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Abstract 

Grain boundary segregation is of increasing importance for stabilizing nanocrystalline alloys, 

and while segregation is typically modeled as a scale-independent phenomenon, at the finest 

nanocrystalline grain sizes there are several sources of grain size dependence. Here we provide 

quantitative detail on two grain size dependencies not previously elaborated, both of which arise 

from the spectrality of intergranular segregation sites. The first of these arises because a change 

in grain size affects which portions of the segregation spectrum are occupied by the solutes, with 

no change in the shape or nature of the spectrum itself. The second of these arises from the 

presence of higher-order grain junctions, which have unique segregation behaviors and an 

increasing relative presence at finer grain sizes. This paper uses molecular statics to quantify 

these size dependencies in detail for the case of an Al(Mg) binary alloy. Together, these two 

effects combined have a significant effect on the effective McLean segregation energy of more 

than 6 kJ/mol (from approximately -18.5 kJ/mol at 5 nm to -12.5 kJ/mol at more than 40 nm), 

with the majority of grain size dependence arises from the spectrality of segregation sites. 

Keywords: Grain Boundary, Triple junction, Quadruple Node, Segregation, Nanocrystalline, 

Thermodynamics, Atomistic Simulation 

 

 

1. Introduction 

The high volume fraction of grain boundaries in nanocrystalline materials can lead to 

instability and rapid grain growth. For this reason, grain boundary solute segregation has been 

widely explored and used by the community to hinder grain growth both kinetically [1–6] and 

thermodynamically [7–14]. As a result, researchers are increasingly trying to design alloys with 

the specific intention of inducing grain boundary segregation. For these purposes, simple design 

criteria [13,15,16] that use an “average” grain boundary segregation energy are often used as 

screening tools. This is in line with the classical isotherm approach to grain boundary 

segregation as proposed by McLean [17], which classifies atomic sites into two types, grain 

boundary and crystalline sites, with the assumption of constant segregation energy at all viable 

grain boundary sites: 
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𝑋̅𝐼𝐺

1 − 𝑋̅𝐼𝐺
=

𝑋𝐶

1 − 𝑋𝐶
𝑒𝑥𝑝 [−

∆𝐸𝑠𝑒𝑔

𝑘𝑏𝑇
] 

(1) 

Here 𝑋̅𝐼𝐺  and X
C
 are the average solute concentration in the intergranular network and crystalline 

regions, respectively, and ∆𝐸𝑠𝑒𝑔 is segregation energy which reflects the energetic difference 

between bulk crystalline and intergranular solute. Here and below we take the definition that 

negative values of ∆𝐸𝑠𝑒𝑔 are associated with a preference for grain boundary segregation 

(although it should be noted that this is opposite of the sign convention taken by McLean in his 

original work). 

The isotherm approach described above, as well as a vast literature of related work [18–20], 

are based on an “open system” assumption, where an infinite reservoir of crystalline sites are 

available to equilibrate with the grain boundary. This assumption results in the equivalence X
c
 = 

X
tot

, the total concentration of solute in the system.  With the early experimental observations of 

size-dependent segregation [21,22], Ishida [20] pointed out that for fine grain sizes this 

approximation fails, and corrected it with a simple solute balance equation: 

 𝑋𝑡𝑜𝑡 = (1 − 𝑓𝐼𝐺)𝑋𝐶 + 𝑓𝐼𝐺𝑋̅𝐼𝐺  (2) 

where 𝑓𝐼𝐺 is the intergranular site fraction. This is the first source of apparent size dependence of 

segregation behavior, because the intergranular and crystalline site fractions now vary with grain 

size, which in turn shifts the balance of solute partitioning via Eq. (2). This geometrical grain 

size dependence is illustrated in Fig. 1a at two different grain sizes; at constant composition a 

reduction of grain size leads to lower solute population of the grain boundary sites. This size 

dependency is now widely recognized and corrected for in small computational systems or at 

fine grain sizes [23–29]. 

There are, however, other sources of grain size dependence on intergranular segregation that 

are not yet widely recognized or accounted for, with special relevance in nanocrystalline metals. 

These result from the physical nature of segregation as a spectral problem; the excess energy and 

segregation energy are not single-valued, but in fact very widely distributed over a multitude of 

different atomic sites. In bulk nanocrystalline materials this is especially important due to the 

vast grain boundary space presented in polycrystals [26,30], given the high volume fraction of 

grain boundary atoms. For such cases the local concentration at a given site-type i can be 

calculated using a specific site segregation energy ∆𝐸𝑖
𝑠𝑒𝑔

 instead of a single value ∆𝐸𝑠𝑒𝑔 [31]: 

 
𝑋𝑖

𝐼𝐺

1 − 𝑋𝑖
𝐼𝐺 =

𝑋𝐶

1 − 𝑋𝐶
𝑒𝑥𝑝 [−

∆𝐸𝑖
𝑠𝑒𝑔

𝑘𝑏𝑇
] 

(3) 

where 𝑋𝑖
𝐼𝐺  describes the solute concentration at site type i with segregation energy ∆𝐸𝑖

𝑠𝑒𝑔
. 

