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Abstract: This paper investigates how the market impact of electricity merchants and uncertainty of wind
generation affect their co-optimized scheduling policy, specifically for merchants who have both energy
storage and wind plants. In the existing literature, merchants' trading actions are usually assumed not to
affect market prices; however, a large-scale energy storage merchant’s actions can affect market prices. To
this end, we approximate the electricity price by a linear function of the quantity of power traded by the
merchant in the reward function to achieve decision-making incorporating the market impact. This paper
utilizes the dynamic programming approach to analyze merchants' optimal multi-period decision-making
incorporating market impact, uncertain wind generation, and energy storage constraints. First, our results
demonstrate that for a merchant with co-located energy storage facilities and wind power plants, the energy
storage's feasible state of charge (SOC) range can be segmented into four possible sub-ranges by three
analytical SOC reference points. The unique optimal trading decision can be achieved by comparing the
current energy inventory and the SOC references in the next period. Second, our results show that market
impact and uncertainties substantially change the optimal storage scheduling policy by impacting the values
of reference points. To smooth the negative effect of the merchant’s market impact on buying and selling
actions, the merchant should reduce the amount of electricity generating or pumping each period to
maximize profit. Moreover, we identify and investigate the trade-off between increasing the unit power
profit and lowering the transaction quantity. Our findings provide co-optimized scheduling guidance for
electricity merchants with co-located energy storage and renewable power plants systems.
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1. Introduction

Sustainable and renewable energy resources (solar, wind, etc.) have been developing rapidly worldwide in
the last two decades owing to no carbon emission, technology-driven cost reduction, and
national/state-level regulations and targets. However, these resources are strongly dependent on the
weather and so are characterized by intermittency and high levels of uncertainty as well as low forecast
reliability (Korpaas et al., 2003; Liu et al., 2022; Cory-Wright & Zakeri, 2020). Moreover, because the
electricity supply and demand must be matched in real-time, it is significant for grid operators to deal
with electricity insufficiency and surpluses. The energy storage system plays a vital role in dealing with
the imbalance (Ahmad et al., 2021; Lai et al., 2021). Energy storage can provide many different types of
services for ISO (Independent System Operator), utilities, electricity merchants, and end-users (Bo et al.,
2021). From a market participant perspective, energy storage offers an arbitrage opportunity for
electricity merchants. Storing electricity for future resale is a typical approach of merchants that sell
commodities (Williams and Wright, 1991).

To manage the intermittency of renewable sources and create the flexibility for energy arbitrage,
most wind plants owners have embraced collocating electricity generation and grid-connected energy
storage facilities such as PSH (pumped storage hydropower) (Al-Masri et al., 2021), compressed air
energy storage (Yu et al., 2021), and battery (Ahmad et al., 2021). One example is the Wilmot Energy
Center that contains a 30-MW battery energy storage and a 100-MW solar array system (Tucson Electric
Power, 2021). Co-optimization of grid-level storage (Garcia-Gonzalez et al., 2008; Zhou et al., 2019) with
a wind farm can create value by mitigating the intermittent nature of wind generation by pumping
electricity when the wind-generated power output is mismatched power demand (i.e., PSH and storage
may benefit the environment also by reducing the wind generation curtailment), by storing wind
generation and reselling in future when prices are low, and also by enabling the merchant to buy power
for the future. U.S. Department of Energy (DOE) (2018) reported the value of co-located energy storage
and wind plants.

When modeling energy storage, research into energy inventory has mainly focused on the optimal
scheduling policy or on the optimal bidding decision (McPherson et al., 2020). However, most existent
studies (Cheng & Powell, 2018; Ding et al., 2018; Liu et al., 2022; Kim & Powell, 2011; Secomandi,
2010; Zhou et al., 2019) assume that the storage capacity is sufficiently small compared to the wholesale
electricity markets, so its operational decisions (i.e., charging and buying or discharging and selling) do
not affect the electricity prices. Thus, given the price in each period, a merchant (hereafter, she) buys for
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operational decisions (i.e., in our terminology, price-taker merchant). However, the value of large-scale
energy storage such as pumped storage hydro (PSH) facilities would be reflected in price arbitrage
(Bushnell, 2003; Cruise et al., 2019; Felix et al. 2012; Liu et al., 2021a; Sioshansi et al., 2009); in such
case, the electricity merchant’s operational trading actions will influence prices in the power market
(i.e., price-maker merchant). More specifically, the market load will increase when a merchant buys
electricity, thus leading to a rise in market prices; conversely, selling power will increase the supply and
reduce market prices. Therefore, large-scale electricity storage can reduce its energy arbitrage value by
decreasing differences in sale prices on-peak load and purchase cost on off-peak periods (Sioshansi,
(2010, 2014)).

Compared to the traditional study for a price-taker, Sioshansi et al. (2009) study the arbitrage value
of al GW (gigawatts) of an energy storage system in PJM Interconnection from 2002 to 2007 and
showed that the price-smoothing differences in prices on and off-peak can reduce the arbitrage value over
20% since it results in greater off-peak and less on-peak generation. With decreasing technology costs and
boosting renewable deployment, energy storage is poised to be a valuable resource on future power grids.
Will et al. (2021) reported that the energy storage would exceed 125 GW by 2050, more than a five-fold
increase from the installed storage capacity of 23 GW in 2020. Thus, the market impact of the electricity
merchants in trading will significantly affect their own decisions.

In contrast to the previous research, this study analyzes how the market impact affects the
co-optimization economic dispatch structure of merchants with co-located energy storage systems and
wind plants. The traditional study is mainly based on the optimal scheduling policy that the merchant
purchases electricity from the market when prices are low and sells electricity to the market when prices
are high (Powell and Meisel, 2016). As a result, considering the market impact, the profit-maximizing
merchant's co-optimized scheduling policy depends not only on the traditional operational approach but
also on the market impact of the merchant’s operational actions on prices and the uncertainty of
forecasted wind generation. Therefore, it is valuable to examine the co-optimized economic dispatch
policy for electricity merchants who have large-scale energy storage facilities and wind plants and their
market impact on energy storage operations. Thus, our study aims to provide new insight into how
optimal co-optimized scheduling policies differ for the merchant who has co-located energy storage
systems and renewable power plants under these two scenarios (i.e., price impact vs. no price impact).

Prior research in this area commonly supposes that energy/power in storage is worthless in the last
period (Liu et al., 2021a; Zhou et al., 2019). This assumption means the merchant should reduce the state
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discharging or remaining idle during the last period of optimization horizon. However, this study
incorporates the value of water in the PSH at the terminal period (Liu et al., 2022; Kim & Powell, 2011;
Sénchez de la Nieta et al., 2015). In this set-up, the merchant has four options: storing all renewable
energy generation and also purchasing power to store; storing partial renewable energy generation and
selling the rest of it; idle/offline/do nothing; generating PSH/discharging energy storage and selling all
renewable energy generation to the market at the terminal period. In the long term, the residual energy in
the storage has potential value for the future then influences the current actions, which is another
innovation of this study.

This study was motivated to concentrate on the optimal energy operational decisions scheduling of a
merchant who has a co-located storage system and a renewable power plant. In such circumstances, the
merchant operates the large-scale energy storage facility to control electricity operation in the wholesale
electricity market and incorporate the market impact', the forecasted uncertain wind-generated power, the
constraints of energy storage (i.e., PSH capacity, pumping/generating limits, and efficiencies), and the
residual value of water in the storage when modeling. This paper’s analyses are intended to address the
following two research questions: (1) How do electricity merchants with co-optimized energy storage and
wind farm benefit from considering the market impact of buying and selling power and the uncertain
wind generation? (2) What is the difference between the scheduling strategy considering market impact
and the traditional scheduling strategy ignoring market impact? We were able to characterize this problem
mathematically.

Toward that end, this study relaxes the price-taker assumption and assumes that the impact of the
merchant’s buy/sell decisions on the market price is approximately linear in the amount of power of
buy/sell (Cruise et al., 2019; Liu et al, 2021a; Sioshansi, (2010, 2014)). We formulate this problem as a
Markov decision process and explore the electricity merchant’s optimal joint operational trading strategies
by utilizing the dynamic programming approach to maximize profit. To solve this problem and achieve the
closed-form analytical results to support multi-period decision-making, this paper first split the original
problem into three sub-optimization problems corresponding to three available activities of the electricity
merchant at each period. Then, the optimal solution for each sub-optimization problem will be addressed
based on the Bellman equation. Finally, we combine them and achieve the global conclusions of the
original problem to obtain the optimal decision rules in the entire optimization horizon. This is the first

paper to manage the co-optimized economic dispatch scheduling of the energy storage and wind plants
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issue, considering the market impact of the merchant's actions and uncertainty of forecasted wind
generation through dynamic programming.

The major contributions of this study are as follows: First, this research overcomes the challenges in
achieving analytical results when considering market impact because it will change the traditional linear
reward functions that overlook the market impact to nonlinear ones. For a storage-and-renewable energy
source electricity merchant, we identify analytically three SOC reference points that rely on the currently
available energy inventory in the storage, the forecasted prices, the intensity of the market impact of
energy storage in trading, and the predicted available renewable energy source. The storage feasible SOC
range (i.e., the energy storage capacity space) will be split into four possible sub-ranges by three SOC
reference points corresponding to the previously listed four actions. The merchant can choose the optimal
action simply by comparing the current energy inventory in the energy storage with the three optimal
SOC reference points. Then, the electricity merchant's unique optimal decisions can be achieved through
the sub-range within the current energy inventory level falls.

Second, in contrast to the results from existing studies (i.e., those based on price-taker analyses or
ignoring the market impact), our results show that market impact and operating cost can raise the cost of
pumping/buying and lower the revenue from generating/selling in each period. As a result, a merchant
that ignores her impact on electricity prices will overestimate her expected profit when offering the same
generating/discharging and pumping/charging maximum limits of the PSH in each period to ISOs as the
price-taker merchant. To decrease the negative effect of the market impact of the merchant in operational
decisions, the merchant needs to reduce her energy trading amount at each decision period. Our results
find that the market impact influence the merchant’s optimal economic dispatch volume by changing the
value of optimal SOC reference point. Although the residual value of energy in the storage does not affect
the traditional scheduling policy, it influences the value function to affect the SOC and indirectly changes
the scheduling quantity of power. Withholding the offered generating/pumping capacity may be needed to
offset the market impact. This paper also confirms the corresponding boundary that wind generation
benefits merchants' profit if the wind generation cost is low.

Finally, we extend our research to consider how expected profits are affected by the relation between
the intensity of market impact and generating/discharging and pumping/charging maximum limits of the
PSH offered to ISOs. Our findings suggest that the profit-maximizing merchant should try to make a
trade-off between increasing the power transaction quantity directly and limiting the market impact's

detrimental effects by reducing the transaction quantity.



This paper is organized into six sections. First, we review the related work in Section 2. Section 3
models an electricity merchant who has co-located energy storage and wind plants; then, we compare our
conclusions with the existing literature in which merchants’ market impact is not considered. Section 4
demonstrates the proposed results through the synthesis data case study and real data case study of
Midcontinent Independent System Operator (MISO), US. Section 5 extends our research by examining
cases in which market impact is related to generating/pumping limits that offered to ISOs. Finally,

Section 6 summarizes our study and points out the future research directions.

2. Literature review

This section reviews several related works related to energy storage scheduling and co-optimized of
renewable energy sources and energy storage. First, Section 2.1 summarizes the previous methods for
co-optimizing energy storage and renewable energy sources. Finally, Section 2.2 reviews the works and

points out the market impact of energy storage.

2.1. Energy storage and renewable source co-optimization methods

2.1.1 Renewable source with energy storage

Renewable power generation (e.g., wind/solar electricity generation) has high uncertainty levels and is
intermittent, and the forecast reliability is low (Liu et al., 2022, Memarzadeh & Keynia, 2021). Energy
storage systems (ESS) can solve this problem benefiting renewable energy market participation (Ding et
al., 2014; Gomes et al.,2017) and maintaining the stability of the power system (Liu et al., 2015). Li et al.
(2022) and Liu & Du (2020) discussed the problem of renewable energy selection, and they proposed a
novel PROMETHEE method to rank different types of renewable energies and made a sensitivity analysis
for decision results. Various energy storage technologies including battery storage (Cheng & Powell,
2018; Rehman et al., 2022) and PSH (Deane et al., 2010; Wang et al., 2021) were also discussed.

