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1 Introduction

Hadron structure endures as a frontier field of study, requiring both cutting-edge experimen-
tal technology and theoretical descriptions. In attempts to explain further the interesting
physics behind the nucleon’s properties, theoretical quantities such as generalized parton
distributions (GPDs) have been proposed and defined since around the turn of the cen-
tury [1–5]. The physics described by GPDs, for example, includes important quantities
such as the intrinsic angular momentum contributions of the quarks and gluons inside
the nucleon [2, 6]. GPDs can also allow access to the 3D tomography of the nucleon’s
constituents, giving unprecedented information about proton and neutron structure [7–9].

In this paper we will be focusing on some of the very relevant phenomenology questions
surrounding the experimental extraction of GPDs. More specifically, we look at how
one might approach the extraction of one of their natural observable counterparts: the
Compton form factors (CFFs). These particular form factors involve a convolution between
a GPD (a non-perturbative nucleon matrix element) and a perturbatively-calculated Wilson
coefficient, permissible by the factorization theorem [10, 11]. CFFs naturally enter the
primary amplitudes which are believed to drive exclusive scattering processes such as deeply
virtual Compton scattering (DVCS) and deeply virtual meson production. We focus this
particular study to a number of physical observables associated involving the DVCS reaction
e− + p→ e− + p+ γ. We also stress that this study does not represent a global analysis of
all DVCS data, but rather, it includes an extensive look at extracting the twist-2 CFFs in
the context of all possible (electron-only) DVCS cross sections.

As a matter of priority, we confine this study to the goal of model-independently
extracting the twist-2 CFFs directly from DVCS observables, while reserving the inclusion
of twist-3 CFFs for a future study. We also omit the target mass and finite t corrections [12]
which are kinematical twist-4 and quantum loop corrections [5, 10] that are αS suppressed.
Those corrections are related to the same leading-twist GPDs, but involves different Wilson
coefficients that get convoluted. Therefore, they lead to a different set of CFFs that can be
considered independent of the twist-2 CFFs discussed here. At present, the only known way
to model-independently extract CFFs is locally in the kinematical points (xB, t, Q) at which
a discrete number of measurements is performed. Previous studies of the local extraction of
CFFs [13–19] have been made as well as various global extraction methods [20–23]. Global
extractions typically involve some assumed model for the GPDs, allowing an interpolation
of the CFFs between experimental kinematical points. One of the major challenges in
extracting CFFs from exclusive measurements is the higher dimensionality of the problem,
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as discussed in the nice review [24], for example. This has led to the somewhat recent
adoption of machine learning techniques [25–28] which can have the benefit of incorporating
known properties of GPDs but without assuming any particular parameterized model.

In terms of previous local CFF extractions, the pioneering work of [13–17] has used
the limited available DVCS cross section and asymmetry data, together with a numerical
χ2 fit to all eight twist-2 CFFs constrained to within ±500% of their prediction from the
VGG GPD model [29]. The general result was that the CFF H could in fact be constrained
with a finite uncertainty, while the remaining seven were totally unconstrained. Further
data then allowed some constraint on H̃. This approach has the advantage of incorporating
minimal bias and minimal approximations. On the other hand in the subsequent work
of [19], a more extensive set of asymmetry data was used to constrain the eight twist-2
CFFs through a linear mapping. This exercise requires somewhat strong assumptions about
the relative size of various components of the total DVCS cross sections to get a linear
relationship, but it allows a systematic inversion of the resulting system of equations. The
result was a finite determination of all eight CFFs with many large uncertainties, mainly
due to the pioneer HERMES data itself.

As we amass a growing ensemble of DVCS data: CLAS [30–34], JLab Hall A [35–37],
Hall B [38], HERMES [39–44], COMPASS [45], ZEUS [46], and HERA [47, 48] as well as
expect many more promised future precision data [49–51], it is yet still a valuable exercise
to further understand the prospects of a model-independent local CFF extraction. For
simplicity, we only consider observables in which higher-twist contributions can be safely
neglected. The twist-2 CFFs (which we’ll collectively denote by F), including both their
real and imaginary parts, constitute 8 unknown independent quantities which must be
determined from DVCS measurements. This beckons the question whether one can perform
enough independent measurements to fully constrain all of these quantities, and even how
one can guarantee the uniqueness of their solution. Other questions include which DVCS
measurements are sensitive to which CFFs, and what general strategies can be used to
perform the extraction. We answer these questions without resorting to the approximations
required for a linear mapping.

We choose to adopt an approach by exploiting the azimuthal (φ) dependence in the
observables: σ(Eb, xB, t, Q, φ), a technique pioneered in [5, 52, 53]. We will reduce our
DVCS observables to the simplest possible harmonic functions in φ, making explicit use of
the calculated kinematics present, particularly in the cross sections and spin asymmetries
we consider. These simplifications occur because certain terms in the cross sections are
kinematically suppressed (we consider a typical JLab kinematics as an example), and can
be absorbed into the uncertainty estimates of the dominant terms (see for example [18]).
We then demonstrate with real DVCS data that one can in fact successfully acquire enough
equations which locally constrains the twist-2 CFFs, once the data is fitted to a very
simple harmonic function to σ(φ). Fitting harmonic coefficients allows a more systematic
organization of higher-twist contributions, while sifting out degenerate constraints towards
the χ2 fit of the sought CFFs. We also offer a observable map of CFF extraction, exclusively
from total DVCS cross sections.

The structure of the paper is as follows: in section 2 we provide a review of the
observables of the exclusive DVCS process, including a review of the azimuthal dependence
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and a discussion of the importance of having multiple polarizations and asymmetries.
Section 3 is dedicated to deriving reduced cross sections which can be used to approximate
the general ones and simplify data analysis, and arrive at a practical road map for CFF
extraction which can be found in table 3. In section 4 we perform a numerical analysis from
available data as well as fulfill a complete CFF extraction at a chosen kinematical point
to demonstrate the method of local extraction using pseudo-data. Finally, a conclusion is
given in section 5. As a final note, many of the equations used in our analysis are left to the
various appendices, and they are referenced whenever implicitly used in the main sections.

2 Review of DVCS observables

Before we can extract the twist-2 Compton form factors (CFFs), we must have a thorough
understanding of the relevant cross sections which have been and can be measured. This
section will provide the reader with an overview of many of the important observables
needed to extract all of the leading CFFs, with many detailed formulas given in appendices A
and B. Before we provide the details however, some historical comments are given in order
to provide the context to this work.

The first DVCS cross section was computed in terms of the leading twist CFFs in [54],
offering a first explicit connection between the proton GPDs and experimental observables.
A few years later, the DVCS cross section was recomputed by Belitsky et al. in [52], this
time beyond the leading order GPDs, and formulas given explicitly in terms of the lab
frame kinematical variables. It was in this work also, the azimuthal dependence of the
DVCS cross sections were made explicit through harmonic functions, and with it proposals
on how to extract CFFs were made. This study was then superseded by the calculation
in [53] by the same authors, which included more kinematically accurate formulas, and to
which we refer the collective work by BMK.

Another original calculation of the DVCS cross sections has been performed much more
recently in [55] (to which we’ll refer the results of as UVa). In this study, a full inclusion of
the twist-3 GPDs has been considered, utilizing also the formalism of helicity amplitudes.
However, this result poses a number of substantial quantitative differences from the results
of BMK, some of which are highlighted in [56].

The following year yet another original calculation of the DVCS cross section was
performed in [57], wherein we performed a detailed study of the higher order kinematical
effects accompanying the twist-2 CFFs, including the effects of light cone choices, and
gauge-dependence. Here it was found that both the BMK and UVa results could be reached
once one made the appropriate coordinate choices, with the exception of an additional
source of phase dependence in the interference cross section claimed by the UVa authors. A
more detailed comparison between the various results can be found in [57].

In this paper, we use our recent cross section observable results given in [57], which
includes a term from the Wandzura-Wilczek (WW) relation which contains additional
kinematical corrections from the twist-3 CFFs, effectively improving the accuracy of the
kinematics which accompanies the twist-2 CFFs. These DVCS cross sections, which are
contained across appendix A and B are effectively independent of light cone choice, however
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they do not include genuine twist-3 CFF dynamics. Although the qualitative extraction
techniques for the twist-2 CFFs have not been re-invented below, the quantitative results
below are indeed novel.

2.1 Five-fold cross sections and Compton form factors dependence

We begin by considering the differential cross section of the reaction e + p → e + p + γ,
which comes from two amplitudes: the Compton scattering of a photon off of a struck quark
in the proton (pure DVCS) and the QED-driven process of a photon being radiated from
the initial and final electron beams (Bethe-Heitler). Knowing this, we may decompose our
five-fold differential cross section into 3 distinct parts: DVCS, BH and their interference
(I). The five-fold cross section is given by

σTot(y, xB, t, Q, φ, φS) ≡ d5σ

dxBdQ2d|t|dφdφS
= α3

EMxBy
2

16π2Q4
√

1 + γ2

(
|TDVCS|2 + |TBH|2 + I

)
≡ σDVCS + σBH + σI , (2.1)

where y is the lepton energy loss in the target rest frame and is related to the initial electron’s
beam energy Eb via y = Q2/(2MEbxB) and the parameter γ is defined by γ ≡ 2MxB/Q.
The same coordinate choices and conventions are made as in [55, 57]. Any future cross
sections in the paper will refer to the differential one given here (unless explicitly specified
otherwise), with their subscript reserved for the type: DVCS, BH or I and its superscript
reserved for specifying the polarization of the external particles PbeamPtarget. For example,
the polarized beam, unpolarized target interference cross section is denoted by σLUI . Since
the BH cross section does not involve any CFFs, it will be frequently prescribed to be
subtracted from the total cross section given the numerically well-determined elastic Dirac
and Pauli nucleon form factors. The pure DVCS and interference cross sections are given
for all possible beam and target polarizations in appendices A and B respectively while the
unpolarized BH cross section is given in appendix D.

It is important to stress that part of the (xB, t, Q) dependence of σTot comes from the
CFFs, and part of this dependence comes from exactly calculable kinematics. However,
the dependence on the other two kinematic variables (y, φ) comes completely from the
kinematics, and is exactly calculable. These extra two experimental degrees of freedom
can and should be fully exploited for the phenomenological extraction of the CFFs. It is
generally known now that as the beam energy increases in a fixed target photoproduction
scattering reaction, the ratio of the BH to DVCS contributions decreases (see a first
discussion of this in [52] and a nice graphical demonstration in [56]). This enhancement
of CFF-sensitive components indeed justifies going to higher beam energy. Meanwhile, a
systematic organization of the azimuthal-dependence of σTot via harmonics has been heavily
endorsed over the last 20 years, and we shall look in detail at this in section 3.

Amongst all of our possible polarization combinations covered in appendices A and B
together with the azimuthal behavior of transversely-polarized target cross sections discussed
in section 2, we have a maximum of 8 distinct cross sections that can be measured — and
therefore a complete system of equations to our unknowns. Some previous attempts to
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extract CFFs have been underdetermined (involved less than 8 observables), and as a
consequence, were accompanied with very large, if not infinite, error bars. We stress the
importance of a sufficiently constraining set of observables, which is required to determine
one’s CFFs reliably.

Unlike the application of this exercise to linearized asymmetries only (as was done
in [19]), here we have quadratic expressions in the CFFs due to the presence of the pure DVCS
contributions. The consequent nonlinear algebra greatly complicates how one finds a general
solution, introducing sign ambiguities in the CFFs for instance. An arbitrary exclusive cross
section from eq. (2.1), for example eqs. (A.2)+(B.2), may be loosely expressed via

σPbPt

Tot-BH ∼ A(CFF )2 +B(CFF ) . (2.2)

More precisely, we may represent such equations in the following way

〈F|A(i)|F〉+ 〈B(i)|F〉+ C(i) = 0 , (2.3)

where i represents distinct DVCS cross sections, the C(i) are the BH-subtracted cross
sections, and |F〉 = (ReH, ImH,ReE , ImE ,ReH̃, ImH̃,ReẼ , ImẼ)T . In principle, we would
require at least 8 such equations to properly constrain all of the twist-2 CFFs, otherwise we
might expect an infinite number of solutions, which would be realized by grossly oversized
uncertainties on the extracted CFFs. Were we to write out these equations explicitly and
attempt to solve for |F〉, we would attain an overly-cumbersome symbolic result — too long
to provide here. On the other hand, once numerical cross section data is provided through
available C(i), the solution may be attained numerically at some common kinematical
point (xB, Q2, t, y, φ). Implicit in our appendices, approximated forms of all of the possible
distinct matrices A(i) and vectors |B(i)〉 are provided.

