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Abstract: This paper investigates how the market impact of electricity merchants and uncertainty of wind 

generation affect their co-optimized scheduling policy, specifically for merchants who have both energy 

storage and wind plants. In the existing literature, merchants' trading actions are usually assumed not to 

affect market prices; however, a large-scale energy storage merchant’s actions can affect market prices. To 

this end, we approximate the electricity price by a linear function of the quantity of power traded by the 

merchant in the reward function to achieve decision-making incorporating the market impact. This paper 

utilizes the dynamic programming approach to analyze merchants' optimal multi-period decision-making 

incorporating market impact, uncertain wind generation, and energy storage constraints. First, our results 

demonstrate that for a merchant with co-located energy storage facilities and wind power plants, the energy 

storage's feasible state of charge (SOC) range can be segmented into four possible sub-ranges by three 

analytical SOC reference points. The unique optimal trading decision can be achieved by comparing the 

current energy inventory and the SOC references in the next period. Second, our results show that market 

impact and uncertainties substantially change the optimal storage scheduling policy by impacting the values 

of reference points. To smooth the negative effect of the merchant’s market impact on buying and selling 

actions, the merchant should reduce the amount of electricity generating or pumping each period to 

maximize profit. Moreover, we identify and investigate the trade-off between increasing the unit power 

profit and lowering the transaction quantity. Our findings provide co-optimized scheduling guidance for 

electricity merchants with co-located energy storage and renewable power plants systems. 

Keywords: Pumped storage hydro; Wind plants; Market impact, Dynamic programming; State of Charge; 

Economic dispatch 

 

© 2022 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S2352152X22008246
Manuscript_611cdc8f06d10d5eec635443ad69aeee

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S2352152X22008246


2 

 

1. Introduction  

Sustainable and renewable energy resources (solar, wind, etc.) have been developing rapidly worldwide in 

the last two decades owing to no carbon emission, technology-driven cost reduction, and 

national/state-level regulations and targets. However, these resources are strongly dependent on the 

weather and so are characterized by intermittency and high levels of uncertainty as well as low forecast 

reliability (Korpaas et al., 2003; Liu et al., 2022; Cory-Wright & Zakeri, 2020). Moreover, because the 

electricity supply and demand must be matched in real-time, it is significant for grid operators to deal 

with electricity insufficiency and surpluses. The energy storage system plays a vital role in dealing with 

the imbalance (Ahmad et al., 2021; Lai et al., 2021). Energy storage can provide many different types of 

services for ISO (Independent System Operator), utilities, electricity merchants, and end-users (Bo et al., 

2021). From a market participant perspective, energy storage offers an arbitrage opportunity for 

electricity merchants. Storing electricity for future resale is a typical approach of merchants that sell 

commodities (Williams and Wright, 1991).  

     To manage the intermittency of renewable sources and create the flexibility for energy arbitrage, 

most wind plants owners have embraced collocating electricity generation and grid-connected energy 

storage facilities such as PSH (pumped storage hydropower) (Al-Masri et al., 2021), compressed air 

energy storage (Yu et al., 2021), and battery (Ahmad et al., 2021). One example is the Wilmot Energy 

Center that contains a 30-MW battery energy storage and a 100-MW solar array system (Tucson Electric 

Power, 2021). Co-optimization of grid-level storage (Garcia-Gonzalez et al., 2008; Zhou et al., 2019) with 

a wind farm can create value by mitigating the intermittent nature of wind generation by pumping 

electricity when the wind-generated power output is mismatched power demand (i.e., PSH and storage 

may benefit the environment also by reducing the wind generation curtailment), by storing wind 

generation and reselling in future when prices are low, and also by enabling the merchant to buy power 

for the future. U.S. Department of Energy (DOE) (2018) reported the value of co-located energy storage 

and wind plants. 

     When modeling energy storage, research into energy inventory has mainly focused on the optimal 

scheduling policy or on the optimal bidding decision (McPherson et al., 2020). However, most existent 

studies (Cheng & Powell, 2018; Ding et al., 2018; Liu et al., 2022; Kim & Powell, 2011; Secomandi, 

2010; Zhou et al., 2019) assume that the storage capacity is sufficiently small compared to the wholesale 

electricity markets, so its operational decisions (i.e., charging and buying or discharging and selling) do 

not affect the electricity prices. Thus, given the price in each period, a merchant (hereafter, she) buys for 

charging or discharge for selling a certain quantity of energy at a price that is not influenced by her own 
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operational decisions (i.e., in our terminology, price-taker merchant). However, the value of large-scale 

energy storage such as pumped storage hydro (PSH) facilities would be reflected in price arbitrage 

(Bushnell, 2003; Cruise et al., 2019; Felix et al. 2012; Liu et al., 2021a; Sioshansi et al., 2009); in such 

case, the electricity merchant’s operational trading actions will influence prices in the power market 

(i.e., price-maker merchant). More specifically, the market load will increase when a merchant buys 

electricity, thus leading to a rise in market prices; conversely, selling power will increase the supply and 

reduce market prices. Therefore, large-scale electricity storage can reduce its energy arbitrage value by 

decreasing differences in sale prices on-peak load and purchase cost on off-peak periods (Sioshansi, 

(2010, 2014)). 

Compared to the traditional study for a price-taker, Sioshansi et al. (2009) study the arbitrage value 

of a 1 GW (gigawatts) of an energy storage system in PJM Interconnection from 2002 to 2007 and 

showed that the price-smoothing differences in prices on and off-peak can reduce the arbitrage value over 

20% since it results in greater off-peak and less on-peak generation. With decreasing technology costs and 

boosting renewable deployment, energy storage is poised to be a valuable resource on future power grids. 

Will et al. (2021) reported that the energy storage would exceed 125 GW by 2050, more than a five-fold 

increase from the installed storage capacity of 23 GW in 2020. Thus, the market impact of the electricity 

merchants in trading will significantly affect their own decisions. 

In contrast to the previous research, this study analyzes how the market impact affects the 

co-optimization economic dispatch structure of merchants with co-located energy storage systems and 

wind plants. The traditional study is mainly based on the optimal scheduling policy that the merchant 

purchases electricity from the market when prices are low and sells electricity to the market when prices 

are high (Powell and Meisel, 2016). As a result, considering the market impact, the profit-maximizing 

merchant's co-optimized scheduling policy depends not only on the traditional operational approach but 

also on the market impact of the merchant’s operational actions on prices and the uncertainty of 

forecasted wind generation. Therefore, it is valuable to examine the co-optimized economic dispatch 

policy for electricity merchants who have large-scale energy storage facilities and wind plants and their 

market impact on energy storage operations. Thus, our study aims to provide new insight into how 

optimal co-optimized scheduling policies differ for the merchant who has co-located energy storage 

systems and renewable power plants under these two scenarios (i.e., price impact vs. no price impact). 

Prior research in this area commonly supposes that energy/power in storage is worthless in the last 

period (Liu et al., 2021a; Zhou et al., 2019). This assumption means the merchant should reduce the state 

of charge (SOC) down to the lower boundary of the energy storage capacity, so the choice is either 
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discharging or remaining idle during the last period of optimization horizon. However, this study 

incorporates the value of water in the PSH at the terminal period (Liu et al., 2022; Kim & Powell, 2011; 

Sánchez de la Nieta et al., 2015). In this set-up, the merchant has four options: storing all renewable 

energy generation and also purchasing power to store; storing partial renewable energy generation and 

selling the rest of it; idle/offline/do nothing; generating PSH/discharging energy storage and selling all 

renewable energy generation to the market at the terminal period. In the long term, the residual energy in 

the storage has potential value for the future then influences the current actions, which is another 

innovation of this study.  

This study was motivated to concentrate on the optimal energy operational decisions scheduling of a 

merchant who has a co-located storage system and a renewable power plant. In such circumstances, the 

merchant operates the large-scale energy storage facility to control electricity operation in the wholesale 

electricity market and incorporate the market impact1, the forecasted uncertain wind-generated power, the 

constraints of energy storage (i.e., PSH capacity, pumping/generating limits, and efficiencies), and the 

residual value of water in the storage when modeling. This paper’s analyses are intended to address the 

following two research questions: (1) How do electricity merchants with co-optimized energy storage and 

wind farm benefit from considering the market impact of buying and selling power and the uncertain 

wind generation? (2) What is the difference between the scheduling strategy considering market impact 

and the traditional scheduling strategy ignoring market impact? We were able to characterize this problem 

mathematically.  

Toward that end, this study relaxes the price-taker assumption and assumes that the impact of the 

merchant’s buy/sell decisions on the market price is approximately linear in the amount of power of 

buy/sell (Cruise et al., 2019; Liu et al, 2021a; Sioshansi, (2010, 2014)). We formulate this problem as a 

Markov decision process and explore the electricity merchant’s optimal joint operational trading strategies 

by utilizing the dynamic programming approach to maximize profit. To solve this problem and achieve the 

closed-form analytical results to support multi-period decision-making, this paper first split the original 

problem into three sub-optimization problems corresponding to three available activities of the electricity 

merchant at each period. Then, the optimal solution for each sub-optimization problem will be addressed 

based on the Bellman equation. Finally, we combine them and achieve the global conclusions of the 

original problem to obtain the optimal decision rules in the entire optimization horizon. This is the first 

paper to manage the co-optimized economic dispatch scheduling of the energy storage and wind plants 

                                                      
1 By market impact, we mean large-scale energy storage merchant’s trading actions will influence market prices. 
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issue, considering the market impact of the merchant's actions and uncertainty of forecasted wind 

generation through dynamic programming.  

The major contributions of this study are as follows: First, this research overcomes the challenges in 

achieving analytical results when considering market impact because it will change the traditional linear 

reward functions that overlook the market impact to nonlinear ones. For a storage-and-renewable energy 

source electricity merchant, we identify analytically three SOC reference points that rely on the currently 

available energy inventory in the storage, the forecasted prices, the intensity of the market impact of 

energy storage in trading, and the predicted available renewable energy source. The storage feasible SOC 

range (i.e., the energy storage capacity space) will be split into four possible sub-ranges by three SOC 

reference points corresponding to the previously listed four actions. The merchant can choose the optimal 

action simply by comparing the current energy inventory in the energy storage with the three optimal 

SOC reference points. Then, the electricity merchant's unique optimal decisions can be achieved through 

the sub-range within the current energy inventory level falls. 

Second, in contrast to the results from existing studies (i.e., those based on price-taker analyses or 

ignoring the market impact), our results show that market impact and operating cost can raise the cost of 

pumping/buying and lower the revenue from generating/selling in each period. As a result, a merchant 

that ignores her impact on electricity prices will overestimate her expected profit when offering the same 

generating/discharging and pumping/charging maximum limits of the PSH in each period to ISOs as the 

price-taker merchant. To decrease the negative effect of the market impact of the merchant in operational 

decisions, the merchant needs to reduce her energy trading amount at each decision period. Our results 

find that the market impact influence the merchant’s optimal economic dispatch volume by changing the 

value of optimal SOC reference point. Although the residual value of energy in the storage does not affect 

the traditional scheduling policy, it influences the value function to affect the SOC and indirectly changes 

the scheduling quantity of power. Withholding the offered generating/pumping capacity may be needed to 

offset the market impact. This paper also confirms the corresponding boundary that wind generation 

benefits merchants' profit if the wind generation cost is low. 

Finally, we extend our research to consider how expected profits are affected by the relation between 

the intensity of market impact and generating/discharging and pumping/charging maximum limits of the 

PSH offered to ISOs. Our findings suggest that the profit-maximizing merchant should try to make a 

trade-off between increasing the power transaction quantity directly and limiting the market impact's 

detrimental effects by reducing the transaction quantity. 
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This paper is organized into six sections. First, we review the related work in Section 2. Section 3 

models an electricity merchant who has co-located energy storage and wind plants; then, we compare our 

conclusions with the existing literature in which merchants’ market impact is not considered. Section 4 

demonstrates the proposed results through the synthesis data case study and real data case study of 

Midcontinent Independent System Operator (MISO), US. Section 5 extends our research by examining 

cases in which market impact is related to generating/pumping limits that offered to ISOs. Finally, 

Section 6 summarizes our study and points out the future research directions. 

   

2. Literature review 

This section reviews several related works related to energy storage scheduling and co-optimized of 

renewable energy sources and energy storage. First, Section 2.1 summarizes the previous methods for 

co-optimizing energy storage and renewable energy sources. Finally, Section 2.2 reviews the works and 

points out the market impact of energy storage. 

 

2.1. Energy storage and renewable source co-optimization methods 

2.1.1 Renewable source with energy storage  

Renewable power generation (e.g., wind/solar electricity generation) has high uncertainty levels and is 

intermittent, and the forecast reliability is low (Liu et al., 2022, Memarzadeh & Keynia, 2021). Energy 

storage systems (ESS) can solve this problem benefiting renewable energy market participation (Ding et 

al., 2014; Gomes et al.,2017) and maintaining the stability of the power system (Liu et al., 2015). Li et al. 

(2022) and Liu & Du (2020) discussed the problem of renewable energy selection, and they proposed a 

novel PROMETHEE method to rank different types of renewable energies and made a sensitivity analysis 

for decision results. Various energy storage technologies including battery storage (Cheng & Powell, 

2018; Rehman et al., 2022) and PSH (Deane et al., 2010; Wang et al., 2021) were also discussed.  

      Many scholars target renewable sources with energy storage. Considering the cost of energy 

storage system installation, Wang et al. (2008) and Dui et al. (2018) determined the optimal energy 

storage power and energy capacity based on profit maximization using second-order cone programming 

(SOCP). Liu et al. (2015) used the artificial neural network (ANN) to forest wind generation and LMP 

(locational marginal pricing), and to study the dispatch of wind farms with hybrid energy storage. Shi et al. 

(2018) optimized the generating scheduling of wind-storage systems by analyzing the link between wind 

power fluctuation and ESS based on quantization index (QI) clustering. Orsini et al. (2021) proposed a 

comprehensive computational framework for the optimal operation for a solar thermal plant with energy 
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storage. Roslan et al. (2021) proposed a day-ahead optimized scheduling controller for the optimal 

operation of distributed energy resources with energy in the microgrid. Heine et al. (2021) modeled MILP 

to design and dispatch packaged cool thermal energy storage (CTES) in connected communities to 

minimize the annual cost. Li et al. (2021) studied the capacity design of an integrated energy system 

based on the active dispatch mode (ADM). Bafrani et al. (2021) built a stochastic optimization operation 

model for compressed air energy storage (CAES) considering generator reliability. Savolainen and 

Lahdelma (2022) solved the optimal dimension and operation of renewable energy with storage in the 

building based on a 15-minute power balance settlement. Shi et al. (2022) proposed a hierarchical 

optimization algorithm to optimize renewable energy generation and storage capacity.  

     In this paper, unlike the research above, both capacity optimization for energy storage and optimal 

coordination framework are not evaluated. Instead, from the profit-maximizing perspective, we target 

how to get the analytically optimal co-optimized economic dispatch policy of the electricity merchant 

with a wind farm and energy storage. 