Many scholars target renewable sources with energy storage. Considering the cost of energy
storage system installation, Wang et al. (2008) and Dui et al. (2018) determined the optimal energy
storage power and energy capacity based on profit maximization using second-order cone programming
(SOCP). Liu et al. (2015) used the artificial neural network (ANN) to forest wind generation and LMP
(locational marginal pricing), and to study the dispatch of wind farms with hybrid energy storage. Shi et al.
(2018) optimized the generating scheduling of wind-storage systems by analyzing the link between wind
power fluctuation and ESS based on quantization index (QI) clustering. Orsini et al. (2021) proposed a

comprehensive computational framework for the optimal operation for a solar thermal plant with energy

6



storage. Roslan et al. (2021) proposed a day-ahead optimized scheduling controller for the optimal
operation of distributed energy resources with energy in the microgrid. Heine et al. (2021) modeled MILP
to design and dispatch packaged cool thermal energy storage (CTES) in connected communities to
minimize the annual cost. Li et al. (2021) studied the capacity design of an integrated energy system
based on the active dispatch mode (ADM). Bafrani et al. (2021) built a stochastic optimization operation
model for compressed air energy storage (CAES) considering generator reliability. Savolainen and
Lahdelma (2022) solved the optimal dimension and operation of renewable energy with storage in the
building based on a 15-minute power balance settlement. Shi et al. (2022) proposed a hierarchical
optimization algorithm to optimize renewable energy generation and storage capacity.

In this paper, unlike the research above, both capacity optimization for energy storage and optimal
coordination framework are not evaluated. Instead, from the profit-maximizing perspective, we target
how to get the analytically optimal co-optimized economic dispatch policy of the electricity merchant
with a wind farm and energy storage.

2.1.2 Co-optimization of energy storage and wind plant

For the optimization of co-located energy storage and a wind plant system, Castronuovo and Lopes (2004)
proposed a discrete optimization method to maximize daily profits and find the optimal daily operational
strategy for a merchant with wind plants and hydroelectric power generation. Garcia-Gonzalez et al.
(2008) proposed two decision-making frameworks for a wind energy generator participating in day-ahead,
intraday, reserve, and balancing markets. Lee (2008) solved the short-term electricity scheduling problem
by applying MIPSO (multi-iteration particle swarm optimization) method on the combined wind farms
and PSH system. Zhang et al. (2016) obtained the optimal day-ahead economic dispatch for a smart grid
with renewable and storage device by a fully distributed algorithm. Ding et al. (2016), Kim and Powell
(2011), Zhou et al. (2019) examined the optimal scheduling policy of a wind plant with a storage system.
Levieux et al. (2019) discussed the complementary operation between an existing hydropower plant and a
projected wind plant based on heuristic algorithm (HA). Bhoi et al. (2020) studied the optimal scheduling
of Photovoltaic (PV) systems with a battery and incorporate the storage health and consuming cost.
Taghikhani (2021) studied micro-grid optimal scheduling with renewable resources and storage
considering uncertainty. He et al. (2022) proposed a multi-objective evolutionary algorithm with
decision-making (MOEA-DM) based on planning-operation co-optimization of renewable energy with
storage. However, they all ignore the market impact of energy storage's operating activities on prices
because these analyses consider that energy storage activities are small, and merchant’s operational

decisions do not influence electricity prices.



Various methods have been used to model price takers; examples include the heuristic approach
(Zhang & Wirth, 2010), mixed-integer linear programming (MILP) method (Wang et al., 2021), dynamic
programming theory (Liu et al., 2022; Xiao et al., 2021), Lagrangian relaxation technique (Cruise et al.,
2019), stochastic optimization scheme (Powell & Meisel, 2016a), and approximate dynamic programming
algorithms to co-optimize energy storage for arbitrage (Al-Kanj et al., 2020). Liu et al. (2022) investigate
the impact of the PTC (production tax credit) on the optimal scheduling policy of energy storage and
ignoring the market impact and the uncertainty of wind generation. Our paper, however, targets the
optimal policy of electricity merchants considering both the market impact and the uncertainty of
forecasted wind generation, which will definitely affect the economic dispatch policy design.

In conclusion, an independent merchant with co-located energy storage and a wind plant can
effectively enhance the stability of power system operation. Meanwhile, by optimizing the energy
arbitrage strategy, it can maximize its income in the real-time market. In our work, a series of physical
constraints on the energy storage system, the maximum and minimum limits of the generating and
pumping, the capacity of the energy storage system, the efficiency, and the residual value of water have
been taken into consideration. Our study also considers merchants' operation costs, which may be daily

maintenance costs or battery self-discharge loss.

2.2. Market impact of energy storage

For merchants in the electricity market, most studies focus on assuming that the merchant's operational
actions (i.e., pumping/charging and generating/charging) do not influence market prices, which we call
price-taker. Notably, large-scale energy storage such as PSH will be reflected in energy arbitrage actions
on the power market. This is because the merchant's trading actions (i.e., buying and selling) are
sufficiently large to affect the electricity prices (Cruise et al., 2019; Felix et al., 2012). Felix et al. offer a
pioneering approach to storage valuation that incorporates the effect of a market impact. Along similar
lines, Baslis and Bakirtzis (2011) used stochastic MILP to model how a hydropower company’s
short-term profit maximization decisions affect its medium-term plans, which adopt an annual stochastic
self-dispatching model. Steeger et al. (2018) studied the optimal bidding plan of a single hydropower
company whose bidding behavior influences the market price using Stochastic Dual Dynamic
Programming (SDDP). Cruise et al. (2019) identified storage trading decisions that affect the market price
and addressed decoupling the optimization horizon through the Lagrangian approach. Habibian et al.
(2020) employed Lagrangian methods to the optimal power purchase decision making of price-maker

enterprises that consume a large amount of power.



Huang et al. (2018) compared the operation of grid-level energy storage under three market
mechanisms and proposed a modified mechanism to balance social cost and owner’s profit. Huang et al.
(2019) analyzed the investment and operation for price-maker storage under the centralized market and
deregulated mechanisms and explored the financial incentives for the cooperative operation of multiple
grid-level storage devices. Chabok et al. (2019) focused on the influence of the energy storage system as a
price-maker on the operation of the power system from the perspective of ISO and proposed a bi-level
optimization problem. These works do not investigate the energy storage economic dispatch problem
from the perspective of electricity merchants and do not specifically consider wind plants to be operated
with energy storage together. Liu et al. (2021a) investigated the optimal operational policy of merchants
who only have energy storage and incorporate the market impact. However, they did not address the joint
scheduling policy of merchants who have co-located energy storage systems and wind plants, and they
did not consider the residual value of energy in the storage. Nevertheless, it is straightforward; the
co-optimization policy of electricity merchants is quite different when uncertain renewable energy
generation and the residual value of energy in the storage and the market impact are modeled. Nasiri et
al. (2021) examined the scheduling strategy for a multi-energy system as a price-maker player in the
day-ahead wholesale market based on a hybrid robust-stochastic approach. Later, Nasiri et al.(2022)
investigated the tactical response of a wind integrated MES in the wholesale electricity market (WEM)
and the natural gas market (NGM) as a price setter via a bi-level optimization model.

Motivated by existing examinations, we designed a co-optimization energy management model for
the merchant with a co-located energy storage and renewable power plant that reflects the market impact
of merchants’ operational decisions in the power market. Compared to the current study (Liu et al., 2022;
Jiang & Powell, 2015a; Zhou et al., 2019), it should be noted that the model is non-trivial in achieving
analytical results employing a dynamic programming approach when considering the market impact in
the problem, as it will transform the traditional study that considers only piecewise linear reward
functions to nonlinear ones. Such research problems are addressed in this paper. We think these are
original findings that have not been explored before. The difference between this study and the previous

work is summarized in Table 1(See appendix).

3. Modeling and Optimization
In this section, we first model the reward and objective functions for electricity merchants with co-located
energy storage and renewable power plants. Then, we study the merchant’s optimal joint

profit-maximizing strategies and consider the market impact as a function of the forecast price.
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3.1. Model Setup
Here, we focus on a merchant with energy storage (here, we use PSH to represent large-scale storage in
this paper) and a renewable power plant (for simplicity, henceforth, we use wind plants to refer to
renewable power plants), both of which are co-located and connected to the electricity markets via
transmission lines. The merchant adopts a co-optimized storage operation strategy and uses her energy
storage plant to manage electricity. In this paper, “we do not study bidding in a forward market, and we
assume that any power offered to the wholesale electricity markets is accepted’ (Liu et al., 2022;
Sioshansi et al., 2009, Walawalkar et al., 2007; Zhou et al., (2016; 2019). In this paper, we consider
discrete time and that the merchant periodically performs operational actions during a finite optimization
decision horizon, t[0{1,2,---,T}, and assume that the capacity of storage is limited. The PSH has
maximum storage capacity S(i.e., the total energy/water that could be stored in the upper reservoir) and
minimum energy inventory S, where S > § >0 . Following the previous (Harsha & Dahleh, 2015; Jiang &
Powell (2015a, 2015 b); Moarefdoost & Snyder, 2015; Zhou et al., (2016, 2019)), we focus on the
optimal operating (e.g., charging/pumping, and discharging/generating) policy for a given storage
capacity. However, how to optimize the storage capacity, such an approach would be appropriate for
solving a different type of problem, thus beyond the scope of this paper. The PSH also has generating and
pumping limits. Let Q° and Qr represent (respectively) the maximum and minimum limits of pumping that
can be stored into the storage in each period, and let Q* and Q¢ denote (respectively) the upper and
lower limits of released energy from the storage in each period. To ensure that the model will remain
analytically tractable, this paper employs the conventional assumption (as in Kim &Powell, 2011; Liu et
al., 2022; Zhou et al., (2016; 2019)) that Q¢ =Q" =0 to build the continuous reward functions. We use W, to
represent the available wind generation of the wind plant in period t (in energy units/period). The vector
W:(prz" : ',WT) represents the sequential levels of available forecasted wind generation. Following the
previous work (Jiang & Powell, 2015a; Kim & Powell, 2011; Qi et al., 2015), wind generation is
constrained by the maximum generation capacity W of the wind plants to show the uncertainty in
modeling. Here, the W, D[O,\_ijollows a uniform distribution. In reality, the utility would require the
transmission capacity to be sufficiently large for the wind plant, so we do not consider the transmission
capacity.

Our research involves three types of efficiency with PSH. The first type of efficiency is a portion
(0} D(O,l] , a time-independent efficiency of stored energy that dissipates in one optimization period due

to the evaporation, spill rate, and leakage of the PSH. The second type efficiency is denoted by 0and é ,
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which represent the efficiency of (respectively) the pumping and generating of the PSH; here, 9,&5(0, 1] .
The other isGD(O,l], which represents the efficiency of transmission line, that is, the proportion of
electricity that flows out of the transmission line to that which flows into this transmission line.
Transmission losses will be happened in two directions of the line (Liu et al., 2022; Zhou et al., 2019). It
follows that the quantities & K_Jfand (_2)/ Ooare, respectively, the gross generating power capacity and the
net pumping power capacity.