Within eq. (2.3), the matrices A(i) are both real and symmetric, the vectors |B(i)〉 are
real and of course the numbers (cross sections) C(i) are all real. Physically, we require that
any and all solutions |F〉 are purely real. In any case one can think of eq. (2.3) as a type of
generalized quadratic equation, for which we would like to attain and understand the solution.
As we shall see later, some observables C(i) come with the convenient approximation that
A(i) = 0, but some certainly cannot rely on this feature. In section 4, we look how to attain
a physical solution to the CFFs prescribed by eq. (2.3).

As discussed, one can in principle extract all 8 twist-2 CFFs given enough polarized
cross sections are measured in the lab. Although other strategies to achieve this important
extraction exercise exist (for example, see [58]), in this section we will look at using the
harmonic (φ) dependence. As we shall see, given enough statistics over this angle, one can
extract all of the twist-2 CFFs with as little as 6 polarization cases, affording one with the
option of strengthening the CFF constraints further with additional observables.

Although total cross sections are prone to stray normalization factors and introduce
challenging systematic errors, they are quite ideal for extracting CFFs, due to the straight-
forward nature of eq. (2.1), especially its azimuthal structure. For this reason, much time
will be spent looking at total cross sections in this section. The pure DVCS cross section is
inherently quadratic in the CFFs and it also has the feature of including both their real and
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imaginary parts. Meanwhile the interference cross section is a very ideal contribution for
studying CFFs owing to its more straightforward linear dependence on them, and for this
reason, our analysis will be heavily dependent on an accurate knowledge of this contribution.

2.2 Polarization observables

The polarization degree of freedom for both the beam and target particles allows the
possibility of multiple distinct observables which can be measured for the e+ p→ e+ p+ γ

process. Doing so allows us to span i ∈ (UU,LU,UL,LL,UT, LT ) in eq. (2.3), while
the UT and LT cross sections can be further divided in to 2 sub-components, as we
shall discuss below. This will indeed ensure we have a sufficiently constrained system of
equations. Asymmetries involve specific linear combinations of polarized cross sections in a
rational expression. Consequently, one can think of cross sections (and all their polarization
combinations) as the independent experimental inputs, while regarding asymmetries as
non-independent experimental inputs. We shall study asymmetries nonetheless as they are
typically praised for having smaller experimental uncertainties than total cross sections.

2.2.1 Transversely polarized targets

We take here a logistical outlook on cross sections with a transversely polarized target as
they have unique aspects not found in the other polarization cases, including a dependence
on the azimuthal angle φS . We characterize transversely-polarized target observables with
the target’s polarization vector either being in plane (parallel to final state hadronic plane)
or being out of plane (perpendicular to the hadronic plane). Consider the real UT cross
section for an arbitrary transverse polarization angle, from which we subtract the BH
contribution, giving us

σUTTot-BH(φ, φS) = σUT,inDVCS+I cos(φS − φ) + σUT,out
DVCS+I sin(φS − φ) , (2.4)

meaning that for an arbitrary φ and φS , the measured UT cross section will have both
an in plane and out of plane component, each having a different dependence on the CFFs.
However, we can consider certain cases of controlling these two angles. Two theoretically
simple cases are

φ = φS ⇒ sin(φS − φ) = 0 , (2.5)

φS − φ = π

2 ⇒ cos(φS − φ) = 0 . (2.6)

This still allows the two angles to span any value, but merely fixes them with respect to
each other. These two cases would allow one to get two distinct cross sections from a UT
experiment. We can also in principle do this for the LT experiment, totaling 8 potential
polarization cross sections.

Theoretically more complicated but perhaps easier experimentally are the following
two UT cross section observables

∆σUTTot-BH,π ≡ σUTTot-BH(φ, φS)− σUTTot-BH(φ, φS + π) , (2.7)

∆σUTTot-BH,π/2 ≡ σ
UT
Tot-BH(φ, φS)− σUTTot-BH

(
φ, φS + π

2

)
. (2.8)
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Using trigonometric sum-of-angle identities then gives us

∆σUTTot-BH,π = 2σUT,inDVCS+I cos(φS − φ) + 2σUT,out
DVCS+I sin(φS − φ) , (2.9)

∆σUTTot-BH,π/2 = (σUT,inDVCS+I − σ
UT,out
DVCS+I) cos(φS − φ) + (σUT,inDVCS+I + σUT,out

DVCS+I) sin(φS − φ) .

(2.10)

For the purposes of extracting CFFs, it would be simpler if we could relate just the UT, in
and UT, out cross sections to data. Therefore we shall consider the l.h.s. of eq. (2.9) and
eq. (2.10) as the measurements and invert the system of equations to find the in and out
cross sections via

σUT,out
DVCS+I = 1

2(1− tan(φS − φ))∆σUTTot-BH,π −∆σUTTot-BH,π/2 , (2.11)

σUT,inDVCS+I = 1
2 sec(φS − φ)∆σUTTot-BH,π − 2 csc(φS − φ)∆σUTTot-BH,π/2 . (2.12)

Where now the experimental measurements construct the r.h.s. of each equation, and
the l.h.s. is then equated to the known CFF expressions which they represent, which
can be found from eqs. (A.18), (B.63) & (B.65). The LT case may be handled by an
analogous argument.

2.2.2 Asymmetries

Since asymmetries are functions of cross sections, we regard cross sections as the independent
observable degrees of freedom and hence as independent input towards CFF extraction.
We therefore regard asymmetries as a secondary means of constraining the CFFs in this
paper, and consequently do not emphasize them to the same extent as we will for cross
sections. DVCS charge asymmetries have previously been measured extensively at for
example, HERMES [39–44] and COMPASS [45], and have indeed been used to constrain
twist-2 CFFs. Since we are choosing to restrict ourselves in this study to electron beams
only, we shall look instead here at electron spin asymmetries. Particularly, the electron
beam single spin asymmetry is defined by

ALR =
∑

Λ σTot
(
h = 1

2

)
− σTot

(
h = −1

2

)
∑

Λ σTot
(
h = 1

2

)
+ σTot

(
h = −1

2

) , (2.13)

where h stands for the electron beam helicity and the sum over Λ is over all possible target
polarizations. The numerator of ALR (or also denoted ALU in many literatures) ensures
that only terms odd in h will survive, whereas in the denominator only terms even in h

remain. For this reason, the denominator is equivalent to the total UU cross section while
the numerator extracts the LU interference cross section only. Thus the beam asymmetry
is given by

ALR = σLUI
σUUBH + σUUDVCS + σUUI

∣∣∣∣∣
h= 1

2

, (2.14)
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which is a rational expression involving cross sections and its azimuthal structure is largely
determined by its numerator.

This quantity requires us to know the unpolarized BH cross section, which is given
explicitly in appendix D for this very purpose. In the past, asymmetries such as ALR have
been approximated under the assumption that the BH cross section in the denominator
dominates the DVCS and interference ones. However, this is not well-justified in many
cases. For instance in [56], one can see that the unpolarized interference and DVCS cross
sections are at least of order 10% of the BH cross section. Therefore, we shall keep the full
denominator and will investigate any numerically justified approximations in section 5.

Phenomenologically speaking, this sort of observable eliminates the need for exact
normalization factors in the cross section and it cancels various systematic uncertainties
and they are therefore ideal for CFF extraction. On the other hand asymmetries have
a more complicated dependence on both our CFFs and a more complicated azimuthal
dependence. We shall turn to sort out its azimuthal dependence in section 3 and then look
at practical ways of extracting the CFFs from it in section 4. We also stress that once one
expresses the other spin asymmetries explicitly in terms of cross sections as in eq. (2.14),
all of the information we will provide on the cross sections can be easily translated to
those asymmetries.

2.3 Azimuthal dependence

In this work, we will fully exploit the azimuthal dependence of the DVCS and interference
cross sections. One important observation about the azimuthal (φ) dependence is that
the cross sections can be written as finite-order polynomials of the trigonometric function
cos(φ) and sin(φ), except for an overall azimuthal dependence in the denominator due to
the BH propagators. This implies the existence of a maximal number of fitting parameters
one can extract from the azimuthal dependence, requiring a more careful treatment of the
azimuthal dependence.

Based on this observation, we use a modified cross section for which we simply re-arrange
the azimuthal dependence in the denominator as,

σPbPt(φ)→ P1(φ)P2(φ)
Q4 σPbPt(φ) , (2.15)

where P1(φ) and P2(φ) are the BH propagators that cancel the azimuthal dependence in
the denominator and an extra factor of Q−4 is multiplie to preserve its dimension. We
will discuss this operation with more details later in this section. Then the right-hand-
side can be written in terms of finite-order polynomials of cos(φ) and sin(φ), which will
permit a convenient access to the harmonic coefficients it possesses and allows a systematic
approach to imposing direct experimental constraints to the CFFs found in the cross
sections themselves.

A particular emphasis is given to cross sections in this study, with an additional look at
the case of transversely-polarized target case done separately. The beam spin asymmetry
will also be considered for CFF extraction, as these sorts of observables are also well-sought
due to their often smaller experimental uncertainties.
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2.3.1 Logistical overview

As we just mentioned, since the modified DVCS cross sections are finite-order polynomials
of the cosine and sine trigonometric functions in φ, we consider the following forms for the
cross sections:

P1(φ)P2(φ)
Q4 σPbPt

DVCS+I =
3∑

n=0
σcos

mod,n cos(nφ) +
3∑

n=1
σsin

mod,n sin(nφ) , (2.16)

where we suppress all the (xB, Q2, t, y) dependence, as well as the φS dependence in
the case of transverse polarized target, and we cut off the harmonics series to the third
order which is the highest order that the twist-2 CFFs can get. Each σcos

mod,n or σsin
mod,n is

the coefficient of the trigonometric function in the modified cross sections that depends
on the kinematics (xB, Q2, t, y) and the twist-2 CFFs F , but NOT the azimuthal angle
φ. Therefore, given enough number and precision of measurements of different φ at the
same kinematical point, each of those coefficients can be determined from their different
azimuthal dependence, allowing us to put multiple constraints on the twist-2 CFFs if
multiple coefficients are determined.

Keeping this in mind, one would naturally think about exploiting the orthonormality
property of the trigonometric functions (i.e. the foundation of Fourier analysis), as first
discussed in [52]

1
π

∫ π

−π
dφ cos(nφ) cos(mφ) = δnm , (2.17)

1
π

∫ π

−π
dφ sin(nφ) sin(mφ) = δnm , (2.18)

1
π

∫ π

−π
dφ sin(nφ) cos(mφ) = 0 , (2.19)

to extract each coefficient σcos
mod,n or σsin

mod,n from a physically measured cross section over φ.
Practically, we consider the following procedure:

• One can then imagine a DVCS experiment where the cross section is measured at
many different φ, keeping the kinematical point (xB, t, Q2, y) fixed.

• Using such data, one could subtract off the BH contribution and multiply the BH
propagators P1(φ)P2(φ)/Q4 unambiguously and obtain data points of the modified
DVCS cross section in eq. (2.16) in terms of different φ.

• One could then interpolate through the data points over −π < φ < π, resulting in an
experimental interpretation of the modified DVCS cross section.

• Multiply this interpolating function by either sin(nφ) or cos(nφ) and integrate this
product over −π ≤ φ ≤ π. Due to eqs. (2.17)–(2.19), we get those harmonic coefficients
σcos

mod,n or σsin
mod,n from the orthonormality property.
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Then those measured (or extracted) σcos
mod,n and σsin

mod,n represent a system of equations
which experimentally constrains our CFFs, as the relation between those coefficients and
twist-2 CFFs are determined in theory at the given kinematical point (xB, t, Q2, y).