2.1.2 Co-optimization of energy storage and wind plant  

For the optimization of co-located energy storage and a wind plant system, Castronuovo and Lopes (2004) 

proposed a discrete optimization method to maximize daily profits and find the optimal daily operational 

strategy for a merchant with wind plants and hydroelectric power generation. Garcia-Gonzalez et al. 

(2008) proposed two decision-making frameworks for a wind energy generator participating in day-ahead, 

intraday, reserve, and balancing markets. Lee (2008) solved the short-term electricity scheduling problem 

by applying MIPSO (multi-iteration particle swarm optimization) method on the combined wind farms 

and PSH system. Zhang et al. (2016) obtained the optimal day-ahead economic dispatch for a smart grid 

with renewable and storage device by a fully distributed algorithm. Ding et al. (2016), Kim and Powell 

(2011), Zhou et al. (2019) examined the optimal scheduling policy of a wind plant with a storage system. 

Levieux et al. (2019) discussed the complementary operation between an existing hydropower plant and a 

projected wind plant based on heuristic algorithm (HA). Bhoi et al. (2020) studied the optimal scheduling 

of Photovoltaic (PV) systems with a battery and incorporate the storage health and consuming cost. 

Taghikhani (2021) studied micro-grid optimal scheduling with renewable resources and storage 

considering uncertainty. He et al. (2022) proposed a multi-objective evolutionary algorithm with 

decision-making (MOEA-DM) based on planning-operation co-optimization of renewable energy with 

storage. However, they all ignore the market impact of energy storage's operating activities on prices 

because these analyses consider that energy storage activities are small, and merchant’s operational 

decisions do not influence electricity prices.  
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Various methods have been used to model price takers; examples include the heuristic approach 

(Zhang & Wirth, 2010), mixed-integer linear programming (MILP) method (Wang et al., 2021), dynamic 

programming theory (Liu et al., 2022; Xiao et al., 2021), Lagrangian relaxation technique (Cruise et al., 

2019), stochastic optimization scheme (Powell & Meisel, 2016a), and approximate dynamic programming 

algorithms to co-optimize energy storage for arbitrage (Al-Kanj et al., 2020). Liu et al. (2022) investigate 

the impact of the PTC (production tax credit) on the optimal scheduling policy of energy storage and 

ignoring the market impact and the uncertainty of wind generation. Our paper, however, targets the 

optimal policy of electricity merchants considering both the market impact and the uncertainty of 

forecasted wind generation, which will definitely affect the economic dispatch policy design. 

In conclusion, an independent merchant with co-located energy storage and a wind plant can 

effectively enhance the stability of power system operation. Meanwhile, by optimizing the energy 

arbitrage strategy, it can maximize its income in the real-time market. In our work, a series of physical 

constraints on the energy storage system, the maximum and minimum limits of the generating and 

pumping, the capacity of the energy storage system, the efficiency, and the residual value of water have 

been taken into consideration. Our study also considers merchants' operation costs, which may be daily 

maintenance costs or battery self-discharge loss. 

 

2.2．Market impact of energy storage 

For merchants in the electricity market, most studies focus on assuming that the merchant's operational 

actions (i.e., pumping/charging and generating/charging) do not influence market prices, which we call 

price-taker. Notably, large-scale energy storage such as PSH will be reflected in energy arbitrage actions 

on the power market. This is because the merchant's trading actions (i.e., buying and selling) are 

sufficiently large to affect the electricity prices (Cruise et al., 2019; Felix et al., 2012). Felix et al. offer a 

pioneering approach to storage valuation that incorporates the effect of a market impact. Along similar 

lines, Baslis and Bakirtzis (2011) used stochastic MILP to model how a hydropower company’s 

short-term profit maximization decisions affect its medium-term plans, which adopt an annual stochastic 

self-dispatching model. Steeger et al. (2018) studied the optimal bidding plan of a single hydropower 

company whose bidding behavior influences the market price using Stochastic Dual Dynamic 

Programming (SDDP). Cruise et al. (2019) identified storage trading decisions that affect the market price 

and addressed decoupling the optimization horizon through the Lagrangian approach. Habibian et al. 

(2020) employed Lagrangian methods to the optimal power purchase decision making of price-maker 

enterprises that consume a large amount of power.  
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Huang et al. (2018) compared the operation of grid-level energy storage under three market 

mechanisms and proposed a modified mechanism to balance social cost and owner’s profit. Huang et al. 

(2019) analyzed the investment and operation for price-maker storage under the centralized market and 

deregulated mechanisms and explored the financial incentives for the cooperative operation of multiple 

grid-level storage devices. Chabok et al. (2019) focused on the influence of the energy storage system as a 

price-maker on the operation of the power system from the perspective of ISO and proposed a bi-level 

optimization problem. These works do not investigate the energy storage economic dispatch problem 

from the perspective of electricity merchants and do not specifically consider wind plants to be operated 

with energy storage together. Liu et al. (2021a) investigated the optimal operational policy of merchants 

who only have energy storage and incorporate the market impact. However, they did not address the joint 

scheduling policy of merchants who have co-located energy storage systems and wind plants, and they 

did not consider the residual value of energy in the storage. Nevertheless, it is straightforward; the 

co-optimization policy of electricity merchants is quite different when uncertain renewable energy 

generation and the residual value of energy in the storage and the market impact are modeled. Nasiri  et 

al. (2021) examined the scheduling strategy for a multi-energy system as a price-maker player in the 

day-ahead wholesale market based on a hybrid robust-stochastic approach. Later, Nasiri et al.(2022) 

investigated the tactical response of a wind integrated MES in the wholesale electricity market (WEM) 

and the natural gas market (NGM) as a price setter via a bi-level optimization model. 

Motivated by existing examinations, we designed a co-optimization energy management model for 

the merchant with a co-located energy storage and renewable power plant that reflects the market impact 

of merchants’ operational decisions in the power market. Compared to the current study (Liu et al., 2022; 

Jiang & Powell, 2015a; Zhou et al., 2019), it should be noted that the model is non-trivial in achieving 

analytical results employing a dynamic programming approach when considering the market impact in 

the problem, as it will transform the traditional study that considers only piecewise linear reward 

functions to nonlinear ones. Such research problems are addressed in this paper. We think these are 

original findings that have not been explored before. The difference between this study and the previous 

work is summarized in Table 1(See appendix).  

 

3. Modeling and Optimization 

In this section, we first model the reward and objective functions for electricity merchants with co-located 

energy storage and renewable power plants. Then, we study the merchant’s optimal joint 

profit-maximizing strategies and consider the market impact as a function of the forecast price.  
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3.1. Model Setup 

Here, we focus on a merchant with energy storage (here, we use PSH to represent large-scale storage in 

this paper) and a renewable power plant (for simplicity, henceforth, we use wind plants to refer to 

renewable power plants), both of which are co-located and connected to the electricity markets via 

transmission lines. The merchant adopts a co-optimized storage operation strategy and uses her energy 

storage plant to manage electricity. In this paper, “we do not study bidding in a forward market, and we 

assume that any power offered to the wholesale electricity markets is accepted” (Liu et al., 2022; 

Sioshansi et al., 2009, Walawalkar et al., 2007; Zhou et al., (2016; 2019). In this paper, we consider 

discrete time and that the merchant periodically performs operational actions during a finite optimization 

decision horizon, t {1, 2, , T}∈ L , and assume that the capacity of storage is limited. The PSH has 

maximum storage capacityS(i.e., the total energy/water that could be stored in the upper reservoir) and 

minimum energy inventoryS, where S S 0> ≥ . Following the previous (Harsha & Dahleh, 2015; Jiang & 

Powell (2015a, 2015 b); Moarefdoost & Snyder, 2015; Zhou et al., (2016, 2019)), we focus on the 

optimal operating (e.g., charging/pumping, and discharging/generating) policy for a given storage 

capacity. However, how to optimize the storage capacity, such an approach would be appropriate for 

solving a different type of problem, thus beyond the scope of this paper. The PSH also has generating and 

pumping limits. Let pQ and pQ represent (respectively) the maximum and minimum limits of pumping that 

can be stored into the storage in each period, and let gQ  and gQ  denote (respectively) the upper and 

lower limits of released energy from the storage in each period. To ensure that the model will remain 

analytically tractable, this paper employs the conventional assumption (as in Kim &Powell, 2011; Liu et 

al., 2022; Zhou et al., (2016; 2019)) that g pQ =Q = 0 to build the continuous reward functions. We use tw to 

represent the available wind generation of the wind plant in period t (in energy units/period). The vector

( )1 2 TW w,w , ,w= L represents the sequential levels of available forecasted wind generation. Following the 

previous work (Jiang & Powell, 2015a; Kim & Powell, 2011; Qi et al., 2015), wind generation is 

constrained by the maximum generation capacity W of the wind plants to show the uncertainty in 

modeling. Here, the tw [0,W]∈ follows a uniform distribution. In reality, the utility would require the 

transmission capacity to be sufficiently large for the wind plant, so we do not consider the transmission 

capacity. 

      Our research involves three types of efficiency with PSH. The first type of efficiency is a portion 

( ]tφ 0,1∈ , a time-independent efficiency of stored energy that dissipates in one optimization period due 

to the evaporation, spill rate, and leakage of the PSH. The second type efficiency is denoted byθand ξ , 
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which represent the efficiency of (respectively) the pumping and generating of the PSH; here, ( ]θ,ξ 0,1∈ . 

The other is ( ]σ 0,1∈ , which represents the efficiency of transmission line, that is, the proportion of 

electricity that flows out of the transmission line to that which flows into this transmission line. 

Transmission losses will be happened in two directions of the line (Liu et al., 2022; Zhou et al., 2019). It 

follows that the quantities
gξσ Q⋅ and 

pQ θσare, respectively, the gross generating power capacity and the 

net pumping power capacity.  

    We suppose that the merchant’s energy storage is large enough, and her generating and pumping 

decisions have a market impact on electricity prices. As noted previously, there are four possible actions: 

storing all renewable energy generation and also purchasing electricity to store; storing partial wind 

generation and selling the rest of renewable energy generation; remaining idle/offline, and generating 

PSH storage to sell and also selling all wind electricity to the market. Following previous work (e.g., 

Cruise et al. 2019, Liu et al. 2021a, Sioshansi 2010, 2014), this paper approximates market impact via a 

linear function of the quantity of power traded by the merchant. Therefore, we get the following updated 

prices: 

 

( )( ) ( )( )
( )( ) ( )( )

( ) ( )

p p p
t t t t t t t t t

p p p
t t t t t t t t t t

g g g
t t t t t t t t

P λP q θ w / σ P 1 λ q θ w / σ  (q θw )

P̂ = P λP w q θ σ P 1 λ w q θ σ     (0 q θw )

P λP (q ξ w )σ P 1 λ(q ξ w )σ         (q 0) 

 + − = + − >
 − − = − − ≤ ≤
 − + = − + >

 (1) 

Here, tP̂  is the updated price that results from storing all renewable power generation and 

purchasing power from the market in energy units of ( )p
t tq θ w / σ− , storing partial wind-generated power 

and selling the rest of to the market in units of ( )p
t tw q θ σ− , and generating PSH and selling all wind 

source in units of
g
t t(q ξ w )σ+ . Here, the parameter λ 0≥  reflects the market impact factor of the 

electricity merchant on electricity prices in trading decisions. The special case of λ=0  represents the 

scenario of a price taker merchant for the traditional study. In the electricity market, time-coupling 

constraints require that the merchant should decide whether to buy or sell electricity in quantities that 

reflect the optimal policy based on forecasted prices. The electricity price in period t is denoted by
tP 

(dollars per unit energy). Both buying and selling prices at time t are shown by
tP conveniently for a price 

taker. The sequential levels of the price by a vector of ( )1 2 TP= P , P , , PL . The
tP is the forecast electricity 

price, and
tλP  is a measurement of the market impact of the energy storage on the electricity price at 

decision time.  

From ISO perspective, power transmission network must be considered explicitly in market clearing. 

From merchant perspective, power transmission network can be considered in two different approaches, 

explicitly (through building a quasi-ISO clearing model where power transmission network is often 
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treated as constraints of a lower-level optimization problem) and implicitly (through price forecasting 

model where historical congestion of power transmission network can be included as an input). Due to 

concerns with the explicit approach (such as data and model availability, uncertainty and computational 

challenges), this paper uses the latter approach, i.e., implicit consideration of power transmission network 

which is common in merchant strategy analysis (Li et al. 2007; Radovanovic et al., 2019; Wang et al. 

2017).To maximize the profit of the electricity merchant and get the optimal economics dispatch policy of 

the energy storage, following the previous study (Liu et al., (2021a, 2022); Zhou et al., (2016, 2019)), we 

assume for the merchant that all forecasted prices are known in advance.  

     By incorporating the market impact in operational decisions and analyzing the co-optimization 

policy of a merchant who has both co-located energy storage and wind plants, this method produces the 

model novel and practical and generalizes the current problem (Liu et al., 2021a; Zhou et al., 2019), as it 

makes the first contribution of this paper. Thus, the reward function g p
t t t tR (q , q , w , P ) from making the 

decision ( )g p
t tq ,q , which corresponds to the decision time t, the forecast electricity prices tP , and the 

forecasted wind power generation tw , are, when considering the market impact, defined as follows: 

 

( )( ) ( )
( )( ) ( )

( )

p p p p p
t t t t t t w t t t

g p p p p p p
t t t t t t t t t t w t t t

g g g g g
t t t t t t w t t

P 1 λ q θ w / σ q θ w / σ c q θσ c w  (q θw )

R(q ,q ,w ,P ) P 1 λ w q θ σ w q θ σ c q θσ c w  (0 q θw )

P 1 λ(q ξ w )σ (q ξ w ) σ c q ξσ c w  (q 0) 

− + − ⋅ − − − >
= − − ⋅ − − − ≤ ≤
 − + ⋅ + ⋅ − − ≥

 (2) 

The first line in equation (2) indicates the costs of buying power of electricity merchants from the 

market. For example, tw represents available wind generation, ( )p
t tq θ w / σ− indicates the units that the 

merchant purchases from the market to pump at time t, and 
p
tq  is the increase in storage inventory. This 

study lets gc (resp. pc ) (dollar-unit energy) denote the generating (resp. pumping) operating cost for PSH 

or the discharging (resp. charging) operating cost of the battery (Huang et al., 2018, 2019; Xu et al., 2017). 

Following Liu et al. (2022) and Xu et al. (2017), we assume that the generating and pumping operating 

costs of energy storage are a linear function. The term 
p p

tc q θσ⋅  is the pumping operating cost, and

w tc w is the wind power plant’s cost of generation. The second line gives the merchant’s rewards from 

storing part of her wind generation 
p
tq  while selling the remaining units ( )p

t tw q θ σ−  to the market. In 

the third line, 
g
t t(q ξ w )+  represents the electricity merchants generated by the PSH and all available 

wind sources that are sold to the market. The term
g g

tc q ξσ denotes the generating operating cost of PSH.  