We suppose that the merchant’s energy storage is large enough, and her generating and pumping
decisions have a market impact on electricity prices. As noted previously, there are four possible actions:
storing all renewable energy generation and also purchasing electricity to store; storing partial wind
generation and selling the rest of renewable energy generation; remaining idle/offline, and generating
PSH storage to sell and also selling all wind electricity to the market. Following previous work (e.g.,
Cruise et al. 2019, Liu et al. 2021a, Sioshansi 2010, 2014), this paper approximates market impact via a
linear function of the quantity of power traded by the merchant. Therefore, we get the following updated
prices:

(P +2P (a7 /0-w,)/0)= (1+x (a7/6-w)/0) @ >0w)
p= (P XP w -q /9 = ( w -q; /9) ) 0=ql <bw,) (1)
(P - P (@ +w, )c): (1-Maie+woe) (@ >0)

A

Here, P, is the updated price that results from storing all renewable power generation and
purchasing power from the market in energy units of (qf / 0-w ) / &, storing partial wind-generated power
and selling the rest of to the market in units of (w —q, / 9)6 and generating PSH and selling all wind
source in units of (qtg§+wt)c . Here, the parameterA =0 reflects the market impact factor of the
electricity merchant on electricity prices in trading decisions. The special case of A=0 represents the
scenario of a price taker merchant for the traditional study. In the electricity market, time-coupling
constraints require that the merchant should decide whether to buy or sell electricity in quantities that
reflect the optimal policy based on forecasted prices. The electricity price in period t is denoted byPp
(dollars per unit energy). Both buying and selling prices at time t are shown by P conveniently for a price
taker. The sequential levels of the price by a vector of p=(p,P,,--,P,). TheP is the forecast electricity
price, and\P, is a measurement of the market impact of the energy storage on the electricity price at
decision time.

From ISO perspective, power transmission network must be considered explicitly in market clearing.
From merchant perspective, power transmission network can be considered in two different approaches,

explicitly (through building a quasi-ISO clearing model where power transmission network is often
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treated as constraints of a lower-level optimization problem) and implicitly (through price forecasting
model where historical congestion of power transmission network can be included as an input). Due to
concerns with the explicit approach (such as data and model availability, uncertainty and computational
challenges), this paper uses the latter approach, i.e., implicit consideration of power transmission network
which is common in merchant strategy analysis (Li et al. 2007; Radovanovic et al., 2019; Wang et al.
2017).To maximize the profit of the electricity merchant and get the optimal economics dispatch policy of
the energy storage, following the previous study (Liu et al., (2021a, 2022); Zhou et al., (2016, 2019)), we
assume for the merchant that all forecasted prices are known in advance.

By incorporating the market impact in operational decisions and analyzing the co-optimization
policy of a merchant who has both co-located energy storage and wind plants, this method produces the
model novel and practical and generalizes the current problem (Liu et al., 2021a; Zhou et al., 2019), as it
makes the first contribution of this paper. Thus, the reward functionR (q¢,q",w ,P,) from making the
decision (qf,qi’), which corresponds to the decision time t, the forecast electricity prices Pt, and the

forecasted wind power generation W, | are, when considering the market impact, defined as follows:

B, (1+2(a?/0-w,)/ o) o /6~ w,) /o =c"af foo —c,w, (af >0w,)
R(q%,q"w,.P) ={P, (1-2(w, -¢’/0)c) fw, -’ /6)s-c"q! oo —c,w, (O=q’<bw,) ()
P, (1-Mai& + w,)o) gl +w) [ - c'qito —c, w, (a! 20)

The first line in equation (2) indicates the costs of buying power of electricity merchants from the
market. For example, W represents available wind generation, (q{’ / 0-w, ) / o indicates the units that the
merchant purchases from the market to pump at time t, and CJF is the increase in storage inventory. This
study lets c® (resp.c” ) (dollar-unit energy) denote the generating (resp. pumping) operating cost for PSH
or the discharging (resp. charging) operating cost of the battery (Huang et al., 2018, 2019; Xu et al., 2017).
Following Liu et al. (2022) and Xu et al. (2017), we assume that the generating and pumping operating
costs of energy storage are a linear function. The term c Ef/ 00 is the pumping operating cost, and
Cy W, is the wind power plant’s cost of generation. The second line gives the merchant’s rewards from
storing part of her wind generation CJF while selling the remaining units (wt -q} / 0) 6 to the market. In
the third line, (qtgé+wt) represents the electricity merchants generated by the PSH and all available
wind sources that are sold to the market. The term €' Cf & denotes the generating operating cost of PSH.

This paper uses SOC, to denote as the current available energy inventory in the upper reservoir of

PSH at the beginning of decision time t. The sequential SOC inventories are represented by
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§:(SOC1,SOC2,- . -,SOCT) , where S(I; LIS, g]and BD{LZ‘ . ',T} . Feasible actions set based on
SOC, [0S is defined as follows:

Action(SOC,):={(q®,q") 00 :0<q?<Q" U’, ¢ <S-S0C,,0<q* <Q* [U?, q* <SOC,-S}. (3)

This expression gives the upper limit of the quantity of energy that can be charged/pumped and
discharged/generated at each optimization period. The first and second constraints define, respectively,
the maximum limit of pumping and the space capacity of the upper reservoir. The third and the fourth
constraints represent the maximum limit of generating and available energy in the reservoir. Both binary
variables UF and U% denote the unit commitment of pumping and generating in decision period|[t, t+1)
(respectively). Thus, we have Uf+Utg <I; here, U} D{ 0, 1} and U} D{ 0,1} , meaning the PSH cannot
generate and pump simultaneously. If the PSH unit is offline/idle, then Uf)+Uf=0

At decision time tE{LZ : ‘,T} , the merchant will know the storage inventorySOC,, the wind
generation W , the price P, and the market impact A . The decision for each time t is denoted by q‘f or
Qf, which represents the SOC change from time t to time t+1 prior to considering, respectively, the
generating loss and the pumping loss. The “storage self-loss” occurs at the end of decision time t, so the
energy level at the beginning of decision time t+1 is equal to @, (SOC, "'Cllt3 _Cf). Hence, the following

equation that summarizes the state transition from decision time t to decision time t+1 for the PSH storage

is accurate:
SOC..,; =¢,(SOC, +q; —q;) )

Following Liu et al. (2022), Secomandi (2010), and Zhou et al. (2019), this study also adopts a
single decision (action) variable, and lets {; (.e., G :CJF _(f ) at as the decision variable of electricity
merchant at each decision timet[{l,z,' ) ;1} to substitute for the original two decision (action) variables
qf and q? , which represent the change of energy inventory or of SOC between two optimization periods t
and t+1 (i.e., prior to considering accounting for the efficiency loss). Here, >0 denotes the SOC
increase due to the pumping action, g <Omeans the SOC decrease because of generating, and {; =0
indicates that the SOC does not change or that the storage remains idle or is offline. The state decision
variables at each stage t aresoc , W, , and Pt . Thus, the decision state at stage t can be indicated by
S(t) =S,(SOC,,w,,P,) . The merchant aims to achieve the optimal decision policy 7L to maximize her
total expected reward functions overall feasible policies.

Her objective function is

max i E[R(q?,q7,w,,P)| S(1) ]=max i E[R(q,.w P S(D] (5)

t=1
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subject to the capacity constraints IIHX{_Q%, S _Sa:t }SC]I Srn'n{(_f,g _S(I:t} and to the storage energy
balance constraints SOC,,, = ¢,(SOC, +q,), as well as W, D[O,\M, where t[{1,2,3,---,T}. BothE ,P,
and w, are the given initial level of the storage and the price in advance. Because the optimization horizon
is finite, this paper ignores the discount factor in this paper. This paper uses E to denote the expectations
concerning SOC_,w ,P,. In our notation,sOC,, W, andRare, respectively, the given initial energy
storage inventory, the forecasted available wind generation, and advanced electricity price. Let Vv (S(t))
represent the value function of electricity merchant at decision time t and state
S(t) =S, (SOC,,w,,P) DSXWXP. This function of V,(S(t)) satisfies the Bellman equation.

Thus, the merchant’s value function can be created as

VM) = max [R(q,,w,,P)+B(V,, (St+D[SO)] ©6)

Action(SOC,

Most on this topic expresses the value of water (VOW) at the last optimization period (residual value
of water in the storage) as V., (S(T +1)) =0 (e.g., Secomandi 2010; Zhou et al., 2019). In equation (6),
however, V., (S(T+1))=V(SOC,,,w,,,VOW,,)=VOW,, [80C,, .Here, vOw,, denotes the VOW
in the upper reservoir of PSH at the terminal period (Liu et al. 2022, Kim and Powell 2011), and SOC,,,

denotes the energy inventory level at the beginning of decision time T+1, which also represents the SOC

at the end of decision time T.

3.2. Model Optimization and Analysis
To obtain the optimal co-optimized decision rules of the electricity merchant, this study first splits the
optimization problem in equation (6) into three sub-problems, as in (7), corresponding to the three
different actions described in (2) since only one of these actions is allowed at the same period. Then, we
obtain the optimal result to each of these three sub-problems. The corresponding value functions of the
electricity merchant on three available actions are shown as follows:
B, (1+1(q,/0-w,)/0){q, /0 -w,) /6= 6o —c, W +E[V,,, (St +D)|S(1))] (g, >6w,)
V(S()=1 P, (1+1(q,/0-w,) o) (g, /0 - w,) 6 —c"q /66 —c, w, +E[V,,, (St +D|S®)] (0=q, <bw,) (7)
P (1+M@qE-w)o) Mg &~ w) B +ciqio—c,w, +EIV,, (St +D[SW)] (g, <0)
Since there is q, =SOC,, /¢, —SOC,, to simplify, we use Smt.H substitute q, as the decision
variable to gain the analytical results, then maximizing Equation (8) enables us to obtain the optimal
results by removing the values in the observed current stateS(t) . The optimal unique action of the

electricity merchant at each period will be achieved by comparing the optimal SOC in the next period (i.e.,
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SOC ++1) and the current available SOC (i.e. Sa:t) in the storage. Then, the Bellman equation (Liu et al.,
2021a; Liu et al., 2022; Zhou et al., 2019) can be used to derive the following results:

(Pl (P[ (Pl

« +cP
VO (S(1) = max_| B[V, (S(t +1)|S(t)) KPZ SOCZHI + 37\5 SOC,,, SOC, +( 27»PW _P+c 2 SOC,,,
E<E,, <E 0, 0°c 0o P,
2 2, .p 8
V' (S(t)= max_| E[V,,, (St +1)|S())1~ AR, SOC,,, " , 20 P‘ soc,,, (50C, +(2chZ&—M :80C, | ()
EsE,,<E e (Pn 6 P, 0 0o P,
VT (S(t)= max_ { V., (S(t+D[S())]- AP e” —==- SOC‘*' +2)PE%° 59Cu1 s0c +(2APw &0’ —PEo+ctEo)’ S0C, ]

This study next investigates the optimal results based on these expressions. Finally, we get the
closed-form optimal co-optimization policy structure of merchant in equation (9) by following previous
research on this topic (i.e., Kim & Powell, 2011; Liu et al., 2022; Zhou et al. 2019). When incorporating
the market impact into the reward function, for the forecast price of electricity Py, if R <@ then, at each
decision state t, the merchant’s value function Vv (S(t)) and expected total reward EIVH (S(t +1) | S(t))]
are concave in S(rt s, g] for each observed state S(t)=S,(SOC,,w,,P). The SOC optimal
analytical solution is given by the following lemma (all proofs are provided in Appendix A).

LEMMA 1. When considering an electricity merchant’s market impact in trading decisions, let S(I:L)f ,
SOCﬁ’f , and Swﬂ be the closed-form optimal SOC results (e.g., SOC reference points in next period)
in (9). Then, there are

27\P P +cP

SOC!) =arg max | E[V,,, (S(t+D|S())1-—- SOC,,, w, P +c )SOCM

$<S0C,, <5 0°c P, 0o ?,

2 24 0P

SOCY =arg_max | E[V,, (St+D)|S)-220 (%—soc[)“(leiozﬂ——l)‘p +¢) 30 ©)

5<50C,, <§ 0 ¢, 0 0o 0,
Sociii _aIgs max (E[V+1 (S(t+1)|S(t))] }uPézcz(SOC SOC) +(20APw, &o® -P&o+ciéo)—— S0C,, J

8<S0OC,,, <S . t

Based on the scenario of an electricity merchant who has co-located PSH and a wind power plant,
this lemma has a critical implication. Because the merchant can choose the optimal action simply by
comparing the current SOC level in the storage with the above three optimal SOC reference points
separately. It now follows from the preceding discussion that our first proposition gives the corresponding

optimal results.

