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Abstract  

Assessing the size of representative volume elements (RVEs) for fatigue-related applications is 

challenging. A RVE relevant to random microstructure requires a volume of material that is sufficiently 

large to capture the grain/phase heterogeneity that captures all statistical moments of the distribution 

of the driving force for fatigue crack formation at “hot spot” grains. Consequently, the large size of a 

microstructure RVE required to study fatigue phenomena is largely computationally intractable and 

difficult to explore. A more realistic objective in this work is to systematically study, as a function of the 

size of a statistical sample of microstructure, trends towards convergence of the simulated distribution 

of driving force for fatigue crack formation. The present work accordingly leverages the recently 

developed open-source PRISMS-Fatigue framework [Yaghoobi et al., npj Comput. Mater., 7, 38 (2021)] 

to examine the trends in convergence of extreme value distributions (EVD) of Fatigue Indicator 

Parameters (FIPs) in progressively larger polycrystalline microstructure realizations of FCC Al alloy 7075-

T6 using crystal plasticity finite element method simulations. The results are compared to the traditional 

method in which ensembles of statistical volume elements (SVEs) are simulated to build up statistics 

intended to approximate those associated with a larger volume of material. The convergence of EVDs 

with increase of size of a SVE of microstructure is closely related to the extent of grain nearest neighbor 

(NN) interactions. Accordingly, the sensitivity of the local micromechanical response at hot spot grains is 

quantitatively investigated by systematically varying the orientations of NN grains. Results indicate that 

SVEs with cubic crystallographic texture tend towards convergence of the EVD of FIPs with tens of 

thousands of grains while the random and rolled textures require larger volumes. Simple relationships 

based on microstructure parameters (e.g., Schmid Factor, grain size, NN misorientation) do not 

completely correlate to fatigue hot spot grains. Finally, the sensitivity of the extreme value fatigue 

response at hot spot grains extends to the 3rd NN when a single neighborhood grain orientation is 

altered.  
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1. Introduction 

Crystal plasticity finite element method (CPFEM) simulations are ubiquitous in studies of 

polycrystalline metal deformation, texture development, and low probability life-limiting events such as 

fatigue crack formation [1-3]. The latter requires a sufficient volume of simulated material to capture 

statistics of a larger ensemble of grain/phase heterogeneity. Instead of simulating a single, large 

representative volume element (RVE), statistical volume elements (SVEs) are multiple samples of 

microstructure that can be simulated as an ensemble to establish statistics of response as a concession 

to the high computational cost for simulation of a single large RVE [3]. The size of a RVE must be 

sufficiently large to contain all statistical moments of heterogeneous grain/phase spatial interactions 

that affect a target material property irrespective of boundary conditions [4, 5] and, therefore, will not 

vary with increased volume of the microstructural ensemble considered, i.e., RVE size. The convergence 

of elastic properties (e.g., elastic stiffness) typically requires the least volume of material, i.e., the 

smallest RVE, whereas properties that depend on plastic flow response (e.g., yield strength, cyclic stress-

strain curve) require larger volumes and associated RVEs. The RVE size is particularly large for local 

extreme value fields such as driving forces to form fatigue cracks in hot spot grains. In this case, the RVE 

must be large enough to sufficiently sample all possible grain orientation space and interactions 

amongst neighboring grains, which can be inordinately large. From a practical perspective, even the 

existence of a RVE for fatigue is a challenging issue to assess, since laboratory fatigue experiments 

invariably exhibit scatter at all specimen sizes considered, as do engineering components that fail via 

fatigue. Moreover, beyond randomness of microstructure, the issue of a RVE for fatigue response as 

measured via laboratory experiments includes effects of environment and surface condition that may 

not be considered in computational simulations. Even if the RVE size for extreme value driving forces to 

form and grow fatigue cracks cannot be fully resolved, some sense of the rate of convergence of theses 

extreme value driving forces with increases in the size of the highly stressed volume of microstructure is 

quite relevant to fatigue modeling. This is the primary thrust of the current paper. 

Let us consider polycrystalline materials. Several researchers have previously explored RVE size 

for certain behaviors of polycrystalline materials. Qayyum et al. [6] simulated the global and local stress-

strain response in progressively larger 2D and 3D RVE microstructures of single- and dual-phase steels. 

They concluded that 3D RVEs for this response must be at least five times larger than the average grain 

size. They later incorporated an isotropic ductile damage model based on the total accumulated plastic 

slip to assess differences in damage initiation for 2D and 3D RVEs [7]. Bong et al. [8] investigated a 
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bottom-up method to generate a RVE for dual phase steel DP980 using measured microstructural 

properties. Mechanical behavior was then determined using a standard continuum model, a CPFEM 

model, and a CPFEM model that included elastic interactions of discrete dislocations in the martensite 

and ferrite phases. The latter model better predicted strain hardening behavior and matched loading-

unloading and compression-tension experiments. Bouchedjra et al. [9] estimated the RVE size for 

convergence of macroscopic elastoplastic behavior in Al alloy 5083 with several microstructure 

realizations ranging from 10 to 250 grains. The elastoplastic and local response of different FCC RVE 

single crystals and polycrystalline microstructures was examined by Lim et al. [10] using various mesh 

resolutions, boundary conditions, and hardening models. Tu et al. [11] developed a workflow to 

generate statistically equivalent representative volume elements (SERVE) of Al alloy 7075-T651 that 

considered morphological and crystallographic distribution of grains and the presence of precipitates. 

They determined the minimum number of grains for microstructure-based and property-based SERVEs, 

having distinguished between these. The former corresponds to the minimum size at which the statistics 

of any crystallographic or morphological feature in the digital microstructure converges to that of the 

experimental data, whereas the latter corresponds to the minimum size that should be analyzed to 

predict some effective material property of interest. Sangid et al. [12] combined high energy x-ray 

diffraction microscopy (HEDM) and digital image correlation (DIC) coupled with electron backscatter 

diffraction (EBSD) to examine the stress-strain response of individual grains in Ni-base superalloy Haynes 

282 and Ti alloy Ti-7Al. The number of sampled grains necessary to constitute a RVE was determined 

using grain-level variability and was higher for Haynes 282 because of its larger grain size distribution, 

underlying precipitate structure, and the presence of annealing twins. Ozturk et al. [13] studied the 

convergence of elastic stress and strain fields in Ni-based low solvus high refractory (LSHR) superalloy 

using experimentally reconstructed and synthetic microstructures. The comprehensive review by 

Bargmann et al. [14] systematically classified the 3D RVE generation corresponding to specific responses 

for several heterogeneous engineering materials of interest. 

As previously mentioned, the present work considers the maximum driving force for fatigue 

crack formation as the response of interest. Fatigue Indicator Parameters (FIPs) serve as surrogate 

measures of the driving force for fatigue crack formation [3, 15] and can capture the effects of intrinsic 

and extrinsic microstructure properties (e.g., grain size [16] and morphology [17], crystallographic 

texture [17], surface roughness [18, 19], presence of inclusions [20], porosity [21], etc.) and loading 

conditions (e.g., applied strain state and magnitude [22]). FIPs can be related to experimentally 

measured fatigue life using an appropriate calibration process [16]. The Fatemi-Socie FIP has been 
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shown to correlate well with the transgranular fatigue crack formation driving force [23]. Other common 

FIPs include a grain boundary impingement FIP that considers the irreversible plastic shear strain 

accumulated at a grain boundary and the peak stress normal to this boundary [24], stored energy 

density [25], and a combination of the maximum local resolved shear stress and the peak hydrostatic 

stress [18]. To circumvent expensive CPFEM simulations, strategies have been developed to predict the 

extreme value response of larger microstructure SVEs. Stopka, Gu, and colleagues [26, 27] used extreme 

value theory to extrapolate FIPs to larger volumes of Ti alloy Ti-6Al-4V based on extreme value FIPs 

assessed using a limited number of simulated SVEs. A similar framework was developed by Lucarini and 

Segurado [28] using a crystal plasticity model of Ni-base superalloy IN 718 implemented into a Fast 

Fourier Transform (FFT) solver. Both methods require calibration and may be sensitive to material 

system, constitutive model employed, etc. 