This paper uses 
tS O C  to denote as the current available energy inventory in the upper reservoir of 

PSH at the beginning of decision time t. The sequential SOC inventories are represented by 
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( )1 2 TŜ SOC ,SOC , ,SOC= L , where tSOC [S, S]∈ and { }t 1,2, ,T∀ ∈ L . Feasible actions set based on 

t
ˆSOC S∈  is defined as follows:  

 g p p p p p g g g g
t t t t t t t t t t tAction (SOC ) : {(q , q ) : 0 q Q U ,  q S SOC , 0 q Q U ,  q SOC S}= ∈ ≤ ≤ ⋅ ≤ − ≤ ≤ ⋅ ≤ − . (3) 

This expression gives the upper limit of the quantity of energy that can be charged/pumped and 

discharged/generated at each optimization period. The first and second constraints define, respectively, 

the maximum limit of pumping and the space capacity of the upper reservoir. The third and the fourth 

constraints represent the maximum limit of generating and available energy in the reservoir. Both binary 

variables
p
tU and

g
tU denote the unit commitment of pumping and generating in decision period [t, t+1)

(respectively). Thus, we have
p g
t tU +U 1≤ ; here, { }g

tU 0,1∈ and { }p
tU 0,1∈ , meaning the PSH cannot 

generate and pump simultaneously. If the PSH unit is offline/idle, then 
p g
t tU +U =0 . 

At decision time { }t 1,2, ,T∈ L , the merchant will know the storage inventory
tS O C , the wind 

generation tw , the price 
tP, and the market impact λ . The decision for each time t is denoted by

g
tq or

p
tq , which represents the SOC change from time t to time t+1 prior to considering, respectively, the 

generating loss and the pumping loss. The “storage self-loss” occurs at the end of decision time t, so the 

energy level at the beginning of decision time t+1 is equal to
p g

t t t tφ (SOC q q )+ − . Hence, the following 

equation that summarizes the state transition from decision time t to decision time t+1 for the PSH storage 

is accurate: 

 
p g

t 1 t t t tSOC φ (SOC q q )+ = + −                            (4) 

     Following Liu et al. (2022), Secomandi (2010), and Zhou et al. (2019), this study also adopts a 

single decision (action) variable, and lets tq  (i.e., 
p g

t t tq q q= − ) at as the decision variable of electricity 

merchant at each decision time { }t 1,2, ,T∈ L to substitute for the original two decision (action) variables
g
tq and

p
tq , which represent the change of energy inventory or of SOC between two optimization periods t 

and t+1 (i.e., prior to considering accounting for the efficiency loss). Here, tq 0>  denotes the SOC 

increase due to the pumping action, tq 0< means the SOC decrease because of generating, and tq =0  

indicates that the SOC does not change or that the storage remains idle or is offline. The state decision 

variables at each stage t are
tS O C , tw , and tP . Thus, the decision state at stage t can be indicated by

t t t tS(t) S (SOC , w , P )= . The merchant aims to achieve the optimal decision policy π to maximize her 

total expected reward functions overall feasible policies.      

      Her objective function is 

 [ ]
T T

g p
t t t t t t t

π π
t 1 t 1

max E R (q , q , w , P )| S(1) = max E R(q , w , P )| S(1)
= =

  ∑ ∑   (5) 
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subject to the capacity constraints
g p

t t tmax{ Q ,S SOC} q min{Q ,S SOC}− − ≤ ≤ −  and to the storage energy 

balance constraints 
t 1 t t tSOC φ (SOC q )+ = + , as well as tw [0,W]∈ , where t {1,2,3, ,T}∈ L . Both

1E ,
1P, 

and
1w are the given initial level of the storage and the price in advance. Because the optimization horizon 

is finite, this paper ignores the discount factor in this paper. This paper uses E to denote the expectations 

concerning 
t t tSOC , w , P . In our notation,

1S O C , 1w , and
1Pare, respectively, the given initial energy 

storage inventory, the forecasted available wind generation, and advanced electricity price. Let
tV (S(t))

represent the value function of electricity merchant at decision time t and state 

t t t t
ˆS(t) S (SOC ,w ,P ) S W P= ∈ × × . This function of 

tV (S(t))  satisfies the Bellman equation.  

Thus, the merchant’s value function can be created as 

 ( )
t

t t t t 1
Action(SOC )

V(S(t)) max [R(q ,w ,P ) E V (S(t 1) | S(t) ]+= + +  (6) 

Most on this topic expresses the value of water (VOW) at the last optimization period (residual value 

of water in the storage) as
T 1V (S(T 1)) 0+ + = (e.g., Secomandi 2010; Zhou et al., 2019). In equation (6), 

however, 
T 1 T 1 T 1 T 1 T 1 T 1V (S(T 1)) V (SOC , w , VOW ) VOW SOC+ + + + + ++ = = ⋅ . Here, 

T 1VOW +  denotes the VOW 

in the upper reservoir of PSH at the terminal period (Liu et al. 2022, Kim and Powell 2011), and 
T 1SOC +

denotes the energy inventory level at the beginning of decision time T+1, which also represents the SOC 

at the end of decision time T. 

 

3.2. Model Optimization and Analysis 

To obtain the optimal co-optimized decision rules of the electricity merchant, this study first splits the 

optimization problem in equation (6) into three sub-problems, as in (7), corresponding to the three 

different actions described in (2) since only one of these actions is allowed at the same period. Then, we 

obtain the optimal result to each of these three sub-problems. The corresponding value functions of the 

electricity merchant on three available actions are shown as follows:   

 

( )( ) ( ) ( )
( )( ) ( ) ( )

( ) ( )

p p
t t t t t t w t t 1 t t

p p
t t t t t t w t t 1 t t

g
t t t t t t w t t 1

P 1 λ q θ w / σ q θ w / σ c q θσ c w +E[V S(t 1) |S(t) ] (q θw ) 

V(S(t))= P 1 λ q θ w σ q θ w σ c q θσ c w E[V S(t 1) |S(t) ] (0 q θw )

P 1 λ((q ξ w )σ (q ξ w ) σ c q ξσ c w E[V S(t 1) |S(t) ]  (q

+

+

+

− + − ⋅ − − − + >
− + − ⋅ − ⋅ − − + + ≤ ≤
− + − ⋅ − ⋅ + − + + t 0)




 <

  (7) 

Since there is 
t t 1 t tq SOC φ SOC+= − , to simplify, we use t 1SOC + substitute

tq as the decision 

variable to gain the analytical results, then maximizing Equation (8) enables us to obtain the optimal 

results by removing the values in the observed current state S(t ) . The optimal unique action of the 

electricity merchant at each period will be achieved by comparing the optimal SOC in the next period (i.e.,
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t 1SOC + ) and the current available SOC (i.e., tSOC ) in the storage. Then, the Bellman equation (Liu et al., 

2021a; Liu et al., 2022; Zhou et al., 2019) can be used to derive the following results: 

( )

( )

t 1

t 1

2 p
(1)* * 2t t 1 t t t t t 1
t t 1 t 1 t2 2 2 2 2 2E E E

t t t

22 2
(2)* * t t 1
t t 1 2 2E E E

t

λP SOC 2λP 2λP w P c SOC
V (S(t)) max E[V S(t 1) | S(t) ] SOC SOC +( )               

θ σ φ θ σ φ θσ θσ φ

λσ P SOC 2λσ
V (S(t))= max E[V S(t 1) | S(t) ]

θ φ

+

+

+ +
+ +≤ ≤

+
+≤ ≤

 += + − + ⋅ −  
 

+ − +

( )
t 1

2 p
2 2t t t t 1

t 1 t t2

t t

2

(3)* * 2 2 2 2 2 g 2t 1 t 1 t 1
t t 1 t t t t t t2E E E

t t t

P w P σ +c SOC
SOC SOC (2λP σ )      

θ φ θ θσ φ

SOC SOC SOC
V (S(t))= max E[V S(t 1) | S(t) ] λP ξ σ 2λP ξ σ SOC +(2λP w ξσ P ξσ+c ξσ)

φ φ φ+

+
+

+ + +
+≤ ≤




   ⋅ + −   
  
  
 + − + −    

(8) 

This study next investigates the optimal results based on these expressions. Finally, we get the 

closed-form optimal co-optimization policy structure of merchant in equation (9) by following previous 

research on this topic (i.e., Kim & Powell, 2011; Liu et al., 2022; Zhou et al. 2019). When incorporating 

the market impact into the reward function, for the forecast price of electricity Pt , if tP <∞, then, at each 

decision state t, the merchant’s value function 
tV (S(t))  and expected total reward ( )t 1E[V S(t 1)|S(t) ]+ +  

are concave in tSOC [S, S]∈  for each observed state 
t t t tS(t) S (SOC , w , P )= . The SOC optimal 

analytical solution is given by the following lemma (all proofs are provided in Appendix A). 

LEMMA 1. When considering an electricity merchant’s market impact in trading decisions, let 
(1)*
t 1SOC + , 

(2)*
t 1SOC + , and 

(3)*
t 1SOC +  be the closed-form optimal SOC results (e.g., SOC reference points in next period) 

in (9). Then, there are 

 

( )

( )

t 1

t 1

p
(1)* * 2t t 1 t t t t 1
t 1 t 1 t2 2 2S SOC S

t t

2 2 p
(2)* * 2 2t t 1 t t t
t+1 t 1 t t2S SOC S

t

λP SOC 2λP w P c SOC
SOC arg max E[V S(t 1) | S(t) ] ( SOC ) +( )

φ θσ φθ σ θσ

λσ P SOC w P ρ +c SOC
SOC arg max E[V S(t 1) | S(t) ] ( SOC ) (2λP σ )

φ θ θσθ

+

+

+ +
+ +≤ ≤

+
+≤ ≤

 +
= + − − − 

 

= + − − + −

( )
t 1

1

t

(3)* * 2 2 2 2 gt 1 t 1
t 1 t 1 t t t t t

S SOC S
t t

φ

SOC SOC
SOC arg max E[V S(t 1) | S(t) ] λP ξ σ ( SOC ) +(2λP w ξσ P ξσ c ξσ)

φ φ+

+

+ +
+ +≤ ≤




  
  

 
  

= + − − − +  
  

 (9) 

Based on the scenario of an electricity merchant who has co-located PSH and a wind power plant, 

this lemma has a critical implication. Because the merchant can choose the optimal action simply by 

comparing the current SOC level in the storage with the above three optimal SOC reference points 

separately. It now follows from the preceding discussion that our first proposition gives the corresponding 

optimal results. 

PROPOSITION 1. For positive forecast electricity prices tP̂ P∈  (negative forecast electricity prices) at 

each stage t {1,2,3, ,T}∈ L : if (1,2 ) ( 2 ,3 )
t t0 λ min {λ , λ }≤ ≤ 2 , then there exist unique optimal storage 

                                                      
2We discuss large-scale storage (such as PSH) with 1–2 gigawatts (GW) capacities. Considering a sizeable 
competitive wholesale electricity market (such as MISO, which has approximately 50 (off-peak period)–80 GW 
(on-peak period) demand, roughly 100 GW online capacity) and the limited presence of locational market electricity 
because of transmission capacity constrained and electricity market monitoring, we only address the case of a 
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inventories 
(1)* (2)* (3)*
t 1 t 1 t 1S SOC SOC SOC S+ + +≤ ≤ ≤ ≤  (resp., 

(1)* (2)* (3)*
t 1 t 1 t 1S SOC SOC SOC S+ + +≥ ≥ ≥ ≥ ) that depend on 

the state S(t ) , where  

2
(1,2) t

t t t

t

2 p
(2 3) g 2 2t t

t t t t2
t

2P 1 σ S
λ P SOC w θ ;  

θ σ φ

P σ c wS 1
λ (P ξσ c ξσ) 2σ P (SOC )( ξ ) ( w ξ)

θσ φ θθ

   += + −   
   


   + = − − − − + −      

，

             (10) 

Therefore, an optimal economic dispatch decision in each state t t t t
ˆS(t) S (SOC ,w ,P ) S W P= ∈ × ×  can 

be specified as described in the following two cases. 

CASE 1: If p(1 )*
t t 1θ w m in {S O C , Q }+<  (less forecasted available wind-generated power), then the 

feasible SOC range (i.e., the from the lower boundary to the upper boundary of energy storage capacity) 

can be split into four sub-ranges (i.e., regions or areas): storing all wind power generation and 

purchasing electricity to store, storing partial wind power generation and selling the rest of it to market, 

remaining idle or do nothing, and generating PSH and also selling all wind power to the electricity 

market. 

p(1)* (1)* (1)*
t 1 t t t 1 t t 1
(2)* (1)* (2)*

* t 1 t t t t 1 t t 1
t t

min{SOC SOC ,Q },  SOC [S,SOC θw ] (store renewable and buy electricity,  up to SOC )

min{SOC SOC ,θw },SOC (SOC θw ,SOC ] (store renewable without buyin
q (S )

+ + +

+ + +

− ∈ −
− ∈ −=

(2)*
t 1

(2)* (3)*
t t 1 t 1

g(3)* (3)* (3)*
t 1 t t t 1 t 1

g up to SOC )

0,  SOC (SOC ,SOC ] (keep SOC unchanged) 

max{SOC SOC , Q },SOC (SOC ,S] (generate and sell renewable down to SOC )

+

+ +

+ + +




 ∈
 − − ∈

 (11) 

CASE 2: If p(1 ) *
t t 1θ w m in {S O C , Q }+≥  (more forecasted available wind-generated power), then the 

feasible SOC range of the storage can be segmented into three possible sub-ranges: storing partial wind 

power generation and selling the rest of it to market, generating PSH and also selling all wind power 

generation to the electricity market, and idle: 

 

p(2)* (2)* (2)*
t 1 t t t 1 t 1

* (2)* (3)*
t t t t 1 t 1

g(3)* (3)*
t 1 t t t 1

min{SOC SOC ,Q },SOC [S,  SOC ] (store renewable without purchasing, up to SOC )

q (S ) 0,SOC [SOC ,SOC ] (keep SOC unchanged)

max{SOC SOC , Q },SOC (SOC ,

+ + +

+ +

+ +

− ∈
= ∈

− − ∈ (3)*
t 1 S] (generate and sell renewable down to SOC )+







(12) 

Case 1 of Proposition 1 shows analytically that, for an electricity merchant who has both co-located 

PSH and wind plant and pursues to maximize her expected profit, if there is less available forecasted wind 

power, the SOC of the storage will be segmented into four possible sub-ranges by three analytical SOC 

reference points ( (1)* (2)*
t 1 t 1SOC ,SOC ,+ + and

(3)*
t 1SOC + , which depend on the price forecast

tP, the energy in storage 

tS O C , the forecast wing generation tw , and the market impact λ ) that correspond to four possible 

different operational decisions: (1) storing all renewable generation and also purchasing electricity to store, 

(2) storing partial wind power and selling the rest of it, (3) remaining idle (i.e., offline/do nothing), and (4) 

                                                                                                                                                                           
relatively small market impact.  
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releasing PSH and also selling all wind power. If the current available energy in the storage is more than 

reference point
(3)*
t 1SOC + , the merchant will release water from the PSH to generate electricity and also sell 

all wind-generated electricity to the market, then reduce the SOC level down to 
(3)*
t 1SOC + . If there is less 

available energy in the PSH than
(1)*
t 1 tSOC θw+ − and less available wind power (i.e.,

p(1)*
t t 1θw min{SOC ,Q }+< ), the merchant should (1) store all the wind power and buy electricity and then (2) 

increase the SOC inventory up to 
(1)*
t 1SOC + . 