Such method indeed provides us a direct approach towards those coefficients σcos
mod,n

and σsin
mod,n, and also the harmonic coefficients of different order do not mix due to the

orthonormality condition. However, this approach requires very precise measurements of
the cross section with enough numbers of different φ in order to do the interpolation, which
seems to be experimentally challenging. Alternatively, to the same effect as the above
procedure one could fit a harmonic function with free fitting coefficients, using the form in
eq. (2.16). Once the parameters σcos

mod,n and σsin
mod,n are determined numerically, they may

be equated to their expressions given in the appendices, placing experimental constraints
on the twist-2 CFFs. We find this is much more convenient to do, allowing the use of the
data point uncertainties, as the interpolation of the modified DVCS cross section is best
done by a fitting procedure anyway. In section 3 we will arrange our cross sections in a
convenient way in order to allow an ease of this extraction method.

2.3.2 Harmonic structure of cross sections

The interference cross section contribution is inversely proportional to the Bethe-Heitler
propagator factors P1(φ)P2(φ), which will introduce additional complications to the overall
azimuthal dependence of the total cross section. These propagator factors are simply
defined as

P1(φ) = (k − q′)2 , P2(φ) = (k′ + q′)2 , (2.20)

where k(k′) are the electron’s initial(final) 4-momenta and q′ is the 4-momentum of the
final state photon. To help us handle this term, we will express it into a harmonic series in
itself as follows

P1(φ)P2(φ)
Q4 = (BH)0 + (BH)1 cos(φ) + (BH)2 cos(2φ) , (2.21)

where

(BH)0 = 1
y2 (1 + γ2)Q4

{
2M2tx2

B

[
y2 (xB + 1)− 2y + 2

]
+ 2M4x4

By
2

+ t2
[
xB (1− xB)

(
y2 − 6y + 6

)
+ y − 1

]
+Q2

[
2M2x2

B

(
y2 − y + 1

)
+ t

[
(y − 2)2 − xB

(
y2 − 6y + 6

)]]
+ γ2t

2

[
2M2x2

By
2 + t

(
x2
B − xB + 1

)
y2

− ty + t

]
+ γ4t2y2

8 +Q4 (y − 1)
}
, (2.22)
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(BH)1 = −(y − 2)
(
Q2 + txB

) [
Q2 + t (2xB − 1)

]
Q3MxBy2 (1 + γ2)3/2

√√√√1−

(
γ2(Q2+t)

2(txB+Q2) + 1
)

1 + γ2

×

√
1− y − γ2y2

4 , (2.23)

(BH)2 = −
2
(
y − 1 + γ2y2

4

)
y2 (1 + γ2)Q4

[
Q2
(
M2x2

B − txB + t
)

+ txB
(
2M2xB − txB + t

)
+ γ2t

4

]
,

(2.24)

which is in agreement with the BH propagators in both [55] and [53].
We will define the Bethe-Heitler subtracted cross section by σTot-BH ≡ σDVCS + σI .

We can then define the modified cross section by multiplying the BH-subtracted one by
the factor P1P2, which will reduce the azimuthal dependence to a simple, non-rational
harmonic series for an easy extraction of its coefficients.

UU cross section. Then using the results of appendix A.1 and B.1 together with eq. (2.21)
where the kinematical coefficients hUn and aI,Un , bI,Un and cI,Un are defined, one can show that
the reduced BH-subtracted UU cross section is given by

P1P2
Q4 σUUTot−BH = Γ

Q2
4
Q2

5∑
i=0

(
BH ⊗ hU

)
i
DDVCS

1 cos (iφ)

+ Γ
Q2t

3∑
n=0

{
aI,Un AURe + bI,Un BURe + cI,Un CURe

}
cos (nφ) , (2.25)

where the new BH ⊗ hU coefficients are given in appendix E and the CFF expressions
DDVCS

1 and {A,B, C}URe are defined in appendix C.

LU cross section. This single spin cross section is unique as it only involves an interfer-
ence contribution and is thus the only case which is purely linear in the CFFs. Consequently,
it is among the simplest reduced cross sections we will see here. We have merely just to
multiply out the BH propagators to get

P1P2
Q4 σLUTot−BH = Γ

Q2t
(2h)

3∑
n=1

{
aI,Ln AUIm + bI,Ln BUIm + cI,Ln CUIm

}
sin (nφ) , (2.26)

where {A,B, C}UIm are defined in appendix C.

UL cross section. We consider next the other single spin cross section with longitudinally
polarized target. This will be similar to the LU case. We will have

P1P2
Q4 σULTot−BH = Γ

Q2t
(2Λl)

3∑
n=1

sin (nφ)
{
ãI,Un ALIm + b̃I,Un BLIm + c̃I,Un CLIm

}
, (2.27)

where {A,B, C}LIm are given in appendix C.
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LL cross section. This polarization case is azimuthally analagous to the UU case but
with different coefficients and different CFF expressions. We will have

P1P2
Q4 σLLTot−BH = −8 Γ

Q4 (2h) (2Λl)
5∑
j=0

(
BH ⊗ h−,L

)
j
DDVCS

2 cos (jφ)

+ Γ
Q2t

(2h) (2Λl)
3∑

n=0
cos (nφ)

{
ãI,Ln ALRe + b̃I,Ln BLRe + c̃I,Ln CLRe

}
, (2.28)

where DDVCS
2 and {A,B, C}LRe are given in appendix C.

2.3.3 Transverse target harmonics

The presence of the factor cos(φS − φ) and sin(φS − φ) found in the UT and LT cross
sections means that we already have a product of two trig functions in φ. If one then wishes
to exploit the orthonormality properties of eqs. (2.17)–(2.19), it is already possible to do so
without multiplying the cross section by an additional sine or cosine function. For example,
the UT, in cross section has the form

σUT,in ∼
∑
m

sUT,inm sin(mφ) cos(φS − φ) , (2.29)

where sUT,inm is a kinematical constant multiplied by the twist-2 CFFs (due to both the
DVCS and Interference parts in general). Using trigonometric identities and integrating
the cross section over the full azimuthal φ-sphere then yields

1
π

∫ π

−π
dφσUT,in = sUT,in1 sin(φS) . (2.30)

Since the angle φS is event-dependent, we can view it as an independent angle which can
be measured over through a sufficient spread of detected events. An additional step then,
would be to integrate over this angle to extract the coefficient sUT,in1 via

1
2

∫ π

0
dφS{sinφS , cosφS} = {1, 0} , (2.31)

1
2

∫ π/2

−π/2
dφS{sinφS , cosφS} = {0, 1} . (2.32)

In other words, for a transversely polarized target cross section, one does not need to
multiply the cross section by a prescribed harmonic (cos(1φ), cos(2φ), etc.), but rather can
directly integrate the cross section over the whole azimuthal sphere, which will only pull
out the 1st harmonic coefficient.

We would like, however, to access all of the harmonic coefficients in cross sections such
as (2.29). To do this, we can simply regard a term like cos(φS − φ) as an independent term
altogether. In other words, we can define the new azimuthal angle

∆φ ≡ φS − φ , (2.33)

which would instead prescribe the appropriate integrations over ∆φ to the effect of eqs. (2.31)
& (2.32) and an additional integration over φ as in eqs. (2.17)–(2.19). We also mention

– 12 –



J
H
E
P
0
8
(
2
0
2
2
)
0
4
8

the detailed study of the azimuthal dependence of polarized target DVCS cross sections
performed in [59], which suggests that the polarization degree of freedom of the nucleon
offers access to unique and important combinations of the CFFs. Rather than proceeding to
construct P1P2σ

UT
Tot-BH and P1P2σ

LT
Tot-BH into a precise form as we did for UU,UL,LU and

LL, we will wait to do this until section 3, where more practical information will reduce
the number of harmonics worthy of consideration.

2.3.4 Beam spin asymmetry
We return now to the ALR asymmetry which was introduced early in this section. Expressed
in terms of harmonics, the asymmetry can be written as

ALR ≈

2∑
n=1

[
aI,L

n
t A

U
Im + bI,L

n
t B

U
Im + cI,L

n
t C

U
Im

]
sin(nφ)

D1 +D2 +D3
, (2.34)

where we have pulled out a common factor of Γ/(Q2P1P2) from each of the present terms
and we have removed the kinematically suppressed higher-twist terms in the numerator.
Note that the asymmetry is overall parity odd in φ due to its numerator, but that being
said, its denominator may still potentially give this observable a richer azimuthal structure.
Each denominator term within is given by

D1 = 1
Q2t2Ω0

2∑
n=0

[
aBH
n

(
F 2

1 −
t

4M2F
2
2

)
+ bBH

n G2
M

]
cos(nφ) , (2.35)

D2 =
2∑

n=0

4
Q2 (BH ⊗ hU )nDDVCS

1 cos(nφ) , (2.36)

D3 =
2∑

n=0

[
aI,U

t
AURe + bI,U

t
BURe + cI,U

t
CURe

]
cos(nφ) .

(2.37)

where Ω0, aBH
n and bBH

n are all defined in appendix D. The terms D1 and D3 are in some
regards the simplest, having just had their BH propagators removed while the term D2 is
only slightly more complicated, resulting in a compound harmonic cosine series.

We have also removed the higher order harmonics (n ≥ 3) which are highly suppressed
and may be conveniently omitted. It follows then, that ALR is a simple sine series divided
by a simple cosine series. Our next task with this, left to section 3, is to determine the least
number of necessary harmonic coefficients needed to parametrize this asymmetry in a given
kinematical range.

Another important point we make is that one is now forced to extract the harmonic
coefficients in ALR differently than the way we have prescribed for the cross sections on
account of the fact that we now have a ratio of series. Once we have a fully reduced ratio of
harmonic series for ALR using the above equations, we may fit an analogously parameterized
function of φ directly to the data which represents ALR(φ). The parameterization would
only require as many parameters as we have harmonic terms amongst the numerator and
denominator. We will perform this exercise in section 4.
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3 Reduced DVCS observables

With all exact modified cross sections established in section 2, we now turn our focus towards
further pragmatic considerations. Although the harmonics-based method to observables
is more than sufficient theoretically, the finite precision in DVCS cross section data may
prove many of those observables unmeasurable.

One important note is that those different harmonic coefficients are not equally relevant
kinematically, as some of those harmonics functions (typically higher order ones) show
up with coefficients that are kinematically suppressed by large Q2. Motivated by this,
we perform a complete power counting for all the DVCS observables listed in the last
section. By dropping those harmonics that are not practically accessible, namely those
come with kinematically suppressed coefficients which are intolerant to the contamination
of other higher order effects we neglect in this work as well as the uncertainties of the
experimental data themselves, we define our reduced DVCS observables which contains
only those harmonics whose coefficients are non-zero at leading order.

We also note that in order to perform this systematical power counting, we have to
perform kinematical twist expansion, for which we expand the coefficients with respect to
large Q2 order by order, such that we can find out the kinematical twist of each harmonics.
Consequently, all our analysis are based on those kinematically twist expanded coefficients
that have kinematically twist-4 accuracy. However, as discussed in ref. [57], those higher
order kinematical effects have quite comparable size for moderate Q2, asking for a more
precise treatment of those coefficients. Therefore, while those expanded coefficients are
extremely helpful for our analysis in a general range of kinematics, we suggest using the
all order kinematical coefficients in for instance refs. [53, 57] when extracting CFFs with
experiment data, which involves only one specific kinematical point event by event.

In the following section, we will present our power counting results for ALL DVCS
observables based on kinematical twist expansion and justified by explicit numerical eval-
uation. Those power counting results eventually define our reduced DVCS observables,
allowing us to form a roadmap which details which observables are ideal candidates for the
extraction of each CFF.