Interactions between nearest neighbor (NN) grains critically affect the local fatigue response 

and directly influence the RVE size for fatigue related applications. Boyle and Curtin [29] investigated 

how the strain in a central grain of interest deviates from the global applied strain in an FCC material 

when i) the orientation of the grain of interest (GOI) is changed, ii) the orientations of the first NN grains 

are changed, and iii) the orientations of the second NN grains are changed. The microstructure 

instantiation was composed of cubic geometry grains with 343 grains in a 7 x 7 x 7 array. Each grain was 

then discretized with 1, 8, or 27 elements. They showed that for most of the tested configurations, 

deviations from the applied strain are primarily influenced by interactions with the surrounding grain 

environment, and not by the orientation of individual GOIs. Castelluccio and McDowell [30] similarly 

investigated FIP variability in a surface grain by altering the orientations of NN grains in FCC Ni-base 

superalloy RR1000. They also held the orientation of the GOI and orientations of the first NN grains 

constant and changed all other grain orientations (second NN grains and beyond). Grain interactions in 

the first NN grain layer affected variability of the maximum FIP by a factor of 2-3, while the orientations 

of second NN grains and beyond accounted for ~30% of the variability. In a recent work on dual-phase 

steels, Diehl et al. [31] compared the local stress-strain response at free surface grains after varying 

grain orientation, grain morphology, and volume fraction of two hard and soft phases in subsurface 

grains. Structural changes farther than about three average grain sizes were considered negligible for 

stress and strain partitioning. Variations in grain morphology and an increase in microstructure 

heterogeneity more strongly affected the local stress-strain response at the surface grains than changes 

in grain orientations. They also found that the assumption of a columnar grain structure introduces a 

strong simplification that may be misleading in 2D simulations of damage in 3D microstructures. 
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Dunne, Rugg, and Walker [32-34] introduced the concept of a rogue grain combination in high 

strength HCP Ti alloys, in which a primary grain is oriented with its c-axis at or near parallel to the 

loading direction (i.e., grain in a “hard” orientation) with adjacent grains oriented for easy slip on basal 

or prismatic slip systems (i.e., grains in “soft” orientations). These hard-soft grain combinations under 

cold-dwell fatigue loading are thought to result in fatigue facet nucleation. Interestingly, the effect of 

altering the grain orientation of a soft grain was limited to its first NN grains [32]. This has recently been 

highlighted as a significant difference between the local response of FCC and HCP alloys under fatigue 

loading [17]. Sauzay and Jourdan [35] examined the elastic response of a surface grain surrounded by 

NN grains with different FCC elastic anisotropies (aluminum, ferrite, copper, and austenite) and 

simulated under different loading conditions (tension-compression, equibiaxial, and shear loading). 

Random orientations for the NN grains were selected 60 times and finite element computations were 

used to quantify scatter in the stress of the well-oriented slip system in the surface grain. They also 

simulated grains in hard and soft orientations as described above to quantify the extreme value 

responses with a reduced computational cost [35].  

Let us consider a primary GOI. A hard grain positioned along the loading direction or a soft grain 

positioned transverse to the loading direction both enhance stress in the GOI. In contrast, a soft grain 

along the loading direction or a hard grain in the transverse direction diminish the stress in the GOI [36, 

37]. Abdolvand et al. [38] studied these critical grain combinations in commercially pure Zr and Ti. 

Samples were strained with in situ HEDM measurements to determine center of mass, average elastic 

strain, stress, and lattice orientation, and relative volume of each grain in the scanned volume. Digital 

microstructures using HEDM data were then reconstructed for CPFEM simulations. They found that 

grain-grain interactions had a significant effect on stress relaxation by simulating the reconstructed 

sample with different scenarios: i) lattice rotations disabled, ii) new random orientations assigned to 

grains with the same grain shapes and positions, and iii) simulating a new synthetic microstructure 

instantiation where each grain was represented by a single element [38]. Kawano et al. [37] formulated 

a metric called slip operation factor (SOF) to predict plastic slip in HCP α-Ti based on the Schmid Factor 

of a grain, the Schmid Factors of several NN grains, the critically resolved shear stress, and a spatial 

weight function. They later extended this method to consider individual and secondary slip systems [36]. 

Harte et al. [39] used EBSD and high-resolution DIC to measure plastic strain in Ni-based superalloy 

RR1000 strained to 2%. They found a weak correlation between grain plasticity and grain orientation 

derived metrics such as the Schmid Factor or Taylor Factor due to deformation bands at the mesoscale 

that were not crystallographic and complex interactions between grains. Musinski et al. [40] arrived at a 
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similar conclusion for Ni-based LSHR superalloy. Harte et al. [39] concluded that the use of the Schmid 

Factor and the concept of “hard” and “soft” grains may be appropriate for plastic deformation analysis 

in more anisotropic materials (e.g., HCP Ti alloys as described above), but that these are not as relevant 

to FCC γ/γ’ Ni-based superalloys at small global plastic deformation. 

Increases in computational resources and algorithm efficiency now allow for massive CPFEM 

simulations to evaluate the micromechanical response of polycrystalline metals and alloys. These tools 

can be used to evaluate distributions of fatigue parameters over large statistical volume elements of 

microstructure, defined earlier as SVEs. The recently developed open-source PRISMS-Fatigue framework 

can generate very large SVEs of microstructure, perform CPFEM simulations, and compute volume-

averaged FIPs [41]. PRISMS-Fatigue is a highly efficient, flexible, scalable, and easy-to-use Integrated 

Computational Materials Engineering (ICME) community platform. It is a component of the Center for 

PRedictive Integrated Structural Materials Science (PRISMS Center) suite of high performance open-

source software [42] and uses PRISMS-Plasticity as its CPFEM engine [1, 43, 44]. Furthermore, it is linked 

to the Materials Commons [45] to record simulations and workflows and to publish and share data with 

collaborators. 

The goal of this article is to leverage the advanced capabilities of PRISMS-Fatigue to employ 

CPFEM to evaluate FIP characteristics in very large polycrystalline microstructure SVEs of FCC Al alloy 

7075-T6 and to consider how the associated extreme value distributions (EVDs) of FIPs may converge 

with increase of SVE size, which would point to an approach towards RVE response. More specifically, 

one of the goals is to determine whether progressively larger microstructure SVEs manifest FIP EVDs 

with gradually larger magnitudes, and to investigate the structural characteristics or spatial correlations 

of hot spot grains that manifest the highest FIPs. Subsequently, a systematic study on the largest SVE 

investigates the influence of NN grain interactions on the extreme value FIPs. We emphasize that this 

type of design of experiments (i.e., altering the grain neighborhood at fatigue hot spots) is 

straightforward to implement in this type of computational study but is much more challenging (if not 

impossible) to pursue in physical experiments. Section 2 reviews the crystal plasticity model, generation 

of digital microstructure SVEs, calculation of FIPs, and extreme value statistics. Section 3 then 

investigates the combined effects of crystallographic texture, grain morphology, and different sized SVEs 

on the extreme value fatigue response. Progressively larger SVEs with the same target number of grains 

are simulated in Section 4, the largest of which contains over 160,000 grains discretized by a 2503 = 

~15.6 million finite element mesh. The structural characteristics of the ~5-10 highest FIPs in the 
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~160,000 grain SVE are then investigated, specifically whether the concept of “hard” and “soft” grains is 

relevant to fatigue hot spots in this material system. Section 5 quantifies the effects of NN grains on the 

extreme value FIPs in the ~160,000 grain SVE. Section 6 provides a discussion of the results, and we 

draw conclusions in Section 7. 

 

2. Methodology 

This section describes the tools used in this study. The crystal plasticity constitutive model and 

digital microstructure SVE generator are first reviewed. The use of FIPs as surrogate measures for the 

driving force for fatigue crack formation and their volume averaging scheme is described next. Finally, 

extreme value statistics are reviewed. 

 

2.1. Crystal plasticity model 

The rate-dependent crystal plasticity model implemented in PRISMS-Plasticity [1, 41, 46] is 

employed here to calculate FIPs. The model can capture both isotropic and kinematic hardening. The 

deformation gradient tensor � is multiplicatively decomposed as 

� � ���� (1) 

where �� and �� are the elastic and plastic deformation gradient tensors, respectively. Next, the 

macroscopic velocity gradient tensor � is additively decomposed as 

� � �� � �� (2) 

where �� and �� are the elastic and plastic velocity gradient tensors, respectively. The plastic velocity 

gradient tensor can be obtained by compiling the shearing rates of different slip systems, i.e., 

�� � ��	�	
� � � 
����	��
���

 (3) 

Here, 
�� is the shearing rate on the ��� system, �� is the number of slip systems, and �� is the Schmid 

tensor for the slip system � in the intermediate configuration defined by 

�� � ��⨂	�� (4) 
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where unit vectors �� and �� are in the slip direction and slip plane normal direction, respectively, for 

slip system � in the intermediate isoclinic configuration. 

The flow rule in the rate-dependent crystal plasticity model is given by 


�� � 
�� ��� �  �!� �" sgn&�� �  �' (5) 

where 
�� is the reference shearing rate, ( is the inverse strain rate sensitivity exponent, �� is the 

resolved shear stress for slip system �, and !� and  � are the slip resistance and back stress of the slip 

system �, respectively. 