 When this expression is combined with information on the complete distribution of sites 

available in a polycrystal, it can be used to compute the average solute excess and effective 
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segregation energy of the ensemble. In polycrystals, for example, it has been proposed that the 

distribution of segregation energies can be approximated as a skew-normal distribution [25,32]: 

 

 𝐹𝑖 =
1

√2𝜋𝜎
exp [−

(∆𝐸𝑖
𝑠𝑒𝑔

− 𝜇)
2

2𝜎2
] 𝑒𝑟𝑓𝑐 [

𝛼(∆𝐸𝑖
𝑠𝑒𝑔

− 𝜇)

√2𝜎
] 

(4) 

where 𝐹𝑖 is the intergranular site probability density function, which is described by shape (𝛼), 

location (𝜇), and scale (𝜎) parameters, alloy-specific quantities that have been tabulated for a 

number of alloys in Ref. [26]. 

When the McLean-type assumption of a single segregation energy is replaced by a 

distribution of intergranular sites in this manner, there is an additional Ishida-like size effect with 

a more complex solute conservation law than Eq. (2), to account for a multitude of intergranular 

site types. This spectral effect is schematized in Fig. 1b, where smaller grains lead to a 

significantly different distribution of solute in grain boundary regions, and less grain boundary 

segregation in total. A lower average grain boundary segregation energy is therefore seen at fine 

grains. Because full-spectra studies of grain boundary segregation remain scarce, we are not 

aware of any quantitative elaboration of this spectral effect as yet. 

Spectrality can also lead to a physical size effect at the very smallest nanoscale grain sizes. 

At scales below about 20-30 nm, triple junction lines and quadruple nodes become increasingly 

relevant in terms of their atomic participation [33,34]. These changes in the structure of the grain 

boundary network itself can manifest in the segregation energy distribution of Eq. (4) if, e.g., 

triple junctions present unique sites for segregation as compared with the boundaries themselves. 

This hypothesis is supported by the literature in the specific case of solute segregation that both 

experimentally measured local concentrations [35–37] and computational results [38,39] suggest 

unique triple junction behavior. Fig. 1c schematizes this scenario, where the full intergranular 

spectrum changes at fine grain sizes due to the participation of higher-order junctions in the 

problem.  

Our goal in this paper is to explicitly demonstrate and quantify the grain size dependence of 

segregation behavior in the dilute limit caused by these latter two issues, namely, Ishida-like 

grain size-dependencies caused by spectrality (Fig. 1b) and grain size-dependencies due to the 

scaling of higher-order junction fractions in intergranular networks (Fig. 1c). Using atomistic 

simulations on a specific model system (Al-Mg) we demonstrate that the scaling behavior of 

overall intergranular excess and effective segregation energy at the finest grain sizes indeed are 

significantly dependent upon both the fraction of intergranular sites as well as the relative 

prominence of higher-order junctions. The framework established here should be applicable to 

binary alloys in general. 
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Fig. 1. Schematic of intergranular segregation at T = 0 K with a fixed solute fraction X
tot

 = 0.25 

and (a) classical McLean model assuming a single average segregation energy, (b) a constant 

segregation spectrum and (c) a grain-size dependent spectrum due to the presence of grain 

junctions. Changes in the grain size in each case lead to reapportioning of the solutes amongst 

the available site-types, as demonstrated by solute occupation of the lowest energy sites. 

2. Intergranular Segregation: Definitions and Framework 

Segregation energy is defined as the energy of the fully relaxed system with the solute in an 

intergranular site i (𝐸𝑖
𝑠𝑒𝑔

) minus the energy of the relaxed system with the solute in a bulk 

crystalline site (𝐸𝑏𝑢𝑙𝑘):  

 ∆𝐸𝑖
𝑠𝑒𝑔

= 𝐸𝑖
𝑠𝑒𝑔

− 𝐸𝑏𝑢𝑙𝑘 (5) 

In this work, for simplicity the energy of segregation is calculated using molecular statics, which 

implies an assumption of negligible system volume change, and neglects excess 

(nonconfigurational) entropy of segregation; all energies are internal energies. As we develop the 

methodology in this section, we focus on Al with a dilute addition of Mg as the solute, using the 
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embedded atom method (EAM) potential for the binary Al(Mg) system [40]. This interatomic 

potential has been used for studies of intergranular segregation by Refs. [25,27,30,41–43] and 

the dilute-limit segregation spectrum has been explored in detail in Ref. [25] for comparison. For 

this system the reference alloying energy E
bulk

, the substitutional energy of placing a solute on 

the solvent crystalline lattice, is E
bulk

 = 2.0040±0.0025 eV. 