3.1 Kinematical twist considerations

Using the twist-4 expanded harmonic coefficients given in appendices A and B, we have
made table 1 to aid us in this study. The 3rd column of table 1 is informative in the
following way. As was shown in [12, 60, 61], one can perform a more proper treatment of
the twist expansion to the Compton Tensor, and thus to the DVCS and interference cross
sections. This will involve defining higher-order twist-2 CFFs, for example, accompanied by
twist-3 kinematics. Therefore, any cross section harmonic coefficient which starts at twist-3
kinematics or higher is contaminated with these corrections, which have been omitted from
this analysis. In fact, at the twist-3 level the genuine twist-3 CFFs also to enter the Compton
tensor, and that is beyond the scope of this particular study. It is believed, however, that
the dynamical twist-3 terms are quite small compared to the dynamical twist-2 terms in
DVCS observables.
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Cross section Coefficients (Kin. Twist)×Harmonics

σUU & σUT,out

sin(φS−φ) hU , AI,U , BI,U , CI,U

(tw2 + tw3 + tw4) cos(0φ)
(tw2 + tw3 + tw4) cos(1φ)

(tw3 + tw4) cos(2φ)
(tw4) cos(3φ)

σUL & σUT,in

cos(φS−φ) ÃI,U , B̃I,U , C̃I,U
(tw2 + tw4) sin(1φ)

(tw3) sin(2φ)
(tw4) sin(3φ)

σLU & σLT,out

sin(φS−φ) AI,L, BI,L, CI,L
(tw2 + tw4) sin(φ)

(tw3) sin(2φ)

σLL & σLT,in

cos(φS−φ) h−,L, ÃI,L, B̃I,L, C̃I,L
(tw2 + tw3 + tw4) cos(0φ)
(tw2 + tw3 + tw4) cos(1φ)

(tw3) cos(2φ)

Table 1. A list of the harmonic observables for each polarized DVCS cross section along with
their hierarchy of kinematical twist contributions. Note that the out-of-plane polarized cross section
behaves the same as the unpolarized one in terms of kinematics except for an overall factor of
sin(φS−φ). The same applies to the in-plane polarized cross-section and the longitudinally polarized
one, except for an overall factor of cos(φS − φ) for the in plane polarized cross section.

However, at sufficiently large Q2, we may begin to more justifiably view the cross
section as being dominated by its twist-2 kinematics, and view the higher twist corrections
as an uncertainty in the extraction of our 8 twist-2 CFFs. Therefore, we shall only consider
the harmonic coefficients which include leading twist kinematics, and regard all of the
omitted higher twist terms as an additional source of uncertainty in our CFF extraction.
After all, the Q2 dependence of the GPDs is not as interesting as the xB and t-depenence
of the GPDs, which defines them as non-perturbative distributions in the nucleon.

The information in table 1, however, does not take into account the effect of the BH
propagator interference effect we saw in section 3. To make sense of the net twist content
of our reduced cross sections, we now need to expand out the series sums and collect terms
common to each harmonic level, then use the twist approximations from the appendices.
To this end, we list the reduced cross sections, keeping only harmonic terms which include
twist-2 kinematics.

3.2 Reduced cross sections

To begin, consider the general structure of a cross section with both a pure DVCS contribu-
tion and an interference contribution. We may express the reduced version of such a cross
section generally by

P1P2
Q4 σTot-BH = σ0


(
BH ⊗ hDVCS

)
Q2 D

(
F2
)

+ AINT

t
A (F) + BINT

t
B (F) + CINT

t
C (F)

 ,
(3.1)
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which can be applied to all polarization cases, and the cross section factor which is common
to both DVCS and interference parts here is simply

σ0 = Γ
Q2 ∼

nb
GeV4 , (3.2)

and the remaining expression is completely unitless. In fact, the CFF expressions themselves
are also unitless. Without any suspected numerical anomalies amongst H, E , H̃, Ẽ , we can
think of the 4 unitless coefficients which accompany them as determining their relative
weight (importance) towards the cross section. The supposition here is merely that no
subset of the 8 twist-2 CFFs is orders of magnitude different than any of the remaining
8 ones.

When we decompose the reduced cross sections into a harmonic series, each harmonic
term in the series still preserves the general form of eq. (3.1). Their coefficients then, are in
general functions of (y, xB, t, Q). We can then look at the kinematical phase space expected
to be spanned by certain experiments. In particular, we choose here to look at the following
JLab 12GeV kinematics [34]:

Eb = 10.6 GeV ,

Q2 = 4.55 GeV2 ,

0.1 ≤ xB ≤ 0.6 ,

|tmin| ≤ −t ≤ 0.8 GeV2 . (3.3)

The choice to fix the beam energy and the Q2 value is so that we may then think of the
kinematic coefficients as a 2D surface in the (xB, t)-plane. As one can see in appendix A & B,
many of our kinematic coefficients depend on the factor κ1/2

t =
√

(y − 1)[t(xB − 1)−M2x2
B].

Assuming y ≤ 1, this places the following kinematical constraint between xB and t,

t ≤ tmin = M2 x2
B

xB − 1 , (3.4)

which determines the minimum magnitude of t given in eq. (3.3). An important note here is
that the general Q2-dependent kinematical limits on t are in fact somewhat different from
the simpler eq. (3.4), and are given in [53] for example. The reason we have a different
(and less accurate) limit, is due to our twist-expanded coefficients, which will not have a
noticeable effect on the numerical analysis. The unitless coefficients present in σUUcos(nφ) as
an example, are plotted as surfaces in figure 1.

As one can see from figure 1, the overall magnitude of the cos(2φ) coefficients is quite
small compared to those of cos(1φ) and cos(0φ), and that in general the aI,U/t coefficient
dominates the interference cross section over most of the (t, xB) plane. It is reasonable
then, to quantify this hierarchy of contributions to each cross section in some meaningful
and well-defined way.

We choose to compute the average value of each coefficient over its 2-dimensional plane
in the same way one defines the average value of a function over its domain

favg = |
∫

dom f(xB, t)dxBdt|∫
dom dxBdt

, (3.5)
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Figure 1. The unitless kinematical coefficients present in the reduced UU cross section for harmonics
cos(0φ) (top), cos(1φ) (middle) and cos(2φ) (bottom). They are plotted at the kinematics given in
eq. (3.3).

where f(xB, t) are the coefficients such as those plotted in figure 1, and dom is the
kinematically allowed domain of (xB, t) values. The absolute value is purely conventional,
as we are merely interested in the magnitude of each contribution to the cross section. Since
the harmonic factors cos(nφ), sin(nφ) are of order unity and the CFF expressions involved
for each given cross section polarization (UU,LU, etc.) are fixed, attributing eq. (3.1) as
parts of the whole cross section is a meaningful way of determining the importance of each
term. Since we are trying to extract our CFFs, it is arguably imprudent to make any
assumptions as to their numerical magnitude at this point.
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Harmonic Unitless contributions (% whole cross section)

σUUcos(0φ)
4(BH⊗hU )0

Q2 (22%) aI,U
0
t (14%) bI,U

0
t (1%) cI,U

0
t (7%)

σUUcos(1φ)
4(BH⊗hU )1

Q2 (10%) aI,U
1
t (35%) bI,U

1
t (0.5%) cI,U

1
t (4.5%)

σUUcos(2φ)
4(BH⊗hU )2

Q2 (1%) aI,U
2
t (2.5%) - cI,U

2
t (0.5%)

σLUsin(1φ) - aI,L
1
t (81%) bI,L

1
t (0%) cI,L

1
t (19%)

σULsin(1φ) - ãI,U
1
t (78%) b̃I,U

1
t (0%) c̃I,U

1
t (22%)

σLLcos(0φ)
8(BH⊗h−,L)0

Q2 (38%) ãI,L
0
t (2.5%) b̃I,L

0
t (0.5%) c̃I,L

0
t (1.5%)

σLLcos(1φ)
8(BH⊗h−,L)1

Q2 (36%) ãI,L
1
t (11%) b̃I,L

1
t (0%) c̃I,L

1
t (3%)

σLLcos(2φ)
8(BH⊗h−,L)2

Q2 (6%) ãI,L
2
t (0.5%) - c̃I,L

2
t (0%)

σUTcos(0φ)
4N(BH⊗hU )0

Q2 (10%) 2aI,U
0
Nt (11.5%) 2bI,U

0
Nt (4%) 2cI,U

0
Nt (7%)

σUTcos(1φ)
4N(BH⊗hU )1

Q2 (12%) 2aI,U
1
Nt (30%) 2bI,U

1
Nt (3%) 2cI,U

1
Nt (5.5%)

σUTcos(2φ)
4N(BH⊗hU )2

Q2 (3%) 2aI,U
2
Nt (10%) - 2cI,U

2
Nt (3%)

σUTsin(1φ) - 2ãI,U
1
Nt (78%) 2̃bI,U

1
Nt (0%) 2c̃I,U

1
Nt (22%)

σLTcos(0φ)
4N(BH⊗h−,L)0

Q2 (10%) 2ãI,L
0
Nt (7%) 2̃bI,L

0
Nt (2%) 2c̃I,L

0
Nt (6%)

σLTcos(1φ)
4N(BH⊗h−,L)1

Q2 (9.5%) 2ãI,L
1
Nt (46%) 2̃bI,L

1
Nt (1%) 2c̃I,L

1
Nt (14%)

σLTcos(2φ)
4N(BH⊗h−,L)2

Q2 (1.5%) 2ãI,L
2
Nt (2%) - 2c̃I,L

2
Nt (1%)

σLTsin(1φ) - 2aI,L
1
Nt (81%) 2bI,L

1
Nt (0%) 2cI,L

1
Nt (19%)

Table 2. A table of numerical weights of each unit-less coefficient which contributes to all
polarization harmonic cross sections. Weighting is performed over eq. (3.3). Each term in the table
represents the coefficient of a certain trigonometric function that can be explicitly written in terms
of the kinematics.

We present the relative size of each coefficient as a percentage of its total reduced cross
section in table 2.

The table suggests a few key points:

• The 2nd order harmonics cos(2φ) constitute a rather small percentage of their total
cross sections, and thus it is likely not realistic to extract these terms from a measured
cross section.

• For virtually any cross section harmonic, the bINT coefficient is usually at the sub-
percent level, and can likely be omitted. This general observation was reinforced
in [57]. In fact, in some cases (e.g. eq. (B.40)) this coefficient is zero.
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• For some harmonics the cINT coefficients are also quite small, for example in σLL.
This is because they are typically proportional to ξ aINT

These numerical simplifications, which have only so far used the kinematical ranges
of eq. (3.3), are substantial, and it implies we effectively have less CFFs which practically
enters table 3. Furthermore, one can consider the additional kinematical factors which
reside in the expressions of appendix C. Using

ξavg ≈ 0.12 , (3.6)

t

4M2

∣∣∣∣∣
avg

≈ 0.08 , (3.7)

we can further approximate our reduced cross sections in eqs. (3.8)–(3.18), revealing the
highlighted dominant CFF terms shown in table 3. The reader may find a useful discussion
of the following phenomenological consequences at the end of section 3.

With the above analysis, we may now propose expressions for reduced cross sections
which do not include the suppressed higher-order harmonic coefficients.

UU cross section. The reduced UU cross section which includes leading twist kinematics
is given by

P1P2
Q4 σUUTot-BH ≈

[ 4Γ
Q4

(
BH ⊗ hU

)
0
DDVCS

1 + Γ
Q2t

(
aI,U0 A

U
Re + cI,U0 C

U
Re

)]
cos (0φ)

+
[ 4Γ
Q4

(
BH ⊗ hU

)
1
DDVCS

1 + Γ
Q2t

(
aI,U1 A

U
Re + cI,U1 C

U
Re

)]
cos (1φ) , (3.8)

where the unitless factor P1P2/Q
4 ensures that this reduced cross section still has the

units of a real cross section. Note that contrary to table 1, the twist-2 kinematics actually
leaks into the 2nd order harmonic coefficient due to the BH propagator interference effect.
However as shown in section 5, the cos(2φ) coefficient still accounts for only ∼ 4% of the
UU cross section and is hence removed. The bI,Un coefficients are also numerically negligible.

LU cross section. The reduced LU cross section which includes leading twist kinematics
is given by

P1P2
Q4 σLUTot-BH ≈

Γ
Q2t

(2h)
[
aI,L1 A

U
Im + cI,L1 C

U
Im

]
sin(φ) , (3.9)

where once again, the bn-coefficients are negligible.