 Isotropic hardening via the slip resistance is assumed to follow 

!�� ��)�*
�*
*

 (6) 

where )�* are the hardening moduli which control the change in the slip resistance for slip system � by 

virtue of slip on system +. The hardening moduli )�* are defined using a power-law relationship [47], 

i.e., 

),- �
./
0
/1)�- 21 � !-!�-4

56 if α � β	&coplanar		systems'
)�-E 21 � !-!�-4

56 										if α F β	
 (7) 

Here, E is the latent hardening ratio, )�- denotes the hardening parameter for slip system β, !�- is the slip 

resistance at hardening saturation for slip system β, and G- is a material constant for slip system β 

which governs the sensitivity of the hardening moduli to the slip resistance. 

The kinematic hardening in the crystal plasticity model is assigned using a two-term Ohno-Wang 

type evolution law, i.e.,  

 �H� � )H
�� � IH J| H�|LH M
"N  H�|
��|,							 �� �� �H�P

H��
 (8) 

where IH and )H are material constants, and the variables LH � )H IHQ , and (H control the dynamic 

recovery. Note that Eq. (8) reduces to the Armstrong-Frederick back stress formulation in the case of 
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(H � 0. The two-term back stress formulation in Eq. (8) decouples the back stress response into short- 

and long- range components that are necessary for appropriate model calibration [48]. 

The material model parameters were calibrated by Hennessey et al. [48] for the cyclic response 

of Al 7075-T6 alloy using fully reversed quasi-static cyclic stress-strain data at strain amplitudes of 1.0% 

and 1.8% at room temperature. Hennessey et al. [48] used experimental peak stress-plastic strain 

response data to calibrate the model. The only difference in the model employed here are the values of 

m1 and m2, which are selected as 70 instead of 200 [41]. The hardening in the current work is assumed 

to be purely kinematic to capture the cyclically stable response of Al 7075-T6 alloy, i.e., isotropic 

hardening is not considered. Precipitates in this material system are not explicitly represented in the 

model or microstructure SVEs but they were implicitly considered in model parameter calibration by 

Hennessey et al. [48]. The elastic constants are S�� � 107.3	GPa, S�P � 60.9	GPa, and	S\\ � 28.3	GPa 

[41, 48]. A reference shearing rate of 
�� � 0.001	!
� and an inverse strain rate sensitivity of ( � 75 

were used in all simulations. Model parameters are summarized in Table 1. 

 

Table 1. The material model parameters for the Al 7075-T6 crystal plasticity model. 

( !�	&MPa' )�	&MPa' I� )P	&MPa' IP (� � (P 

75 35 2 a 10b 2 a 10\ 1.35 a 10c 1421 70 

 

The crystal plasticity model and consequently the fatigue analysis cannot capture the effects of 

grain size and grain boundary-mediated slip transfer. To address grain size effects, one can use strain 

gradient models [49, 50]. Furthermore, the isotropic and kinematic hardening models used in the 

current model are phenomenological. These can be enhanced by incorporating dislocation density-

based hardening laws [49]. The focus of the current work is on the effect of statistical ensemble size and 

grain neighborhood for fatigue analysis, whereas the effect of grain size and physically-based hardening 

laws can be incorporated as a future study. 

 

2.2. DREAM.3D microstructure SVE generation 

Microstructure SVEs are generated using the open-source DREAM.3D software [51]. The 

methodology outlined by Groeber et al. [52, 53] to first statistically characterize polycrystalline materials 
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using EBSD and serial-sectioning [52] and then to digitally reconstruct the samples for simulation [53] 

led to the development of DREAM.3D. It is commonly used to generate synthetic microstructure SVEs 

for subsequent simulation but can also reconstruct experimental microstructures using grain centroids 

and relative volumes from HEDM experiments [54, 55], and use statistics from these reconstructions to 

generate statistically equivalent microstructures [56]. The Python module entitled 

generate_microstructures.py in PRISMS-Fatigue calls DREAM.3D as a subprocess to generate the 

microstructure SVEs and create the necessary files for PRISMS-Plasticity CPFEM simulations and 

subsequent FIP calculations. 

Periodic microstructure SVEs are generated to accord with the periodic boundary conditions 

applied in the CPFEM simulations, which are described in the next section. Grain size follows a 

lognormal distribution with a mean and standard deviation of 14 µm ± 2 µm. The combined effects of 

grain morphology, crystallographic texture, and the number of grains simulated on the extreme value 

fatigue response are studied in this work. The smallest SVEs simulated contain ~250 grains represented 

by 293 voxels and are shown in Fig. 1a and Fig. 1b for equiaxed and elongated grain morphologies, 

respectively. Grains are elongated in the X direction with a ratio of 5:1:1 to represent cold-rolled 

morphology [17, 57]. Both grain morphologies result in the same nominal number of grains per SVE [17]. 

Three common crystallographic textures are examined with orientation distribution function (ODF) pole 

figures shown in Fig. 1. These include cubic (observed after recrystallization or homogenization heat 

treatment [58]), random, and rolled (observed after cold rolling [59]). 

 

 

Fig. 1. Sample 293-element microstructure statistical volume elements (SVEs) with a) equiaxed and b) 
elongated grain morphology. In the latter, grains are elongated in the X direction with the ratio 5:1:1 
[17, 57]. Orientation distribution function (ODF) pole figures for the c) cubic (observed after 
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recrystallization or homogenization heat treatment [58]), d) random, and e) rolled (observed after cold 
rolling [59]) crystallographic textures [41]. 

 

 

 

2.3. Boundary and loading conditions  

Periodic boundary conditions are imposed in all three directions using multi-point constraints 

for all SVEs of microstructures simulated in this work. The efficacy of these constraints was previously 

investigated and shown to work well to emulate bulk, subsurface material response [60]. Previous 

computational studies have extensively investigated the surface vs. subsurface effect on the extreme 

value fatigue response of SVEs [17, 41, 60]. The goal of this work is to evaluate the effects of sample size 

and grain neighborhood; accordingly, all simulations employ periodic boundary conditions to exclude 

surface effects. 

All simulations undergo fully reversed (Rε = -1) uniaxial cyclic straining to a strain amplitude of 

0.7% (representative of high cycle fatigue (HCF) loading with limited macroscopic plastic strain) with 

zero initial strain and back stress. Straining is initiated in compression and reduced integration elements 

are employed. Two cycles are applied after which FIPs are computed for each integration point and 

volume averaged over a complete loading cycle. Local variables rapidly saturate using the crystal 

plasticity model employed and so further cycling is not warranted. The convergence of FIPs after two 

cycles for a single microstructure SVE is shown in the supplementary information. Additionally, the 

largest microstructure SVE simulated in this work contains 2503 = 15,625,000 elements, which is quite 

computationally demanding. All SVEs are uniaxially strained in the X direction as shown in Fig. 1a and 

Fig. 1b, i.e., SVEs with elongated grain morphology are uniaxially strained in the direction of grain 

elongation. SVEs are also strained in the X direction relative to the crystallographic ODF pole figures 

shown in Fig. 1c-e. 

2.4. Fatigue Modeling and Fatigue Indicator Parameters 

For HCF experiments on polycrystalline metals, the early stages of fatigue crack formation and 

growth are strongly influenced by the microstructure [3, 61]. Crack formation is very complex since the 

crack size is comparable to the grain size at initial stages of fatigue life. Accordingly, microstructure 

features as well as the deformation mechanisms within grains and interactions of grain boundaries (GBs) 
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with the small fatigue cracks are important [61]. We may consider crack formation in HCF to be 

comprised of crack nucleation plus early growth to a size comparable to the grain size. In the case of 

HCF, the crack formation phase is a significant fraction of the sample lifetime. Accordingly, the HCF life is 

strongly influenced by its microstructure. This leads to both strong dependence of mean fatigue lifetime 

on microstructure, as well as large variability of lifetime in the HCF regime. 

For purposes of computational simulation of estimated driving force, we employ FIPs as 

computable quantities of interest within individual grains/subgrain regions [3]. FIPs serve as surrogate 

measures for the driving force for fatigue crack formation. Many FIPs and fatigue damage parameters 

have been introduced and evaluated over the last two decades [3]. Fatemi and Socie [62] considered the 

maximum plastic shear strain range on a plane and the peak stress normal to this plane in their FIP 

definition. A crystallographic version of the Fatemi-Socie FIP is employed in this work, i.e.,  

def� � g
h�2 i1 � j k��kl m (9) 

where ∆
h� is the range of cyclic plastic shear strain on the αth slip system, k�� is the peak stress normal 

to this slip plane, and j controls the influence of k�� which is normalized by the macroscopic yield 

strength kl [23]. j and kl are set to 10 and 517 MPa, respectively [17, 22]. Stopka and McDowell [22] 

recently reviewed a series of FIP formulations. Bozek, Hochhalter, and colleagues [63-65] established a 

framework to investigate fatigue crack incubation at constituent particles and subsequent nucleation to 

the surrounding matrix in aluminum alloy 7075-T651. They demonstrated that slip-based metrics 

computed over appropriate domains could determine which incubated cracks nucleate. FIPα (herein 

referred to simply as FIP) is employed here as an exemplar of a surrogate driving force for fatigue crack 

formation to facilitate computational exploration of extreme value fatigue response of large 

microstructure SVEs. 