PROPOSITION 1. For positive forecast electricity prices P,UP (negative forecast electricity prices) at

each stage t0{1,2,3,---,T} : if 0<x<min{Al"? 2>} 2, then there exist unique optimal storage

2We discuss large-scale storage (such as PSH) with 1-2 gigawatts (GW) capacities. Considering a sizeable
competitive wholesale electricity market (such as MISO, which has approximately 50 (off-peak period)-80 GW
(on-peak period) demand, roughly 100 GW online capacity) and the limited presence of locational market electricity

because of transmission capacity constrained and electricity market monitoring, we only address the case of a
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inventories SSS@N SS(I:@* SS(I:G)* SS (resp., SZS(I:(D* stz)* sta* ZS) that depend on

t+l t+ t+ t+ t+l t+l

the state S(t), where

2 =p{/2pt[1+°zj(soc[ +wle—s];

AN ¢ (10)
— 2 P
e :(R" e —(Réo-cgéc)J / 26°P, [(socl —S>(12—é2)+(wt—w£>j

6o ¢, 0 0

Therefore, an optimal economic dispatch decision in each state S(t) =S (SOC,w,,P)USXWXP can

be specified as described in the following two cases.

CASE 1: If ow, <minsoc.Q"y (less forecasted available wind-generated power), then the

feasible SOC range (i.e., the from the lower boundary to the upper boundary of energy storage capacity)
can be split into four sub-ranges (i.e., regions or areas): storing all wind power generation and
purchasing electricity to store, storing partial wind power generation and selling the rest of it to market,
remaining idle or do nothing, and generating PSH and also selling all wind power to the electricity
market.

min{SOC"" —SOCl,ap }, SOC, O[S,SOCY; —0w ] (store renewable and buy electricity, up to SOC)/

t+1 t+l t+1

min{SOC;" ~SOC,,0w,},SOC, O(SOC;); ~0w ,SOC{]'] (store renewable without buying up to SOC3\) (11)

t+l t+1 t+1

0, SOC, 0(SOC%",SOCY ] (keep SOC unchanged)
max{SOC%) —SOCI,—Gg },S0C, 0(SOC),S] (generate and sell renewable down to SOC/

t+l 2 t+1

q,S)=

CASE 2: If ow, =min{soc® . Q") (more forecasted available wind-generated power), then the
feasible SOC range of the storage can be segmented into three possible sub-ranges: storing partial wind
power generation and selling the rest of it to market, generating PSH and also selling all wind power
generation to the electricity market, and idle:

min{SOC" =SOC,,Q"},S0OC, O[S, SOC"] (store renewable without purchasing, up to SOC®2)")
q, (S,) =40,S0C, O[SOC?,SOC ] (keep SOC unchanged) (12)

t+l ? t+1

max{SOC?’ =S0C,,-Q"},S0C, (SOC)", S] (generate and sell renewable down to SOC/

t+1 t+l t+l

Case 1 of Proposition 1 shows analytically that, for an electricity merchant who has both co-located
PSH and wind plant and pursues to maximize her expected profit, if there is less available forecasted wind
power, the SOC of the storage will be segmented into four possible sub-ranges by three analytical SOC
reference points (soc’’,soc®;, and S(fi); , which depend on the price forecastPp, the energy in storage
SoC,, the forecast wing generation W , and the market impact A ) that correspond to four possible

different operational decisions: (1) storing all renewable generation and also purchasing electricity to store,

(2) storing partial wind power and selling the rest of it, (3) remaining idle (i.e., offline/do nothing), and (4)

relatively small market impact.
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releasing PSH and also selling all wind power. If the current available energy in the storage is more than
reference point Smiﬂ , the merchant will release water from the PSH to generate electricity and also sell
all wind-generated electricity to the market, then reduce the SOC level down to S®+1 If there is less
available energy in the PSH than S(Iﬁ)f —th and less available wind power (ie.,
Ow, < min{SOC([B1 ,Qp }), the merchant should (1) store all the wind power and buy electricity and then (2)
increase the SOC inventory up to S(btﬂ

According to Case 2 of the proposition, if there is more available wind generation (i.e.,
0w, >min{SOC"/ ,Qp 1), then the feasible storage inventory range will be divided into three sub-ranges
by two analytical SOC reference points (S(X:(ﬂ and Swﬂ ) that correspond to operational decisions 2—4.
In this case, decision one will not happen since the merchant does not need to purchase power from the
market to store when there is more available wind power generation. If there is less water in the PSH than
S(btil , the merchant does not need to buy electricity to increase the SOC level but she can store
partially wind power and increase the SOC so that it is to Swﬂ , and then sell the rest of her wind
generation. Likewise, if the current available energy inventory in the storage falls within the boundaries
established by two analytical reference points (i.e., Swt?l <Sa: <S(I:(+1 ), then the merchant should
do nothing for the PSH storage; and if there is more water in the upper reservoir than the SOC reference
point S(btﬂ , then the profit-maximizing merchant should (4) release energy from the PSH for
generating and also sell all wind power, thereby decreasing the current inventory to S(fti);

Further, this study has three special degenerated cases with fewer thresholds, as seen below.

Special Case A: If o=1(i.e., ignoring the efficiency loss of transmission line), then our results have
S(I:gf —S(I:ﬁ): This means that storing wind power generation or purchasing electricity from the power
market to store will yield the merchant the same profit, that is, without considering the energy loss from
the power market to storage via the transmission line, as when the merchant purchases electricity to store.
Considering the efficiency loss of transmission line, storing merchant’s own generated renewable source
to storage is better than purchasing power from the market.

Special Case B: If 6=£=1 (i.e., ignoring the pumping and generating efficiency loss) and if
¢ =c=0 (i-e., ignoring the generating and pumping operating costs), then S@;Z)* Saﬁ): Moreover,
the SOC range can be split into only three (or two) subranges that depend on the forecasted wind
generation. In this case, however, no optimal strategy will include the “idle” state.

Special Case C: If Wt=0 (i.e., the available forecasted wind generation equals zero or no wind
source), in this case, there will be no storing or selling of wind generation, and our study has onlyS t+):

and Swﬂ as optimal reference points (See Appendix). Then this paper obtains the optimal policy for
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the previous study for a merchant with PSH or storage only (Liu et al. 2021a). In our results, the storage
state of charge (SOC) is segmented into four possible subranges by three analytical SOC reference points
that correspond to four different decisions for the co-optimization merchant, compared to the three
decisions in the previous study (Liu et al. 2021a). Obviously, the scenario that electricity merchant only
has storage is a particular case for the merchant has storage and wind plant.

Proposition 1 yields our first insight and application, as follows.

INSIGHT AND APPLICATION 1. For an electricity merchant with co-located energy storage and a
wind plant, the feasible SOC range of the energy storage is segmented into different sub-ranges by the
analytical SOC reference points, which depends mainly upon the current SOC, forecasted electricity price,
and available forecasted wind source, and the intensity of market impact. As a result, the merchant will

achieve the corresponding optimal operational decision for each subrange.

To maximize the profit, and if less available renewable source, the SOC of storage will be split into
four possible sub-ranges by three analytical reference points S(bti)f ,S(Xﬁ)l* and S(I:ﬁ)l* , which correspond
to four possible operational actions: storing all wind-generated power and also purchasing electricity to
store, storing and selling partial renewable generation, do nothing/idle/offline, and generating PSH to sell
and also selling all wind power. By comparing the current SOC level in the storage with the obtained SOC
reference points for next period, the merchant can obtain the related optimal operational decisions.
However, if more available forecasted wind generation, the storage SOC will be segmented into three
sub-ranges by two analytical reference points S(I:ﬁ)l* and S(I:ﬁ)l* , which correspond to three possible
different operational decisions: storing and selling partial wind electricity, doing nothing (idle/offline), and
generating electricity by PSH to sell and also selling all wind generation. Obviously, the optimal SOC

reference points will be adjusted based on the intensity of market impact to support decision-making.

3.3. Market Impact and Wind Generation Analysis

This research studies the optimal co-optimized scheduling strategy of a merchant with large-scale energy
storage and wind plant, whose trading decisions (i.e., buying or selling) are able to affect electricity prices.
In traditional treatments, the electricity merchant is a price taker (Kim and Powell, 2011; Liu et al., 2022;
Zhou et al., 2019) or only addressed the base problem without considering the wind plant (Cruise et al.,
2019; Liu et al., 2021a; Secomandi,2010). In light of our assumptions and the preceding analysis, the
optimal results are described in the next proposition.

PROPOSITION 2. (a) If the electricity merchant has large-scale energy storage and wind plant, optimal

expected profit is decreasing in the market impact and operating cost of energy storage.
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(b) For the electricity merchant with energy storage and wind plant, optimal expected profit increases
with the forecasted wind generation W, [0, W], [t :{L 2, ',T} .

(c) Suppose the q: ™) ~(resp.q oo ) represents the optimal actions of electricity merchants accounting
for the market impact (resp. ignoring the market impact) on power prices, we can draw the following
intuitive conclusions for the optimal expected profit of the merchant:

T T
D E[R@ 0% W P)gso | SO < D B[R0 W P | SO | (13)

t=1 t=1

Proposition 2 is quite intuitive. These conclusions in Part (a) are consistent with the insights stated
by Felix et al. (2012) and Liu et al. (2021a). It is straightforward; the merchant will achieve less profit
with the increasing of operating cost and market impact. It will increase the cost of buying power from
the market and decrease the revenue of selling power to the market by smoothing the difference between
the high price at peak hours and low prices at off-peak. Part (b) demonstrates that the electricity merchant
should take advantage of renewable wind generation to maximize reward at each period and optimal
profit in the optimization horizon. It implies that the merchant with energy storage and wind plant should
not curtail wind generation (i.e., generate the wind power based on the max generation capacity of the
wind plants installed) to benefit their profit as long as the electricity prices are larger than the generation
cost of wind if we do not consider bidding in a forward market. Part (c) shows that if a merchant ignores
market impact on the power price and decides from the scenario of price-taker (i.e., the optimal
economics dispatch of the storage is optimized on the wrong assumption A=0 ; however, where the
corresponding profit of the merchant is calculated according to the real value of market impact factor A ),
she will get less expected profit. Proposition 2 states that the market impact considerably alters the
optimal policy structure and optimal expected profit, as detailed by the numerical results presented in

Appendix.

INSIGHT AND APPLICATION 2. The co-optimization merchants will have a lower expected profit with
the increase of market impact if price-maker merchant and price-taker merchant submit the same
generating and pumping maximum capacity in one optimization period to ISO. However, if the
price-maker merchant ignores market impact in trading decisions and follows the price-taker's solutions,
she will achieve less optimal expected profit. On the other hand, wind generation benefits merchant's

profit if the wind generation cost is low.

Insight 2 has an important implication for the price-maker merchant. The decisions of a merchant

naturally affect the market price, so the merchant will have a lower profit when the cost of buying power
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is increasing, and the revenue from selling power is decreasing. Therefore, to smooth the negative effect
of the market impact on buying and selling actions of the merchant, they should reduce the amount of
electricity generating or pumping each period. Thus, a merchant with PSH and wind plants must perfectly
balance the power transition quantity and market impact intensity and reduce wind power curtailment to

maximize profit.

4. Case Study and Numerical Simulation

Section 4.1 validates the presented approaches and results employing one three-period case to represent
the calculation procedure in detail and then compare them with the MILP method through the synthesis
data. Additionally, Section 4.2 employs real data from MISO electricity prices and wind power generation

to demonstrate the related results and insights.