UL cross section. The reduced UL cross section which includes leading twist kinematics
is given by

P1P2
Q4 σULTot-BH ≈

Γ
Q2t

(2Λl)
[
ãI,U1 A

L
Im + c̃I,U1 C

L
Im

]
sin(φ) , (3.10)

which is unsurprisingly quite similar to the approximated LU cross section.
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LL cross section. The reduced LL cross section which includes leading twist kinematics
is given by

P1P2
Q4 σLLTot-BH≈ (2h)(2Λl)

{[
− 8Γ
Q4 (BH⊗h−,L)0DDVCS

2 + Γ
Q2t

(
ãI,L0 A

L
Re+c̃I,L0 C

L
Re
)]

cos(0φ)

+
[
− 8Γ
Q4 (BH⊗h−,L)1DDVCS

2 + Γ
Q2t

(
ãI,L1 A

L
Re+c̃I,L1 C

L
Re)
]

cos(1φ)

− 8Γ
Q4 (BH⊗h−,L)2DDVCS

2 cos(2φ)
}
, (3.11)

where again we have the twist-2 kinematics entering the 2nd order harmonic here through
the DVCS term, just as it did for the UU case. This time it is of the order of 6% of the
total LL cross section, so we have kept it here. Practically, were one to attempt to extract
the cos(2φ) coefficient from σLL data, it is somewhat doubtful this term will provide any
useful constraint on DDVCS

2 , as it would likely possess a very large uncertainty. Amongst
the interference coefficients in eq. (3.11), it is aI,L1 which dominates, and will consequently
account for a large portion of the peak-peak amplitude in this cross section’s φ-variations.

UT cross section. We provide next the reduced UT cross section which includes leading
twist kinematics. Due to its length, we will give each of its net harmonic coefficients
separately. We simply define these coefficients as follows,

P1P2
Q4 σUTTot-BH =

4∑
n=0

σUTcos(nφ) cos(nφ) sin(∆φ) +
3∑

n=1
σUTsin(nφ) sin(nφ) cos(∆φ) . (3.12)

The cosine harmonic coefficients are given by

σUTcos(nφ)≈
Γ
Q4 (2ΛT )4NDDVCS

3

(
BH⊗hU

)
n

+ Γ
Q2t

(2ΛT ) 2
N

(
aI,Un Aout

Im +cI,Un Cout
Im

)
, (n= 0,1)

(3.13)

σUTcos(2φ)≈
Γ
Q2t

(2ΛT ) 2
N
aI,U2 A

out
Im , (3.14)

with the higher order harmonics starting at sub-leading twist or higher and DDVCS
3 and

{A, C}out
Im defined in appendix C. Once again, the cos(2φ) term would require very precise

data in order to place a useful constraint on the twist-2 CFFs. Meanwhile the sine harmonic
coefficients are given by

σUTsin(1φ) ≈ −
Γ
Q2t

(2ΛT ) 2
N

(
ãI,U1 A

in
Im + c̃I,U1 C

in
Im

)
, (3.15)

where {A, C}inIm are given in appendix C and the higher order sine harmonics do not contain
any leading twist kinematics — and are thus not considered here.

LT cross section. The reduced LT cross section will be similar to the UT case, and we
again define the net harmonic coefficients of the LT cross section via

P1P2
Q4 σLTTot-BH =

4∑
n=0

σLTcos(nφ) cos (nφ) cos (∆φ) +
3∑

n=1
σLTsin(nφ) sin (nφ) sin (∆φ) , (3.16)
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Harmonic Expressions ReH ImH ReE ImE ReH̃ ImH̃ ReẼ ImẼ

σUUcos(nφ) DDVCS
1 ,AURe,BURe, CURe 4 4 3 3 4 4 3 3

σLUsin(1φ) AUIm,BUIm, CUIm - 4 - 3 - 4 - -

σULsin(1φ) ALIm,BLIm, CLIm - 4 - 3 - 4 - 3

σLLcos(nφ) DDVCS
2 ,ALRe,BLRe, CLRe 4 4 3 3 4 4 3 3

σUTcos(nφ) DDVCS
3 ,Aout

Im ,Bout
Im , Cout

Im 3 4 3 4 3 3 3 3

σUTsin(1φ) Ain
Im,Bin

Im, Cin
Im - 4 - 4 - 4 - 3

σLTcos(nφ) DDVCS
4 ,Ain

Re,Bin
Re, Cin

Re 4 3 4 3 4 3 3 3

σLTsin(1φ) Aout
Re ,Bout

Re , Cout
Re 4 - 4 - 4 - 3 -

Table 3. A list of the CFF content of each of the leading twist harmonic cross sections. Cells
containing larger, red check marks indicate a stronger dependence on that CFF, while the smaller
black check marks indicate subdominant terms in the cross section.

in which the cosine coefficients are given by

σLTcos(nφ) ≈ −
Γ
Q4 (2h) (2ΛT ) (4N)

(
BH ⊗ h−,L

)
n
DDVCS

4

+ Γ
Q2t

(2h) (2ΛT ) 2
N

(
ãI,Ln Ain

Re + c̃I,Ln Cin
Re

)
, (n = 0, 1) (3.17)

while the sine coefficients are

σLTsin(1φ) ≈ −
Γ
Q2t

(2h) (2ΛT ) 2
N

(
aI,L1 A

out
Re + cI,L1 C

out
Re

)
, (3.18)

where DDVCS
4 and {A, C}{in,out}

Re are defined in appendix C.

3.3 Compton form factor map

With the results of the previous subsection, we can summarize a map of where each of the
eight twist-2 CFFs enters our observables into table 3. As we can see from the table, all
8 CFFs are spanned by the 8 cross sections, none of which is particularly sensitive to Ẽ .
Charge asymmetries may allow one to further decouple the pure DVCS from the interference
part, allowing more explicit access to the real and imaginary parts of our CFFs, but we are
not considering these observables in this study. The dominant terms highlighted in table 3
have phenomenological consequences which we shall now discuss.
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The dominant CFF terms found in each polarization cross section are as follows

σUUcos(nφ) ∼ ReH, ImH,ReH̃, ImH̃ (n = 0, 1)

σLUsin(1φ) ∼ ImH, ImH̃

σULsin(1φ) ∼ ImH, ImH̃

σLLcos(nφ) ∼ ReH, ImH,ReH̃, ImH̃ (n = 0, 1) (3.19)

σUTcos(nφ) ∼ ImH, ImE (n = 0, 1)

σUTsin(1φ) ∼ ImH̃, ImE , ImH

σLTcos(nφ) ∼ ReH̃,ReE ,ReH (n = 0, 1)

σLTsin(1φ) ∼ ReH,ReE ,ReH̃ ,

which suggests a natural observable set for extracting the CFFs H and H̃:{
σLU , σUL, σUU , σLL

}
→ H, H̃ . (3.20)

Once this has been done, the CFF E has several possible measurements for its extrac-
tion, namely:

σUT → ImE , (3.21)

σLT → ReE . (3.22)

In a more recent study in [58], a generalized Rosenbluth separation technique on σUU

and σLU has been proposed for the extraction of both H and E . This technique requires,
however: 1) the approximation that the pure DVCS cross section is φ-independent, 2) the
interference cross section contains no zeroth-order harmonic terms and 3) that the CI,U
terms are negligible with respect to both the AI,U and BI,U terms. The first of these
requirements comes at a cost in accuracy which is difficult to quantify, while we do not
observe the latter 2 conditions.

Unfortunately, the GPD Ẽ is always suppressed by kinematical factors (for example terms
proportional to ξ) in all of the cross sections, and may therefore prove more challenging to
extract. Nevertheless, ImẼ can be accessed through σUL, σUTsinφ, while ReẼ through σUU , σLL
as well as some of the other transversely-polarized target harmonics (see table 3). We shall
numerically study the importance of the various polarization cross sections towards CFF
extraction in section 4.

3.4 Reduced asymmetries

We can repeat the same technique of averaging our coefficients over JLab 12GeV kinematical
phase space to those terms in the beam spin asymmetry ALR. Doing so reveals that the
higher order harmonics drop out due to kinematical suppression, leaving us with the formula,

ALR ≈
α1 sinφ+ α2 sin(2φ)

1 + β1 cosφ+ β2 cos(2φ) , (3.23)
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where the coefficients of the numerator are approximately given by

α1 ≈
1
β0

[
aI,L

t
AUIm + cI,L

t
CUIm

]
, (3.24)

α2 ≈
1
β0

[
aI,L

t
AUIm + cI,L

t
CUIm

]
, (3.25)

and

β0 = aBH
0

Q2t2Ω0

(
F 2

1 −
t

4M2F
2
2

)
+ bBH

0
Q2t2Ω0

G2
M+ 4

Q2

(
BH⊗hU

)
0
DDVCS

1 + aI,U0
t
AURe+ cI,U0

t
CURe .

(3.26)
While the coefficients of the denominator (β1, β2) are identical to eq. (3.26) but with the
next order (1, 2) coefficients inserted respectively, and are also divided by the factor β0.
Indeed the BH cross section terms dominate within ALR, however the interference terms
are found to contribute non-negligibly to the denominator, and thus we have kept such
terms (proportional to AURe) in the β coefficients. The DVCS terms must also be kept in.

A measurement of ALR is a way to extract the imaginary part of the CFFs H, E , H̃.
Beyond that, sufficiently precise data for this asymmetry may allow the extraction of the
real parts of H, E through its present {A, C}URe terms, although this remains to be seen.
Therefore, at the very least we can expect

ALR → Im
{
H, E , H̃

}
. (3.27)

An important note about the asymmetry, is that some of the coefficients present here
do not involve leading twist terms, meaning they are missing additional terms that are
potentially just as large. The reason we cannot remove these sub-leading twist terms and
only use leading twist terms is because we do not have the luxury of explicitly (or implicitly)
integrating out one specific harmonic coefficient from the order-unity ALR as we did for
the cross sections in the previous section. It follows then, that a more extensive twist-3
analysis of ALR is worthy of future consideration.

4 Numerical analysis

We now undertake the task of applying our CFF extraction method(s) on both existing
JLab 12 GeV cross section data as well as model-computed pseudo-data. We do not yet
possess a sufficient set of observables to extract all 8 twist-2 CFFs, and so we attempt to
answer first the question: how well can one detect or isolate each harmonic coefficient with
real data? Following this, we shall study the fitting of harmonics to pseudo-data, covering
all the possible polarization cross sections. Given those numerical constraints on the CFFs
we will finish by extracting all eight with nonlinear least-squares methods.

4.1 Unpolarized cross section data test

Next, let’s perform the exercise of fitting harmonic coefficients to real DVCS cross section
data. We will choose a set of data for the unpolarized cross section σUU provided in [37]
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Eb=10.6 GeV, Q
2=8.4 GeV, t=-0.53 GeV2，xB=0.6

Figure 2. Data points for σUU from one particular bin of data from [37, 38]. Shown also is the
calculated Bethe-Heitler cross section (using the results of appendix D) at the same kinematics.

(and the earlier [38]) at the kinematical point: Eb = 10.6 GeV, Q2 = 8.4 GeV2, xB = 0.6,
t = 0.76 GeV2 taken over 0 < φ < 2π shown in figure 2. From here we must subtract from
the data the calculated BH contribution. Then one has the choice of either trying to fit a
harmonic parameterization directly to σUUTot-BH or multiply out the BH propagators and fit a
harmonic parameterization to P1P2

Q4 σUUTot-BH. The result of either choice is shown in figure 3.

Each cross section contains the following (fully reduced) azimuthal dependence,

σUUTot-BH = c0 + c1 cosφ
(BH)0 + (BH)1 cosφ+ (BH)2 cos(2φ) , (4.1)

P1P2
Q4 σUUTot-BH = c̃0 + c̃1 cosφ , (4.2)

where the unitless BH coefficients were given explicitly in section 3 and are exactly calculable.
On one hand, we can simply think of the extra P1P2 factor as extra baggage that is simply
dealt with. On the other hand, this factor possesses the observed qualitative effect of
broadening the full width half maximum (FWHM) of the central peak in the BH-subtracted
cross section, which better fits the overall shape of the data in φ (e.g. the curve in figure 3
left is visibly broader than that in figure 3 right).
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Figure 3. Comparison of fitting a harmonic parameterization to both the BH-subtracted UU cross
section (left) and the reduced UU cross section (right) which was discussed in section 3.