FIPs are computed for each integration point and must be subsequently volume averaged over a 

defined volume for two primary reasons: (1) to reflect the fatigue damage process zone (since fatigue 

cracks form over some volume and not at a point) and (2) to mitigate the effects of mesh sensitivity [3]. 

Selection of the defined volume requires careful consideration. FIPs averaged over the entire grain are 

computationally the least demanding but the variation in grain size means that FIPs are averaged over 

different volumes which may skew the interpretation of the data. Additionally, fatigue crack formation 

occurs within a damage process zone at sub-grain scales on the order of up a few microns and not 

across an entire grain/phase, although it may or may not propagate rapidly across this grain/phase. 
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Thus, averaging of FIPs over entire grains may smear extreme FIP values in hot spot regions of the grain 

and underestimate the actual driving force. 

Castelluccio and McDowell [16, 30] introduced the concept of grain banding in which the 

elements of a grain are divided into slip bands that are parallel to crystallographic slip planes (see Fig. 5a 

in Ref [41]). FIPs can then be averaged over these bands that accord with experimentally observed 

transgranular fatigue crack formation and early growth on crystallographic slip planes and serve to 

mitigate mesh sensitivity. Stopka and McDowell further subdivided these bands into sub-bands to hold 

the averaging volume constant [17, 22]. In this work, FIPs are averaged over these sub-bands to provide 

a regularized averaging scheme (Fig. 5b in Ref [41]). Other researchers have recently developed other 

volume averaging schemes for fatigue metrics [21, 66]. The Python module calculate_FIPs.py in PRISMS-

Fatigue allows the user to choose from a library of FIPs. The volume_average_FIPs.py module then 

allows the user to volume average FIPs over grains, bands, or sub-bands. Stopka et al. [27] previously 

investigated the effect of different sub-band averaging volumes on FIP EVDs. 

 

2.5. Extreme value statistics of FIPs 

After FIPs are computed and volume averaged, the highest values are fit to the Gumbel EVD. 

Distributions of a single variable with a sufficiently large sample size n will converge to one of three non-

degenerate distributions: 1) Gumbel, 2) Fréchet, and 3) Weibull [67]. The latter requires an upper bound 

on the data and is therefore not considered. FIPs have previously been characterized well by both 

former distributions with subtle difference depending on whether fully periodic or “thin film” boundary 

conditions were prescribed [68]. FIPs are fit to the Gumbel EVD in this work which is expressed as 

dop&q�' � rstu�r
�p&lp
vp'w (10) 

where Fyz&y{' is the probability that the value Y{ will be less than or equal to y{, u{ is the 

characteristic largest value of the sampled population, and α{ is an inverse measure of dispersion of the 

largest value of the population [67]. FIPs are sorted in ascending order and their probabilities are 

estimated by 

do~�q�� � � � 0.3� � 0.4 (11) 

where j is the rank order of the corresponding FIP, and n is the number of FIPs from a single or multiple 

SVEs. Eq. (11) is written as a linear function of y in the form  
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�� i�� J 1dop&q�'Mm

� � ��q� � ���� (12) 

where α{ is the slope and �α{u{ is the y-intercept. In this mathematical form, data that are well 

characterized by a Gumbel distribution appear as a straight line. Only a single sub-band volume 

averaged FIP is considered per grain. Gu et al. [26] examined the convergence behavior of FIPs fit to the 

Gumbel EVD and devised a strategy to predict the maximum FIPs in larger volumes using extreme value 

theory. This requires a rigorous consideration of a FIP threshold in the fitting process. In this work, some 

number of the highest FIPs (either 50 or 100, depending on the total number of grains simulated) from 

each SVE or SVE ensemble are fit to the Gumbel EVD for the sole purpose of rank ordering relative 

fatigue resistance, i.e., only the highest FIPs are of interest since these are associated with the highest 

driving forces for fatigue crack formation. The Python module entitled compile_and_plot_FIPs.py in 

PRISMS-Fatigue performs these tasks and allows the user to fit FIPs to either the Gumbel or Fréchet 

EVD. 

 

3. Crystallographic texture and grain morphology effects on FIP EVDs 

The effects of crystallographic texture and grain morphology on the convergence of FIPs are 

investigated using two different scenarios for a given microstructure: 

• The FIP EVDs for an ensemble of smaller SVEs are compared to the FIP EVDs of a single large 

microstructure SVE that contains the same total number of grains as the ensemble 

• FIP EVDs for progressively larger SVEs with many more grains are compared 

Three microstructure SVE sets are generated and simulated for each combination of texture and 

morphology. The first set is an ensemble of 30 SVEs each with 293 elements and ~250 grains, and 

therefore a total of ~7,500 grains. The second set is a single, larger SVE for the same statistical target 

microstructure with 903 elements and the same total of ~7,500 grains. The third set is also a single but 

much larger SVE with 1603 elements and ~41,000 grains, and therefore more than five times the volume 

and grains of the two previous SVEs. The first, second, and third sets contain (30 x 6) = 150, 6, and 6 

microstructure SVE realizations, respectively, which are subjected to fully reversed uniaxial cyclic 

straining at a strain amplitude of 0.7% as described in Section 2.3. 

The macroscopic cyclic stress-strain response of the SVEs in this section does not vary with the 

number of grains simulated (see supplementary Fig. S2). The cubic texture manifests a slightly softer 
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response since plastic deformation is, on average, more homogeneously distributed. The macroscopic 

response is also unaffected by grain morphology, but it is important to note that the SVEs here are 

strained in the direction of grain elongation. The macroscale response of SVEs with as little as ~250 and 

many as ~160,000 grains were previously shown to be indistinguishable (see Fig. 3e in [41]). Thus, the 

RVE size for macroscale stress-strain response is readily achieved, but this is not the case for the 

microscale response or FIP hot spots. The latter will be discussed in the next subsection while the former 

is investigated below. 

The cumulative effective plastic strain, defined as ���� � ��P� ��h: ��h �� where �h is the plastic 

strain tensor, is extracted from each voxel at the conclusion of the simulations and is shown in Fig. 2 for 

the second and third microstructure SVE sets depicted in Fig. 3b and Fig. 3c. We previously showed that 

distributions of ���� from SVEs of the same target microstructure follow similar trends but are not 

identical [60], and so identical responses are not expected between the different-sized SVEs of a given 

crystallographic texture and grain morphology. The distributions differ mainly due to texture with little 

effect due to SVE size and grain morphology. The ���� is more homogenously distributed in the cubic 

texture with no voxels exhibiting particularly low or high values while the random and rolled texture 

distributions are broader and lead to fatigue hot spots that are investigated next. 

 

 

Fig. 2. Distributions of cumulative effective plastic strain (����) for the second and third microstructure 
SVE sets of Section 3 for the a) equiaxed and b) elongated grain morphology. The ���� is extracted from 
each voxel at the conclusion of the simulations. The Y axis shows the fraction of data at each value of ���� since the ~7,500 grain and ~41,000 grain SVEs differ in number of voxels (i.e., 903 and 1603 voxels, 
respectively). 
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3.1. Smaller SVE ensemble response versus a single large SVE   

FIPs are computed for each SVE in the first set of an ensemble of smaller SVEs and compiled, 

after which only the highest 50 are considered. In the second and third cases (Fig. 3b and Fig. 3c), the 

highest 50 FIPs from each single larger SVE are considered. The first comparison is made between FIP 

EVDs for the same nominal number of simulated grains from an ensemble of smaller SVEs and a single 

large SVE, as shown in Fig. 3a and Fig. 3b, respectively. This comparison permits the rank ordering of 

relative fatigue resistance between the six different combinations of crystallographic texture and grain 

morphology. The variability in the extreme value FIP for multiple microstructure realizations of the same 

target microstructure and sample size will be investigated later. The six data sets from both scenarios 

are comparable and FIP rank ordering is unchanged. The axis limits are identical in all figures to facilitate 

straightforward comparison. The FIPs for the cubic textured microstructure show the highest resistance 

to fatigue (i.e., the lowest FIPs) whereas the rolled texture with equiaxed grain morphology displays the 

highest FIPs and therefore least resistance to fatigue. As will be demonstrated later, simulating a limited 

number of grains (e.g., ~7,500) is insufficient to constitute a RVE for EV FIPs. In other words, different 

realizations of a single large SVE or SVE ensembles may result in substantial variability amongst FIP EVDs. 