For the conservation of solute, global solute concentration, 𝑋𝑡𝑜𝑡, relates to the mean 

intergranular concentration, 𝑋̅𝐼𝐺 , intergranular atomic site fraction, 𝑓𝐼𝐺 , and 𝐹𝑖
𝑠, the fraction of 

site type ‘i’ in the defect type ‘s’, with s denoting grain boundaries (GB), triple junctions (TJ), 

quadruple nodes (QN) or the entire intergranular network (IG) inclusive of all GBs, TJs and 

QNs, i.e. 𝑓𝐼𝐺 = 𝑓𝐺𝐵 + 𝑓𝑇𝐽 + 𝑓𝑄𝑁. This gives an expansion of Eq. (2) as: 

 𝑋𝑡𝑜𝑡 = (1 − 𝑓𝐼𝐺)𝑋𝐶 + 𝑓𝐼𝐺𝑋̅𝐼𝐺 = (1 − ∑ 𝑓𝑠

𝑠

) 𝑋𝐶 + ∑ 𝑓𝑠

𝑠

𝑋̅𝐼𝐺  (6) 

where 

 𝑋̅𝐼𝐺 = ∑ 𝐹𝑖
𝐼𝐺𝑋𝑖

𝑖

 (7) 

and 

 ∑ 𝐹𝑖
𝐼𝐺

𝑖

= ∑ ∑ 𝐹𝑖
𝑠

𝑠𝑖

= ∑ 𝐹𝑖
𝐺𝐵

𝑖

+ ∑ 𝐹𝑖
𝑇𝐽

𝑖

+ ∑ 𝐹𝑖
𝑄𝑁

𝑖

= 1 (8) 

The mean concentration at defect type ‘s’ can then be calculated by averaging all sites of that 

type: 

 𝑋̅𝑠 = ∑ 𝐹𝑖
𝑠,𝑛𝑜𝑟𝑚𝑋𝑖

𝑠

𝑖

 (9) 

where 𝐹𝑖
𝑠,𝑛𝑜𝑟𝑚

 is the normalized site fraction of site type ‘i’ in the defect type ‘s’ that follows: 

 ∑ 𝐹𝑖
𝑠,𝑛𝑜𝑟𝑚

𝑖

= 1 (10) 

For the form presented in Eq. (6-10), 𝐹𝑖
𝑠, represents the partial site fraction in the whole 

intergranular network while the normalized form, 𝐹𝑖
𝑠,𝑛𝑜𝑟𝑚

, indicates the fraction of site type ‘i’ 

within its own defect type. In a similar manner, an “effective” segregation energy (∆𝐸̅𝐸𝑓𝑓 
𝑠 ) can 

be calculated by solving the equation: 

 
𝑋̅𝑠

1 − 𝑋̅𝑠
=

𝑋𝐶

1 − 𝑋𝐶
𝑒𝑥𝑝 [−

∆𝐸̅𝑒𝑓𝑓
𝑠

𝑘𝑏𝑇
] 

(11) 

and is equivalent to a single-value segregation energy in the McLean segregation isotherm that 

would achieve the same concentration as the spectral model. The current thermodynamic 

framework is essentially an extension of the White and Stein model [31], grouping sites by their 

defect type, ‘s’, and cognizant of solute balance in the manner of Eq. (2) by Ishida [20].  
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The above framework can also be cast in a continuous form by replacing summations with 

integrals:  

 𝑋̅𝐼𝐺 = ∑ ∫ 𝑑∆𝐸𝑖
𝑠𝑒𝑔

𝐹𝑖
𝑠(∆𝐸𝑖

𝑠𝑒𝑔
)𝑋𝑖(∆𝐸𝑖

𝑠𝑒𝑔
)

𝑠

 (12) 

 ∑ ∫ 𝑑∆𝐸𝑖
𝑠𝑒𝑔

𝐹𝑖
𝑠(∆𝐸𝑖

𝑠𝑒𝑔
)

∞

−∞𝑠

= 1 (13) 

 𝑋̅𝑠 = ∫ 𝑑∆𝐸𝑖
𝑠𝑒𝑔

𝐹𝑖
𝑠,𝑛𝑜𝑟𝑚(∆𝐸𝑖

𝑠𝑒𝑔
)𝑋𝑖

𝑠

∞

−∞

 (14) 

 𝐹𝑖
𝑠(∆𝐸𝑖

𝑠𝑒𝑔
) =

𝑓𝑠

𝑓𝐼𝐺
𝐹𝑖

𝑠,𝑛𝑜𝑟𝑚(∆𝐸𝑖
𝑠𝑒𝑔

) (15) 

where the 𝐹𝑖
𝑠(∆𝐸𝑖

𝑠𝑒𝑔
) denote site probability density functions instead of site fractions in the 

discrete spectrum model.  