Fortunately, the simple harmonic form of the reduced unpolarized cross section may in
fact be reduced to a linear fitting exercise. Defining the new linear variable

xp =

cosφ, π < φ < 2π

− cosφ, 0 < φ < π
(4.3)

allows us to perform a traditional least-squares linear regression fit of both halves of the data,

P1P2
Q4 σUUTot-BH

∣∣∣∣∣
φ≥π

= c̃0 + c̃1xp , (4.4)

P1P2
Q4 σUUTot-BH

∣∣∣∣∣
φ≤π

= c̃0 − c̃1xp . (4.5)

The results of these two fits is shown in figure 4. One expects a symmetry of the data
about φ = π, as well as the consistency of the slopes and intercepts between the two fitted
lines. Geometrically, the zeroth order harmonic coefficient is the y-intercept and the average
slope (absolute value) represents the 1st order harmonic coefficient. The uncertainties of
the fitted parameters is now ∼ 10%.

The fact that we can successfully fit both the zeroth and first order harmonic coefficients
to this particular set of UU cross section data to within ∼ 10% is encouraging. It is indeed
fortunate that σUU data can be reduced to a simple 1st order harmonic function given in
eq. (4.2), and in fact this form is apparent upon inspection of the data (see figure 3 right).
This allows a linearization procedure, which gives us a very clear geometrical extraction
of two experimentally-determined constants which constrains our twist-2 CFFs. For the
case of a singly-polarized cross section, the same procedure can be employed, resulting in a
linear relationship with a zero y-intercept and xp → sinφ (for example see eq. (3.9)).

4.2 Beam spin asymmetry data test

We next choose to fit eq. (3.23) to real beam asymmetry data [33]. The results of the
fit can be found in figure 5. Since the subleading twist term α2 is not expected to be
small, we should include it in the fit. However, leaving in the fit parameter β2 leads to
undesired results. The low statistics of the data allows the possibility of generating a fit

– 25 –



J
H
E
P
0
8
(
2
0
2
2
)
0
4
8

Data (ϕ<180°)

Data (ϕ>180°)

fit

fit

-1.0 -0.5 0.0 0.5 1.0
-0.06

-0.04

-0.02

0.00

0.02

xp


1

2

Q
4

σ
To
t-
B
H

U
U

(n
b/
G
eV

4
)

Eb=10.6 GeV, Q
2=8.4 GeV, t=-0.53 GeV2，xB=0.6

Figure 4. The results of fitting eqs. (4.4), (4.5) to the first bin of data for kinematical setting 603
from [38].
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Figure 5. The result of fitting eq. (4.6) to one particular bin of data from [33].

with singularities (vertical asymptotes) between data points when β2 is included, which is
relatively small compared to β1 as it is. Therefore, the best parametrization choice for this
particular data is the expression

ALR ≈
α1 sinφ+ α2 sin(2φ)

1 + β1 cosφ . (4.6)

The results of the nonlinear fit in figure 5 give the parameter estimates: α1 = 0.26±0.04,
α2 = 0.07±0.17 and β1 = 0.26±1.66. This suggests that this data is only useful to constrain
the α1 parameter, but not the secondary α2 and β1. The question then arises: how precise
must the data be in order to determine the secondary parameters in eq. (4.6)? To help
answer this, we generate various pseudo-data for ALR(φ) at the same kinematical point,
varying the statistics and uncertainty.
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To do so, we define 3 variables to modify the pseudo-data: N for the number of evenly
spaced angles φ assumed by the data points, f for the maximum fractional fluctuation of
the data points (which is randomized point-by-point) and δ for the fractional uncertainty
of the data points themselves (with random fluctuations on the order of ±1/3). Since we
are interested in finding the harmonic structure of eq. (4.6) from such data, we assume that
form in its generator. For instance, the pseudo-data generator used for the kinematical
point of the data from figure 5 is given by:

Apseudo
LR =

{
.25sinφi+0.1sin(2φi)

1+0.3cosφi
+Rnd[−0.25f,0.25f ]

}
±Rnd

[
0.25

(
δ− δ3

)
,0.25

(
δ+ δ

3

)]
,

(4.7)
where i = 1, 2, · · · , N and Rnd[x1, x2] generates a random number between x1 and x2.

An example of the data points generated by eq. (4.7) with a fitted eq. (4.6) is shown in
figure 6. There one can see a trace of the other harmonics around φ = π. By systematically
varying N , f and δ, we find that the most important factor in determining a quality fit
to α2 is δ. The difference in the fit between data with N = 17 and N = 35 for instance is
small. The effects of varying f over 0.1 < f < 0.3 was also not significant on the fit results.
Fixing N = 17 and f = 0.1 (reasonable expected values) while varying α2 from 5% to 20%
revealed that

∆α2
α2
≈ 2∆ALR

ALR
, (4.8)

i.e. that the fractional uncertainty in the extracted α2 is approximately twice that of the
fractional uncertainty of the data points of ALR. Therefore, in order to determine α2 to
within 10%, one should strive to have measured ALR to within 5%, for example.

Future beam spin asymmetry studies should attempt to include α2 as once one includes
a twist-3 CFF analysis, this particular coefficient contains a twist-3 GPD associated with
the OAM of quarks inside the proton [62]. Lastly, it appears safe to say that extracting β1
with much precision, even from precision data, is unexpected. Even for the pseudo-data
shown in figure 6, β1 cannot be determined better than to within 50%. We conclude that
the observable ALR is not a reliable means to extract the real parts of the CFFs.

4.3 CFF extraction from pseudo-data

We will now study how to locally extract all 8 twist-2 CFFs using model-dependent pseudo-
data for all of the total polarized and unpolarized cross sections covered in the text. Since we
do not yet possess real data for all of these potential observables, it will be instructive to learn
what we can extract in the meantime with hypothetical data. By using a particular GPD
model, we will go in with a knowledge of our CFFs, allowing a benchmarking environment
of the extraction method.

We begin by choosing one particular kinematical point: Q2 = 2.3 GeV2, xB = 0.36, t =
−0.28 GeV2, for which we use the determined value of the twist-2 CFFs using the UVa-based
Reggeized di-quark model [63, 64] with origins from [23], shown in table 4. Using these
CFF values, we may predict a value for any DVCS cross section we like at any chosen
value of (Eb, φ). We shall fix the beam energy to Eb = 10.6 GeV and sample “measurement
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Pseudo-Data {N=35,f=0.2,δ=0.1}
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Figure 6. The result of fitting eq. (4.6) to the pseudo-data generated by eq. (4.7) with N = 35,
f = 0.2 and δ = 0.1.

Model Q2(GeV2) xB t(GeV2) ReH ImH ReE ImE ReH̃ ImH̃ ReẼ ImẼ
UVa 2.3 0.36 −0.28 −0.7806 1.951 −0.3645 0.709 3.030 1.044 2.827 5.331

Table 4. Proton CFF values used for generating pseudo-data using Reggeized diquark GPD
model [63, 64].

points” over discrete values of φ ∈ (0, 2π). This will be done in the same way as we did for
ALR in eq. (4.7), which involves randomized noise fluctuations of order f percent and a
percent uncertainty of order δ. Making the choice of f = 0.3, δ = 0.25 all 8 cross sections
P1P2
Q4 σPbPt

Tot-BH(φ) are plotted in figure 7 together with a fitted 1st-order harmonic function
in φ. Although there are 8 cross measured cross sections here, 4 of them are of the form
a + b cosφ while the other 4 are fitted to c sinφ, totaling 12 fitted harmonic coefficients
which will be used to constrain the twist-2 CFFs. The uncertainty of the fitted coefficients
is of order ∼ (10− 20)%.

The fitted values of all the 12 harmonic coefficients are then appropriately equated
to eqs. ((3.8), (3.9), (3.10), (3.11), (3.13), (3.15), (3.17), (3.18)). The resulting system of
equations is indeed in the form of eq. (2.3). Algebraically solving this system must not
be done in the literal sense, but rather a numerical least-squares fit of the 8 unknown
parameters needs to be performed to minimize the χ2 function. In this test, the minimized
function is

χ2 =
N∑
i=1

(Oi − Ei)2

σ2
i

, (4.9)

where N is the total number of experimental constraints, the observables Oi are the
fitted harmonic coefficients, σi are their uncertainties, and the expected values Ei are the
predicted modified cross section harmonic coefficients, which depend on the unknown CFFs.
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Figure 7. 8 generated DVCS pseudo-cross sections at Eb = 10.6 GeV using the data in table 4. All
polarized cross sections have been taken with their helicity at +1/2, which is equivalent to taking
(σ+ − σ−)/2. The UT and LT cross sections have been integrated over 1

π

∫ 2π
0 ∆φ angle. The data

points and their uncertainties do not attempt to realistically represent real data at any particular
facility, but merely use randomized statistical uncertainties ∼ 25%.
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CFF fit value uncertainty
ReH −0.79 0.06
ImH 1.95 0.16
ReE −0.41 0.15
ImE 0.59 0.73
ReH̃ 2.98 0.01
ImH̃ 1.06 0.33
ReẼ 2.77 2.66
ImẼ 5.60 2.12

Table 5. Fitted CFF values from χ2 minimization using all 8 polarization channels of the pseudodata
depited in figure 7. The percent deviation is from the expected UVa model values shown in table 4.
The uncertainties are computed via eq. (4.15).

A numerical minimization of eq. (4.9) is performed using the optimal choice amongst various
nonlinear methods including: nelder Mead, differential evolution, stimulated annealing and
random search; case-by-case.

The results of this numerical least-squares minimization of χ2 can be found in table 5
and figure 8. The reduced χ2

ν = χ2/ν, where ν = the degrees of freedom = (# of observables)
− (# of fitting parameters) is found to be 0.13 using all 12 constraints from the pseudo-data.
However, this reduced chi-squared value should not necessarily be expected to be 1, given
such a small number of degrees of freedom resulting from using harmonic coefficients. The
effect of introducing parameter constraints on the least-squares fit was also investigated.
Similar as in [13], we introduced a maximum threshold deviation from the model-value of
the CFFs into the fit as a constraint. For a threshold factor of h, the CFFs were constrained
to remain within the domain

Fmodel − |hFmodel| ≤ F ≤ Fmodel + |hFmodel| , (4.10)

where the Fmodel are given in table 4. It was found that both the fitted value of the CFFs as
well as χ2

ν were relatively insensitive to the value of h ∈ [5, 75). We chose not to go below 5
so as to stay as model-independent as possible, while choosing thresholds above 75 resulted
in undesired new parameter minima in the χ2. A close inspection of all 12 equations for
the harmonic coefficients involved reveals no apparent degeneracies, neither analytically
nor numerically at the kinematical point chosen. We therefore do not have any suspected
grounds to remove any specific constraints from the fit on the concerns of a degeneracy.

The uncertainty for each of the fitted parameters can be determined from the properties
of the Hessian matrix of the χ2 function, which is defined from the quadratic term in its
multi-variable Taylor series about its global minimum point F̂

χ2 (F) ≈ χ2
(
F̂
)

+ 1
2!

∂2χ2

∂Fi∂Fj

∣∣∣∣
F̂

(
Fi − F̂i

) (
Fj − F̂j

)
. (4.11)
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We then assume a normal probability density function of the form f(χ2) ∼ e− 1
2χ

2 . Doing
so allows us to define a 1σ uncertainty about the maximum of the distribution via ∆χ2 =
|χ2(F̂)−χ2(F)| ≤ 1. Substituting eq. (4.11) into this condition yields the following condition
on the maximum allowed perturbations in CFF space about the solution point

1
2
(
Fi − F̂i

) ∂2χ2

∂Fi∂Fj

∣∣∣∣
F̂

(
Fj − F̂j

)
≤ 1 . (4.12)

Which represents an inner product between the 8-dimensional perturbation vector ∆ ~F and
the Hessian matrix Hess(χ2) of the least-squares function evaluated at its global minimum
point. In order to simplify the solution to eq. (4.12) we can diagonalize the Hessian. Suppose
said eigen-solution is given by

Hess
(
χ2
)
|ei〉 = λi|ei〉 , (4.13)

then eq. (4.12) is given by the diagonal quadratic formula

1
2
∑
i

λi∆F ′2i ≤ 1 , (4.14)

where ∆F ′i = ~ei · ~F is the original perturbed CFF projected into the Hessian eigenbasis.
eq. (4.14) represents a hyperdimensional ellipsoid when all of the eigenvalues are positive
numbers. The coefficients in the sum geometrically represent the ellipsoid’s radii. We can
use this information to assign a 1σ uncertainty to the original CFF space via

~ei ·∆ ~F ≤
√

2
λi
, (4.15)

where ∆ ~F are deviations of the original CFFs with respect to the global minimum point in
the least-squares function. The solution to eq. (4.13) is then a crucial test in determining
both the uncertainty of the extracted CFFs but also the validity of any found global
minimum itself. All 8 eigenvalues λi must be non-zero positive numbers. When we perform
a least-squares fitting via eq. (4.9), we can immediately solve eq. (4.13) at any found
minimum point. Should even a single eigenvalue be zero (or numerically very small),
eq. (4.15) forces all 8 CFF uncertainties to be numerically very large (effectively infinite).