However, a limited number of simulated grains, namely EV FIPs from an ensemble of smaller SVEs, may 

suffice for rank-ordering of fatigue resistance; this is clearly indicated by comparing Fig. 3a and Fig. 3b to 

Fig. 3c. An interesting observation is that the elongated grain morphology reduces extreme value FIPs, 

which is most likely a consequence of plastic shear strain constraints due to the reduced mean free slip 

path. It is expected that cyclic straining in another direction, perhaps perpendicular or at 45° to the 

elongated morphology, would produce the opposite effect and result in substantially higher FIPs. 
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Fig. 3. Comparison of the highest 50 sub-band volume averaged FIPs from ensembles of SVEs with 
different grain morphologies and crystallographic textures. As larger SVEs are simulated, a greater 
number of critical grain orientations and neighborhood interactions that manifest high FIPs are 
captured. In a), ensembles of 30 smaller SVEs are simulated. The same total number of grains are 
simulated for each combination of crystallographic texture and grain morphology in b) but with a single 



18 
 

larger SVE. In c), an even larger SVE is simulated for each of the six data sets with more than five times 
as many grains. 

3.2. Simulating larger volumes 

As larger SVEs with more grains are simulated for a given target microstructure, the likelihood of 

capturing grains oriented favorably for significant slip increases. It will be shown later that grain 

orientation alone does not account for the highest FIPs, but it is nonetheless an important factor. FIPs 

from progressively larger SVEs are compared in Fig. 3b and Fig. 3c. The cubic textured FIPs show a 

minuscule increase, whereas the other textures and morphologies increase significantly. In particular, 

the equiaxed grain morphology for the random and rolled textures shows the largest increase in FIPs. 

Even though more than five times as many grains are simulated, the relatively smaller increase in cubic-

textured FIPs is due to a reduced probability of grains oriented for significant slip. Analysis of the cubic 

ODF pole figure in Fig. 1c shows that on average, eight of the 12 available slip systems are equally 

activated with an apparent Schmid Factor (SF) of 0.41 [69]. On the other hand, grains favorably oriented 

for significant slip are much more likely in the other two textures. Using lines of best fit to the FIPs in Fig. 

3b and Fig. 3c, we can compute the percent increase in the 99th percentile FIPs between the ~7,500 

grain and ~41,000 grain SVEs. These are between 1.5% and 8.0% for the cubic texture and as high as 

26.6% and 25.0% for the random and rolled textures, respectively (data available in Table S1 of the 

supplementary information). Therefore, it may be concluded that cubic-textured microstructure SVEs 

require on the order of tens of thousands of grains for FIP EVDs to begin to approach conditions of 

convergence to RVE size for this response. 

 

4. FIP convergence and variability with SVE size 

The results presented in Fig. 3 demonstrate that FIP convergence is primarily affected by the 

number of grains simulated. Here, four different SVE sizes are generated with random crystallographic 

texture and equiaxed grain morphology to examine the following scenarios: 

• Whether the FIP EVDs from some number of SVEs comprising an ensemble converge to that of a 

single massive SVE comprising all the grains in the associated SVE ensemble 

• Whether FIP EVDs tend to converge to some upper bound value as very large SVEs are 

simulated. 
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Each set contains progressively larger SVEs. A sample SVE from each of the four sets is shown in Fig. 4. 

The largest SVE contains over 160,000 grains discretized by a 2503 = 15,625,000 finite element (FE) 

mesh. The SVEs generated and simulated here demonstrate the powerful capabilities of the PRISMS-

Fatigue framework not only in terms of scalability for massive SVE CPFEM simulations but also for pre- 

and post-processing of the associated data sets. Moreover, other material systems with a larger grain 

size can be generated with the same number of grains as the largest sample shown here but with a 

physical size approaching an actual laboratory specimen. For instance, at the same grain mesh 

resolution (~98 elements per grain), a material with a lognormal mean grain size of 60 µm yields a 

microstructural volume (RVE) with a side length of 2.625 mm. Crystal plasticity simulations previously 

inaccessible in more conventional serial FE codes are made possible using the high performance 

capability of PRISMS-Fatigue [41]. 

 

Fig. 4. SVEs with random crystallographic texture generated using DREAM.3D for the large scale FIP 
comparison. Each of the four SVE sets contain ~160,000 – 165,000 grains. The bottom row shows 
variation in element-level Fatigue Indicator Parameters (FIPs) throughout the samples. Although some 
element-level FIPs are larger than the legend maximum of 0.005, the purpose is to emphasize the 
heterogeneity of FIPs throughout the samples. 
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The overall cyclic stress-strain responses of the different sized SVEs in Fig. 4 were previously 

shown to be expectedly indistinguishable (see Fig. 3e in [41]). Each SVE set undergoes fully reversed 

uniaxial cyclic straining at a strain amplitude of 0.7%. The highest 100 FIPs are then extracted from each 

case individually and fit to the Gumbel EVD in Fig. 5a, Fig. 5b, and Fig. 5c for the ~7 500, ~41 000, and 

~80 000 grain SVE sets, respectively. In Fig. 5d, the highest 100 FIPs from the entire ensemble of the 

three previous SVEs are compiled and fit to the Gumbel EVD alongside the 100 highest FIPs from the 

~160,000 grain SVE. The variability between FIP EVDs is greatest across the 22 smallest ~7,500 grain 

SVEs. However, it is inappropriate to draw conclusions regarding FIP EVD variability between these 

figures since Fig. 5b and Fig. 5c depict only four and two data sets, respectively. It may be concluded, 

however, that more variability would be expected between the distributions in Fig. 5a since these SVEs 

contain the least number of grains. Thus, some SVEs will contain one or multiple grains that manifest 

higher FIPs compared to the others. Larger SVEs have increased probability of manifesting high FIPs 

because more grains are sampled [70]. Fig. 5c is striking because the two FIP EVDs appear almost 

indistinguishable. Two experimental specimen sets with different critically stressed volumes under 

identical applied stress or strain conditions would be expected to display different variability in fatigue 

response (e.g., fatigue life measured by number of cycles to form a crack on the order of grain size). The 

specimen set with the smaller critically stressed volume would unquestionably exhibit higher fatigue life 

due to a decreased probability of finding a critical hot spot for fatigue crack formation [70]. Moreover, it 

would also be expected to display higher variability in fatigue life because a relatively limited number of 

grains are sampled. It is important to note that FIP EVD variability is greatest in the low probability 

regime (i.e., high cumulative probability), particularly evident in Fig. 5a and Fig. 5b. 

In Fig. 5d, the 100 highest FIPs from each of the previous three SVE sets are fit to the Gumbel 

EVD alongside the highest 100 FIPs from the ~160,000 grain SVE. There is remarkable overlap between 

all four data sets in the high probability regime towards the left in Fig. 5d, suggesting that any of the four 

microstructure sets can be individually pursued to generate a reliable FIP EVD, i.e., each set collectively 

establishes a reliable RVE for fatigue related applications. Furthermore, an ensemble of smaller SVEs or 

a single large SVE can both be used for relative fatigue rank ordering of microstructures based on FIP 

EVDs. There is, however, a distinct discrepancy in the low probability regime associated with the highest 

FIPs for each SVE or SVE ensemble. The eight highest FIPs from the ~160,000 grain SVE (purple star 

markers) deviate from the other three data sets. The grains that manifest these highest FIPs are 

investigated next. To the best of the authors’ knowledge, the analysis of extreme value FIPs in the 

~160,000 grain SVE here utilizes the largest microstructure-sensitive cyclic CPFEM simulation reported 
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to date [41], not considering other simulation schemes such as FFT crystal plasticity [28, 71], for 

example. 

 

Fig. 5. The highest 100 FIPs compiled and fit to the Gumbel extreme value distribution for the SVE sets 
shown in Fig. 4: a) ~7,500 grains x 22 SVEs, b) ~41,000 grains x 4 SVEs, and c) ~80,000 grains x 2 SVEs. In 
d), the highest 100 FIPs from each of the previous SVE ensembles are compiled and plotted alongside 
the 100 highest FIPs from the ~160,000 grain SVE. 