According to Case 2 of the proposition, if there is more available wind generation (i.e., 
p(1)*

t t 1θw min{SOC ,Q }+≥ ), then the feasible storage inventory range will be divided into three sub-ranges 

by two analytical SOC reference points (
(2)*
t 1SOC+ and

(3)*
t 1SOC + ) that correspond to operational decisions 2–4. 

In this case, decision one will not happen since the merchant does not need to purchase power from the 

market to store when there is more available wind power generation. If there is less water in the PSH than 
(2)*
t 1SOC+ , the merchant does not need to buy electricity to increase the SOC level but she can store 

partially wind power and increase the SOC so that it is to
(2)*
t 1SOC+ , and then sell the rest of her wind 

generation. Likewise, if the current available energy inventory in the storage falls within the boundaries 

established by two analytical reference points (i.e.,
(2)* (3)*
t 1 t t 1SOC SOC SOC+ +≤ ≤ ), then the merchant should 

do nothing for the PSH storage; and if there is more water in the upper reservoir than the SOC reference 

point 
(3)*
t 1SOC + , then the profit-maximizing merchant should (4) release energy from the PSH for 

generating and also sell all wind power, thereby decreasing the current inventory to 
(3)*
t 1SOC + . 

Further, this study has three special degenerated cases with fewer thresholds, as seen below. 

Special Case A: If σ 1= (i.e., ignoring the efficiency loss of transmission line), then our results have 
(1)* (2)*
t 1 t 1SOC =SOC+ + . This means that storing wind power generation or purchasing electricity from the power 

market to store will yield the merchant the same profit, that is, without considering the energy loss from 

the power market to storage via the transmission line, as when the merchant purchases electricity to store. 

Considering the efficiency loss of transmission line, storing merchant’s own generated renewable source 

to storage is better than purchasing power from the market.   

Special Case B: If θ ξ 1= =  (i.e., ignoring the pumping and generating efficiency loss) and if
p gc c 0= =  (i.e., ignoring the generating and pumping operating costs), then

(2)* (3)*
t 1 t 1SOC SOC+ += . Moreover, 

the SOC range can be split into only three (or two) subranges that depend on the forecasted wind 

generation. In this case, however, no optimal strategy will include the “idle” state. 

Special Case C: If tw =0 (i.e., the available forecasted wind generation equals zero or no wind 

source), in this case, there will be no storing or selling of wind generation, and our study has only
(1)*
t 1SOC +  

and
(3)*
t 1SOC +  as optimal reference points (See Appendix). Then this paper obtains the optimal policy for 
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the previous study for a merchant with PSH or storage only (Liu et al. 2021a). In our results, the storage 

state of charge (SOC) is segmented into four possible subranges by three analytical SOC reference points 

that correspond to four different decisions for the co-optimization merchant, compared to the three 

decisions in the previous study (Liu et al. 2021a). Obviously, the scenario that electricity merchant only 

has storage is a particular case for the merchant has storage and wind plant. 

Proposition 1 yields our first insight and application, as follows. 

INSIGHT AND APPLICATION 1. For an electricity merchant with co-located energy storage and a 

wind plant, the feasible SOC range of the energy storage is segmented into different sub-ranges by the 

analytical SOC reference points, which depends mainly upon the current SOC, forecasted electricity price, 

and available forecasted wind source, and the intensity of market impact. As a result, the merchant will 

achieve the corresponding optimal operational decision for each subrange. 

To maximize the profit, and if less available renewable source, the SOC of storage will be split into 

four possible sub-ranges by three analytical reference points
(1)* (2)*
t 1 t 1SOC ,SOC+ + and

(3)*
t 1SOC + , which correspond 

to four possible operational actions: storing all wind-generated power and also purchasing electricity to 

store, storing and selling partial renewable generation, do nothing/idle/offline, and generating PSH to sell 

and also selling all wind power. By comparing the current SOC level in the storage with the obtained SOC 

reference points for next period, the merchant can obtain the related optimal operational decisions. 

However, if more available forecasted wind generation, the storage SOC will be segmented into three 

sub-ranges by two analytical reference points
(2)*
t 1SOC + and

(3)*
t 1SOC + , which correspond to three possible 

different operational decisions: storing and selling partial wind electricity, doing nothing (idle/offline), and 

generating electricity by PSH to sell and also selling all wind generation. Obviously, the optimal SOC 

reference points will be adjusted based on the intensity of market impact to support decision-making. 

 

3.3. Market Impact and Wind Generation Analysis 

This research studies the optimal co-optimized scheduling strategy of a merchant with large-scale energy 

storage and wind plant, whose trading decisions (i.e., buying or selling) are able to affect electricity prices. 

In traditional treatments, the electricity merchant is a price taker (Kim and Powell, 2011; Liu et al., 2022; 

Zhou et al., 2019) or only addressed the base problem without considering the wind plant (Cruise et al., 

2019; Liu et al., 2021a; Secomandi,2010). In light of our assumptions and the preceding analysis, the 

optimal results are described in the next proposition.  

PROPOSITION 2. (a) If the electricity merchant has large-scale energy storage and wind plant, optimal 

expected profit is decreasing in the market impact and operating cost of energy storage.  
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(b) For the electricity merchant with energy storage and wind plant, optimal expected profit increases 

with the forecasted wind generation { }tw [0,W], t 1,2, ,T∈ ∀ = L . 

(c) Suppose the * ( M )
t  ( λ 0 )q ≥

(resp. * ( M )
t  ( λ 0 )q =

) represents the optimal actions of electricity merchants accounting 

for the market impact (resp. ignoring the market impact) on power prices, we can draw the following 

intuitive conclusions for the optimal expected profit of the merchant: 

T T
*(M) *(M)
t (λ=0) t t (λ 0) t (λ 0) t t (λ 0)

t 1 t 1

E R(q , w ,P ) | S(1) E R(q , w ,P ) | S(1)≥ ≥ ≥
= =

   ≤   ∑ ∑                (13) 

Proposition 2 is quite intuitive. These conclusions in Part (a) are consistent with the insights stated 

by Felix et al. (2012) and Liu et al. (2021a). It is straightforward; the merchant will achieve less profit 

with the increasing of operating cost and market impact. It will increase the cost of buying power from 

the market and decrease the revenue of selling power to the market by smoothing the difference between 

the high price at peak hours and low prices at off-peak. Part (b) demonstrates that the electricity merchant 

should take advantage of renewable wind generation to maximize reward at each period and optimal 

profit in the optimization horizon. It implies that the merchant with energy storage and wind plant should 

not curtail wind generation (i.e., generate the wind power based on the max generation capacity of the 

wind plants installed) to benefit their profit as long as the electricity prices are larger than the generation 

cost of wind if we do not consider bidding in a forward market. Part (c) shows that if a merchant ignores 

market impact on the power price and decides from the scenario of price-taker (i.e., the optimal 

economics dispatch of the storage is optimized on the wrong assumption λ = 0 ; however, where the 

corresponding profit of the merchant is calculated according to the real value of market impact factor λ ), 

she will get less expected profit. Proposition 2 states that the market impact considerably alters the 

optimal policy structure and optimal expected profit, as detailed by the numerical results presented in 

Appendix. 

INSIGHT AND APPLICATION 2. The co-optimization merchants will have a lower expected profit with 

the increase of market impact if price-maker merchant and price-taker merchant submit the same 

generating and pumping maximum capacity in one optimization period to ISO. However, if the 

price-maker merchant ignores market impact in trading decisions and follows the price-taker's solutions, 

she will achieve less optimal expected profit. On the other hand, wind generation benefits merchant's 

profit if the wind generation cost is low.  

Insight 2 has an important implication for the price-maker merchant. The decisions of a merchant 

naturally affect the market price, so the merchant will have a lower profit when the cost of buying power 
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is increasing, and the revenue from selling power is decreasing. Therefore, to smooth the negative effect 

of the market impact on buying and selling actions of the merchant, they should reduce the amount of 

electricity generating or pumping each period. Thus, a merchant with PSH and wind plants must perfectly 

balance the power transition quantity and market impact intensity and reduce wind power curtailment to 

maximize profit. 

 

4. Case Study and Numerical Simulation 

Section 4.1 validates the presented approaches and results employing one three-period case to represent 

the calculation procedure in detail and then compare them with the MILP method through the synthesis 

data. Additionally, Section 4.2 employs real data from MISO electricity prices and wind power generation 

to demonstrate the related results and insights. 

 

4.1. Synthesis Data Case Study   

For simplicity, this section employs a three-period example to show the detail of the proposed method in 

Section 3. Here, we suppose there are three optimization decision periods ( T 3= ). The forecasted 

electricity price takes set { } { } M L H
t 1 2 3P P,P ,P = 5,2,10 ={P ,P ,P }= at each period. This paper also supposes 

the merchant cannot fill her energy storage fully in one decision period but less than two (i.e.,
pS Q S+ ≤ , 

and 
pS 2Q S+ ≥ ). Meanwhile, the full storage can be emptied in one decision period (i.e., resp.

gS S Q− ≤ ). In detail, we suppose the energy storage capacity is 10 (i.e.,S=0,S=10 ), and we suppose the 

pumping capacity in one period is 7, and the generating capacity is 12 in one period. Suppose the 

pumping and generating operating costs of the storage p gc c 0.1= = , the pumping and generating 

efficiencies of the energy storage as well as the transmission efficiency of the line are θ=ξ=σ=0.9 .  

In this case, to illustrate the effect of market impact, this section supposes the intensity market 

impact parameter of the merchant is λ=0.01 . In the case study, we focus on the scenario that the 

electricity merchant has energy storage and a wind plant and also assume the forecasted wind generation 

is 
t 1 2 3w {3,5,0} {w , w , w }= = . Based on Lemma 1, our results show that both the generation cost of wind 

and the self-discharging do not affect the optimal solutions, so we assume the generation cost of wind 

equals zero (i.e., gc =0). Let the operating cost be 0.1(i.e., p gc c 0.1= = ), and the pumping and generating 

efficiencies, and efficiency of transmission line be 0.9 (i.e., θ ξ σ 0.9= = = ). For simplification, in this case 

study, we assume the residual value of water in storage is zero (i.e.,
4VOW =0 ). On this basis, we employ 

the backward dynamic programming approach to achieve the following optimal outcomes: 

In decision State 3:  
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    Action 3: Since the energy in the storage and the end of the third period is valueless, to maximize the 

profit, the electricity merchant needs to sell power to the electricity market and bring the SOC 
*

4S 0 E= =

down to the minimum boundary of the storage as long as the electricity prices are positive, thus 

*
3 3 3 3q (S ) SOC ,SOC (0,S]=− ∈                         (14) 

Thus, the following value function at stage 3 is achieved:  

* * g
3 3 4 t t t t t t w t t

g
3 3 3 3 3 3

2
3 3

V max{R V } P [1 λ(q ξ w )σ] (q ξ g ) σ c q ξσ c w (q 0)

    { P [1 λ([0 SOC ]ξ w )σ] ([0 SOC ]ξ w ) σ c [0 SOC ]ξσ 0 0}

    8.019SOC 0.06561SOC

= + = − + − ⋅ − ⋅ + − <

= − + − − ⋅ − − ⋅ + − − +

= −

 

In decision state 2:  

      By utilizing the functions (9), (10), and (11) in section 3, we obtain the following outcomes for the 

optimal SOC reference points at initial of third period or the end of second period: 

3

3

3

p
(1)* * 23 32 2 2 2
3 3 22 2 2

SOC [0,10] 3 3

2 2 p
(2)* * 2 23 32 2 2
3 3 2 22

SOC [0,10] 3 3

(3)* *
3 3

SOC [0,10]

SOC SOCλP 2λP w P c
SOC arg max V [ SOC ] ( )

θ σ φ θσ θσ φ

SOC SOCλσ P w P σ c
SOC arg max V [ SOC ] (2λP σ )

θ φ θ ασ φ

SOC arg max V λP

∈

∈

∈

 +
= − − + − 

 
 +

= − − + − 
 

= − 2 2 2 2 g3 3
2 2 2 2 2

3 3

SOC SOC
ξ θ [ SOC ] (2λP w ξσ P ξσ c ξσ)

φ φ







  

− + − +  
  

 

( )
( )

3

3

(1)* 2 2 2
3 3 3 3 2 2

SOC [0,10]

(2)* 2 2 2
3 3 3 3 2 2

SOC [0,10]

4.590 0.061SOC
SOC arg max 4.590 SOC 0.096 SOC 0.061 SOC SOC 0.030 SOC 10 S

0.192
4.964 0.04SOC

SOC arg max 4.964 SOC 0.086 SOC 0.040 SOC SOC 0.020 SOC 10
0.172

∈

∈

+= ⋅ − ⋅ + ⋅ − ⋅ = > =

+
⇒ = ⋅ − ⋅ + ⋅ − ⋅ = >

( )
3

(3)* 2 2 2
3 3 3 3 2 2

SOC [0,10]

S

7.355 0.026SOC
SOC arg max 7.355 SOC 0.079 SOC 0.026 SOC SOC 0.013 SOC 10 S

0.158∈




 =


+ = ⋅ − ⋅ + ⋅ − ⋅ = > =

(15) 

Here, 
tθw 0.9 5 4.5 7= × = < , by comparing the current SOC at the initial of second period and the 

above-obtained reference points, the merchant will obtain the following optimal decision at period 2: 

1*
2 3

* 1*
2 2 2 2 3

2 2

7,  SOC [0,3] (store generation and purchase electricity up to SOC S)

q (S ) 10 SOC ,  SOC (3,5.5] (store generation and purchase electricity up to SOC =S)

10 SOC ,  SOC (5.5,10] (store generation

∈ =
= − ∈

− ∈ 2*
3 without buying up to SOC S)




 =

    (16) 

    Then, the optimal value functions at decision time 3 can be rewritten as 

3 2

3

2 2
3 3 2 2 2SOC SOC 7*

23
3 3 2SOC S 10

8.019 SOC 0.06561 SOC =7.1 SOC 52.92 0.06561 SOC ;  if  SOC [0, 3]
V =

8.019 SOC 0.06561 SOC =80.19 6.561 73.629;  if  SOC (3,10]

= +

= =

 ⋅ − ⋅ ⋅ + − ⋅ ∈
 ⋅ − ⋅ − = ∈

 (17) 

    By combining the optimal actions and the corresponding price at period 2, we obtain the following 

reward functions at period 2:  
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2
2

2 2 2 2 2 2
2

2 2 2

7.23                                                      SOC [0,3] 

R(q , w , P ) 15.74 0.6361 SOC 2.93 SOC    SOC (3,5.5] 

12.84 2.34 SOC 0.01 SOC        SOC (5.5,10]

− ∈
= − − ⋅ + ⋅ ∈
− + ⋅ − ⋅ ∈

 

    Hence, incorporating the equation (17) and the reward function at period 2, the optimal value 

functions at the second decision time are obtained: 

2
2 2 2

* 2
2 2 2 2

2
2 2 2

7.1 SOC 45.69 0.06561 SOC     SOC [0,3] 

V 0.6361 SOC 2.93 SOC + 57.89  SOC (3,5.5] 

2.34 SOC 0.01 SOC +60.79         SOC (5.5,10]

 ⋅ + − ⋅ ∈
= − ⋅ + ⋅ ∈
 ⋅ − ⋅ ∈

             (18) 

In decision state 1:  

Similarly, by employing the functions (A9), (A10), and (A11), we will reach optimal SOC reference 

points at the end of the first period or the initial of the second period as the following solutions:  

2

2

2

p
(1)* * 23 31 1 2 1
2 2 22 2 2

SOC [0,10] 3 3

2 2 p
(2)* * 2 23 31 2 1
2 2 2 12

SOC [0,10] 3 3

(3)* *
2 2

SOC [0,10]

SOC SOCλP 2λP w P c
SOC arg max V [ SOC ] +( )

θ σ φ θσ θσ φ

SOC SOCλσ P w P σ +c
SOC = arg max V [ SOC ] (2λP σ )

θ φ θ θσ φ

SOC = arg max V λP

∈

∈

∈

 +
= − − − 

 
 

− − + − 
 

− 2 2 2 2 g3 3
1 2 1 2 1

3 3

SOC SOC
ξ σ [ SOC ] +(2λP w ξσ P ξσ c ξσ)

φ φ







  

− − +  
  

 

( )
( )

2

2

2

(1)* * 2
2 2 2 1 2

SOC [0,10]

(2)* * 2
2 2 2 1 2

SOC [0,10]

(3)* * 2
2 2 2 1 2

SOC [0,10]

0.05
SOC arg max V [SOC SOC ] 5.88 SOC

0.81 0.81

SOC =arg max V 0.05[SOC SOC ] 4.85 SOC

SOC = arg max V 0.05 0.81 0.81[SOC SOC ] 3.75 SOC

∈

∈

∈

  = − − − ⋅  × 
⇒ − − − ⋅

− ⋅ ⋅ − − ⋅






     (19) 

Next, we analyze the SOC reference points separately based on equation (18) and energy storage capacity. 