4.1. Synthesis Data Case Study

For simplicity, this section employs a three-period example to show the detail of the proposed method in
Section 3. Here, we suppose there are three optimization decision periods (T=3). The forecasted
electricity price takes set P, :{1)1,1)2,1)3} ={ 5, 2,10} ={PM,PL,PH}at each period. This paper also supposes
the merchant cannot fill her energy storage fully in one decision period but less than two (i.e., S"‘QO £§ ,
and S"'ZQO 2§ ). Meanwhile, the full storage can be emptied in one decision period (i.e., resp.
S__SSG). In detail, we suppose the energy storage capacity is 10 (i.e.,§=0,§=10 ), and we suppose the
pumping capacity in one period is 7, and the generating capacity is 12 in one period. Suppose the
pumping and generating operating costs of the storage c? =c® =0.1, the pumping and generating
efficiencies of the energy storage as well as the transmission efficiency of the line are 0=£=0=0.9.

In this case, to illustrate the effect of market impact, this section supposes the intensity market
impact parameter of the merchant is A=0.01. In the case study, we focus on the scenario that the
electricity merchant has energy storage and a wind plant and also assume the forecasted wind generation
is w, ={3,5,0}={w,,w,,w,}. Based on Lemma 1, our results show that both the generation cost of wind
and the self-discharging do not affect the optimal solutions, so we assume the generation cost of wind
equals zero (i.e.,C,=0). Let the operating cost be 0.1(i.e.,c” =ct =0.1), and the pumping and generating
efficiencies, and efficiency of transmission line be 0.9 (i.e.,0 =& =6 =0.9). For simplification, in this case
study, we assume the residual value of water in storage is zero (i.e., VOW,=0). On this basis, we employ
the backward dynamic programming approach to achieve the following optimal outcomes:

In decision State 3:
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Action 3: Since the energy in the storage and the end of the third period is valueless, to maximize the

profit, the electricity merchant needs to sell power to the electricity market and bring the SOC _SZO:E;‘

down to the minimum boundary of the storage as long as the electricity prices are positive, thus

qs (S;) =-SOC,,SOC, (0,5 (14)

Thus, the following value function at stage 3 is achieved:

V; =max{R, +V,} =-P[1+A(q,§ - w,)o]lq,§ —g) [6 +c*qéo —c,w,(q, <0)
= {=P,[1+A([0 - SOC, J& = w;)o] [0 - SOC, & = w,) [& +c*[0 = SOC, J&6 — 0 + 0}
=8.01980C, -0.06561S0C;’

In decision state 2:

By utilizing the functions (9), (10), and (11) in section 3, we obtain the following outcomes for the

optimal SOC reference points at initial of third period or the end of second period:

P
SOC{" =argmax |V, = 2200 -50C, o+ (Fas - 22 205,
‘ SOC,00,10] 0°c [N by U5
2 P
soce” =argmax[v; _20P SOC o, 1 4 (2apyor W - P20 Fe )%J
SOC, 10,10 0, 0 [y ?3
SOCY" =arg max[ - \P,£%0* [SOC -SOC,T* + (2MP,w,&c” —P,éo + cgﬁo)%J
SOC;0[0,10] [0 P53
X 4. +0.061 =
SOC;” = arg max (4.590 30C, -0.096 [550(332 +0.06130C,SOC, -0.030 BOCZZ) = w >10=S

SOC, 010,10 0.192

. 964 +0. - (15
= {SOC{" = arg max (4.964 [$0C, - 0.086 [30C,> +0.040 30C,SOC, -0.020 [$OC22) = M >10=S (15
: 50C,0[0,10] : ‘ ‘ 0.172
* . +0. —=
SOCS) = arg max (7.355 30C, -0.079 B;OCS2 +0.026 30C,SOC, -0.013 [$OC,2) = 7355 +0.02650C, 02650C, >10=S
SOC,000,10] - 0.158

Here, 6w, =0.9%x5=4.5<7, by comparing the current SOC at the initial of second period and the
above-obtained reference points, the merchant will obtain the following optimal decision at period 2:
7, SOC, 0J[0,3] (store generation and purchase electricity up to SOC;* =S)

q, (S,) =410-S0OC,, SOC, 0(3,5.5] (store generation and purchase electricity up to SOC; =S) (16)
10-S0C,, SOC, 1(5.5,10] (store generation without buying up to SOC:" =S)

Then, the optimal value functions at decision time 3 can be rewritten as

) {8 019 50C, = 0.0656130C," o _goc,.,=7-150C, +52.92 -0.0656150C,’; if SOC, 0[0,3] an

*718.01930C, - 0.0656180C,* =80.19 - 6.561=73.629; if SOC, O(3,10]

3 soc,=5=10

By combining the optimal actions and the corresponding price at period 2, we obtain the following

reward functions at period 2:
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-7.23 soc, 0[0,3]
R(q,.w,.P,) ={-15.74-0.636130C,> +2.93(80C, SOC, 0(3,5.5]
~12.84 +2.34[30C, -0.0130C,>  SOC, 0(5.5,10]

Hence, incorporating the equation (17) and the reward function at period 2, the optimal value

functions at the second decision time are obtained:

7.1080C, +45.69-0.0656130C,> SOC, 0[0,3]
Vv, ={-0.636130C,* +2.93[30C, + 57.89 SOC, 1(3,5.5] (18)
2.34[30C, -0.01[30C,>+60.79  SOC, 0(5.5,10]

In decision state 1:
Similarly, by employing the functions (A9), (A10), and (All), we will reach optimal SOC reference

points at the end of the first period or the initial of the second period as the following solutions:

- x +cf

SOCY”" =argmax| V, };PZ [SOC -SOC, I+ (ZKP':VZ _Rte )SOC3

SOC,0[0,10] 0°c (0N 0o 6o (0N

2 240P

SOCE" =argmax | v - 2B 59C _goc p 4 (aipo Yo - PO +¢1)SOC,

SOC,0[0,10] 0 0, 0 0o 0,
SOC) =arg max{ -APE’c’ & -SOC, P +(2AP,w,Ec” = PEc + cgic)&j

SOC, 010,10} 3 5

SOCY”" = arg max [V; —ﬂ[soc2 -SOC, ] -5.88 E$OC2)

SOC,[10.10] 0.81x0.81
=1S0CY" =argmax (V; -0.05[SOC, ~SOC, ' ~4.85$0C, ) (19)
SOC,[0,10]
socy” —argmax(V ~0.050.810.81[SOC, -SOC, I’ -3.75[30C )
SOC,10,10]

Next, we analyze the SOC reference points separately based on equation (18) and energy storage capacity.
(1) scenario: If SOC, 0[0, 3]
1.22+0.1550C

SOCY”" =arg max (—0.142 [$OC,” +(1.22 +0.1530C,)SOC, +45.69 —0.076 [SOC,* ) = 0284 L>3=50C)"=3

SOC,00.3]
+ *
SOC(z) —argmax(—O 116 I];OC +(2.25+0.1180C,)SOC, +45.69 - 0.05[30C, ) % >3= SOC(;) =3

SOC,00.3]
+ .
SOC(3) =arg max(—O 098 I];OC +(3.35+0.066 [30C,)SOC, +45.69 —0.033[50C, ) % >3= SOC(;) =3

SOC,[00,3]

(2) Scenario2: If SOC, (3, 5.5]
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SOCY”" = argmax (-0.7130C,” - 2.95 $0C, +0.152 SOC,SOC, +57.89 ~0.076 5OC,* )= (7295+0.152130C,)

<0=S0C{ =3

S0C,0(3,5.51 1.42
" —=1.92+0. "
SOC(ZZ)' = arg max (—0.686 [$OC22 -1.9230C,+0.1[30C,SOC,+57.89 —0.05 |:$OCI2 ) =w <0=> SOC(;) =3
SOC,[1(3,5.5] 1.372
* —-0.82 +0. "
SOC(;) = arg max (—0.669 BOCZ2 -0.8230C,+0.066 30OC,SOC, + 57.89 - 0.033 |:$OC12) = 0.82 103(;686 0C, <0=> SOC(;’ =3
SOC,0(3.5.51 .

(2) Scenario 3: If SOC, 0(5.5, 10]

SOC;”* = arg max ((—3.54 +0.15230C,)SOC, +60.79 - 0.086 [$OC22 -0.076 |:$OC|2)= (73.54+0.15250C,) <0=> SOC;I)* =55
SOC,[15.5,10] 0.172
* —2.351+0. *
SOC" = arg max ((—2.51 +0.130C,)SOC, ++60.79 —0.06 30C,> —0.05 30C 2)=w <0=S0C% =55
? SOC,05.5,10] ! ? ? ! 0.12 ?
" —-1.41+0. "
SOCY"= arg max ((—1.41 +0.066 [30C,)SOC, +60.79 — 0.043 [30C,*> —0.0328 [3OC 2)= (71.41+0.066[SOC,) <0=S0CY" =5.5
2 SOC,15.5.10] ' z z ' 0.086 z

By comparing the max value, we can find the optimal references among scenario 1, scenario 2, and
scenario 3. Thus, the merchant obtains the following three optimal SOC reference points:
SOCY" =S0C¥ =80y =3

Since Ow, < min{SOCilfl,ap} (i.e.,0.93 =2.7 <min{3,7} =3), based on proposition 1 in section 3,

the optimal decisions of the merchant at stage 1 are

3-S0C,, if SOC, 0J[0,0.3](store generation and purchase electricity up to 3)
q, (S,) =43-S0C,, if SOC, [(0.3,3](store generation without buying up to 3) (20)
3-S0C,, if SOC, UJ(3,10](sell inventory down to 3)
When incorporating the market impact of the merchant, based on the forecasted price at period 1
and the optimal action in equation (20), the reward functions of electricity merchants at stage 1 are shown:
-P[1+A((3-S0C,)/0.9~-3)/0.9]1(3~-S0OC,)/0.9~3)/0.9-0.1(3-SOC,)/0.81 if SOC, 0[0,0.3]

R,(q,,w,,P)=4-P[1+L((3-S0C,)/0.9 -3)0.9] (3 -SOC,)/0.9 ~3)0.9 - 0.1(3 -SOC, ) /0.81 if SOC, 0(0.3,3]
=P,[1+A((3-S0C,)0.9 - 3)0.9] (3 - SOC,)0.9 - 3)0.9 = 0.1(3 - SOC, )0.81 if SOC, 0(3,10]

Thus, the optimal value functions of the merchants at first decision state are:

-P[1+ M% -3)/09] m% -3)/09-0. 1%”.1 [$0C, +45.69 -0.066 [30C,” if SOC, 0[0,0.3]
-3 -0 —SOC 21
vV =]-Bl+ e s(g)c‘ 30910 OS(Q)C' ~309-0.1° OS;)IC’ +7.1030C, +45.69-0.066[S0C,>  if SOC, 0(0.3,3]

—P[1+M((3-SOC,)0.9 - 3)0.9] {3 ~SOC, 0.9 — 3)0.9 —0.1(3-SOC, )0.81-0.636 [30C,> +2.93 [50C, + 57.89 if SOC, 0 (3,5.5]
~P,[1+A((3-S0C,)0.9 - 3)0.9] (3~ SOC, 0.9 - 3)0.9 - 0.1(3 - SOC, )0.81+2.34 [SOC, — 0.01 [BOC, +60.79 if SOC, 0(5.5,10]

Recall the previous steps, the following optimal trading actions of the merchant at three periods are
obtained.

In decision state 1,
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3-S0C,, if SOC, 1J[0,0.3](store generation and purchase electricity up to 3)
q, (S,) =13-S0C,, if SOC, [1(0.3,3](store generation without buying up to 3)
3-S0C,, if SOC, O(3,10](sell inventory down to 3)
In decision state 2,
7, SOC, [J[0,3] (store generation and purchase electricity up to SOC}; = S)
q; (S,)=410—-SOC,, SOC, UJ(3,5.5] (store generation and purchase electricity up to SOC'; =S)
10-SOC,, SOC, [1(5.5,10] (store generation without buying up to SOC; = S)
In decision state 3,

3-S0C,, if SOC, U[0,0.3](store generation and purchase electricity up to 3)
q, (S,) =13-S0C,, if SOC, [0(0.3,3](store generation without buying up to 3)
3-S0C,, if SOC, 00(3,10](sell inventory down to 3)

1) If SOC,=1 (TheSOC in energy storage at the beginning of decision time 1)
State 1: If SOC, =1, (store wind generation 2, and make the SOC up to 3, also sell 2/0.9-3=-7/9 to
the market), then the SOC in the storage will approachto SOC, =3 (i.e., (]1r =2, R, =3.23);
State 2: If SOC, =3, (buying and pumping), then, there is SOC, =10 (i.e.,, q,=7,R, =-7.23);
State 3: If SOC, =10, (generating and selling), the SOC in the storage will down to SOC, =0 (i.e.,
q,=-10,R, =73.63).