The continuum framework of Eqs. (12-15), combined with the skew-normal approximation 

approach of Eq. (4), can be applied to interpolate and extrapolate intergranular segregation 

inclusive of the GB, TJ, and QN subspectra, which can each have their own distribution 

functions. This will help elucidate the grain size dependency of segregation due to the presence 

of TJs and QNs. It is important to stress that the thermodynamic framework used here is a dilute-

limit model; it does not contain any treatment for solute-solute interactions. In this work, the 

solutions from the discrete spectra, Eqs. (3, 6-11), are labeled as “discrete” and the continuous 

framework utilizing skew-normal distribution and Eqs. (3-4, 6, 11-15) are called “continuous”. 

Monte Carlo (“MC”) can alternatively be used to solve for the segregation state, using the 

segregation energies from molecular statics to determine solvent-solute site-swapping 

probabilities. All of these methods produce the same results, as described in detail in Ref. [25], 

and can therefore be used interchangeably. 

3. Grain Boundary Network Geometry 

Since we are interested in effects of grain size and the relative prominence of higher-order 

grain junctions upon intergranular segregation, we require a system geometry designed to hold 

all other variables essentially constant. We therefore build a single polycrystalline structure and 

rescale it to maintain the same specific defect crystallographies, while changing the grain size. 

Using the potential for Al from Ref. [40], a reference polycrystalline sample with 14 grains is 

randomly generated using Atomsk [44]. The fractional positions of grain centers in the 

simulation cell are then used to generate polycrystals with different grain sizes while maintaining 

self-similarity of the microstructure, as shown in Fig. 2, keeping constant the orientations of the 

grains. While it is difficult to cover all possible grain boundary crystallographies (let alone triple 

junction crystallographies), this structure was selected because it is large enough to provide a 
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reasonable degree of coverage over misorientation space, as shown for the 82 grain boundaries in 

the structure in Fig. 3 plotted by the MTEX software package [45] after annealing.  

The grain boundary planes in these simulations are those that form under equilibration in this 

configuration. Specifically, after generation, each polycrystal is annealed at 0.2 Tmelt for 50 ps 

then cooled to 0 K at 2 K/ps with a timestep of 1 fs, conditions chosen to maintain grain 

boundary network self-similarity while still relaxing the boundaries. Both annealing and cooling 

are done using the Nose-Hoover algorithm at zero pressure with the Large-scale 

Atomic/Molecular Massively Parallel Simulator (LAMMPS) software package [46–49]. Thus, 

although we do not explicitly sample the grain boundary plane in a statistical fashion, we do 

insure that the planes sampled are energetically appropriate for the misorientations constructed.  

For grain segmentation, we use the polyhedral template matching (PTM) method [50] 

implemented in the OVITO software package [51] to identify local lattice orientation. Using an 

angle tolerance of 1
o
 with a minimum grain size of 200 atoms, each grain is individually 

numbered and each atom is assigned to one grain. The grain segmentation algorithm follows Ref. 

[52] but with lattice orientations calculated from PTM. After grain segmentation, we employ 

nearest neighbor searches around non-FCC atoms, which are identified by adaptive common 

neighbor analysis [53,54] with a cutoff radius of 0.6 nm, and if there are two, three, or four 

distinct grain numbers in this neighborhood, the atom is then assigned as a grain boundary (GB), 

triple junction (TJ), or quadruple node (QN) atom, respectively. This leads to the average 

quadruple node population of about 35 atoms. Although the atomic volume of GB, TJ and QN 

atoms differ from FCC lattice, for comparison, the first three nearest neighbor shells of FCC-Al 

consist of 43 atoms. 