The results shown in figure 8 represents a χ2 fit to all of the 0th and 1st order harmonic
coefficients which generate the red curves in figure 7. Alternatively, one can in fact use
cross sections directly in eq. (4.9). This would negate the need to perform explicit harmonic
fits to the data while substantially increasing the number of degrees of freedom in the fit.
We have performed this exercise on all of the individual data points shown in figure 7. The
result gives nearly identical central values of the extracted CFFs and a nearly identical
CFF uncertainties after the application of eq. (4.15). This is despite the fact that the χ2

functions are different in each case. We also found that if one uses harmonic coefficients
directly in eq. (4.9), that removing any of the 6 broader polarization channels results in
very large CFF uncertainties. However, this does not occur when applying eq. (4.9) directly
to the cross section data points — perhaps because the χ2 function has a more nuanced
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Figure 8. Comparison of the 8 twist-2 CFFs extracted from all possible polarization cross sections
and their UVa model value used to generate the pseudo-data.

geometry with the higher dof — and thus a more well-defined global minima. As a final note
on uncertainties, eq. (4.15) predicts symmetric error bars for the CFFs. A more rigorous
treatment, for example with Monte Carlo techniques, would allow for a more accurate
uncertainty estimation but that is beyond the scope of this paper.

In practice, one should not normally expect to have all 8 polarization cross sections
measured at the same kinematical point. Therefore, we should investigate what result
a specific subset of the 12 constraints can provide in a CFF fit. With the insistence of
maintaining at constrained system (8 constraints), there are in principle 12!/(8!4!) = 495
ways to choose 8 constraints out of the 12 available. Rather than exhaust all of these
possible choices, we can systematically repeat fits with the removal of each specific cross
section channel, and test if our extracted CFF values improves or worsens.

Performing the least-squares fit for the case of each individual channel removed from the
total data set results in the extracted CFFs depicted in figure 9. Comparing each plot then
of figure 9 to that in figure 8 may give some insight into the role of each of those obserables.
The results of this comparison suggests that above all others, UT measurements may be
the most valuable in determining the CFF E . The plots also suggest that LL measurements
may be more sensitive to ReẼ than any other channel. We also systematically removed
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2 channels, 3 channels, etc. from the least-squares fit, and found a critical an universal
condition required for extracting all 8 CFFs with finite uncertainty. This condition is that
whatever set of DVCS data one uses to make this extraction, the total number of harmonic
coefficients spanned by the data fit must be greater or equal to the number of CFFs one
wishes to extract.

Given this finding, it would seem logical to fit higher-order harmonics to DVCS data, as
this would help one constrain more CFFs with fewer polarization channels. Although this
is true in principle, one must be cautious when doing so. The reason can be seen in table 1.
The 2nd and 3rd order harmonic coefficients arise at sub-leading kinematical twist. Omitted
from this analysis is the inclusion of genuine twist-3 dynamics (i.e. twist-3 CFFs), which
possess equally-sized twist-3 kinematics which additively enter the 3rd column in table 1,
including the sub-leading harmonics. Therefore, without this more extensive calculation of
the DVCS cross section, if one fits 2nd- and 3rd-order harmonics to the data, they must
acknowledge that these twist-3 contributions may constitute a rather large percentage of
that harmonic coefficient. Therefore, we advocate an attempt to estimate the approximate
size of these genuine twist-3 contributions to the cross section and they must be regarded
as an additional source of uncertainty towards the extraction of the twist-2 CFFs. We have
performed a full calculation of the twist-3 DVCS cross section [65], and leave its impact on
the extraction of twist-2 CFFs to a future study.

If one has data at multiple beam energies, however, constraining the CFFs becomes a
much more viable task. In a more recent study from the Hall A collaboration [37], σUU and
σLU data was used to extract the four twist-2 CFFs with a finite uncertainty. Although
the analysis uses higher order harmonics in the fit, a direct count of harmonic observables
gives (cos(0φ), cos(1φ), cos(2φ) for UU) + (sin(1φ), sin(2φ) for LU) = 5 constraints to 8
unknowns. However, the extraction is still possible there because the data includes multiple
beam energies (and Q2) at quasi-common (xB, t) values, pushing the number of constraints
beyond 8. This is even more convincing once one adopts the assumption that CFFs do not
vary appreciably over the measured Q (which they don’t). This then represents an example
where one can extract the twist-2 CFFs with as few as 2 polarization channels.

We also studied the effect of simplifying the cross section observables based on the
relative size of dominant vs subdominant CFF terms in their expressions (such as indicated
by the checkmarks in table 3). For example, Ẽ is always suppressed in the DVCS cross
sections. One could then imagine varying {Re,Im}Ẽ over eq. (4.10) from its model value
in table 4 at little cost to the extraction of the other 6 CFFs in σUU . Proceeding in this
manner, we took the most insensitive CFFs to vary over the least-squares search grid
implied by eq. (4.10) and performed the pseudo-data χ2 fit. The result is that one can
in fact find the remaining dominant CFFs, albeit with an inflated and somewhat more
model-dependent uncertainty.

5 Conclusion

In this study, we looked at the exercise of locally extracting the twist-2 CFFs from DVCS
observables. In order to do this, we computed all possible polarized/unpolarized DVCS
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Figure 9. Comparison of the 8 extracted twist-2 CFFs with different cross section polarization
data removed.
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total cross sections, as well as the beam spin asymmetry, in terms of the twist-2 CFFs
explicitly. Although we possess all-orders of the kinematics, for practical purposes we only
provide all of the lab frame kinematics accurate up to twist-4 in this paper. Furthermore,
we choose to decompose all of our observables into harmonic form (i.e. into cos(nφ) and
sin(nφ) terms). We found that it is indeed possible to locally extract the eight assumed free
variables {Re, Im}{H, E , H̃, Ẽ}(xB, t, Q) from the DVCS observables, given enough data. In
doing so, we found the importance of having a sufficient number of constraints (at least 8
distinct measured observables across polarizations and beam energies) to determine the
twist-2 CFFs, and that this model-independent approach will serve as a crucial guide for
future techniques.

To aid in the exploitation of the azimuthal dependence of the DVCS cross sections, we
prescribe the definition of re-weighted cross sections, which involves the multiplication of
the BH propagators P1(φ)P2(φ). Trigonometric identities then allows us to reduce these
reduced cross sections to very simple φ expressions practical for CFF extraction. We
demonstrated that the DVCS cross sections may be greatly simplified in their harmonic
structure by keeping only terms which includes leading twist kinematics, which resides in
the lower frequency harmonic terms. Those remaining coefficients are then weighted over
expected JLab 12GeV lab frame kinematics, identifying the dominant harmonic coefficients,
simplifying the DVCS observables yet further. From these results, we propose a roadmap
for twist-2 CFF extraction from total DVCS cross sections alone. We have also excluded
the possibility of positron beams. We demonstrate that one can in fact successfully extract
the harmonic coefficients from real data, using both the unpolarized DVCS cross section
and the beam spin asymmetry as examples.

Using a specific GPD model [23], we have generated pseudo-data for all possible DVCS
cross sections with certain assumed uncertainties and statistics. From this pseudo-data,
we have placed 12 numerical constraints on the twist-2 CFFs through fitted harmonic
coefficients. A χ2 fit was then performed on those equations, and all eight CFFs were
determined with finite error estimates. Various systematic studies were done on this fitting
procedure. There is was also found that although transversely-polarized target observables
are not necessary to determine E , they do place stronger constraints on this CFF than the
other observables. The general conclusion is that this technique is successful, and using as
many constraints as possible generally gives a better fit.
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A Pure DVCS polarization cross sections

The pure DVCS cross section will be fully considered up to twist-2 dynamics in this section.
To start, we may decompose the general pure DVCS cross section by polarization cases
as follows

σDVCS = σUUDVCS + σLLDVCS(h,Λl) + σUTDVCS(ΛT ) + σLTDVCS(h,ΛT ) , (A.1)

where each of the 4 polarization cross sections is given below, and are linearly dependent on
their helicity parameter(s). Note the LU DVCS cross section here is identically zero simply
due to its vanishing Dirac structure, while the UL case only arises at twist-3. The equations
which will ensue in this appendix are taken directly from [57] with the added intention to
both explicitly express the DVCS cross sections in terms of the real and imaginary parts
of the twist-2 CFFs and provide the lab-frame kinematical coefficients explicitly through
harmonic coefficients.

A.1 Unpolarized beam unpolarized target

The unpolarized DVCS contribution to the cross section is given by

σUUDVCS = Γ
Q4F

UU , (A.2)

FUU = 4hU
{(

1− ξ2
) [

(ReH)2 + (ImH)2 +
(
ReH̃

)2
+
(
ImH̃

)2
]

− t

4M2

[
(ReE)2 + (ImE)2 + ξ2

(
ReẼ

)2
+
(
ImẼ

)2
]

− ξ2
[
(ReE)2 + (ImE)2 + 2ReEReH+ ImEImH

+ 2ReẼReH̃+ ImẼImH̃
]}

, (A.3)

involving the scalar quantity hU , which is expressible in terms of an azimuthal-even
harmonic series

hU =
3∑

n=0
hUn cos (nφ) . (A.4)

Eq. (A.3) also involves the skewness parameter, which is given by

ξ = xB
2− xB

− 2xB (xB − 1) t
(xB − 2)2Q2 , (A.5)

in our light cone choice. We perform a twist expansion (1/Q-expansion) to the harmonic
coefficients defined above up to N3LO. We caution the reader that these expansions in some
cases may not be sufficiently accurate for a high precision study of DVCS data, in which
case the unapproximated expressions should be used [66]. The twist-expanded coefficients
presented here are merely used for the pragmatic purpose of determining the relative size of
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the various harmonic coefficients which enters the DVCS observables considered in the text.
In the lab frame, the coefficients of eq. (A.4) are given up to kinematic twist-4 accuracy by

hU0 ≈
−4M2x2

B

(
y2 − 5y + 5

)
+Q2

(
2− 2y + y2

)
+ 2t(xB − 1)

(
y2 − 6y + 6

)
2y2 , (A.6)

hU1 ≈
2Q(y − 2)

√[
t(xB − 1)−M2x2

B

]
(1− y)

y2 , (A.7)

hU2 ≈ −
2(y − 1)

[
t(xB − 1)−M2x2

B

]
y2 , (A.8)

hU3 ≈ 0 , (A.9)

in which we have taken the light cone direction associated with β →∞ in [57].

A.2 Polarized beam longitudinally polarized target

The LL DVCS cross section is given by

σLLDVCS = Γ
Q4 (2h)(2Λl)FLL , (A.10)

FLL = −8h−,L
{(

1− ξ2
) (

ReH̃ReH+ ImH̃ImH
)

− ξ2
(
ReH̃ReE + ImH̃ImE + ReẼReH+ ImẼImH

)
−
(

ξ2

1 + ξ
+ t

4M2

)
ξ(ReẼReE + ImẼImE)

}
, (A.11)

in which the sole scalar coefficient is given by

h−,L =
3∑

n=0
h−,Ln cos(nφ) . (A.12)

The polarized scalar harmonic coefficients in eq. (A.12) are given to twist-4 accuracy in the
lab frame by

h−,L0 ≈
(y − 2)

[
− 4M2x2

B +Q2 + 2txB − 2t
]

2y , (A.13)

h−,L1 ≈ −
2Q
√[

t(xB − 1)−M2x2
B

]
(1− y)

y
, (A.14)

h−,L2 ≈ 0 ≈ h−,L3 . (A.15)
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A.3 Unpolarized beam transversely polarized target

Suppose we have an unpolarized beam scattering off of a transversely polarized target with
polarization vector

Sµ = 2ΛT (0, cosφS , sinφS , 0) , (A.16)

where φS is the azimuthal angle of the target polarization from the lab frame x-axis about
the positive z-axis. Then the pure DVCS cross section will be given by

σUTDVCS = sin(φS − φ)σUT,out
DVCS . (A.17)

Here the other potential term in which the polarization vector of the proton is parallel to
the hadronic plane is zero.

