ambient fluid velocity U and
temperature Ty were held steady. The particle is held stationary and its temperature is varied in a
sinusoidal manner. However, at all times the particle temperature is maintained lower than that of
the ambient fluid. This problem was studied by [2] with particle-resolved simulations for varying
Peclet number and for varying frequency of oscillation. Here we will predict time variation of heat
transfer using the unsteady heat transfer model and compare against the results of particle-resolved
simulations.



The temperature of the particle was varied as Tp(t) = Ty — AT + AT ae*@’g, where omega =
wd,/U is the nondimensional frequency. Here the amplitude « is smaller than unity and thus
particle temperature remains smaller than the ambient fluid. Substituting the ambient fluid and
particle temperatures into the right hand side of (4) and non-dimensionalizing by md,k;AT we

obtain each of the three terms to be as follows: ¢y, = 0, ggs = Nu(1 — ae_“:’{), and

20V P
Ghi = Qe = c
NEw)

In performing the convolution integral, the thermal history kernel has been taken to be (12).
The real and imaginary parts of the Fourier coefficients (i.e., the right hand side within the square
parenthesis) is plotted in Figure 2 as a function of @ for few different Peclet numbers. The agreement
with the results presented in [2] is very good, thus providing support for the finite-Pe thermal history
kernel. Also plotted in the figure are the power-laws for small and large values of @. For small
oscillation frequency (i.e., for @ < b), the above solution can be expanded as

5 W Vbt e et (15)

_za\ﬁ[ TR 532}' (16)

For higher oscillation frequency (i.e., for @ > b), a Taylor series expansion yields
dni = aV2Pew(—1+1). (17)

From the figure it can be observed that at high frequency oscillation the results for different Pe
collapse when plotted as a function of Pew, consistent with the scaling given in (17). At low
frequency, simultaneous collapse of both the real and imaginary pats is not possible according
to the scaling (16). These power-law behaviors were precisely the same observed in the particle-
resolved simulations.

4 Conclusions

In multiphase flow applications, unsteadiness is the norm. At the level of an individual particle,
the velocity and temperature of the ambient flow relative to that of the particle will in general vary
in time. If the timescale of variation is faster than the inertial and diffusional timescales on which
the flow adjust, then unsteadiness will affect both the force on the particle and the heat transfer.
On the other hand, if the timescale on which the relative velocity and temperature vary are slower,
then the force and heat transfer on the particle can be calculated using quasi-steady assumption.

Under unsteady conditions, the force on a particle includes both the added-mass and Basset
history contributions, which represent the inviscid (potential) and viscous effects of unsteadiness.
The added-mass force is typically parameterized in terms of an added-mass coefficient and the
Basset history force is expressed as a convolution integral with a force history kernel as the weighting
function. In the case of unsteady heat transfer, unsteadiness contributes to history heat transfer,
which is again modeled as a convolution integral with a thermal history kernel as the weighting
function. Despite the complex nature of the history force, accurate models of the force history
kernel have been developed that apply for a range of acceleration/deceleration conditions and
Reynolds numbers. This paper presented an accurate thermal history kernel (see equations (12)
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Figure 2: (a) Real part of gp; as a function of v/Pew for four different values of Pe. Also plotted are
lines of (Pe@)? and (Pe®)'/? as dash-dot and dash lines. (b) Imaginary part of gy; as a function of
VPed. Also plotted are lines of (Pew) and (Pe)'/? as dash-dot and dash lines.

and (14)), which with the convolution integral can be used to reliably predict the unsteady history
contribution to heat transfer.

The thermal history kernel was developed using the particle-resolved simulation results of [2].
They considered the free thermal evolution of a particle in a uniform flow where the particle
temperature was suddenly lowered below the steady uniform temperature of the ambient. After
a brief period of initial transient, the simulation results showed an exponential reduction in the
temperature difference and a constant net heat transfer rate. Based on the simulation results, a
composite thermal history kernel was developed, which decayed as 1/ V% at short time and as e~
at long time, where the exponential decay rate b was obtained as an empirical function of Peclet
number. The thermal history kernel was also ensured to follow the correct analytic behavior in
the small-Pe limit. The resulting model for history heat transfer was satisfactorily tested against a
different set of particle-resolved simulations where the particle temperature was sinusoidally varied
for varying Peclect number and oscillation frequency [2]. The results presented above were based
on particle-resolved simulations performed for a fluid of Pr = 0.7. Thus, the results are strictly
applicable for air and other fluids of comparable Prandtl number. However, since the results
are obtained as functions of Pe = Re Pr, their applicability extends to somewhat higher Prandtl
numbers as well. Particle-resolved simulations and present analysis must be repeated for large
Prandtl number fluids.