By assuming a constant grain boundary thickness, simple geometrical analysis can be used to 

connect grain size to volume fractions of the various atomic site types. For example, Wang et al. 

assumed an ideal tetrakaidecahedron grain geometry with an edge length of 𝑙 + ∆ enclosing one 

with edge length 𝑙 [34], to derive the volume fractions f
s
 for grain boundaries (s = GB), triple 

junctions (s = TJ) and quadruple nodes (s = QN) as: 

 𝑓𝐺𝐵 =  3𝑥3 − 6𝑥2 + 3𝑥 (16) 

 𝑓𝑇𝐽 = −3𝑥3 + 3𝑥2 (17) 

 𝑓𝑄𝑁 = 𝑥3 (18) 

where 𝑥 =  ∆/(𝑙 + ∆) is referred to as a relative grain boundary thickness. While the scaling 

laws encapsulated in Eqs. (16-18) are expected to be independent of grain shape, the coefficients 

are grain shape dependent. The meaning of ‘grain size’ may change with geometry as well, i.e., 

from edge length of a tetrakaidekahedron to diameter of a sphere, etc. To generalize this 

geometrical approach, we write similar polynomials, but explicitly define the grain size, d, as the 
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average spherical equivalent grain diameter and permit the coefficients to be tuned to account for 

different grain shapes:  

 𝑓𝑠 = 𝐴3
𝑠 (

𝑎

𝑑
)

3

+ 𝐴2
𝑠 (

𝑎

𝑑
)

2

+ 𝐴1
𝑠 (

𝑎

𝑑
) 

(19) 

 𝑑 = 2
𝐿

(𝑁
4
3 𝜋)1/3

 (20) 

Here a is an intergranular dimension, similar to ∆, L is the computational system size, with N 

grains. The grain sizes with the corresponding system size are listed in Table 1 for the ease of 

comparison. The 𝐴𝑖
𝑠 are polynomial coefficients which are characteristic of a specific grain 

structure.   

Our simulated polycrystals can be used to calibrate the unknown coefficients and a in Eq. 

(19), because each atom is identified uniquely with a single atomic site type, s. Fig. 4 shows the 

computed atomic fractions of all the site types, for all 13 self-similar grain structures. The best-

fitted form of Eq. (19) is also shown for comparison, the results of which are listed in Table 2. 

The polynomials are fitted subject to a convergence constraint of 𝑓𝐼𝐺 = 𝑓𝐺𝐵  + 𝑓𝑇𝐽 + 𝑓𝑄𝑁 = 1 

at 𝑑 = 𝑎, which has a specific value of 1.810 nm for the current structures. These values will be 

useful in what follows to scale grain boundary segregation distributions proportionally to the 

atomic fractions of each species, and therefore to extrapolate segregation behavior to other grain 

sizes not considered. 

 

Fig. 2. The series of geometrically- and crystallographically-self-similar structures used in this 

work, with system edge lengths of 10.0 (a), 12.5 (b), 15.0 (c), 17.5 (d), 20.0 (e), 22.5 (f), 30.0 

(g), and 40.0 nm (h). Panel (i) shows the grain boundary network of the 40.0 nm system with 

crystalline atoms made transparent. In all panels, the atoms are colored by their environment 

type, as crystalline (purple), grain boundary (teal), triple junction (green) and quadruple node 

(yellow). 
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Fig. 3. Misorientation distribution of the 82 grain boundaries in the simulated polycrystals using 

fundamental zone binning of the cubic symmetry group [55]. 

Table 1 System and spherical equivalent grain sizes (d) 

System Size (nm) Spherical Equivalent Grain size (nm) 

10.0 5.15 

12.5 6.43 

15.0 7.72 

17.5 9.01 

20.0 10.30 

22.5 11.58 

30.0 15.44 

40.0 20.59 
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Fig. 4. Defect fractions of the simulated polycrystals, fitted by the modified polynomials of grain 

boundary atomic fraction (f
GB

), triple junction atomic fraction (f
TJ

) and quadruple node atomic 

fraction(f
QN

). 

Table 2 Fitted grain geometry parameters for 𝑓𝑠, for use with Eqs. (20) 

s 𝑎 (nm) A3 A2 A1 

GB 

1.81 

1.00 -2.08 1.07 

TJ -1.54 1.51 0.0333 

QN 0.951 0.0817 -0.00510 

 

4. Assessing the Segregation Spectra 

The segregation energy spectra are calculated following the method of Ref. [25], which 

proposes a direct one-by-one solute substitution on each defect site in the structure followed by 

conjugate gradient minimization for structural relaxation. The resulting system energy gives the 

value of the dilute 𝐸𝑖
𝑠𝑒𝑔

 for site ‘i’, for use with Eq. (3). As an example, the total intergranular 

segregation spectrum is shown in Fig. 5 for the case of d = 5.15 nm. The result here closely 

matches the calculated spectra by Wagih and Schuh for the same alloy system [25,26]. However, 

with the present method, we are able to separate out individual subspectra for the GBs, TJs, and 

QNs. These normalized subspectra are also highlighted in Fig. 5a, and clearly are distinct from 

one another and from the total spectrum; the GBs, TJs, and QNs contribute unique sets of 

segregation sites to the structure. The spectra can also be represented normalized to their 

respective defect fractions to illustrate the relative importance of each defect type’s contribution 

to the total spectrum, as shown in Fig. 5b, although this mode of presentation does not reflect the 

distinct energetic states of the defect types as clearly as does the presentation in Fig. 5a. 