(1) scenario: If 
2SOC [0,  3]∈  

( )
( )

2

2

(1)* 2 2 (1)*1
2 2 1 2 1 2

SOC [0,3]

(2)* 2 2 1
2 2 1 2 1

SOC [0,3]

1.22 0.15SOC
SOC arg max 0.142 SOC (1.22 0.15 SOC )SOC 45.69 0.076 SOC = 3 SOC =3

0.284
2.25 0.1SOC

SOC =arg max 0.116 SOC (2.25 0.1 SOC )SOC 45.69 0.05 SOC =
0.232

∈

∈

+
= − ⋅ + + ⋅ + − ⋅ > ⇒

+− ⋅ + + ⋅ + − ⋅

( )
2

(2)*
2

(3)* 2 2 (3)*1
2 2 1 2 1 2

SOC [0,3]

3 SOC =3

3.35 0.066SOC
SOC =arg max 0.098 SOC (3.35 0.066 SOC )SOC 45.69 0.033 SOC = 3 SOC =3

0.196∈




 > ⇒


+ − ⋅ + + ⋅ + − ⋅ > ⇒

 

(2) Scenario2: If 
2SOC (3,  5.5]∈  
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( )
( )

2

2

(1)* 2 2 (1)*1
2 2 2 1 2 1 2

SOC (3,5.5]

(2)* 2 2
2 2 2 1 2 1

SOC (3,5.5]

( 2.95+0.152 SOC )
SOC arg max 0.71 SOC 2.95 SOC +0.152 SOC SOC  +57.89 0.076 SOC = 0 SOC 3

1.42
(

SOC = arg max 0.686 SOC 1.92 SOC +0.1 SOC SOC +57.89 0.05 SOC =

∈

∈

− ⋅
= − ⋅ − ⋅ ⋅ − ⋅ < ⇒ =

−
− ⋅ − ⋅ ⋅ − ⋅

( )
2

(2)*1
2

(3)* 2 2 (3)*1
2 2 2 1 2 1 2

SOC (3,5.5]

1.92 0.1 SOC )
0 SOC 3

1.372
0.82 0.066 SOC

SOC = arg max 0.669 SOC 0.82 SOC +0.066 SOC SOC + 57.89 0.033 SOC 0 SOC 3
1.338∈



 + ⋅ < ⇒ =


− + ⋅ − ⋅ − ⋅ ⋅ − ⋅ = < ⇒ =

 

(2) Scenario 3: If 
2SOC (5.5,  10]∈  

( )
( )

2

2

(1)* 2 2 (1)*1
2 1 2 2 1 2

SOC [5.5 10]

(2)* 2 2
2 1 2 2 1

SOC [5.5 10]

( 3.54+0.152 SOC )
SOC arg max ( 3.54 0.152 SOC )SOC +60.79 0.086 SOC 0.076 SOC = 0 SOC 5.5

0.172
( 2

SOC = arg max ( 2.51 0.1 SOC )SOC +60.79 0.06 SOC 0.05 SOC =

∈

∈

− ⋅
= − + ⋅ − ⋅ − ⋅ < ⇒ =

−
− + ⋅ + − ⋅ − ⋅

，

，

( )
2

(2)*1
2

(3)* 2 2 (3)*1
2 1 2 2 1 2

SOC [5.5 10]

.51 0.1 SOC )
0 SOC 5.5

0.12
( 1.41 0.066 SOC )

SOC = arg max ( 1.41 0.066 SOC )SOC +60.79 0.043 SOC 0.0328 SOC = 0 SOC 5.5
0.086∈



 + ⋅ < ⇒ =


− + ⋅ − + ⋅ − ⋅ − ⋅ < ⇒ = ，

 

    By comparing the max value, we can find the optimal references among scenario 1, scenario 2, and 

scenario 3. Thus, the merchant obtains the following three optimal SOC reference points:
(1)* (2)* (3)*
2 2 2SOC SOC =SOC 3= = . 

    Since 
p(1)

t t 1θw min{SOC ,Q }+< (i.e., 0.9 3 2.7 min{3,7} 3⋅ = < = ), based on proposition 1 in section 3, 

the optimal decisions of the merchant at stage 1 are 

1 1
*

1 1 1 1

1 1

3 SOC ,   if SOC [0,0.3](store generation and purchase electricity up to 3)

q (S ) 3 SOC ,  if  SOC (0.3,3](store generation without buying up to 3)

3 SOC ,  if  SOC (3,10](sell inventory down to 3)

− ∈
= − ∈
 − ∈

       (20) 

     When incorporating the market impact of the merchant, based on the forecasted price at period 1 

and the optimal action in equation (20), the reward functions of electricity merchants at stage 1 are shown: 

( ) ( ) ( )
( ) ( ) ( )

1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1

P [1 λ( 3 SOC 0.9 3) / 0.9] ( 3 SOC 0.9 3) / 0.9 0.1 3 SOC 0.81   if SOC [0,0.3] 

R (q , w , P ) P [1 λ( 3 SOC 0.9 3)0.9] ( 3 SOC 0.9 3)0.9 0.1 3 SOC 0.81         if SOC (0.3,3]

P [1 λ((3 SOC )0.9 3)0.9] ((3 S

− + − − ⋅ − − − − ∈

= − + − − ⋅ − − − − ∈
− + − − ⋅ − 1 1 1OC )0.9 3)0.9 0.1(3 SOC )0.81                if SOC (3,10] 




 − − − ∈

 

Thus, the optimal value functions of the merchants at first decision state are:  

21 1 1
1 2 2 1

21 1 1*
1 2 2 11

3 SOC 3 SOC 3 SOC
P [1 λ( 3) / 0.9] ( 3) / 0.9 0.1 +7.1 SOC 45.69 0.066 SOC  if SOC [0,0.3]

0.9 0.9 0.81
3 SOC 3 SOC 3 SOC

P [1 λ( 3)0.9] ( 3)0.9 0.1 +7.1 SOC 45.69 0.066 SOC        if SOCV
0.9 0.9 0.81

− − −− + − ⋅ − − ⋅ + − ⋅ ∈

− − −− + − ⋅ − − ⋅ + − ⋅=
2

1 1 1 1 2 2 1
2

1 1 1 1 2 2

(0.3,3]

P [1 λ((3 SOC )0.9 3)0.9] ((3 SOC )0.9 3)0.9 0.1(3 SOC )0.81 0.636 SOC 2.93 SOC + 57.89 if SOC (3,5.5]

P [1 λ((3 SOC )0.9 3)0.9] ((3 SOC )0.9 3)0.9 0.1(3 SOC )0.81 2.34 SOC 0.01 SOC +60.

∈

− + − − ⋅ − − − − − ⋅ + ⋅ ∈
− + − − ⋅ − − − − + ⋅ − ⋅ 179    if SOC (5.5,10]








 ∈

(21) 

Recall the previous steps, the following optimal trading actions of the merchant at three periods are 

obtained.  

In decision state 1,  
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1 1

*
1 1 1 1

1 1

3 SOC ,   if SOC [0,0.3](store generation and purchase electricity up to 3)

q (S ) 3 SOC ,  if  SOC (0.3,3](store generation without buying up to 3)

3 SOC ,  if  SOC (3,10](sell inventory down to 3)

− ∈
= − ∈
 − ∈

 

In decision state 2,  

1*
2 3

* 1*
2 2 2 2 3

2 2

7,  SOC [0,3] (store generation and purchase electricity up to SOC S)

q (S ) 10 SOC ,  SOC (3,5.5] (store generation and purchase electricity up to SOC =S)

10 SOC ,  SOC (5.5,10] (store generation

∈ =

= − ∈

− ∈ 2*
3 without buying up to SOC S)




 =

 

In decision state 3,  

1 1

*
1 1 1 1

1 1

3 SOC ,   if SOC [0,0.3](store generation and purchase electricity up to 3)

q (S ) 3 SOC ,  if  SOC (0.3,3](store generation without buying up to 3)

3 SOC ,  if  SOC (3,10](sell inventory down to 3)

− ∈
= − ∈
 − ∈

 

1) If 
1SOC 1=  (The SOC in energy storage at the beginning of decision time 1) 

State 1: If 
1SOC 1= , (store wind generation 2, and make the SOC up to 3, also sell 2 0.9 3 7 9− = −  to 

the market), then the SOC in the storage will approach to  
2SOC 3=  (i.e., 

*
1q 2= , 

1R 3.23= );   

State 2: If 
2SOC 3= , (buying and pumping), then, there is 

3SOC 10=  (i.e., *
2 2q 7, R 7.23= = − ); 

State 3: If 
3SOC 10= , (generating and selling), the SOC in the storage will down to 

4SOC 0=  (i.e., 

*
3 3q 10, R 73.63= − = ).  

By using the predicted electricity prices, the total rewards of the merchant during the 

optimization horizon are shown as *
1 2 3 1R R +R +R 69.63=V= = .  

2) If 
1SOC 5=  (The SOC in energy storage at the beginning of decision time 1) 

State 1: If 
1SOC 5= ,(idle), then, there is

2SOC 3= (i.e., 
*
1q 2=− , 

1R 20.5= ) holding;   

State 2: If 
2SOC 3= ,(buying and pumping), then there exists

3SOC 10= (i.e., 
*
2q 7= ,

2R 7.23= − ); 

State 3: If 
3SOC 10= ,(generating and selling), since we have 

4SOC 0 S= = , so the optimal action in 

the third period  
*
3q 10=− ), so there has

3R 73.63= ). 

Accordingly, the total rewards of the merchant during the given three optimization periods are

*
1 2 3 1R R +R +R 86.91=V= = . 

    Compared to the previous study (Liu et al., 2021a) in which the electricity merchant with energy 

storage only, or the predicted wind power is zero (i.e., Special Case C), considering the market impact 

and λ=0.01 , the corresponding optimal SOC reference points and profits are shown in Table 2 under 

different two initial SOC in the storage.  

Table 2: Optimal dispatching strategies and profit of the electricity merchant with energy storage only 

 Optimal SOC reference points Optimal economic dispatch Total rewards 
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1 1SOC =  (1)*
2 1.5SOC = ; (1)*

3 10SOC =  *
1 0.5q = ; *

2 7q = ; *
3 8.5q = −  34.1R=  

1 5SOC =  (3)*
2 3SOC = ; (1)*

3 10SOC =  *
1 0.16q = − ; *

2 5.16q = ; *
3 10q = −  55.7R=  

 

This table displays that two optimal SOC reference points,
(1)*
t 1SOC + and

(3)*
t 1SOC + , were created based 

on the method proposed in section 3 when ignoring wind power generation. For the scenario, the 

profit-maximizing merchant has energy storage only and only needed to buy power from the electricity 

market to store and make the current energy level in the storage up to
(1)*
t 1SOC + as close as possible when 

there is less energy in the storage. If the current available energy level in the storage is larger than 

reference point
(3)*
t 1SOC + , the merchant needs to discharge energy from the storage for selling, then bring 

the SOC down to 
(3)*
t 1SOC + as close as possible. 

    To verify our research and the proposed method in this paper, we also adopted the classic MILP 

method (Bo et al., 2021; Liu et al., 2021b; Wang et al., 2021; Wang et al., 2022) to solve the above 

three-periods case and get the optimal results as well as compare them with the optimal outcomes in 

Section 4.1. It yielded the same optimal results under both the dynamic programming method (i.e., our 

method in section 4.1) and the MILP (i.e., traditional approach). The above optimal solutions are verified 

in AIMMS. 

 

4.2. Real Data Case Study  

This section will use hourly optimization period units as the electricity prices and wind generation 

sequence 
1 2 TP {P , P , , P }= K  ($/M.W.) and 

1 2 TW {w , w , , w }= K (MWH) with 336 decision periods 

( T 336= ) corresponding to two-weeks optimization horizons from Dec. 3 to Dec. 18, 2020) in MISO as 

supplied (the prices data is available at: https://www.misoenergy.org/). The maximum and minimum 

capacity of the PSH upper reservoir S and S are 20 and 2 (respectively). Here, S 0> denotes that the 

merchant cannot empty the upper reservoir of PSH, which is common in the electricity market for a PSH. 

The pumping and generating capacity are pQ = 2  and gQ 2= . The unit of measurement of PSH can be 

described as GWH. The units of generating and pumping capacity measurement can be represented as a 

GW. 

Following the previous study, we also assume the pumping and the generating efficiencies of the 

PSH are α β=0.9= . The optimization period 
g(S S) Q 9− =  hours units for the PSH to empty the storage, 

while 
p(S S) Q 9− =  hours units for the PSH to fill the storage fully correspond approximately to the 
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Ludington PSH in Michigan USA (the PSH detail are available at: https://www.consumersenergy.com/). 

Based on the existing report (Mongird, et al., 2020), we assume the operating cost c 1=  ($/MWh). We 

also ignore the transmission efficiency loss and supposeρ 1= and η 1= . To simplify, we assume that the 

residual value of the water in the storage is equal to the expected electricity prices during the optimization 

horizon (i.e., 
T

T 1 t
t 1

VOW p T+
=

=∑ ). 