By using the predicted electricity prices, the total rewards of the merchant during the
optimization horizon are shown as R =R,+R,+R, =69.63=V, .

2) If soc, =5 (TheSOC in energy storage at the beginning of decision time 1)
State 1: If SOC, =5 ,(idle), then, there isSOC, =3(i.e., qf =2, R, =20.5) holding;
State 2: If SOC, =3 ,(buying and pumping), then there exists SOC, =10 (i.e., q; =7, R, =-7.23);
State 3: If SOC, =10 ,(generating and selling), since we have SOC, =0 =S, so the optimal action in
the third period Gy =—10), so there has R, = 73.63).

Accordingly, the total rewards of the merchant during the given three optimization periods are
R =R,+R,+R, =86.91=V,.

Compared to the previous study (Liu et al., 2021a) in which the electricity merchant with energy
storage only, or the predicted wind power is zero (i.e., Special Case C), considering the market impact
and A=0.01, the corresponding optimal SOC reference points and profits are shown in Table 2 under
different two initial SOC in the storage.

Table 2: Optimal dispatching strategies and profit of the electricity merchant with energy storage only

Optimal SOC reference points Optimal economic dispatch Total rewards
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SOC, =1 | soc =1.5; SOCY =10 | ¢ =055 g, =7; q;, =-8.5 R=341

SOC, =5 | SoC{" =3; SOCM =10 | ¢ =-0.16; ¢, =5.16:4,=-10 | R=557

This table displays that two optimal SOC reference points, SOC?ﬁf and S(I:ﬁ)l*, were created based
on the method proposed in section 3 when ignoring wind power generation. For the scenario, the
profit-maximizing merchant has energy storage only and only needed to buy power from the electricity
market to store and make the current energy level in the storage up to S(I:ﬂ,)f as close as possible when
there is less energy in the storage. If the current available energy level in the storage is larger than
reference point Smﬁ):, the merchant needs to discharge energy from the storage for selling, then bring
the SOC down to S(fti); as close as possible.

To verify our research and the proposed method in this paper, we also adopted the classic MILP
method (Bo et al., 2021; Liu et al., 2021b; Wang et al., 2021; Wang et al., 2022) to solve the above
three-periods case and get the optimal results as well as compare them with the optimal outcomes in
Section 4.1. It yielded the same optimal results under both the dynamic programming method (i.e., our

method in section 4.1) and the MILP (i.e., traditional approach). The above optimal solutions are verified

in AIMMS.

4.2. Real Data Case Study

This section will use hourly optimization period units as the electricity prices and wind generation
sequence P ={P,P,,...,P.} ($/M.W.) and W ={w,,w,,...,w,} (MWH) with 336 decision periods
(T=336) corresponding to two-weeks optimization horizons from Dec. 3 to Dec. 18, 2020) in MISO as
supplied (the prices data is available at: https://www.misoenergy.org/). The maximum and minimum
capacity of the PSH upper reservoir S and S are 20 and 2 (respectively). Here, S > 0 denotes that the
merchant cannot empty the upper reservoir of PSH, which is common in the electricity market for a PSH.
The pumping and generating capacity are Qf=2 and Q¢ = 2 . The unit of measurement of PSH can be
described as GWH. The units of generating and pumping capacity measurement can be represented as a

GW.

Following the previous study, we also assume the pumping and the generating efficiencies of the

PSH are o =p=0.9 . The optimization period (S_S)/ G =9 hours units for the PSH to empty the storage,

while (S_S)/ Q) =9 hours units for the PSH to fill the storage fully correspond approximately to the
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Ludington PSH in Michigan USA (the PSH detail are available at: https://www.consumersenergy.com/).

Based on the existing report (Mongird, et al., 2020), we assume the operating cost ¢=1 ($/MWh). We

also ignore the transmission efficiency loss and supposep =1and n=1. To simplify, we assume that the

residual value of the water in the storage is equal to the expected electricity prices during the optimization

horizon (i.e., VOW,

T
T+1 = Zpt/T )
t=1

Using the same method proposed by Cruise et al. (2019) to calculate the market impact (e.g., we
used the off-peak load and on-peak load and the corresponding prices in the optimization horizon and
pumping and generating limits in each period offered to the ISOs to achieve the lambda approximately as
a proxy for the market impact3). For a merchant who owns a large storage (such as the Ludington PSH)
and a wind farm, the results are as follows.

The merchants' optimal co-optimized economics dispatch actions are obtained from the value
functions (6) when the merchant with co-located energy storage and wind plants is displayed in Figure 1

and Figure 2 under two different initial SOC in the PSH, respectively.

cision (GWh)
(=3

S

Generating\Pumping

Generating\Pumping
Optimal Decision (GWh)

Optimal

[ I R R T )

o

Optimization Horizon Optimization Horizon
——)=0 ===2=0.005 2=0.025 ===2=0.07 ===2=0.1 =——)}=0 -——2=0.005 %=0.025 =——3=0.07 ——3=0.1

Fig 1: The optimal decisions whenSOC, =2 GWh Fig 2: The optimal decisions whenSOC, =10
GWh

Figures 1 and 2 show that when the market impact factor is small, merchants with a co-located
energy storage and wind plant will choose a similar strategy to the traditional strategy (that is, as a
price-taker merchant and ignoring the market impact of the energy storage in trading), that is, when the
market price of electricity is low, the merchant will buy electricity from market and will resale it later at a
high price to maximize the profit. As the intensity of market impact increases (such asA=0.1), the
transaction quantity of electricity merchant who has energy storage and wind farm (see green and blue

curves) in each period decreases. In this situation, the merchant's profit mainly depends on wind

3Although the merchant has PSH and wind plants, we will ignore the effect of wind generation when we calculate

the market impact due to the high uncertainty of renewable generation.
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generation and indirectly reduces the energy storage arbitrage function by decreasing the frequent
pumping and generating actions.
The optimal actions are obtained from equation (11) when the merchant with energy storage only

(i.e., without wind generation) is shown in Fig3 and Fig 4 under different initial SOC in the storage.
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Fig 3: The optimal decisions whenSOC, =2 GWh  Fig 4: The optimal decisions when SOC, =10 GWh

Figures 3 and 4 show that when there is no wind plant, the merchant's dispatching strategy is the
same as when there is a wind plant. With the intensity of market influence increasing (such asA=0.1),
each period's transaction quantity decreases (see, red curve). Figures 3 and 4 show the relationship
between the optimal action and the intensity of market influence under such a situation, which is the same
as that of merchants with only energy storage. With the increasing market impact of the merchant in
trading, the cost of purchasing power to pump will rise; however, the revenue will decrease through
discharging energy for selling. Therefore, to decrease the negative effect of market impact on operational
decisions, the merchant should lower the power transition amount at each decision period to benefit her
own profit. Consequently, a profit-maximining merchant with energy storage and wind plants must
balance market impact intensity and energy transition quantity.

Figure 5 corresponds to the Ludington case for the relationship between the optimal expected profit

and the intensity of market impact with wind and without wind plants, respectively.
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Figs 5: The relationship between the optimal expected profit and market impact

Figure 5 indicates that regardless of whether there is wind power generation, for the large-scale
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energy storage, the operational trading decisions will influence the market prices. However, compared
with the existing study (i.e., price taker scenario and without considering the market impact), the
increases of market impact will lead to decreased maximum expectation profit because purchase costs
increase, and sale revenues decrease. It is intuition, considering the market impact of merchants in trading
will increase the cost of buying electricity from the market and decrease the revenue of selling electricity
to the market. Obviously, if the large-scale energy storage merchant schedules energy in the storage
following the scenario of a price taker, she will lose more profit. This part further proves the conclusion of
the previous section through numerical simulation. These results are similar to the reported consequences
by and Cruise et al. (2019), Felix et al. (2012), and Liu et al. (2021a). To maximize expected profits,
merchants should mitigate the market impact and increase profits by reducing the amount of electricity

trading each period to offset the negative effect of market impact.

5. Extension Research: Market Impact as a Function of Offered Limits to ISO

The results presented in Section 3.2 and Section 4 show that electricity merchants get less expected profit
with growing market impact if both the price-taker electricity merchant and the price-maker electricity
merchant offer the exact pumping/generating maximum capacity in one period offered to ISOs. However,
in the electricity market, where capacity withholding is allowed, the merchant can adjust their pumping
and generating capacity offered to ISOs to change her market impact (Mehdipourpicha and Bo, (2020;
2021)). The implications of electricity merchants' market impact change substantially when considering
the relationship between that impact and the generating and pumping capacity in each optimization period
offered to ISOs. If the market impact is related to offered maximum pumping and generating limits, when
the merchant changed her offered pumping (resp. generating) limit fromQ» (resp.Q:) toQ® (resp. Q¢ ),
and ifQ’ <Q® and Q¢ < Q¢ hold, we will geto<a <2, . Here, the different subscript values show
different generating and pumping limits offered to the ISOs.

For the intensity market impact parameter, in this section, following the previous study
(Mehdipourpicha & Bo, (2020; 2021)), we shall use the ratio of electricity merchants’ offered limits to the
total (MISO-wide) online capacity of generators, where the latter is commonly about 100 GW. Thus,
different market impacts correspond to different generating and pumping maximum limits in one period
that is offered to the ISOs, which may result in different optimal actions and expected profits. For
example, a market impact factor of A=0.02 (resp., A=0.01 ) corresponds to a merchant
generating/pumping maximum limit of 2 GW (resp.,1 GW) offered to ISOs. Our results are derived

simply by increasing the upper limits of generating and pumping that offered to MISO from 0.1 GW to
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3 GW (i.e.,0.001<1<0.03); here we also suppose all other parameters are the same as in Section 4.
Figure 6 illustrates the impact of market impact by adjusting the limits that offered to MISO on the

expected profit of the merchant for cases with wind generation (left panel) and without wind generation

(right panel).
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Figure 6: Merchant’s optimal expected profit as a function of market impact

Figure 6 indicates that, regardless of whether there is wind power generation, the merchant’s optimal
expected profits first increase and then decrease with their market impact. It follows that a merchant can
maximize expected profits by balancing market impact with offered pumping/generating maximum limits
to ISOs. From the perspective of profit maximization, the electricity merchant must decide which is more
important: the limits of offered transaction to ISOs or the approximately market impact. There is an
inherent trade-off between these two factors, since the merchant can—in each period—increase the unit
energy/power profit while lowering transaction quantity.

Suppose the market impact is low; in that case, there is a low revenue (due to the limited power
transaction) although the unit power profit is high. Hence the merchant should increase the power
transmission quantity to enhance her profit by enlarging the max capacity offered to ISOs. The most
intriguing result is that raised market impact would result in a reducing unit power profit by raising the
cost of purchasing and lowering sales revenue. In that case, we recommend that the merchant should limit
their market impact’s detrimental effects by—in each period—reducing her generating/pumping limits
offered to ISO and increasing profit from unit power.