11 
 

Although the GBs, TJs, and QNs have distinctly different segregation site spectra, as seen in 

Fig. 5a, these subspectra are themselves effectively grain size independent. This is explored in 

more detail in Fig. 6. In Fig. 6a all of the distributions are shown, broken out by defect type. The 

results for all investigated grain sizes lie atop one another to within error: the intrinsic 

segregation distributions are characteristic of defect type specifically. The same data plotted as a 

function of grain sizes are represented by the box-whisker plots in Supplementary Fig. 2. These 

segregation energy spectra are fitted with a skew-normal distribution (cf. Eq. (4)) and the results 

are listed in Table 3 and Supplementary Table 1. As expected based on the observations in Figs. 

5 and 6, the fitted distribution parameters speak to greater segregation tendency (lower µ most 

obviously) for higher-order defects. 

 

Fig. 5. Normalized segregation subspectra (a) and fractional subspectra (b) of the system with 

the grain size of d = 5.15 nm. Fractional subspectra of grain boundary (●, blue), triple junction 

(▲, yellow) and quadruple node (■, green) sites are scaled according to the defect fraction in the 

intergranular network, which add up to the total spectrum labeled in red (*). 

 

Fig. 6. The cumulative distribution functions of grain boundary, triple junction and quadruple 

node spectra, which are found to be effectively independent of grain size. 
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Table 3 Fitted skew-normal distribution parameter of the system with d = 5.15 nm grain size 

Defect Type α μ (kJ/mol) σ (kJ/mol) 

GB -1.06 5.21 20.1 

TJ -1.48 4.51 20.9 

QN -1.55 2.38 20.4 

Total IG -1.19 4.13 20.2 

 

 

5. Ishida-type Grain size-dependence caused by Intergranular Site Spectrality 

As noted in the Introduction, Ishida [20] first noted the geometrical grain size effect related 

to changing site fractions as in Eq. (2) and Fig. 1a. When there are more site types present, such 

effects not only persist, but can become even more pronounced, as schematized in Fig. 1b. In this 

section, we explore this issue quantitatively. In order to separate this issue from the effects of 

higher-order junctions, we can explicitly take only the GB subspectrum from Fig. 6, neglecting 

the higher-order junctions, and perform an analysis of grain size dependence on it directly.  

A full calculation of this spectrality grain size dependence at finite temperature is shown in 

Fig. 7 and 8, obtained by computing the site occupation without the contributions of the higher-

order junction sites. We maintain the intergranular site fraction constant by rescaling according 

to the fitted polynomials in Fig. 4, so that the correct number of intergranular sites are always 

available, but they are all of the GB type at all grain sizes. Fig. 7a shows the site occupancy at 

X
tot  

= 0.05 and T = 700 K, with a large spike representing the crystalline sites at ∆𝐸𝑠𝑒𝑔 = 0. As 

grain size increases, we see the shift in the availability of intergranular and bulk sites, with more 

bulk sites at larger grain sizes. This results in more intergranular site occupancy at larger grain 

sizes observed by the shifts of the occupancy peak in Fig. 7a. It shall be noted here that Fig. 7 is 

plotted with a semi-log scale and hence the site density at the positive and negative tail of the 

distributions may appear as being omitted. They indeed exist in the spectra as shown in Fig. 5 

and 6. 

In contrast to this result, the simpler two-state McLean site occupancy with ∆𝐸𝑠𝑒𝑔 = −15  

kJ/mol is shown in Fig. 7b. As demonstrated by Ref. [25], the choice of this average segregation 

energy is arbitrary and depends on the temperature and concentration used for fitting. We choose 

-15 kJ/mol as an example case since this value can reproduce behavior at small grain sizes close 

to the spectral model (cf. Fig. 8a). More demonstrations of the choice of this average segregation 

energy can be found in the Supplementary Fig. 2.  This case does not exhibit spectrality; while a 

single GB site type does lead to the Ishida grain size dependence, it misses the nuance of the 

redistribution of solute over the GB spectrum, and thus misses an additional grain size 

dependence.  This is explored in Fig. 8a-c, where each of the compositions is presented explicitly 

as a function of grain size.  (We note that all methods of analysis (continuous, discrete and MC 
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as described in the procedural section) produce the same result here, as demonstrated in 

Supplementary Fig. 2 and 3.)  