    Using the same method proposed by Cruise et al. (2019) to calculate the market impact (e.g., we 

used the off-peak load and on-peak load and the corresponding prices in the optimization horizon and 

pumping and generating limits in each period offered to the ISOs to achieve the lambda approximately as 

a proxy for the market impact3). For a merchant who owns a large storage (such as the Ludington PSH) 

and a wind farm, the results are as follows.  

    The merchants' optimal co-optimized economics dispatch actions are obtained from the value 

functions (6) when the merchant with co-located energy storage and wind plants is displayed in Figure 1 

and Figure 2 under two different initial SOC in the PSH, respectively.  

   

Fig 1: The optimal decisions when
1SOC 2= GWh    Fig 2: The optimal decisions when

1SOC 10=

GWh 

 

Figures 1 and 2 show that when the market impact factor is small, merchants with a co-located 

energy storage and wind plant will choose a similar strategy to the traditional strategy (that is, as a 

price-taker merchant and ignoring the market impact of the energy storage in trading), that is, when the 

market price of electricity is low, the merchant will buy electricity from market and will resale it later at a 

high price to maximize the profit. As the intensity of market impact increases (such as λ 0.1= ), the 

transaction quantity of electricity merchant who has energy storage and wind farm (see green and blue 

curves) in each period decreases. In this situation, the merchant's profit mainly depends on wind 

                                                      
3Although the merchant has PSH and wind plants, we will ignore the effect of wind generation when we calculate 

the market impact due to the high uncertainty of renewable generation. 
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generation and indirectly reduces the energy storage arbitrage function by decreasing the frequent 

pumping and generating actions. 

The optimal actions are obtained from equation (11) when the merchant with energy storage only 

(i.e., without wind generation) is shown in Fig3 and Fig 4 under different initial SOC in the storage.  

   

Fig 3: The optimal decisions when 1SOC 2= GWh   Fig 4: The optimal decisions when 1SOC 10= GWh 

 

Figures 3 and 4 show that when there is no wind plant, the merchant's dispatching strategy is the 

same as when there is a wind plant. With the intensity of market influence increasing (such as λ=0.1), 

each period's transaction quantity decreases (see, red curve). Figures 3 and 4 show the relationship 

between the optimal action and the intensity of market influence under such a situation, which is the same 

as that of merchants with only energy storage. With the increasing market impact of the merchant in 

trading, the cost of purchasing power to pump will rise; however, the revenue will decrease through 

discharging energy for selling. Therefore, to decrease the negative effect of market impact on operational 

decisions, the merchant should lower the power transition amount at each decision period to benefit her 

own profit. Consequently, a profit-maximining merchant with energy storage and wind plants must 

balance market impact intensity and energy transition quantity. 

Figure 5 corresponds to the Ludington case for the relationship between the optimal expected profit 

and the intensity of market impact with wind and without wind plants, respectively. 

  

Figs 5: The relationship between the optimal expected profit and market impact 

 

Figure 5 indicates that regardless of whether there is wind power generation, for the large-scale 
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energy storage, the operational trading decisions will influence the market prices. However, compared 

with the existing study (i.e., price taker scenario and without considering the market impact), the 

increases of market impact will lead to decreased maximum expectation profit because purchase costs 

increase, and sale revenues decrease. It is intuition, considering the market impact of merchants in trading 

will increase the cost of buying electricity from the market and decrease the revenue of selling electricity 

to the market. Obviously, if the large-scale energy storage merchant schedules energy in the storage 

following the scenario of a price taker, she will lose more profit. This part further proves the conclusion of 

the previous section through numerical simulation. These results are similar to the reported consequences 

by and Cruise et al. (2019), Felix et al. (2012), and Liu et al. (2021a). To maximize expected profits, 

merchants should mitigate the market impact and increase profits by reducing the amount of electricity 

trading each period to offset the negative effect of market impact. 

 

5. Extension Research: Market Impact as a Function of Offered Limits to ISO 

The results presented in Section 3.2 and Section 4 show that electricity merchants get less expected profit 

with growing market impact if both the price-taker electricity merchant and the price-maker electricity 

merchant offer the exact pumping/generating maximum capacity in one period offered to ISOs. However, 

in the electricity market, where capacity withholding is allowed, the merchant can adjust their pumping 

and generating capacity offered to ISOs to change her market impact (Mehdipourpicha and Bo, (2020; 

2021)). The implications of electricity merchants' market impact change substantially when considering 

the relationship between that impact and the generating and pumping capacity in each optimization period 

offered to ISOs. If the market impact is related to offered maximum pumping and generating limits, when 

the merchant changed her offered pumping (resp. generating) limit from p
nQ  (resp. g

nQ ) to p
mQ (resp. g

m Q ),  

and if p p
m nQ Q≤  and g g

m n Q Q≤  hold, we will get
m n0 λ λ≤ ≤ . Here, the different subscript values show 

different generating and pumping limits offered to the ISOs. 

For the intensity market impact parameter, in this section, following the previous study 

(Mehdipourpicha & Bo, (2020; 2021)), we shall use the ratio of electricity merchants’ offered limits to the 

total (MISO-wide) online capacity of generators, where the latter is commonly about 100 GW. Thus, 

different market impacts correspond to different generating and pumping maximum limits in one period 

that is offered to the ISOs, which may result in different optimal actions and expected profits. For 

example, a market impact factor of λ=0.02  (resp., λ=0.01 ) corresponds to a merchant 

generating/pumping maximum limit of 2 GW (resp.,1 GW) offered to ISOs. Our results are derived 

simply by increasing the upper limits of generating and pumping that offered to MISO from 0.1 GW to 
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3 GW (i.e., 0.001 λ 0.03≤ ≤ ); here we also suppose all other parameters are the same as in Section 4. 

Figure 6 illustrates the impact of market impact by adjusting the limits that offered to MISO on the 

expected profit of the merchant for cases with wind generation (left panel) and without wind generation 

(right panel). 

  

Figure 6: Merchant’s optimal expected profit as a function of market impact 

 

Figure 6 indicates that, regardless of whether there is wind power generation, the merchant’s optimal 

expected profits first increase and then decrease with their market impact. It follows that a merchant can 

maximize expected profits by balancing market impact with offered pumping/generating maximum limits 

to ISOs. From the perspective of profit maximization, the electricity merchant must decide which is more 

important: the limits of offered transaction to ISOs or the approximately market impact. There is an 

inherent trade-off between these two factors, since the merchant can—in each period—increase the unit 

energy/power profit while lowering transaction quantity. 

Suppose the market impact is low; in that case, there is a low revenue (due to the limited power 

transaction) although the unit power profit is high. Hence the merchant should increase the power 

transmission quantity to enhance her profit by enlarging the max capacity offered to ISOs. The most 

intriguing result is that raised market impact would result in a reducing unit power profit by raising the 

cost of purchasing and lowering sales revenue. In that case, we recommend that the merchant should limit 

their market impact’s detrimental effects by—in each period—reducing her generating/pumping limits 

offered to ISO and increasing profit from unit power.  

We affirm these conclusions by conducting additional analyses, as briefly described following. 

Accordingly, we change the power prices and wind generation corresponding to one day period with 24 

stages and seven days period with 168 stages, respectively, corresponding to one day 12/01/2020 and one 

week from December 1 to December 7, 2020) in MISO for the year 2020 as provided. Once again, our 

previous findings are mainly supported. 
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6．Conclusion and Future Work 

The main objective of this paper is to analyze the scenario when the merchants with both co-located 

large-scale energy storage systems and wind plants and build the co-optimized policy structure of 

electricity merchants whose actions are sufficiently important to have a market impact on electricity 

prices. We formulate this problem as a Markov decision process and employ the dynamic programming 

method to achieve the closed-form analytical results to support multi-period decision-making of 

merchants. Although there are multiple activities available each period for the electricity merchant, only 

one of these decisions/actions is allowed at the same time. On this basis, to solve this problem, this paper 

first split the original problem into three sub-optimization problems corresponding to three different 

actions. Then, the optimal solution for each sub-optimization problem will be addressed based on the 

Bellman equation. Finally, we combine them and achieve the global conclusions of the original 

problem. We demonstrate that the obtained optimal strategy policy in this paper generalizes the traditional 

results and differs significantly from usual strategies reported to be optimal in the current published work, 

neglecting the market impact and the residual value of energy in the storage. 

To maximize the profit of electricity merchant who has large-scale energy storage and wind power 

plant, considering the generating and pumping operating costs and three types of efficiency loss, we find 

the current optimal economic dispatch strategy of the storage relies on the SOC reference points. These 

SOC reference points depend on the current SOC inventory in the energy storage, the forecasted 

electricity prices, available forecasted wind generation currently, and the market impact of energy storage 

in trading. We show analytically that, for a merchant with both PSH and wind plant, there exist three SOC 

reference points such that the SOC range is divided into four possible sub-ranges, each of which 

corresponds to one of four distinct options. The merchant will achieve the unique optimal action by 

comparing the current SOC in the storage and the SOC reference points. However, suppose operating 

costs and efficiency loss of the energy storage are not modeled. Then, the feasible SOC range of the 

storage can also be segmented into two sub-ranges by one unique optimal SOC reference point. In this 

case, storing renewable generation or buying power for pumping will bring the same cost for a merchant. 

If we ignore the wind generation or not available renewable source, it equals an electricity merchant with 

only large-scale energy storage. Our study finds the condition that wind generation benefits merchants' 

profit.  

We recognize that the merchant's market impact and the residual value of energy in the storage play 

essential roles in the optimal strategy design. Although the residual value of energy in the storage affects 
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the value function then influences the optimal decision, this paper finds that it does not change the 

relationship among three optimal SOC reference points, so the residual value cannot revise the traditional 

policy. Our results also show that the price-maker merchant will obtain similar strategies as the 

price-taker merchant scenario when the market impact is small. However, considering the market impact 

and offering the same generating and pumping capacity as the price-taker, we find the market impact 

would drive profit-reducing by raising the cost of purchasing and lowering sales revenue. If, besides, the 

market impact of the merchant is high, then the sales revenue can only somewhat offset the increased cost 

of purchasing power. In that case, our findings recommend that the merchant needs to mitigate the market 

impact's negative effect as much as possible by lowering the power transition amount at each decision 

period to benefit her profit. These new conclusions provide more knowledge of managing differentiated 

forecasted wind generation, market impact, and co-optimized economic dispatch of energy storage and 

wind plant. 

To the extent that a merchant can influence the market impact (e.g., through adjustment of the 

pumping and generating maximum limits offered to ISOs), we identify conditions under which the 

trade-off is either beneficial or detrimental to the merchant. These new findings augment our collective 

knowledge about managing the intensity of market impact and are an essential contribution to research on 

this topic. 

There are usually two approaches to model market impact‐‐‐an equilibrium model or a conjecture 

variation model. This paper’s approach is a conjecture variation. Another connected concern for future 

research is confirming how to model the market impact in an equilibrium model and construct the 

corresponding reward functions. To establish a reasonable and tractable framework and derive insightful 

results, we have followed the conventional assumptions about the market impact and generating and 

pumping minimum limitations to get continuous reward functions. Further research could be undertaken 

that relaxes these assumptions and extends our research on this problem. Our main consequences and 

insights are robust for other kinds of relations—when electricity merchants purchase electricity from the 

power market, and the demand/load will increase, conducting to increasing electricity prices; in contrast, 

selling power by a merchant will enhance the supply resulting in decreasing the selling prices. Therefore, 

exploring this topic is a promising avenue for future research. It would also be worthwhile to investigate 

generating and pumping lower limitations in positive values other than zero. The results and optimal joint 

optimization scheduling proposed in this paper are developed via dynamic programming based on the 

static price forecast for the entire horizon. Another related consideration for future work arises: Should 

the merchant’s decision be adjusted to account for this changing price uncertainty? Finally, the effects of 
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transmission constraints, nodes' voltage, and bus voltages on the energy storage planning problem also 

need to investigate.   
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Appendix: Table 1 

Table1: A comparative summary of this study and previous publication 

Literature Objective Price-ma

ker 

Problem model 

Renewable ESS 

Al-Kanj et al., 2020 � � � Storage arbitrage ADP 

Bafrani et al.(2021) � � � ISO operation MINLP 

Baslis et al. (2011) 
 

� � � Market impact MILP 

Bhoi et al.(2020) � � � Optimal scheduling DP 

Castronuovo et al.(2004) � � � Operation Discrete optimization 

Chabok et al.(2019) � � � Operation of power system Stochastic optimization 

Dui et al.(2018) � � � Storage design SOCP 

He et al.(2022) � � � Multi-objective co-optimization MOEA-DM 

Habibian et al. (2020) � � � Power purchase decision Stochastic programming 

Heine et al.(2021) � � � Community optimization MILP 

Huang et al.(2019) � � � Market mechanisms design Bi-level 

Huang et al.(2019) � � � Storage operation and 
investment 

Bi-level 

Kim and Powell (2011) � � � Economic dispatch MILP 

Lee (2008) � � � Short-term scheduling MIPSO 

Levieux et al. (2019) � � � RE complementary operation HA 

Liu et al.(2015) � � � Schedule ANN 

Liu et al. (2021a) � � � Economic dispatch DP 

Liu et al. (2022) � � � Economic dispatch DP 

Jiang and Powell（2015a) � � � Economic dispatch ADP 

Secomandi (2010)  � � � Economic dispatch DP 

Shi et al.(2022) � � � Generation and capacity MILP 

Shi et al.(2018) � � � Design and operation QI 

Steeger et al. (2018) � � � Bidding optimization SDDP 
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Taghikhani et al.(2021) � � � Optimal scheduling MILP 

Zhang et al. (2016) � � � Economic dispatch Fully distributed 

Zhou et al. (2016) � � � Economic dispatch DP 

Zhou et al. (2019) � � � Economic dispatch DP 

This study � � � Economic dispatch DP 

Appendix A: Optimal Scheduling for Electricity Merchant 

Proof of Lemma 1: 

1) The uniqueness of the SOC references points:  

Based on the equation (5), by replacing tq with
t 1SOC + as the decision variable via

t 1 t t tSOC φ SOC q+ − = , we get the following rewards function.  