We affirm these conclusions by conducting additional analyses, as briefly described following.
Accordingly, we change the power prices and wind generation corresponding to one day period with 24
stages and seven days period with 168 stages, respectively, corresponding to one day 12/01/2020 and one
week from December 1 to December 7, 2020) in MISO for the year 2020 as provided. Once again, our

previous findings are mainly supported.
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6. Conclusion and Future Work

The main objective of this paper is to analyze the scenario when the merchants with both co-located
large-scale energy storage systems and wind plants and build the co-optimized policy structure of
electricity merchants whose actions are sufficiently important to have a market impact on electricity
prices. We formulate this problem as a Markov decision process and employ the dynamic programming
method to achieve the closed-form analytical results to support multi-period decision-making of
merchants. Although there are multiple activities available each period for the electricity merchant, only
one of these decisions/actions is allowed at the same time. On this basis, to solve this problem, this paper
first split the original problem into three sub-optimization problems corresponding to three different
actions. Then, the optimal solution for each sub-optimization problem will be addressed based on the
Bellman equation. Finally, we combine them and achieve the global conclusions of the original
problem. We demonstrate that the obtained optimal strategy policy in this paper generalizes the traditional
results and differs significantly from usual strategies reported to be optimal in the current published work,
neglecting the market impact and the residual value of energy in the storage.

To maximize the profit of electricity merchant who has large-scale energy storage and wind power
plant, considering the generating and pumping operating costs and three types of efficiency loss, we find
the current optimal economic dispatch strategy of the storage relies on the SOC reference points. These
SOC reference points depend on the current SOC inventory in the energy storage, the forecasted
electricity prices, available forecasted wind generation currently, and the market impact of energy storage
in trading. We show analytically that, for a merchant with both PSH and wind plant, there exist three SOC
reference points such that the SOC range is divided into four possible sub-ranges, each of which
corresponds to one of four distinct options. The merchant will achieve the unique optimal action by
comparing the current SOC in the storage and the SOC reference points. However, suppose operating
costs and efficiency loss of the energy storage are not modeled. Then, the feasible SOC range of the
storage can also be segmented into two sub-ranges by one unique optimal SOC reference point. In this
case, storing renewable generation or buying power for pumping will bring the same cost for a merchant.
If we ignore the wind generation or not available renewable source, it equals an electricity merchant with
only large-scale energy storage. Our study finds the condition that wind generation benefits merchants'
profit.

We recognize that the merchant's market impact and the residual value of energy in the storage play

essential roles in the optimal strategy design. Although the residual value of energy in the storage affects
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the value function then influences the optimal decision, this paper finds that it does not change the
relationship among three optimal SOC reference points, so the residual value cannot revise the traditional
policy. Our results also show that the price-maker merchant will obtain similar strategies as the
price-taker merchant scenario when the market impact is small. However, considering the market impact
and offering the same generating and pumping capacity as the price-taker, we find the market impact
would drive profit-reducing by raising the cost of purchasing and lowering sales revenue. If, besides, the
market impact of the merchant is high, then the sales revenue can only somewhat offset the increased cost
of purchasing power. In that case, our findings recommend that the merchant needs to mitigate the market
impact's negative effect as much as possible by lowering the power transition amount at each decision
period to benefit her profit. These new conclusions provide more knowledge of managing differentiated
forecasted wind generation, market impact, and co-optimized economic dispatch of energy storage and
wind plant.

To the extent that a merchant can influence the market impact (e.g., through adjustment of the
pumping and generating maximum limits offered to ISOs), we identify conditions under which the
trade-off is either beneficial or detrimental to the merchant. These new findings augment our collective
knowledge about managing the intensity of market impact and are an essential contribution to research on
this topic.

There are usually two approaches to model market impact---an equilibrium model or a conjecture
variation model. This paper’s approach is a conjecture variation. Another connected concern for future
research is confirming how to model the market impact in an equilibrium model and construct the
corresponding reward functions. To establish a reasonable and tractable framework and derive insightful
results, we have followed the conventional assumptions about the market impact and generating and
pumping minimum limitations to get continuous reward functions. Further research could be undertaken
that relaxes these assumptions and extends our research on this problem. Our main consequences and
insights are robust for other kinds of relations—when electricity merchants purchase electricity from the
power market, and the demand/load will increase, conducting to increasing electricity prices; in contrast,
selling power by a merchant will enhance the supply resulting in decreasing the selling prices. Therefore,
exploring this topic is a promising avenue for future research. It would also be worthwhile to investigate
generating and pumping lower limitations in positive values other than zero. The results and optimal joint
optimization scheduling proposed in this paper are developed via dynamic programming based on the
static price forecast for the entire horizon. Another related consideration for future work arises: Should

the merchant’s decision be adjusted to account for this changing price uncertainty? Finally, the effects of
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transmission constraints, nodes' voltage, and bus voltages on the energy storage planning problem also

need to investigate.
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Appendix: Table 1

Tablel: A comparative summary of this study and previous publication

Literature Objective Price-ma Problem model
Renewable ESS ker
Al-Kanj et al., 2020 x v x Storage arbitrage ADP
Bafrani et al.(2021) x v x ISO operation MINLP
Baslis et al. (2011) 4 X v Market impact MILP
Bhoi et al.(2020) v v x Optimal scheduling DP
Castronuovo et al.(2004) 4 v x Operation Discrete optimization
Chabok et al.(2019) x v v Operation of power system Stochastic optimization
Dui et al.(2018) x 4 x Storage design SOCP
He et al.(2022) 4 4 x Multi-objective co-optimization MOEA-DM
Habibian et al. (2020) x v v Power purchase decision Stochastic programming
Heine et al.(2021) x v x Community optimization MILP
Huang et al.(2019) x v v Market mechanisms design Bi-level
Huang et al.(2019) x v x Storage operation and Bi-level
investment
Kim and Powell (2011) v v X Economic dispatch MILP
Lee (2008) v v X Short-term scheduling MIPSO
Levieux et al. (2019) 4 x x RE complementary operation HA
Liu et al.(2015) v v x Schedule ANN
Liu et al. (2021a) x v v Economic dispatch DP
Liu et al. (2022) v v x Economic dispatch DP
Jiang and Powell (2015a) v 4 x Economic dispatch ADP
Secomandi (2010) x v x Economic dispatch DP
Shi et al.(2022) 4 v X Generation and capacity MILP
Shi et al.(2018) v v x Design and operation QI
Steeger et al. (2018) 4 x v Bidding optimization SDDP
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Taghikhani et al.(2021) 4 v x Optimal scheduling MILP

Zhang et al. (2016) v v x Economic dispatch Fully distributed
Zhou et al. (2016) x v x Economic dispatch DP
Zhou et al. (2019) v v x Economic dispatch DP

This study 4 v v Economic dispatch DP

Appendix A: Optimal Scheduling for Electricity Merchant

Proof of Lemma 1:

1) The uniqueness of the SOC references points:

Based on the equation (5), by replacing {, with soc, as the decision variable via

SOC,,, /9, —SOC, =q, , we get the following rewards function.
-P(q,/0-w,)/c—AP/c’[(q,/0) —2(q,/0)W, + W, 1-c"(q,/00) —c, W, (q, 20w,)
R(q,,w,.R)=1-P(q,/0-w) 6 - Po’[(q,/0)" - 2(q,/O)W, + W ]=c"(q,/00) —c,w, (0=q, <OW,) (Al)
P (q0-w) -8 ~2qEw, +w He*qéo—c,w, (q, <0)

In the end of the decision time T (i.e., the beginning of decision time T+1), the value function is

shown:

Vo (S(T) =[R(Gy, Wy, py) LV, (S(T+D)| S(D) I HR(Gy We, py) + VOW,,, [SOC, ]

Thus, we get the following three sub-optimization value functions:
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A2)

)4 = wo[Pro(Aw o =1) +c ]+E[V,, (S(T+D)| S(T))]}

We can get the optimal results to the equation (A3) by removing the given state S(T) (i.e., the given

values SOCT , W, and PT) when maximizing the (A2) . So, we get the following equivalent equations:
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The first-order derivative of V{(S(T)) (i.e., best response functions) onSOC.. . are shown as:

T+1

aVT(l)*(S(T)) _ AP, ( SOC,,, -soc, 1 (ZKP W P +cf )_ FVOW
3S0C, .. 0262 I 0r 0o’ 0 o, T+l
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OSOCTH 02 o T (o T 0 0o Pr "
8
N M) _ _yp 22 [SOCT” SOC, ji +(2UPyw,E0” - Pyo ~¢tE0) — + VOW,,,
4s0C,,, T T !

We also obtain the following second-order derivative functions of Vqt(S(T)) on S(I:m.

2y (D* 2y 7(2)* 2 2¢v7(3)*
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Because the second-order derivative function is negative, we can achieve the unique optimal results

by using the first-order function. Therefore, V;D* (1)), V;Z) "(S(t)) ,and VS)* (S(t)) have a unique optimal

solution onSOC, LS, §] Then the Bellman equation and Puterman (1994) can be used to derive the

following results:

(—=S0C,)* +( )
0°c’ [ y Pr

AP SOC 2)\P. P. +c” SOC
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+ P
SOCE; =arg_max | ELV;,, (S(T+1)]S(D)1- 22 x (SOC“1 -S0C, ) + (1P, 1 B0+ SOCw, | (A6)
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T Pr
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SOCY); =arg max S[ 1 (S(T+D[S(D))1-AP,E%6

Similarly, for the any state at t[J{1,2,---,T},by maximizing of the value functionVv (SOC ,w ,P,),

subjecttosoc ., O[S, S], we will obtain the following optimal functions based on the Bellman equation.

41



2)\P, P +¢? XP P
DT g —w (B w, == e )+ELVE, (S(E+ 1) [S(D)]
0c 0c G’ c

AP, > 2P 2xp _P+c’
- max E[VHI (S(t + 1) | S([)) : SOC21+1 + — t SOCHI BOC ( W t C ) SOC1+1
$<50C, <5 0%c 0, 0°co, 0o P,

Vi7(S(t) = _max {— A

sss0C,sS | 9267

(A7-1)

2 P
V' (S(t)=  max {— M(;R g+ (APt _Ro+e )q, =W [Po(w.s=1)+c, ] +E[V.,, (S(t+1)| S(t))]}

$<S0C,,, <S8 0 9
2, P
kp2P SOC,, 27«52 P SOC,,, s0C, +(27»P1c52& _Po+c” SOC,,
0" o 0 o 0 b n,
V(W(S(t))— max { XPLF;ZGZqIZ +(2APw, &o’ -P&o+ctéo)q, - w [Po(Aw,c—1)+c ]+E[VI+1 (S(t +1)| S(t))]}

<SOC,,,

! J (A7-2)

$<S0C, ;<8

= max [E[v;l (S(t+1)|S)1-

2
OC21+1 +2)\,P§2 2 OC

t (pl

= max S[E[Vj;l (S(t+1)|S())1-APE* S’ ——=*180C, +(2AP W &6’ —P§o+cg§o) C‘”](A7—3)
= .
Based on the proof at last decision period T, we know that for every optimization period

t0{1,2,---,T}, and in every state t, bothv, (S(t)) and E[\f+1(S(t+l)|S(t))] are concave functions on

soc,0[s, S] for any given decision state S(t)=S,(SOC,,w,.P,). Clearly, E[th+1(S(t+l)|S(t))]and

functions (A7-1)-(A7-3) are concave in soc ,, 0O[s, S] for each given state S(t)=S,(SOC,,w,,P,)by
using
5 FELVL (SE+DISO)I) o FELVL, (St +D[SM)I 13S0,
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(1) When G >9Wt, by maximizing the equation (A7-1), subject to soc,,, O[S, S], we can also get the

following best response function (i.e., first-order derivative):
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The second-order derivative function: ( 2( ))= t 1( ( > | )) -———<0.
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Thus, we can achieve the optimal references points solutions using the first-order function because

the second-order derivative is negative. Therefore, we will obtain the subsequent optimal consequences:
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(2) Similarly, when OSC]I SeWt » by optimizing the function (A7-2), we can obtain the unique optimal

reference points using the first-order function, and the optimal solutions are:
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(3) Whengq, <0, by optimizing the function (A7-3), we will obtain the optimal SOC results as follows:

soCc?r = arg _max S[E[Vf (St+D|SM)1-rPE s’ ‘*21 +2)\P &%’ 2 Eu E +(2MPw &6’ —P&c +cgé;c)socm]
8 9 9

t t t

VS SW) aE[VH, (Sa+n[sm) 27»P|Z;2202 soC,, + 2P, %67 S0C. + 2)P,w &o° = P,&o + c'o| o
0SOC,,, dsSocC,,, 0, P, N SOC,,, =s0C)"
(A10)
2) The relations among three SOC optimal results/SOC reference points:
We define three auxiliary functions based on (A8) - (A10) to simplify illumination.
AV (S(t AV (S(t AV (S(t
Fsoc,,) =2 B0 psoc )@ =B psoc o = T4 _BO) (ATD)