All these panels show an excess grain size dependence from spectrality, but Fig. 8c most 

concisely summarizes the net effect that the segregation excess, 𝑋̅𝐼𝐺/𝑋𝐶, has a significantly 

steeper slope owing to the use of the full site spectrum as compared to the classical McLean 

isotherm. This corresponds in turn to a grain size-dependence of the effective segregation 

energy, ∆𝐸̅𝑒𝑓𝑓
𝑠𝑒𝑔

, as shown in Fig. 8d. 

 

 

 

Fig. 7. Solute site occupancy at X
tot  

= 0.05 and T = 700 K of selected grain sizes using (a) 

calculated GB subspectra and (b) a constant McLean segregation energy of -15 kJ/mol. The 

dashed-dot lines represent site density (areas under the curves are unity) with the solute 

occupancy with the solid lines.(i.e. all solid lines can be integrated to X
tot  

= 0.05).  
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Fig. 8. Grain size-dependence of (a) Intergranular solute concentration, 𝑋̅𝐼𝐺 , (b) crystalline 

concentration, 𝑋𝐶 , (c) solute excess, 𝑋̅𝐼𝐺/𝑋𝐶 , and (d) effective segregation energy, ∆𝐸̅𝑒𝑓𝑓
𝑠𝑒𝑔

, at X
tot

 

= 0.05 and T = 700 K. Solid lines (∙●) represent the spectral framework while the dashed-dot 

lines (▲) with a single segregation energy of -15 kJ/mol (McLean isotherm) is shown for 

comparison with the dilute spectral model. 

6. Grain Size Effects Due To Triple Junctions and Quadruple Nodes 

The spectra shown in Figs. 5 and 6 reveal that in polycrystals, TJs and QNs provide unique 

sites for intergranular segregation, and although all intergranular regions are generally favorable 

for segregation, the higher-order junctions are the most favorable in the present Al(Mg) alloy. To 

show the extent to which those TJ and QN sites affect local solute concentration differences, we 

proceed to evaluate the average concentration and effective segregation energy in equilibrated 

systems.  It should be noted that the dilute limit approximation is valid up to approximately 10% 

solute in the intergranular network in this Al(Mg) system [27], although here for the sake of 

better comparison we go beyond this level to more than 40% solute; this also permits comparison 

with Ref. [25] which has examined this particular spectrum in detail.  

The results are shown in Fig. 9, and looking first at Fig. 9a-b we see that with higher-order 

junction concentrations present, we achieve intergranular concentrations higher than typical GB 

concentrations alone. By the same token, the effective segregation energies of those higher-order 

defects are more favorable for segregation than the GBs, as seen in Fig. 9c.  These results can 

also be deconstructed to identify local values for the individual GBs, TJs, and QNs (of which 
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there are respectively 82, 158, and 92 in the present case). We achieve this by grouping 

intergranular atoms according to their nearest neighbor grains. The effective segregation energy 

at each individual GB, TJ, and QN are plotted in Fig. 10 to illustrate the degree of anisotropy that 

might be seen if individual defects were to be sampled in polycrystals. It is clearly seen that the 

spectrum of higher-order junction characteristics gives rise to a greater breadth of individual 

segregation energies than to the GBs alone. Thus, sampling of TJs and QNs via experimental 

methods requires adequate sampling across the junction space and the results obtained from a 

small sample size should be carefully interpreted. Lastly, we shall note that the neglected solute 

interactions for this specific interatomic potential [40] are expected to be positive (less 

segregation compared to the dilute limit) and can be included with the model described in Ref. 

[27]. 

Since the segregation subspectrum of the defect types is independent of grain size (cf. Fig. 6), 

the primary effect of grain size on the total segregation spectrum due to these features is their 

changing relative prominence in the intergranular network. To clearly see the grain size 

dependency, equilibrium intergranular concentration, crystalline concentration, solute excess, 

and effective segregation energy are plotted in Fig. 11 for all simulated systems (using the 

discrete framework). We also show the analytical results of the continuous distribution 

formalism, which extrapolates (Eq. (15)) using the defect subspectra of the system from the 

smallest grain size in this study.  