 

4.1. Material structure correlations for the hot spot grains 

To exploit the massive scale of the ~160,000 grain SVE simulation, structural features in the 

neighborhoods of the distinctly high FIPs observed in Fig. 5d are further investigated here. The SF and 

equivalent grain diameters of the grains that manifest the highest FIPs are analyzed. Afterwards, more 

complex formulations for structural correlations are examined, including different neighborhood effects. 

The apparent SFs of the slip systems that manifest the highest 50 sub-band volume averaged 

FIPs in the ~160,000 grain SVE are shown in Fig. 6a, where the color bar represents the sub-band volume 

averaged FIP. As expected, all 50 SFs are close to the maximum value of 0.5 but there is no correlation to 
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the highest ~5-10 FIPs, i.e., the SF alone does not explain why these certain grains manifest the highest 

FIPs. This accords with experimental observations: although cracks initiate mainly in grains with a rather 

high SF, other grains with similar characteristics do not develop damage [72]. Harte et al. [39] similarly 

demonstrated that grains with a high SF do not necessarily undergo large strain or deformation. As a 

note, the apparent SF is based solely on geometry and orientation of applied load. In contrast, the local 

SF considers the ratio of the maximum resolved shear stress divided by the global applied stress 

averaged over some volume and reflects the local stress state affected by intergranular interactions and 

microplasticity [73]. While the apparent SF is bounded by 0.5, the local SF can vary broadly between 0 

and 1 due to load shielding or load shedding from neighboring grains [73]. 

 

Fig. 6. Correlations of the highest 50 sub-band volume averaged FIPs from the ~160,000 grain SVE. a) 
shows the apparent Schmid Factor (SF) of the slip system with the highest FIP and b) shows the 
equivalent grain diameter as reported by DREAM.3D for the grains with the highest FIPs. In c) and d), the 
plastic shear strain range on the slip system with the highest FIP and the stress normal to the slip plane 
of the highest FIP, respectively, are shown. These are averaged over the same sub-band elements that 
manifest the highest FIPs. The color bar represents the sub-band volume averaged FIP value. 
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Although the CPFEM model employed here does not consider grain size effects, the increased 

mean free slip path in larger grains could result in an increased plastic shear strain range (PSSR) to 

manifest high FIPs [16, 74]. However, the equivalent grain diameters of the grains that manifest the 

highest 50 FIPs are portrayed in Fig. 6b and show that the highest FIPs are unrelated to grain size. Fig. 6c 

and Fig. 6d show the two components of the highest 50 sub-band volume averaged FIPs: the PSSR on 

the slip system and the peak stress normal to the slip plane, respectively. There is a strong correlation 

between the PSSR and the highest FIPs. However, the variation of FIPs and peak stress normal to slip 

planes exhibits no clear correlation.  

Other attempts to correlate the highest ~5-10 FIPs to structural characteristics (e.g., 

misorientation between hot spot grains and their NNs, ratio of highest SF in hot spot grains to the SFs in 

NN grains, incorporating 1st or 1st and 2nd NN grains, etc.) are detailed in Section 3 of the 

supplementary information. However, these also provide no clear correlation to the highest FIPs in the 

~160,000 grain SVE. The nuance in these correlation attempts is that the spatial position of grains is not 

considered, i.e., whether the hard and soft grains are located along the loading direction or transverse 

to the loading direction, as described in the introduction. Thus, relatively simple structural correlations 

inadvertently smear the effects of individual first and second NN grains. Clearly, more complex and 

higher-order statistics are required to investigate the structural features that manifest the high FIPs 

shown in Fig. 5d, such as those suggested by Kawano et al. [36, 37]. However, the much stronger and 

long-range grain-grain interactions characteristic of higher symmetry FCC alloys may still prove 

problematic [17, 39], especially using the two-term back stress formulation employed in this work. 

Although these results demonstrate that simple structural correlations are insufficient to determine hot 

spot grains, we can quantify the influence of NN grains on hot spot grains by varying certain NN grain 

orientations. 
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5. Quantifying nearest neighbor influence 

The previous section demonstrated that correlations between microstructure and hot spot 

grains are nontrivial. As an alternative, the influence of NN grains on the response of hot spot grains is 

systematically investigated in this section. 

 

5.1. Cropped microstructure SVEs 

The grains that manifest the three highest sub-band volume averaged FIPs in the ~160,000 grain 

SVE are shown in Fig. 7. The goal of this section is to examine the extreme value response in these grains 

as the orientations of NN grains are altered. Therefore, we must first extract a suitably large 

neighborhood centered about these grains and then simulate these smaller SVEs at the same cyclic 

strain conditions as before. A SVE with ~4,600 grains discretized by 723 finite elements is selected and 

extracted, centered about the grains that manifest the first and third highest sub-band volume averaged 

FIPs in the ~160,000 grain SVE (shown as two green cubes in Fig. 7). The grain that manifests the second 

highest FIP is not considered in this section because it is much closer to the boundary of the ~160,000 

grain SVE (shown as the red rectangular prism in Fig. 7), and a smaller SVE as described above with this 

grain at the center cannot be extracted. The two cubic cropped regions with ~4,600 grains in Fig. 7 are 

subjected to the same cyclic strain conditions as the previous SVEs, i.e., fully reversed uniaxial cyclic 

straining at 0.7% strain amplitude. Periodic boundary conditions are prescribed to retain bulk, 

subsurface material response. The first and third highest sub-band volume averaged FIPs have values of 

1.22 x 10-2 and 1.07 x 10-2, respectively, in the ~160,000 grain SVE. After the two ~4,600 grain SVEs are 

cropped and subjected to cyclic straining, the highest FIPs still occur in the same grain about which the 

SVEs are centered (and over the same slip bands), and the values change only slightly to 1.20 x 10-2 and 

1.10 x 10-2, respectively. It is thus evident that altering the SVE neighborhood very far from the grains of 

interest has a small but negligible effect on the computed FIPs. In the subsequent analysis, the 

responses of the ~4,600 grain SVEs are considered as the baseline for comparison. 
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Fig. 7. Location of the three highest FIPs in the ~160,000 grain SVE discretized by 2503 voxels. New SVEs 
with ~4,600 grains discretized by a 723 FE mesh are cropped about the grains that manifest the first and 
third highest FIPs (shown as cubes with green edges). These SVEs are then subjected to the same cyclic 
straining conditions as the ~160,000 grain SVE (i.e., fully reversed uniaxial cyclic straining to 0.7% strain) 
to quantify the influence of nearest neighbor grains on the FIP response in the center grain of interest. 
The second highest FIP grain is not considered because it is too close to the SVE boundary (shown as the 
rectangular prism with red edges). 

 

 

 To quantify the influence of NN grains on the response of the grain of interest (GOI) about which 

the cropped regions are centered, the grain orientations of certain NN grains are systematically 

changed. The NN grains are first assigned to different layers as demonstrated in Fig. 8. The GOI that 

manifested the highest FIP in the ~160,000 grain SVE and about which the first ~4,600 grain SVE is 

centered is shown in Fig. 8a. Fig. 8b shows a clipped half-view of the first NN grains. The remaining 

subplots in this figure display clipped views of the second, third, fourth, and fifth NN grain layers. 
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Fig. 8. a) The grain with the highest FIP in the original ~160,000 grain SVE cropped to a smaller domain 
with ~4,600 grains discretized by a 723 FE mesh. Layers with the first, second, third, fourth, and fifth 
nearest neighbors are shown in b), c), d), e), and f), respectively. Nearest neighbor grains are defined as 
those that share at least one element face. 
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 Grain orientations are systematically changed, and several scenarios are investigated. In the first 

scenario, the grain orientation of the single largest grain in one of the NN grain layers is altered. This is 

repeated for all five NN grain layers. In the next scenario, all orientations in a NN grain layer are altered 

and this is once again repeated for all five layers. Finally, for the first NN grain layer, the orientation of 

the grain that shares the most surface area with the GOI is also altered. Although this is not the largest 

grain in the first NN grain layer, it may have a more pronounced effect on the response of the GOI. 

Additional scenarios are investigated for the 3rd, 4th, and 5th NN grain layers (see Section 4 of the 

supplementary information). These include altering the grain orientations of the five largest grains, the 

5% largest grains, and the 20% largest grains. Table 2 contains statistics for the five NN grain layers in 

the ~4,600 grain SVEs. 

 

Table 2. Nearest neighbor grain layer statistics for the first and second ~4,600 grain SVEs cropped about 
the 1st and 3rd highest FIP, respectively. 