0SOC,,, 0SOC,,, 0SOC,,,

The related first-order functions of (A11) correspond to the second-order derivative functions of

(A7-1), (A7-2), and (A7-3) are shown:

OF(SOC,,,)" _ @V (S(t)) _ OV, (SE+D[SM)1 _ 22p, <0

aS0C, ,, 0s0C,, 2 asocf+l 0o,
OF(SOC,.,))” _ V" (S(t)) _ OE[Vy, W (SE+D[SM)] 206°P, <0

9S0C,  0S0C..  0SOC.’ 0% (Al2)
OF(SOC,.)"” _ 0V () _ OBV, (SE+DISW)I_ 2PE” _

0SOC,., 0S0C,, 2 0s0C,, 2 02

Based on (A12), we find that the above three defined auxiliary functions are all decreasing with

soc,,, O[S, S]. We also get the following relations among the first-order functions of (A11).
dF(SOC,,,)" /aS0C, ,| 2[aFSOC,,)* /380C, .| 2[FSOC,,,)” /0S0C., .
1) Forallsoc,,, O[S, S],if maxFSOC,,,)"” < max F(SOC,,)* , then we will obtain S(I: ?1
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max F(SOC,,,)"” =F(S0C,,, =S)"” £ maxFSOC,,,)” =FSO0C,,, =S)?”
+ cP p
_ 227»21>ZS+ f’”f‘ SOC.+ ZMZIWI_R AP 272055 2067 P‘soc P w, 1 _Po’+c’ 1
00’9 0%, bo’p, oo, 0%, 0%, 0o b0 o
+
o Rtc’ Rottd zzztsocl(i—czj—zz‘R[ : js+2m> [lz—czj
0o 0o 0 c 070, 6 \o
_ 2
pghll=oh) /2P (1 62) s0C, +w 8-> |=12=p /2R [H9 lisoc +wo-2
0c 0 ¢, 0 c ¢,
3 k
2) Forallsoc,,, O[S, S],if maxFSOC,,,)® < maxF(SOC,,,)*, then we will obtain SOCEJ,)l _SOCE+)1
max F(SOC,,)® =F(SOC,,, =8)® < max F(SOC,,,)” =F(SOC,,, =)

2 2
_ (_nzc 1} 2xcPE spot e
0%, 0%, 6o 0o o
Po” +c"
fp

2, p 2 2 2 2 2 _nt
1 _Po’+c 1]5(_2&&20 g4 2APES SOC1+2xlelgc _(P&o c&c)]

(pl B (p[ (pl (pl

= 126°P, [(soc, 5 ey W‘i)j < { - (Pto - cggc)j
¢, 0 0

= x_[PG +cP - (P&o - cé&c)j/ZpZP‘((SOC‘ —S)(lz_éz)+wl(1_§)] =2
v o 0 0

If both the available wind generation equals zero (i.e.,Wt=O), and the current energy inventory

reaches the minimum limit of storage (i.e.,SOC, =S /¢, =0) at optimization period t, for any forecasted

: . . 1 2y 3y
price P, > 0 and market impact of energy storage A=0, there exists S(IL’I <SOCY < )

T+

To sum up, for positive pricesP, > 0, when the market impact of energy storage meets condition
0<% < min{A"»,22¥}, thus, we can get the following relations among three optimal SOC reference
points:

I 2)* <SOCY*
H =

t+

1 k 2 K — —
Obviously, if P <0, we get Sa:() >Swt+)1 —Sa:( when there isO0<A < Hﬂn{kﬁ“z),kﬁz‘”} )

Proof of Proposition 1:
(1) Optimal Solutions (without consider the capacity of transmission line):
1) 6w, <min{SOC'”",Q"}

min{SOCY, - SOCl,ap }, SOC, O[8,SOCY — 0w, ](store generation and buy electricity up to SOC');
‘8. = min{SOC%" —=SOC,,0w,},SOC, O(SOCY, —0w ,SOCY I(store generation without buying up to SOCZ") (A13)
4070, SOC, EI(SOCZ’I»,SOC(IPI»] (keep inventory unchanged)

max{SOC([i)]* - SOC[,—Q },S0C, 0O (soc®” §](sell inventory down to soct”

t+l 2 t+l
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2) Ow, =min{SOCY",Q’}
min{SOCZ, =S0C,.q 0w, }.S0C, O[S.S0C (store generation up to SOC) )

q, (S,) =40, SOC, L[SOC,",SOC!} T (keep inventory unchanged) (A14)

+1

max{SOC” ~S0C,,-Q"}.S0C, O(SOCY!" S](sell inventory down to SOC!)

t+1 t+l t+1
Special case:
a) If 9=¢=0=1,c"=ct=0),thenwewill getsoc' =soc?'=soc? =soc’,,.
1) 6w, <min{SOC’,,.Q’}

0= {min{SOCf+1 -S0C,,Q"}, SOC, 0[S,SOC;,, — 6w, ](store generation and purchased electricity up to SOC,,,) (A15)

t+1
max{SOC,,, —SOC,,-Q"},SOC, (SOC..,,S](sell inventory down to SOC.,,)

t+12

2) 6w, 2min{SOC,,,.Q’}

*

4. (S.) = min{SOC,,, - SOCI,GP,GWI},SOCI 0[S,SOC,,, I(store generation up to SOC,,,) (A16)
o max{SOC,,, - SOCI,—ag},SOCI O (SOCTH,g](sell inventory down to SOC},,)

t+1

b) If o=1 (transmission efficiency), then we will get soc" " =soc®) .

. # P
1) 6w, <min{SOC,,Q’}

min{SOC" =S0C,,Q"}, SOC, O[S,SOC"" - w I(store generation and buy power to SOC';

t+1 t+1 t+1

q,'(S,) =40, SOC, 0(SOC?",SOC¥] (keep inventory unchanged) (A17)
max{SOC"®)" -SOC,,-Q"},S0C, 0 (SOC")",S](sell power to SOC®

2) 6w, 2min{SOC,,,.Q’}
min{SOC?" -=SOC,,Q’ 6w, },SOC, [[S,SOC2"|(store generation up to SOC'2")

t+1

q, (S,)=10,80C, O[SOC)",SOC" |(keep inventory unchanged) (A18)

t+1

max{SOC®" -S0C,,-Q"},S0C, 0(SOCY",S](sell inventory down to SOC))

t+1 t+1 >
¢) If 9=¢=1c"=c*=0) (nopumping and generating loss, no operating cost, soc> =soc?))
1) 6w, <min{SOC"",Q"}

t+l °

min{SOC" -s0C,,Q"}, SOC, O[S,SOCY - 0w  |(store renewable and buy power up to SOC?})

t+1

q,"(S,) =<{min{SOCE) -SOC,,0w,},SOC, O(SOC!); - 0w ,SOC) I(store renewable without buying up to SOC')’

t+1 t+1

max{SOC{}} ~SOC,,-Q"},S0C, 0 (SOC) ,S](sell energy down to SOC'))
ol ‘ . gy

t+1 t+1

, (A19)

2) 6w, =2min{SOC,,,.Q’}
min{SOC®" -S0C,,Q",0w,},SOC, O[S,SOC)" |(store renewable generation up to SOC')") (A20)

+1

max{SOC®)" -S0C,,-Q"},S0C, 0(SOC®",S](sell energy down to SOC"

t+1 t+l t+1

q,(S)=

Proof of Proposition 2: Market impact and available wind generation analysis

Recall the proof the proposition 1, when the merchant who has PSH and wind plants, for any given state
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S(t) , we can also obtain the following outcomes:

xP 2xP P +c”
SOCY 50, =arg max E[V,, (S+D[S(D))1- SOCu _soc O (R le ¢ )SOC J
< s ¢ o
Ac’P. SOC,, W, PG +cp SOcC,,
SOC s, =arg max | E[V,,, (S(t+1>|S<t>)]—9—2‘<(p—”—socl)2+<2xPlp2 5 ]
- , »,S0C,,, . ocC,,
SOCY) s, =arg S max E[V,, (St +D[S())]=APE&% 6’ (—L ~SOC,)* + (2AP,w &6° = Péo +c gc)

Through the rewards function of (Al), for any positive forecasted prices and decision state
t0{1,2,3,---,T}, there exist the following relationships:
P/’ g, /0-w)" <0 (q, >0w,)
-Po’[q,/0-w,)’<0 (0<q, <bw) =
—Po’ lg&-w,)" <0 (q, <0)

OR(q,-W,,F) _
o

oR(q,.w,.B) _

7 (A21)

M M . . .
Suppose the qt(@;o) (resp. qt((k)zo) ) represents the optimal actions of electricity merchants
considering the market impact (resp. without considering market impact) in trading decisions.

t (A20)° t (A 0)’Wt’

T T
Thus, > R(q;}2, W ,.P) = D> R(q, . P) holds, which means the value function of the
t=1 =

merchant Vfﬂ 50 ST+ | S(t)) decreases with the increasing of market impact A , then there are:

E[Vtvﬂ (A20) (S(t + 1) | S(t))] s E[VI*H (A=0) (S(t + 1) | S(t))]
T T (A22)
max Y E[R(q, W, Pz S ] < max Y E[R(@,, W,. R ), SO |

Obviously, if a price-maker merchant ignores her market impact in trading decisions and follows the
price-taker's optimal economic dispatch, we can draw the following relationship:
T T
max Y B[R, W,.P) s, [SD)] = ZE[R(qi‘%gm, P aoy S ]2 D E[R(Q YL WP oy [SMD] (A23)
t=1 t=1
Based on the rewards function of (A1), we will get the following first-order response function:
P /6=AP [6°[-2(q,/0) +2w, ]1-c =P, /o —c, +21P /o’ (q,/0 =W ) (q, 2 0w))
=1Po -APo’[-2(q,/0) +2w,]-¢c,=Pc —c, +2APc’(q,/0-w,) (0<q, <Ow,) (A24)
Po—APo’[-2(q,&) +2w,]-c,=Po—c, +2\PG" (qlé - wt) (q,=0)

oR(q,,w,P) _
ow

t

We have the following relationship for oR(q,,w,,P,)/ow, based on equation (24).
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OR,(q,,w.P)/ow, =P /c~c, +2AP [6*(q,/0-w,)20=P /o=c, (q, 20w)
dR,(q,,w,,P)/ow, =Pc—c, +2\Pc’(q,/0-w, )20= A< (Po—c,)/2Pc’ (w, —q,/0) <A (0<q, <Ow,)
0R,(q,.w,.P)/ow, =Po-c, +2APc’ (q§~2w,)20= A< (Po—c,)/2Po’ (w, ~q&) <X (q, <0)
(A25)
It implies that the merchant with PSH and wind plants needs to generate the wind power based on
the max generation capacity of the wind turbines installed to benefit her profit.
Next, we will analyze how the operation cost influences the optimal scheduling policy of the energy
storage and the revenue of the electricity merchant. Then, based on the rewards function of (A1), we will

get the following first-order response function:

R (q,.W,.P) _ {-(ql/ec) (q,20w,)  9R(q,w,,P)

= A26
oc? —-(q,/00) (0<q, <0w,)’ oct 50 (@,=0) ( )

Based on the equation (A26), We get the following relationship for the reward functions on the

generating and pumping cost.

0R(@,,w,.P) _ ) R WP _ (A27)
ac? - oct h

It is straightforward; the merchant will achieve less profit from increased operating cost. It plays a

similar role as the market impact.
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