There is a true grain size dependence in both the segregated solute content (Fig. 11a-b) as 

well as the effective segregation energy (Fig. 11c) of the intergranular network due to the higher-

order junction subspectra. Eq. (15) and (19) allow us to interpolate and extrapolate, resulting in 

the solid lines in Fig. 11d-f. The dashed lines are calculated with GB subspectrum parameters 

such as used in the previous section, so they only reflect the cases where grain junction effects 

are neglected.  The primary grain size dependence seen here (the curvature of the trendlines) is 

therefore due to site spectrality, while the difference between the solid and dashed lines captures 

the additional increment of grain size dependence caused by the increasing presence of higher-

order junctions at small grain sizes. The magnitude of the junction subspectral shifts are less than 

the average segregation energy itself, and the junctions account for approximately 22% of the net 

grain size-dependence in this system (Grain junctions give rise to the ∆𝐸̅𝑒𝑓𝑓
𝑠𝑒𝑔

 shift of roughly 1.3 

kJ/mol compared to the total grain size dependence of approximately 6 kJ/mol in Fig. 11f.). For 

comparison, the results from the classical McLean isotherm are demonstrated here to show that 

the spectrality of segregation sites can significantly amplify Ishida’s size effect. This stresses the 

importance of the size effects in the context of intergranular solute segregation.  
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Fig. 9. Grain boundary, triple junction and quadruple node concentration (a), solute excess (b) 

and effective segregation energy (c) calculated from the discrete (solid lines), continuous (dashed 

lines) and MC (dots) framework of Al-Mg system with d = 20.59 nm at T = 700 K.  
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Fig. 10. Distribution of effective segregation energy of grain boundaries , triple junctions , and 

quadruple nodes of the system with d = 20.59 nm at X
tot 

= 0.05 and T = 700 K.  
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Fig. 11. Grain size dependency of (a) total intergranular concentration, (b) intergranular excess, 

and (c) effective segregation energy at 700 K calculated from the full discrete spectra. The 

subspectra from the finest grain size (d = 5.15 nm) polycrystal are combined with the defect 

fraction polynomials from Eq. (8) and Table 2 to produce extrapolated (d) 𝑋̅𝐼𝐺 , (e) 𝑋̅𝐼𝐺/𝑋𝐶  and 

(f) ∆𝐸̅𝑒𝑓𝑓
𝑠𝑒𝑔

 on the right (solid lines) which match the full discrete spectra (dot markers). Dashed 

lines calculated with only the grain boundary subspectrum and dash-dot lines with the McLean 

segregation energy of -15 kJ/mol are added to demonstrate the extent of junction effects. 

7. Conclusion 

In summary, we have presented a quantitative assessment of two new sources of grain size 

dependence caused by site spectrality in the intergranular solute segregation behavior of 

nanocrystalline materials. Using a defect identifying algorithm on a specific alloy Al(Mg), over a 

range of polycrystalline grain sizes, we separated effects of site spectrality and higher-order 

defects on dilute-limit intergranular segregation. The methodology presented here should be 

generalizable to other systems, and the physics of grain size dependent segregation in the present 

system are first examples of what could be canonical behaviors: 
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 The dilute defect (GB, TJ and QN) segregation subspectra of Al(Mg) polycrystals are 

effectively grain-size independent within the grain size range of 5-20 nm and can be 

approximated with a skew-normal distribution. When subspectra are combined, the total 

spectrum exhibits grain size dependency due to defect fraction scaling described by the 

polynomials from Eq. (19). This allows extrapolation via the dilute-limit framework with 

Eq. (15). 

 In the Al(Mg) binary system [40], junction subspectra are shown to prefer segregation 

even more strongly than the GB subspectra, leading to increased segregation at the finest 

grain sizes. 

 Even without the effects of higher-order junctions, site spectrality alone causes a 

significant grain-size dependency well beyond that expected from the classical McLean 

model, due to increases in the grain boundary coverage with grain size. This results in the 

grain-size dependence of solute distribution shown in Fig. 7-8. This effect is the majority 

of the size dependence in Al(Mg), while the higher-order grain junctions accounted for 

roughly 22% of grain size-dependence at X
tot 

= 0.05 and T = 700 K as demonstrated in 

Fig. 11e and 11f. 

 There is a crystallography-dependence of TJ and QN segregation, in analogy to that 

which is well-known in the GB misorientation space. Characterizing one specific junction 

can give behavior that deviates significantly from the average. This statistical aspect can 

be relevant when interpreting sampled experimental results. 

Finally, while the results in this study indicate the importance of considering grain junctions 

in nanocrystalline materials, we are not aware of systematic experimental studies on this issue, 

almost certainly because of the experimental challenges of producing and characterizing the 

finest nanocrystalline materials. With improvements in the resolution of STEM [36,56] and APT 

[35,57–60] we are hopeful that the issue may be addressable in the near future. There are a 

number of products [61] and simulated systems [25–27,39,62–64] involving alloys with grain 

sizes at the ~10-40 nm grain scale, so the relevance of these issues for both practical materials 

and the field of computational materials science could be significant.  
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