We now consider conditions under which the unsteady heat transfer can be ignored both when
the particle temperature is monotonically evolving towards an ambient fluid temperature and when
unsteadiness is due to time-periodic (oscillatory) behavior of the particle or ambient fluid temper-
ature. Similar analysis on the importance of Basset history force in evaluation particle velocity
has been considered by a number of researchers [?,8,9,12,15,28]. In the case of a particle mono-
tonically evolving towards an ambient fluid temperature (similar to a particle accelerating from a
stationary state to its final velocity of that of surrounding fluid), it was observed that the effects of

10



quasi-steady and unsteady heat transfers can be combined to define the effective Nusselt number.
The importance of unsteady heat transfer can then be evaluated from the ratio (see [2])

Nugs — Nueyy N (10y/V/Pe)
Nug 1+ (107/vPe)

(18)

Therefore, unsteadiness becomes unimportant when (10y/v/Pe) < 1, where the ratio v/v/Pe can
be considered as a measure of particle thermal Stokes number. On the other hand, in the case when
wither particle or ambient fluid temperature is sinusoidally varied, the importance of unsteady heat
transfer can be judged from the ratio |Gni|/|dqs|- From the high frequency expression given in (17)
we estimate the ratio as

2vPed

Nu

Thus, the importance of unsteadiness increases both with Peclet number and with the non-dimensional
frequency of oscillation. This result is in agreement with those of Vojir and Michaelides [28], who
observed that for a particle of density ratio 2.7 in oscillatory motion, the Basset history force can
be neglected provided @ is smaller than a threshold (also see similar conclusions by [7,9].

The limitations of the present unsteady thermal history kernel for heat transfer modeling must
be stressed. The kernel is expected to be quite accurate in situations where unsteadiness arises
mainly from a time-dependent particle or ambient fluid temperature. In such situations, the

(19)

Reynolds and Peclet numbers of the flow do not change and only [d(TfS —-T,)/ dt} varies over

time. Particle-resolved simulations of this scenario were used in developing the current thermal
history kernel and as a result the model performance will be good under similar conditions of ther-
mal variation. Consider a different scenario where the temperature difference (Tfs — T),) remains
a constant, but the flow Reynolds and Peclet numbers change due to time variation of relative
velocity of the surrounding fluid. This unsteadiness will also result in a unsteady heat transfer
contribution, which is not addressed by the above model. Modeling of this history effect can be
expected to be similar to that for force history modeling and therefore may depend on details of
how the flow is varied [11]. Clearly more work is needed to obtain a comprehensive model that
encompasses all possible modes of unsteadiness.
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Nomenclature
b history kernel exponent
Cy specific heat capacity of fluid
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diameter of the particle

Cp specific heat capacity of particle
dp
e Fuler’s number

KT thermal history kernel

Krg thermal history kernel in the zero Peclet number limit
my mass of displaced fluid

my, mass of the particle

Nu Nusselt number

Nueyys effective Nusselt number

Pe Peclet number

Pr Prandtl number

Qun undisturbed flow heat transfer

gs quasi-steady heat transfer

Qhi unsteady history heat transfer

Re Reynolds number

T fluid temperature

AT temperature change

t and & time

u ambient flow velocity

U ambient flow velocity scale

%4 particle velocity

T, particle temperature

Ty fluid temperature

~y density-weighted specific heat ratio = p;Cr/(p,Cp)
L =41

K thermal diffusivity of the fluid

w oscillation frequency

vy kinematic viscity of the fluid

P finite-Re correction of Stokes drag

p particle-to-fluid density ratio

pf fluid density

Pp particle density

T thermal time scale of the particle

TV momentum time scale of the particle
Tf time scale of variation of ambient fluid velocity or temperature
Tun time scale of unsteadiness

D/Dt total derivative

\Y% spatial gradient operator

an overage over the volume of the particle

)

) an overage over the surface of the particle
) non-dimensional quantity

) Fourier coefficient
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