 

2 2 2 p
t t t t t t t t t w t t t

2 2 2 p
t t t t t t t t t t t t w t t t

2 2 2 g
t t t t t t t t t w t t

P (q θ w ) / σ λP σ [(q θ) 2(q θ)w w ] c (q θσ) c w  (q θw )  

R(q ,w ,P ) P (q θ w ) σ λPσ [(q θ) 2(q θ)w w ] c (q θσ) c w  (0 q θw )

P (q θ w ) σ λPσ [(q ξ) 2(q ξ)w w ]+c q ξσ c w  (q 0

− − − − + − − ≥

= − − ⋅ − − + − − ≤ ≤

− − ⋅ − − + − ≤ )







  (A1) 

In the end of the decision time T (i.e., the beginning of decision time T+1), the value function is 

shown: 

( )T T T T T 1 T T T T+1 T+1V (S(T)) [R(q ,w ,p ) E[V S(T 1)|S(T) ]=[R(q ,w ,p ) VOW SOC ]+= + + + ⋅  

Thus, we get the following three sub-optimization value functions:  

( )
T 1

T 1

p
(1)* 2 *tT T T T T
T T T T T w T 12 2 2 2S SOC S

2 2 p
(2)* 2 2 *T T T
T T T T T T T w T 12S SOC S

P cλP 2λP w λP P
V (S(T)) max q +( )q w ( w c )+E[V S(T 1) | S(T) ]

θ σ θσ θσ σ σ

λρ P w P σ +c
V (S(T))= max q (2λP σ )q w [P σ(λw σ 1) c ] E[V S(T 1) | S

σ θ θσ

+

+

+≤ ≤

+≤ ≤

 +
= − − − − + + 

 

− + − − − + + +( )

( ){ }
T 1

(3)* 2 2 2 2 g *
T T T T T T T T T T w T 1

S SOC S

(T) ]

V (S(T))= max λP ξ σ q (2λP w ξσ P ξσ c ξσ)q w [P σ(λw σ 1) c ] E[V S(T 1) | S(T) ]
+

+≤ ≤




  
  

 
 − + − − − − + + +



(A2) 

We can get the optimal results to the equation (A3) by removing the given stateS(T) (i.e., the given 

values TSOC , Tw , and TP ) when maximizing the (A2) . So, we get the following equivalent equations:  

T 1

T 1

2 p
(1)* tT T 1 T T T 1
T T T T+1 T+12 2 2S SOC S

T T

22 2 p
(2)* 2T T 1 T T T 1
T T T2S SOC S

T

P cλP SOC 2λP w SOC
V (S(T)) max SOC +( ) SOC VOW SOC

φ θσ φθ σ θσ

λρ P SOC w P σ +c SOC
V (S(T))= max SOC (2λP σ )

φ θ θσ φθ

+

+

+ +

≤ ≤

+ +

≤ ≤

    + = − − − − + ⋅    
     

 
− − + − 

 

T 1

T T+1 T+1

T

2

(3)* 2 2 2 gT 1 T 1
T T T T T T T T+1 T+1

S SOC S
T T

SOC VOW SOC

SOC SOC
V (S(T))= max λP ξ σ SOC (2λP w ξσ P ξσ c ξσ) SOC VOW SOC

φ φ+

+ +

≤ ≤






    − + ⋅   
    

       − − + − − − + ⋅    
     

 (A3) 
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The first-order derivative of
*
TV (S(T)) (i.e., best response functions) on

T 1SO C + are shown as: 

p(1)*
tT T T 1 T T

T T+12 2 2
T 1 T T T

(2)* 2 2 p
2T T T 1 T T

T T T+12
T 1 T T T

(3)
T

P cV (S(T)) λP SOC 2λP w1 1
2 SOC +( ) VOW                    

SOC θ σ φ φ θσ θσ φ

V (S(T)) λσ P SOC w P σ +c1 1
= 2 SOC (2λP σ ) VOW          

SOC θ φ φ θ θσ φ

V

+

+

+

+

  +∂ = − − − + ∂  
 ∂

− − + − + ∂  
∂ *

2 2 2 gT 1
T T T T T T+1

T 1 T T T

(S(T)) SOC 1 1
2λP ξ σ SOC (2λP w ξσ P ξσ c ξσ) VOW  

SOC φ φ φ

+

+







  

= − − + − − +  ∂  

    (A4) 

We also obtain the following second-order derivative functions of
*
TV (S(T))on T 1SOC + .  

2 (1)* 2 (2)* 2 2 (3)*
2 2T T T T T

T2 2 2 2 2 2 2 2 2
T 1 T T 1 T T 1 T

V (S(T)) λP V (S(T)) λσ P V (S(T))1 1 1
= 2 0; = 2 0; 2λP ξ σ 0

SOC θ σ φ SOC θ φ SOC φ+ + +

 ∂ ∂ ∂
− < − < = − < ∂ ∂ ∂ 

 (A5) 

Because the second-order derivative function is negative, we can achieve the unique optimal results 

by using the first-order function. Therefore,
(1)*
TV (S(t)) ,

(2)*
TV (S(t)) ,and

(3)*
TV (S(t))have a unique optimal 

solution on T 1SOC [S, S]+ ∈ . Then the Bellman equation and Puterman (1994) can be used to derive the 

following results: 

( )

( )

T 1

T 1

p
(1)* * 2t T 1 T T T T 1
T 1 T 1 T2 2 2S SOC S

T T

2 2 p
(2)* * 2 2T T 1 T T T
T 1 T 1 T T2S SOC S

T

λP SOC 2λP w P c SOC
SOC arg max E[V S(T 1) | S(T) ] ( SOC ) ( )

φ θσ φθ σ θσ

λσ P SOC w P σ c SOC
SOC arg max E[V S(T 1) | S(T) ] ( SOC ) (2λP ρ )

φ θ θσθ

+

+

+ +
+ +≤ ≤

+
+ +≤ ≤

 +
= + − − + − 

 
+

= + − − + −

( )
T 1

1

T

(3)* * 2 2 2 2 gT 1 T 1
T 1 T 1 T T T T T

S SOC S
T T

φ

SOC SOC
SOC arg max E[V S(T 1) | S(T) ] λP ξ σ ( SOC ) (2λP w ξσ P ξσ c ξσ)

φ φ+

+

+ +
+ +≤ ≤




  
  

 
  

= + − − + − +  
  

(A6) 

Similarly, for the any state at t {1,2, ,T}∈ L ,by maximizing of the value function
t t t tV (SOC , w , P ) , 

subject to
t 1S O C [S ,  S ]+ ∈ , we will obtain the following optimal functions based on the Bellman equation. 
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( )

( )

t 1

t 1

p
(1)* 2 *t t t t t t
t t t t t w t 12 2 2 2S SOC S

2 p
* t t 1 t t t t
t 1 t 1 t2 2 2 2 2 2S SOC S

t t

λP 2λP w P c λP P
V (S(t)) max q +( )q w ( w c )+E[V S(t 1) | S(t) ]

θ σ θσ θσ σ σ

λP SOC 2λP 2λP w P c
   max E[V S(t 1) | S(t) ] SOC SOC +( )

θ σ φ θ σ φ θσ θσ

+

+

+≤ ≤

+
+ +≤ ≤

 +
= − − − − + + 

 

+
⇔ + − + ⋅ −

( )

( )

t 1

t 1

t 1

t

2 2 p
(2)* 2 2 *t t t
t t t t t t t w t 12S SOC S

22 2
* t t 1
t 1 2 2S SOC S

t

SOC
            (A7-1)

φ

λσ P w P σ +c
V (S(t))= max q (2λP σ )q w [P σ(λw σ 1) c ] E[V S(t 1) | S(t) ]

θ θ θσ

λρ P SOC 2λσ
   max E[V S(t 1) | S(t) ]

θ φ

+

+

+

+≤ ≤

+
+≤ ≤

 
  
 

 
− + − − − + + + 
 

⇔ + − +

( ){ }

( )
t 1

t 1

2 p
2t t 1 t t t 1

t t2
t t

(3)* 2 2 2 2 g *
t t t t t t t t t t w t 1

S SOC S

*
t 1

S SOC S

P SOC w P σ +c SOC
SOC (2λP σ )       (A7-2)

θ φ θ θσ η

V (S(t))= max λP ξ σ q (2λP w ξσ P ξσ+c ξσ)q w [P σ(λw σ 1) c ] E[V S(t 1) | S(t) ]

  max E[V S(t 1) | S(t)

+

+

+ +

+≤ ≤

+≤ ≤

 
+ −  

 
− + − − − + + +

⇔ +
2

2 2 2 2 2 gt 1 t 1 t 1
t t t t t t2

t t t

SOC SOC SOC
] λP ξ σ 2λP ξ σ SOC +(2λP w ξσ P ξσ+c ξσ) (A7-3)

φ φ φ

+ + +
















  
 − + −    

 

Based on the proof at last decision period T, we know that for every optimization period

t {1,2, ,T}∈ L , and in every state t , both
tV (S(t))  and ( )*

t 1E[V S(t 1)|S(t) ]+ +  are concave functions on 

tS O C [S ,  S ]∈  for any given decision state 
t t t tS(t) S (SOC , w , P )= . Clearly, ( )*

t 1E[V S(t 1)|S(t) ]+ + and 

functions (A7-1)-(A7-3) are concave in 
t 1S O C [S ,  S ]+ ∈  for each given state 

t t t tS(t) S (SOC , w , P )= by 

using  

( )
( ) ( )

( )

* *
t 1 t 1 t

*
t 1 t t+1t 1 t

2
t 1 t 1 t t+1

*
t 1

t

E[V S(t 1) | S(t) ] E[V S(t 1) | S(t) ] SOC

SOC SOC SOCE[V S(t 1) | S(t) ] SOC
=

SOC SOC SOC SOC

E[V S(t 1) | S(t) ]
                                    

SOC

+ +

++

+ +

+

   ∂ + ∂ + ∂∂ ∂ ⋅      ∂ ∂ ∂∂ + ∂   = ⋅
∂ ∂ ∂ ∂

∂ +
=

∂
( )

( )

*
t 1t t t

2
t+1 t t+1 t t +1

2*
t 1 t

2
t t+1

E[V S(t 1) | S(t) ]SOC SOC SOC

SOC SOC SOC SOC SOC

E[V S(t 1) | S(t) ] SOC
                                   0

SOC SOC

+

+

 ∂ +∂ ∂ ∂
⋅ + ⋅ ⋅  ∂ ∂ ∂ ∂ ∂ 

 ∂ +  ∂
 = ⋅ ≤ 
 ∂ ∂  

 

(1) When t tq θw> , by maximizing the equation (A7-1), subject to 
t 1S O C [S ,  S ]+ ∈ , we can also get the 

following best response function (i.e., first-order derivative): 

( )*(1)* p
t+1t t t t t t

t 1 t2 2 2 2 2 2
t 1 t 1 t t t t

E[V S(t 1) |S(t) ]V (S(t)) 2λP 2λP 2λP w P c
SOC SOC +

SOC SOC θ σ φ θ σ φ θσ φ θσφ
+

+ +

∂ +∂ +
= − + −

∂ ∂
 

The second-order derivative function: 
( )*(1)*

t+1t t

2 2 2 2 2
t 1 t 1 t

E[V S(t 1) |S(t) ]V (S(t)) 2λP
= 0

SOC SOC θ σ φ+ +

∂ +∂
− <

∂ ∂
. 

    Thus, we can achieve the optimal references points solutions using the first-order function because 

the second-order derivative is negative. Therefore, we will obtain the subsequent optimal consequences: 
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( )

( )
t 1

2 p
(1)* * t t 1 t t t t t 1
t 1 t 1 t 1 t2 2 2 2 2 2S SOC S

tt t

*(1)*
t+1t t t

t 12 2 2 2 2
t 1 t 1 t

λP SOC 2λP 2λP w P c SOC
SOC arg max E[V S(t 1) | S(t) ] SOC SOC +( )

θσ φθ σ φ θ σ φ θσ

E[V S(t 1) | S(t) ]V (S(t)) 2λP 2λP
or = SOC

SOC SOC θ σ φ θ σ

+

+ +
+ + +≤ ≤

+
+ +

 +
= + − + ⋅ −  

 
∂ +∂

− +
∂ ∂ (1)*

t 1 t 1

p
t t t

t 2
tt t SOC =SOC

2λP w P c
SOC + 0

θσφφ θσ φ
+ +




 + − =



  (A8) 

(2) Similarly, when t t0 q θw≤ ≤ ，by optimizing the function (A7-2), we can obtain the unique optimal 

reference points using the first-order function, and the optimal solutions are: 

( )

( )
t 1

22 2 2 p
(2)* * 2t t 1 t t t t 1
t+1 t 1 t 1 t t2 2 2S SOC S

t t t

*(2)* 2 2
t+1t t t

t 12 2 2
t 1 t 1 t t

λσ P SOC 2λσ P w P σ +c E
SOC arg max E[V S(t 1) | S(t) ] SOC SOC (2λP σ )

θ φ θ φ θ θσ φ

E[V S(t 1) | S(t) ]V (S(t)) 2λσ P 2λσ P
or = E

SOC SOC θ φ θ φ

+

+ +
+ +≤ ≤
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+ +

 
= + − + ⋅ + −  

 
∂ +∂

− +
∂ ∂ ( 2)*

t 1 t +1

2 p
2 t t

t t

t SOC SOC

w P σ +c 1
SOC (2λP σ ) =0

θ θσ φ
+ =





 − −



 (A9) 

(3) When
tq 0< ，by optimizing the function (A7-3), we will obtain the optimal SOC results as follows: 

( )

( )
t 1

2

(3)* * 2 2 2 2 2 gt 1 t 1 t 1
t 1 t 1 t t t t t t2S SOC S

t t t

*(3)* 2 2 2 2
t+1t t t

t 12
t 1 t 1 t t

E E SOC
SOC arg max E[V S(t 1) | S(t) ] λP ξ σ 2λP ξ σ E +(2λP w ξσ P ξσ c ξσ)

φ φ φ

E[V S(t 1) | S(t) ]V (S(t)) 2λP ξ σ 2λP ξ σ
or  = SOC SOC

SOC SOC φ φ

+

+ + +
+ +≤ ≤
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+ +

 
= + − + − +  

 
∂ +∂

− +
∂ ∂ (3 )*

t 1 t 1

2 g
t t t

t

t SOC =SOC

2λP w ξσ P ξσ c ξσ
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η
+ +




 − +



 

(A10) 

2) The relations among three SOC optimal results/SOC reference points:  

We define three auxiliary functions based on (A8) - (A10) to simplify illumination. 

(1)* (2)* (3)*
(1) (2) (3)t t t

t 1 t 1 t 1

t 1 t 1 t 1

V (S(t)) V (S(t)) V (S(t))
F(SOC ) = ; F(SOC ) ; F(SOC )

SOC SOC SOC
+ + +

+ + +

 ∂ ∂ ∂
= = ∂ ∂ ∂

       (A11) 

The related first-order functions of (A11) correspond to the second-order derivative functions of 

(A7-1), (A7-2), and (A7-3) are shown:  

( )

( )

*(1) (1)*
t 1t 1 t t

2 2 2 2 2
t 1 t 1 t 1 t

*(2) (2)* 2
t 1t 1 t t

2 2 2 2
t 1 t 1 t 1 t

(3) (3)*
t 1 t

t 1

E[V S(t 1) |S(t) ]F(SOC ) V (S(t)) 2λP
0

SOC SOC SOC θ σ φ

E[V S(t 1) |S(t) ]F(SOC ) V (S(t)) 2λσ P
 0 

SOC SOC SOC θ φ

F(SOC ) V

SOC

++

+ + +

++

+ + +

+

+

∂ +∂ ∂
= = − <

∂ ∂ ∂
∂ +∂ ∂

= = − <
∂ ∂ ∂

∂ ∂
=

∂
( )* 2 2

t 1 t

2 2 2
t 1 t 1 t

E[V S(t 1) |S(t) ](S(t)) 2λPξ σ
0

SOC SOC φ
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+ +







 ∂ +

= − <
∂ ∂

             (A12) 

Based on (A12), we find that the above three defined auxiliary functions are all decreasing with 

t 1S O C [S ,  S ]+ ∈ . We also get the following relations among the first-order functions of (A11). 