 First ~4,600 grain SVE Second ~4,600 grain SVE 

Layer 

Number 

Number of 

total grains 

Number of elements 

in largest grain 

Number of  

total grains 

Number of elements 

in largest grain 

1 13 209 20 251 

2 68 226 68 222 

3 159 319 173 287 

4 303 291 353 285 

5 517 305 597 285 

 

For each scenario describe above, new grain orientations are randomly selected five times to 

capture variability in NN grain effects. In the case where a single orientation is altered in the first NN 

grain layer, the sampling is performed ten times. The altered SVEs then undergo the same FIP 

calculation and volume averaging as before. For both cropped SVEs, two additional 1st NN grain 

modifications include setting the grain orientations of the largest grain and the grain that shares the 

most surface area with the GOI to the orientation of the GOI. In addition to the FIP defined in Eq. (9), the 

maximum sub-band volume averaged PSSR calculated across the final straining cycle and the peak stress 

normal to a slip plane (k�) are also considered. 
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5.2. Cropped region about the 1st highest FIP 

 Fig. 9a and Fig. 9b show the highest sub-band volume averaged PSSR and FIP, respectively, for 

the first ~4,600 grain SVE. This figure depicts the response variables in the GOI after one or multiple NN 

grain orientations are changed. The first two columns in Fig. 9a and Fig. 9b contain data from 10 

simulations, whereas the following nine columns each contain data from five simulations. The last two 

data points are each extracted from a single simulation and thus, the data in Fig. 9 is extracted from a 

total of 67 simulations. In a few cases, the highest PSSR or FIP no longer occurs within the GOI. For 

instance, when the orientations of all 13 NN grains in the 1st layer or all 68 NN grains in the 2nd layer 

are altered (7th and 8th data sets in Fig. 9), the red triangle markers indicate that the highest response 

variables now occur elsewhere in another grain. The PSSRs and FIPs in Fig. 9 shows similar trends and 

different magnitudes. The maximum value of k� in the entire first ~4,600 grain SVE ranged between 

535.5 MPa and 539.0 MPa for all 67 simulations. Further investigation revealed small variations to k� in 

the GOI. The maximum values of k� in the GOI for all 67 simulations ranged between 346.5 MPa and 

370.9 MPa, which were the extremes and occurred in the case where all 2nd NN grain orientations and 

all 1st NN grain orientations were altered, respectively. k� in the GOI was 358.1 MPa with no altered 

grain orientations. 
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Fig. 9. The highest sub-band volume averaged a) PSSR and b) FIP in the grain (#2424) about which the 
first ~4,600 grain SVE was cropped from the ~160,000 grain SVE as a function of changes to grain 
nearest neighbor orientation(s). The black dashed line indicates the highest PSSR or FIP in this grain 
without changing NN grain orientations. Red triangle markers indicate the highest PSSR or FIP that did 
not occur within grain #2424. 
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 The first data sets in Fig. 9a and Fig. 9b (magenta diamond markers) show response variability in 

the GOI after the orientation of the 1st NN grain that shares the most surface area with the GOI is 

altered. The lowest PSSR and FIP is reduced by 23.5% and 24.9%, respectively, as compared to the 

unaltered SVE. This emphasizes the influence of 1st NN grain interactions, where a change in orientation 

can reduce the extreme value response in a hot spot grain by nearly 25%. 

The next five data sets (green circle markers) show the response variability after the orientation 

of the single largest NN grain in each of the five layers is altered. This effect is most significant for the 1st 

NN grain layer and quickly decays. Surprisingly, the maximum response variable is in some cases larger 

than in the unaltered SVE simulation. Changes to the orientation of the largest NN grain in the 4th and 

5th layers does not influence the GOI. The subsequent five data sets (blue triangle markers) show the 

response variability after all grain orientations in each of the five layers are altered. A change to all grain 

orientations in the first two layers sufficiently perturbs the micromechanical response to drive the 

highest response variable to a different grain, as indicated by the red triangle markers. When all 3rd NN 

grain orientations are altered, however, the highest PSSR or FIP returns to the GOI, and in three out of 

the five cases the response is now larger than the response of the unaltered SVEs. Finally, the two cyan 

square markers in Fig. 9a and Fig. 9b depict the response when the orientations of the largest 1st NN 

grain and the 1st NN grain that shares the most surface area (SA) with the GOI are equal the orientation 

of the GOI. The response is reduced in both cases and these two scenarios are investigated in more 

detail later.  

The PSSR and k� both contribute to the FIP of interest in this work. The similarities between Fig. 

9a and Fig. 9b suggest that k� is not significantly affected by changes to orientations of NN grains. The 

coefficient of variation (COV, defined as the standard deviation of a data set divided by the mean) for 

the response variables in Fig. 9 and k� is shown in Fig. 10 and emphasizes that k� is weakly perturbed by 

changes to orientations of NN grains. 
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Fig. 10. Coefficient of Variation for the response variables of the first ~4,600 grain cropped SVE, using 
data shown in Fig. 9. 

 

 

5.3. Cropped region about the 3rd highest FIP 

The analysis in the previous section is repeated for the second ~4,600 grain cropped SVE. Only 

the response variability of the maximum sub-band volume averaged FIP is shown due to the similarities 

between the FIP and PSSR observed in Fig. 9. Fig. 11 shows similar trends to the data presented in Fig. 9. 

For instance, altering the largest NN grain in each layer only perturbs the GOI up to the third layer. 

Similarly, the effect of altering all NN grains in progressively distanced layers appears to decay, but not 

as quickly as altering the single largest NN grain in each layer, because in the former scenario, several 

hundreds of grain orientations are altered. There are interesting contrasts in this second ~4,600 SVE. 

First, there is greater response variability when the largest 1st NN grain orientation is altered versus the 

1st NN that shares the most surface area with the GOI. Furthermore, the two cyan square markers 

indicate that changing the orientation of these two 1st NN grains to the same orientation as the GOI has 

little influence on the GOI. These trends are explored further. 
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Fig. 11. The highest sub-band volume averaged FIP in the grain (#556) about which the second ~4,600 
grain SVE was cropped from the ~160,000 grain SVE as a function of changes to grain nearest neighbor 
orientation(s). The black dashed line indicates the highest FIP in this grain without changing NN grain 
orientations. Red triangle markers indicate the highest FIP that did not occur within grain #556. 

 

   

5.4. Discussion of nearest neighbor influence 

To further investigate the response variability in the GOI when a single grain orientation in the 

first NN layer is altered, Fig. 12 depicts the grains that manifest the 1st and 3rd highest FIPs (about 

which the two ~4,600 grain SVE were cropped), along with the grains whose orientations were altered 

to produce the first two and last two data sets in Fig. 9 and Fig. 11, respectively. Table 3 contains the 

apparent SFs of each grain. 
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Fig. 12. The grains that manifest the a) 1st (grain #2424) and b) 3rd (grain #556) highest FIPs in the 
~160,000 grain SVE. The 1st NN grains that share the most surface area with the grains of interest and 
the largest 1st NN grains are shown. SVEs were strained uniaxially in the X direction. Some grains are 
shown as opaque to improve visualization. 

 

Table 3. Apparent Schmid Factors (SF) of the six grains depicted in Fig. 12. 

Slip planes (1,1,1) (-1,1,1) (1,1,-1) (1,-1,1) 

Slip 
directions 

[0,1,
-1] 

[-
1,0,
1] 

[1,-
1,0] 

[0,-
1,1] 

[-
1,0,-

1] 

[1,1,
0] 

[0,-
1,-1] 

[1,0,
1] 

[-
1,1,0

] 

[0,1,
1] 

[1,0,
-1] 

[-1,-
1,0] 

1st highest FIP 
grain            
Grain of 
interest 
(#2424) 

0.32 0.49 0.17 0.10 0.13 0.23 0.26 0.45 0.20 0.04 0.09 0.14 

Largest 1st 
NN 

0.07 0.23 0.30 0.20 0.09 0.11 0.12 0.01 0.13 0.40 0.34 0.06 

Most shared 
area 

0.06 0.20 0.26 0.20 0.13 0.06 0.14 0.02 0.16 0.40 0.36 0.03 

3rd highest FIP 
grain            
Grain of 
interest 
(#556) 

0.50 0.24 0.26 0.17 0.05 0.23 0.47 0.17 0.30 0.20 0.12 0.33 

Largest 1st 
NN 

0.35 0.44 0.09 0.43 0.43 0.00 0.44 0.36 0.09 0.35 0.35 0.00 
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Most shared 
area 

0.00 0.24 0.24 0.00 0.41 0.41 0.17 0.13 0.05 0.17 0.05 0.13 

 

 SVEs were strained in the X direction and Fig. 12 reveals that the position of these 1st NN grains 

may explain the difference in response variability observed in Fig. 9 and Fig. 11. The 1st NN grain that 

shares the most surface area with grain #2424 (Fig. 12a) is positioned directly along the straining 

direction and the largest 1st NN grain is offset in the straining and Z directions. In contrast, the two 1st 

NN grains of grain #556 (Fig. 12b) are offset in the Y and Z directions with roughly the same center of 

mass in the X direction. This suggests that the extreme value fatigue response of hot spot grains is more 

sensitive to changes in the orientations of NN grains along the SVE straining direction, since the first two 

data sets in Fig. 9a and Fig. 9b vary much more significantly than the first two data sets in Fig. 11. 