(1) (2) (3)
t 1 t 1 t 1 t 1 t 1 t 1F(SOC ) SOC F(SOC ) SOC F(SOC ) SOC+ + + + + +∂ ∂ ≥ ∂ ∂ ≥ ∂ ∂ . 

1) For all
t 1S O C [S ,  S ]+ ∈ , if (1) ( 2 )

t 1 t 1m ax F(SO C ) m ax F(SO C )+ +≤ , then we will obtain 
(1)* (2)*
t 1 t 1SOC SOC+ +≤ . 
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(1) (1) (2) (2)
t 1 t 1 t 1 t 1

p 2 2 2 p
2t t t t t t t t t

t t t2 2 2 2 2 2 2 2 2
t t t t t t t t

p 2 p
t t

max F(SOC ) F(SOC S) max F(SOC ) F(SOC S)

2λP 2λP 2λP w P c 2λσ P 2λσ P w P σ +c1 1
S SOC + S SOC +2λP σ
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2 2
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    −  

⇒ ≤ − + − = + −     
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2) For all
t 1S O C [S ,  S ]+ ∈ , if ( 2 ) ( 3 )

t 1 t 1m ax F(SO C ) m ax F(SO C )+ +≤ , then we will obtain 
(2)* (3)*
t 1 t 1SOC SOC+ +≤ . 

(2) (2) (3) (3)
t 1 t 1 t 1 t 1

2 2 2 p 2 2 2 2 2 g
2t t t t t t t t t

t t t2 2 2 2
t t t t t t t t

2
t t

t

max F(SOC ) F(SOC S) max F(SOC ) F(SOC S)

2λσ P 2λσ P w P σ +c 2λP ξ σ 2λP ξ σ 2λP w ξσ (P ξσ c ξσ)1 1
S E +2λP σ S SOC +

θ φ θ φ θ φ θσ φ φ φ φ φ

S 1
λ2σ P (SOC )(

φ

+ + + += = ≤ = =
   −

⇔ − + − ≤ − + −   
   

⇔ −
2 p

2 gt t
t t2

2 p
g 2 2 (2,3)t

t t t t t2
t

w P σ +c
ξ )+( w ξ) (P ξσ c ξσ)

θ θ θρ

P σ +c S 1 1
λ (P ξσ c ξσ) 2ρ P (SOC )( ξ )+w ( ξ) λ

θσ φ θ θ

   
− − ≤ − −   

  
  

⇒ ≤ − − − − − =  
   

 

If both the available wind generation equals zero (i.e., tw =0), and the current energy inventory 

reaches the minimum limit of storage (i.e.,
t tSOC S φ 0− = ) at optimization period t, for any forecasted 

price
tP 0≥ and market impact of energy storage λ 0≥ , there exists 

(1)* (2)* (3)*
t 1 t 1 t 1SOC SOC SOC+ + +≤ ≤ .  

To sum up, for positive prices
tP 0≥ , when the market impact of energy storage meets condition 

(1,2 ) ( 2 ,3 )
t t0 λ m in {λ , λ }≤ ≤ , thus, we can get the following relations among three optimal SOC reference 

points: 

(1)* (2)* (3)*
t 1 t 1 t 1SOC SOC SOC+ + +≤ ≤  

Obviously, if 
tP 0≤ , we get 

(1)* (2)* (3)*
t 1 t 1 t 1SOC SOC SOC+ + +≥ ≥  when there is { }(1,2) (2,3)

t t0 λ min λ ,λ≤ ≤ . 

 

Proof of Proposition 1: 

(1) Optimal Solutions (without consider the capacity of transmission line):  

1) 
p(1)*

t t 1θw min{SOC ,Q }+<  
p(1)* (1)* (1)*

t 1 t t t 1 t t 1
(2)* (1)* (2)*

* t 1 t t t t 1 t t 1
t t

min{SOC SOC ,Q },  SOC [S,SOC θw ](store generation and buy electricity up to SOC )

min{SOC SOC ,θw },SOC (SOC θw ,SOC ](store generation without buying
q (S )

+ + +

+ + +

− ∈ −
− ∈ −=

(2)*
t 1

(2)* (3)*
t t 1 t 1

g(3)* (3)* (3)*
t 1 t t t 1 t 1

 up to SOC )

0,  SOC (SOC ,SOC ] (keep inventory unchanged) 

max{SOC SOC , Q },SOC (SOC ,S](sell inventory down to SOC )

+

+ +

+ + +




 ∈
 − − ∈

 (A13) 
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2) 
p(1)*

t t 1θw min{SOC ,Q }+≥  
p(2)* (2)* (2)*

t 1 t t t t 1 t 1
* (2)* (3)*

t t t t 1 t 1
g(3)* (3)*

t 1 t t t 1

min{SOC SOC ,Q ,θw },SOC [S,SOC ](store generation up to SOC )

q (S ) 0,  SOC [SOC ,SOC ] (keep inventory unchanged)

max{SOC SOC , Q },SOC (SOC ,S](sell in

+ + +

+ +

+ +

− ∈
= ∈

− − ∈ (3)*
t 1ventory down to SOC )+







       (A14) 

Special case:  

a) If p g(θ ξ σ 1, c c 0)= = = = = , then we will get (1)* ( 2 )* (3)* *
t 1 t 1 t 1 t 1SOC =SOC =SOC =SOC+ + + + .  

1) 
p*

t t 1θw min{SOC ,Q }+<  
p* * *

* t 1 t t t 1 t t 1
t t g* * *

t 1 t t t 1 t 1

min{SOC SOC ,Q },  SOC [S,SOC θw ](store generation and purchased electricity up to SOC )
q (S )

max{SOC SOC , Q },SOC (SOC ,S](sell inventory down to SOC )

+ + +

+ + +

 − ∈ −= 
− − ∈

 (A15) 

2) 
p*

t t 1θw min{SOC ,Q }+≥  
p* * *

* t 1 t t t t 1 t 1
t t g* * *

t 1 t t t 1 t 1

min{SOC SOC , Q ,θw },SOC [S,SOC ](store generation up to SOC )
q (S )

max{SOC SOC , Q },SOC (SOC ,S](sell inventory down to SOC )

+ + +

+ + +

 − ∈= 
− − ∈

    (A16) 

b) If σ 1=  (transmission efficiency), then we will get (1)* ( 2 )*
t 1 t 1SO C =SO C+ + .  

1) 
p(1)*

t t 1θw min{SOC ,Q }+<  

p(1)* (1)* (1)*
t 1 t t t 1 t t 1

* (2)* (3)*
t t t t 1 t 1

g(3)* (3
t 1 t t t 1

min{SOC SOC ,Q },  SOC [S,SOC θw ](store generation  and buy power to SOC )

q (S ) 0,  SOC (SOC ,SOC ] (keep inventory unchanged) 

max{SOC SOC , Q },SOC (SOC

+ + +

+ +

+ +

− ∈ −
= ∈

− − ∈ )* (3)*
t 1,S](sell power to SOC )+







(A17) 

2) 
p*

t t 1θw min{SOC ,Q }+≥  
p(2)* (2)* (2)*

t 1 t t t t 1 t 1
* (2)* (3)*

t t t t 1 t 1
g(3)* (3)*

t 1 t t t 1

min{SOC SOC ,Q ,θw },SOC [S,SOC ](store generation up to SOC )

q (S ) 0,SOC [SOC ,SOC ](keep inventory unchanged)

max{SOC SOC , Q },SOC (SOC ,S](sell inve

+ + +

+ +

+ +

− ∈
= ∈

− − ∈ (3)*
t 1ntory down to SOC )+







     (A18) 

c) If p g(θ ξ 1, c c 0)= = = =  (no pumping and generating loss, no operating cost, ( 2 )* ( 3 )*
t 1 t 1SO C SO C+ += ) 

1) 
p(1)*

t t 1θw min{SOC ,Q }+<  

p(1)* (1)* (1)*
t 1 t t t 1 t t 1

* ( 2)* (1)* ( 2)*
t t t 1 t t t t 1 t t 1

min{SOC SOC , Q },  SOC [S,SOC θw ](store renewable and buy power up to SOC )

q (S ) min{SOC SOC ,θw },SOC (SOC θw ,SOC ](store renewable without buying up to S
+ + +

+ + +

− ∈ −
= − ∈ − ( 2 )*

t 1
g(3)* (3)* (3)*

t 1 t t t 1 t 1

OC )

max{SOC SOC , Q },SOC (SOC ,S](sell energy down to SOC )

+

+ + +




 − − ∈

 (A19) 

2) 
p*

t t 1θw min{SOC ,Q }+≥  
p(2)* (2)* (2)*

* t 1 t t t t 1 t 1
t t g(3)* (3)* (3)*

t 1 t t t 1 t 1

min{SOC SOC ,Q ,θw },SOC [S,SOC ](store renewable generation up to SOC )
q (S )

max{SOC SOC , Q },SOC (SOC ,S](sell energy down to SOC )

+ + +

+ + +

 − ∈= 
− − ∈

  (A20) 

 

Proof of Proposition 2: Market impact and available wind generation analysis  

Recall the proof the proposition 1, when the merchant who has PSH and wind plants, for any given state 
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S(t) , we can also obtain the following outcomes: 

( )

( )

t 1

t 1

p
(1)* * 2t t 1 t t t t 1
t 1 (λ 0) t 1 t2 2 2S SOC S

t t

2
(2)* * 2 2t t 1 t t
t 1 (λ 0) t 1 t t2S SOC S

t

λP SOC 2λP w P c SOC
SOC arg max E[V S(t 1) | S(t) ] ( SOC ) ( )

θ σ φ θσ θσ φ

λσ P SOC w P
SOC arg max E[V S(t 1) | S(t) ] ( SOC ) (2λP ρ

θ φ θ

+

+

+ +
+ > +≤ ≤

+
+ > +≤ ≤

 +
= + − − + − 

 

= + − − + −

( )
t 1

2 p
t 1

t

(3)* * 2 2 2 2 gt 1 t 1
t 1 (λ 0) t 1 t t t t t

S SOC S
t t

σ c SOC
)

θσ φ

SOC SOC
SOC arg max E[V S(t 1) | S(t) ] λP ξ σ ( SOC ) (2λP w ξσ P ξσ c ξσ)

φ φ+

+

+ +
+ > +≤ ≤




  +
  

 
  

= + − − + − +  
  

 

Through the rewards function of (A1), for any positive forecasted prices and decision state

t {1,2,3, ,T}∈ L , there exist the following relationships:  

2 2
t t t t t

2 2t t t t t t
t t t t t

2 2
t t t t

P σ (q θ w ) 0       (q θw )  
R(q ,w ,P ) R(q ,w ,P )

Pσ (q θ w ) 0     (0 q θw ) 0
λ λ

Pσ (q ξ w ) 0   (q 0)

− ⋅ − ≤ >∂ ∂= − ⋅ − ≤ ≤ < ⇒ ≤∂ ∂− ⋅ − ≤ <

      (A21) 

Suppose the 
*(M)
t (λ 0)q ≥ (resp.

*(M)
t  (λ 0)q = ) represents the optimal actions of electricity merchants 

considering the market impact (resp. without considering market impact) in trading decisions.  

Thus,
T T

*(M ) *(M )
t  (λ 0) t t t  (λ 0) t t

t 1 t 1

R (q , w , P ) R (q , w , P )≥ =
= =

≥∑ ∑  holds, which means the value function of the 

merchant
*
t 1 (λ 0)V (S(t 1) |S(t))+ > + decreases with the increasing of market impact λ , then there are: 

( ) ( )* *
t 1 (λ 0) t 1 (λ 0)

T T

t t t (λ 0) t t t (λ 0)
π π

t 1 t 1

E[V S(t 1) | S(t) ] E[V S(t 1) | S(t) ]

max E R(q , w ,P ) | S(1) max E R(q , w ,P ) | S(1)

+ ≥ + =

≥ =
= =

 + ≤ +



   ≤    


∑ ∑
            (A22) 

Obviously, if a price-maker merchant ignores her market impact in trading decisions and follows the 

price-taker's optimal economic dispatch, we can draw the following relationship: 

T T T
*(M ) *(M )

t t t (λ 0) t  (λ 0) t t (λ 0) t  (λ 0) t t (λ 0)
π

t 1 t 1 t 1

max E R(q , w , P ) | S(1) E R(q , w , P ) | S(1) E R(q , w , P ) | S(1)≥ ≥ ≥ = ≥
= = =

     = ≥     ∑ ∑ ∑  (A23) 

Based on the rewards function of (A1), we will get the following first-order response function: 

( )
( )

( )

2 2
t t t t w t w t t t t t

2 2t t t
t t t t w t w t t t t t

t 2 2
t t t t w t w t t t t

P / σ λ P σ [ 2(q θ) 2w ] c =P / σ c 2λ P σ q θ w  (q θw )
R(q , w ,P )

P σ λP σ [ 2(q θ) 2w ] c =P σ c 2λP σ q θ w  (0 q θw )
w

P σ λP σ [ 2(q ξ) 2w ] c =P σ c 2λP σ q ξ w  (q 0)

 − − + − − + − ≥
∂ = − − + − − + − ≤ ≤∂  − − + − − + − ≤

 (A24) 

We have the following relationship for 
t t t tR(q , w , P ) w∂ ∂  based on equation (24).   
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( )
( ) ( )
( ) ( )

2
1 t t t t t w t t t t w t t

2 2 (1,2)
2 t t t t t w t t t t w t t t t t t

2 2
3 t t t t t w t t t t w t t t t

R (q , w , P ) w P / σ c 2λ P σ q θ w 0 P / σ c  (q θw ) 

R (q , w ,P ) w P σ c 2λP σ q θ w 0 λ (P σ c ) 2P σ w q θ λ  (0 q θw )

R (q , w , P ) w P σ c 2λP σ q ξ 2w 0 λ (P σ c ) 2P σ w q ξ λ

∂ ∂ = − + − ≥ ⇒ ≥ ≥
∂ ∂ = − + − ≥ ⇒ ≤ − − < ≤ ≤
∂ ∂ = − + − ≥ ⇒ ≤ − − < (2,3)

t (q 0)




 ≤

 (A25) 

It implies that the merchant with PSH and wind plants needs to generate the wind power based on 

the max generation capacity of the wind turbines installed to benefit her profit. 

Next, we will analyze how the operation cost influences the optimal scheduling policy of the energy 

storage and the revenue of the electricity merchant. Then, based on the rewards function of (A1), we will 

get the following first-order response function: 

t t tt t t t t t
t tp g

t t t

(q θσ) (q θw )R (q , w , P ) R (q , w , P )
; q ξσ  (q 0)

(q θσ) (0 q θw )c c

− ≥∂ ∂
= = ≤− ≤ ≤∂ ∂

             (A26) 

    Based on the equation (A26), We get the following relationship for the reward functions on the 

generating and pumping cost. 

t t t t t t

p g

R(q , w , P ) R(q , w , P )
0, 0

c c

∂ ∂ ≤ ≤ ∂ ∂
                        (A27) 

    It is straightforward; the merchant will achieve less profit from increased operating cost. It plays a 

similar role as the market impact.  