 Setting the orientations of the two 1st NN grains in Fig. 12 to the orientations of grain #2424 and 

grain #556 perturbs the response of the GOI differently, and these effects are difficult to predict. The 

last two data sets in Fig. 9a and Fig. 9b showed a substantial decrease in response variables, whereas 

the last two data sets in Fig. 11 showed nearly negligible change. Both grain #2424 and grain #556 have 

maximum SFs of 0.49 and 0.50, respectively, as shown in Table 3. Table 3 shows that the maximum 

apparent SFs for the two grains that share the most surface area with the GOIs are similar and close to 

0.40-0.41. Altering these grain orientations raises the maximum SFs to ~0.49-0.50. The next important 

factor is the position of these 1st NN grains, which in one case is positioned directly along the straining 

direction and in the other, positioned along the Y direction of the GOI. In the latter case (Fig. 12b), the 

difference in GOI response is almost negligible, as indicated by the last data marker in Fig. 11. In 

contrast, the last data marker in Fig. 9b indicates that the position of the 1st NN grain that shares the 

most surface area with grain #2424 (Fig. 12a) strongly reduces the plastic deformation in grain #2424. 

This argument is complicated for the scenario in which the orientation of the largest 1st NN grain is 

changed to the orientation of the GOI because the change in maximum SF for the two largest 1st NN 

grains is different. Such spatial considerations are particularly important for low symmetry alloys in 

which hard-soft rogue grain combinations have been suggested to contribute to dwell fatigue failure 

[32-34], as described in the introduction. The analysis presented here emphasizes the need for advanced 

spatial correlations (e.g., convolutional neural networks [75], n-point statistics [76], or even the slip 

operation factor (SOF) by Kawano et al. [36, 37]). It may be the case, however, that the use of Schmid 

Factors will not yield useful results even with the advanced techniques mentioned above, since the 
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earlier section of this work and other works (e.g., [39, 40]) have demonstrated that the Schmid Factor is 

more applicable/useful in more anisotropic low crystallographic symmetry (e.g., HCP) material systems. 

 

 

 

6.  Discussion 

This work examined the extreme value response of progressively larger SVEs with different 

crystallographic textures and grain morphologies to explore trends in FIP EVDs as a function of 

maximum SVE size; large single SVE FIP EVDs were compared to those of ensembles of SVEs comprising 

the same cumulative volume of microstructure. The trends of the FIP EVDs from different SVE sets, the 

largest of which contained over 160,000 grains discretized by a ~15.6 million finite element mesh, shows 

a progressive increase in the maximum computed extreme value FIPs. While RVE size has not been 

resolved with these simulations, the monotonicity of the increase of FIP EVDs with increase of SVE size 

and with number of smaller SVE ensembles, along with preservation of relative rank ordering of FIP 

EVDs for several microstructures, indicates that the process of convergence towards a RVE should be 

smooth and continuous, and that SVE ensembles indeed are useful for ranking microstructures in terms 

of relative resistance to fatigue crack formation. While convergence of the macroscopic stress-strain 

response has been previously shown to require only on the order of hundreds of grains, convergence of 

the FIP EVDs requires significantly more grains. The cubic crystallographic texture may require tens of 

thousands of grains for convergence of FIP EVDs. In contrast, the increased probability of individual 

grains oriented favorably for significant plastic slip in microstructures with random or rolled 

crystallographic textures requires substantially more grains for convergence of the FIP EVDs. 

Crystallographic texture is significantly more influential in this regard than grain morphology. 

Four different SVE sets, each with over ~160,000 grains, demonstrated that an ensemble of 

smaller SVEs may be simulated to accumulate a near equivalent distribution of extreme value FIPs as 

compared to a single massive SVE. The eight distinctly high FIPs from the ~160,000 grain SVE were 

investigated to elucidate structural correlations of the hot spot grains. Nontrivial structural correlations 

at the most extreme fatigue hot spots revealed the need for more advanced formulations (e.g., 

convolutional neural networks [75], n-point statistics [76]) to better understand the connection between 

structure and extreme value response. Finally, a unique study in which individual grain orientations 
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were systematically altered investigated the variability at hot spot grains. Changes to a single grain 

orientation only affected the extreme value response of the hot spot grain up to the third layer of NN 

grains, in accordance with the work of Diehl et al. [31]. Further investigation suggested that the spatial 

location of the 1st NN grains with respect to the global straining direction may also influence response 

variability in the hot spot grains [38]. 

The effects of grain NN interactions are also expected to strongly depend on the material 

system and constitutive model employed. For instance, previous work demonstrated that the influence 

of a free surface in polycrystalline simulations of HCP Ti alloy Ti-6Al-4V decayed more rapidly as 

compared to the FCC Al 7075-T6 alloy explored in this work [17]. Furthermore, the two term Ohno-

Wang type hardening law in this constitutive model, which was essential during model calibration to 

match experimentally measured plastic strain at low levels of applied stress, undoubtably influences the 

extent of NN grain interactions differently than other hardening models (e.g., Armstrong-Frederick 

hardening model). The simulation of massive microstructure SVEs enabled by the PRISMS-Fatigue 

framework is necessary to simulate sufficient grain/phase heterogeneity that leads to the extreme value 

responses investigated here. We emphasize that out of the ~160,000 simulated grains in the largest SVE, 

only eight manifested distinctly high FIPs. Thus, attempts to leverage data science and machine learning 

techniques in these problems will rely on the availability of massive data sets that PRISMS-Fatigue can 

provide. 

 

7. Conclusions 

In this work, large-scale CPFEM simulations are leveraged to determine the extreme value 

cumulative distributions of FIPs for progressively larger SVEs. The sensitivity of the EVD FIP response at 

hot spot grains is then investigated. The main findings can be summarized as: 

• An ensemble of smaller SVEs or a single, equivalently large SVE can be used to rank order the 

fatigue resistance of polycrystalline materials with different crystallographic textures and grain 

morphologies. 

• Although the cubic crystallographic texture achieves nearly converged EV FIP response with 

~41,000 grains (i.e., the FIP EVDs appear to converge between ~7,500 and ~41,000 grain 

microstructure SVEs), the random and rolled textured FIP EVDs do not converge. However, data 
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from these other crystallographic textures may still be used for purposes of rank ordering 

fatigue resistance of microstructures (e.g., textures). 

• An ensemble of relatively smaller SVEs (e.g., 22 SVEs each with ~7,500 grains) can be used to 

build equivalent FIP EVD statistics to that of a single very large SVE (e.g., a single SVE with 

~160,000 grains) in the high to medium probability regime. However, deviations in the low 

probability regime indicate that the highest FIPs do not yet converge. Future work might 

determine whether even larger SVEs/more grains must be simulated to reach a FIP upper limit, 

and to determine the complex structural correlations that associate with these high FIPs.  

• Simple microstructure parameters (e.g., Schmid Factor, grain size, nearest neighbor 

misorientation, use of 1st and 2nd nearest neighbor grains, etc.) were unable to completely 

correlate to fatigue hot spot grains in the largest SVE simulated. These correlations depend not 

only on the microstructure but also on the crystal plasticity models employed (e.g., the two-

term Ohno-Wang back stress formation with short- and long-range components). More 

advanced correlation techniques may be required to elucidate these relationships (e.g., 

convolutional neural networks [75], n-point statistics [76]) which may rely on the availability of 

massive data sets that PRISMS-Fatigue can provide. 

• The sensitivity of the extreme value FIP response at hot spot grains extends to the 3rd nearest 

neighbor when a single neighborhood grain orientation is altered. Changing the orientation of a 

hot spot grain’s 1st nearest neighbor can reduce the maximum FIP in the microstructure by 

nearly 25%. Moreover, changing the orientation(s) of more distant nearest neighbor(s) (in the 

2nd through 5th nearest neighbor layers) can substantially change the FIP in the hot spot grain. 

• It is primarily the plastic shear strain range that is perturbed when the orientations of nearest 

neighbor grains are altered. In contrast, the stress component of the FIP used in this work (peak 

stress normal to the slip plane) exhibits a much lower coefficient of variation. 

• The variability in the extreme value response at hot spot grains due to changes in orientations of 

nearest neighbor grains is complicated by the orientation, position, and size of the nearest 

neighbor grains. Attempts to understand these interactions without advanced data analysis 

frameworks may be untenable.  
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