Perpendicular to hadronic plane. The DVCS cross section in which the target nu-
cleon’s polarization vector is perpendicular to the hadronic (p′, q′) plane is given by

σUT,out
DVCS = Γ

Q4 (2ΛT )FUT,out , (A.18)

FUT,out = 4NhU
[
ReHImE − ReEImH− ξ

(
ReH̃ImẼ − ReẼImH̃

)]
, (A.19)

where hU may again may assume the form of eq. (A.4) and the normalization factor
introduced in [57] is given by

N =

√
−4M2ξ2 − t

(
1− ξ2)

M
. (A.20)

A.4 Polarized beam transversely polarized target

Now with a polarized beam we define the total pure DVCS LT cross section similarly as we
did the UT ,

σLTDVCS = cos(φS − φ)σLT,inDVCS , (A.21)

which now does not have a component perpendicular to the hadronic plane.

Parallel to hadronic plane. The DVCS cross section in which the target nucleon’s
polarization vector is parallel to the hadronic (p′, q′) plane is given by

σLT,inDVCS = Γ
Q4 (2h)(2ΛT )FLT,in , (A.22)

FLT,in = −4Nh−,L
[
ReH̃ReE + ImEImH̃ − ξ

(
ReẼReH+ ImẼImH

)
− ξ2

1 + ξ

(
ReẼReE + ImẼImE

)]
, (A.23)

and again, h−,L may be decomposed into harmonic series of eq. (A.12). It is important to
note that for a proton transversely polarized perpendicular to the hadronic plane, there
is no pure DVCS contribution to the total cross section. This concludes our pure DVCS
cross sections.
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B Interference polarization cross sections

The interference cross section is generally of a comparable magnitude to the pure DVCS
one, but has a more rich azimuthal structure. Just as we did for the DVCS case, we choose
to decompose this interference cross section by beam and target polarizations,

σI = σUUI + σULI (Λl) + σLUI (h) + σLLI (h,Λl) + σUTI (ΛT ) + σLTI (h,ΛT ) , (B.1)

which now includes all 6 possible combinations of polarized and unpolarized beam and
target. Each of these cross sections is given explicitly in this section, once again in terms of
the real and imaginary parts of the twist-2 CFFs and providing the lab-frame kinematical
coefficients explicitly as determined from [57].

B.1 Unpolarized beam unpolarized target

The UU interference cross section for an electron/positron beam of charge (el = ±1) is
given by

σUUI = − elΓ
Q2t

FUUI , (B.2)

FUUI = AI,U
(
F1ReH−

t

4M2F2ReE
)

+BI,U(F1 + F2)(ReH+ ReE)

+ CI,U(F1 + F2)ReH̃ . (B.3)

The benefit of using this form is twofold: first, the CFF dependence is explicit and second,
the coefficients AI,U , BI,U and CI,U can be calculated to a high kinematical precision. This
form of the interference cross section was introduced in [55], wherein physical connections
are made to Rosenbluth separation and inclusive processes.

We will also need to fully understand the azimuthal dependence of the cross section,
and to help us do so, we will expand these 3 coefficients into a harmonic series as follows

AI,U = Q4

P1(φ)P2(φ)

3∑
n=0

aI,Un cos(nφ) , (B.4)

BI,U = Q4

P1(φ)P2(φ)

3∑
n=0

bI,Un cos(nφ) , (B.5)

CI,U = Q4

P1(φ)P2(φ)

3∑
n=0

cI,Un cos(nφ) , (B.6)

The factor P1P2 is given explicitly as a function of (xB, Q, t, φ, y) in eqs. (2.21)–(2.24) The
harmonic coefficients in eqs. (B.4)–(B.6) are given to twist-4 accuracy in the lab frame below.
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AI,U coefficients:

aI,U3 ≈− 16κ
3
2
t

QxBy3 , (B.7)

aI,U2 ≈−16(y−2)κt
xBy3 , (B.8)

aI,U1 ≈− 8κ
1
2
t

QxBy3

[
−2M2x2

B

(
4y2−19y+19

)
+Q2

(
y2−2y+2

)
+2txB

(
3y2−11y+11

)
−4t

(
y2−3y+3

)]
, (B.9)

aI,U0 ≈ 8(y−2)
xBy3

[
M2x2

B (y−2)2+t
(
−xB

(
y2−3y+3

)
+y2−2y+2

)]
, (B.10)

which involve the recurring kinematical factor responsible for the minimum allowed magni-
tude of t,

κt ≡ (1− y)
[
t(xB − 1)−M2x2

B

]
. (B.11)

BI,U coefficients:

bI,U3 ≈ 0 ≈ bI,U2 , (B.12)

bI,U1 ≈ −16txB(y2 − 6y + 6)κ
1
2
t

Q(xB − 2)y3 , (B.13)

bI,U0 ≈ 8txB(y2 − 3y + 2)
(xB − 2)y3 , (B.14)

CI,U coefficients:

cI,U3 ≈− xB
xB−2a

I,U
3 , (B.15)

cI,U2 ≈− xB
xB−2a

I,U
2 , (B.16)

cI,U1 ≈− xB
xB−2a

I,U
1 + 16tκ

1
2
t

Q(xB−2)2 y3

{
x2
B

(
y2−6y+6

)
+xB

(
−3y2+20y−20

)
+3
(
y2−6y+6

)}
,

(B.17)

cI,U0 ≈− 8(y−2)3κt
(xB−2)y3(1−y) . (B.18)

B.2 Unpolaried beam longitudinally polarized target

The total interference cross section for an unpolarized beam on a longitudinally polarized
target (Λl = ±1/2) is given by

σULI = − elΓ
Q2t

(2Λl)FULI , (B.19)
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FULI = ÃI,U
[
F1

(
ImH̃ − ξ2

1 + ξ
ImẼ

)
− F2

t

4M2 ImẼ
]

+ B̃I,U(F1 + F2)
(
ImH̃+ ξ

1 + ξ
ImẼ

)
+ C̃I,U(F1 + F2)

(
ImH+ ξ

1 + ξ
ImE

)
. (B.20)

Once again, we may expand the interference coefficients into a harmonic series, this time in
terms of trigonometric sine functions

ÃI,U = Q4

P1(φ)P2(φ)

3∑
n=1

ãI,Un sin(nφ) , (B.21)

B̃I,U = Q4

P1(φ)P2(φ)

3∑
n=1

b̃I,Un sin(nφ) , (B.22)

C̃I,U = Q4

P1(φ)P2(φ)

3∑
n=1

c̃I,Un sin(nφ) , (B.23)

whose coefficients are distinguished by those of eqs. (B.4)–(B.6) by the presence of a tilde,
and are given below.

ÃI,U coefficients:

ãI,U3 ≈ 16κ
3
2
t

QxBy3 , (B.24)

ãI,U2 ≈−16(y−2)κt
xBy3 , (B.25)

ãI,U1 ≈ 4κ−
1
2

t

QxBy3

{
2Q2

(
y3−3y2+4y−2

)(
M2x2

B−txB+t
)

+tM2x2
B

[
−xB

(
y4−18y3+82y2

−128y+64
)

+y4−16y3+72y2−112y+56
]
+M4x4

B

[
y4−14y3+58y2−88y+44

]
−t2 (xB−1)(y−1)

[
xB
(
5y2−22y+22

)
−4(y−2)2

]}
, (B.26)

B̃I,U coefficients:
b̃I,U3 ≈ 0 ≈ b̃I,U2 ≈ b̃I,U1 , (B.27)

C̃I,U coefficients:

c̃I,U3 ≈ xB
xB − 2 ã

I,U
3 , (B.28)

c̃I,U2 ≈ xB
xB − 2 ã

I,U
2 , (B.29)

c̃I,U1 ≈ xB
xB − 2 ã

I,U
1 − 16tκ

1
2
t [(xB − 1)y2 − 2y + 2]
Q(xB − 2)2y3 . (B.30)
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B.3 Polarized beam unpolarized target

The total interference cross section for a polarized beam (h = ±1/2) on an unpolarized
target is given by

σLUI = − elΓ
Q2t

(2h)FLUI , (B.31)

FLUI = AI,L
(
F1ImH−

t

4M2F2ImE
)

+BI,L(F1 + F2)(ImH+ ImE)

+ CI,L(F1 + F2)ImH̃ . (B.32)

The coefficients of which are given by

AI,L = Q4

P1(φ)P2(φ)

3∑
n=1

aI,Ln sin(nφ) , (B.33)

BI,L = Q4

P1(φ)P2(φ)

3∑
n=1

bI,Ln sin(nφ) , (B.34)

CI,L = Q4

P1(φ)P2(φ)

3∑
n=1

cI,Ln sin(nφ) . (B.35)

These polarized scalar harmonic coefficients are given below.

AI,L coefficients:

aI,L3 ≈ 0 , (B.36)

aI,L2 ≈ 16κt
xBy2 , (B.37)

aI,L1 ≈ 4(y−2)κ−
1
2

t

QxBy2

{
M2tx2

B

[
−xB

(
y2−16y+16

)
+y2−14y+14

]
+M4x4

B

(
y2−12y+12

)
−t2

(
5x2

B−9xB+4
)

(y−1)−2Q2κt

}
, (B.38)

(B.39)

BI,L coefficients:
bI,L3 ≈ 0 ≈ bI,L2 ≈ bI,L1 , (B.40)

CI,L coefficients:

cI,L3 ≈ 0 , (B.41)

cI,L2 ≈ − xB
xB − 2a

I,L
2 , (B.42)

cI,L1 ≈ − xB
xB − 2a

I,L
1 − 16t(xB − 1)(y − 2)κ

1
2
t

Q(xB − 2)2y2 . (B.43)
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B.4 Polarized beam longitudinally polarized target

For the interference case of a polarized beam and longitudinally polarized target we have
the cross section

σLLI = − elΓ
Q2t

(2h)(2Λl)FLLI , (B.44)

FLLI = ÃI,L
[
F1

(
ReH̃ − ξ2

1 + ξ
ReẼ

)
− F2

t

4M2 ξReẼ
]

(B.45)

+ B̃I,L(F1 + F2)
(
ReH̃+ ξ

1 + ξ
ReẼ

)
(B.46)

− C̃I,L(F1 + F2)
(
ReH+ ξ

1 + ξ
ReE

)
. (B.47)

These double-spin coefficients above relegate back to an azimuthal-even harmonic series of
cosines

ÃI,L = Q4

P1(φ)P2(φ)

3∑
n=0

ãI,Ln cos(nφ) , (B.48)

B̃I,L = Q4

P1(φ)P2(φ)

3∑
n=0

b̃I,Ln cos(nφ) , (B.49)

C̃I,L = Q4

P1(φ)P2(φ)

3∑
n=0

c̃I,Ln cos(nφ) , (B.50)

The coefficients to which are provided below.

ÃI,L coefficients:

ãI,L3 ≈ 0 , (B.51)

ãI,L2 ≈ − 16κt
xBy2 , (B.52)

ãI,L1 ≈ 8 (y − 2)κ
1
2
t

[
8M2x2

B −Q2 + t (4− 6xB)
]

QxBy2 , (B.53)

ãI,L0 ≈ 8
xBy2

{
M2x2

B

(
y2 − 6y + 6

)
+ t

[
(y − 2)2 − xB

(
y2 − 5y + 5

)]}
, (B.54)

B̃I,L coefficients:

b̃I,L3 ≈ 0 ≈ b̃I,L2 , (B.55)

b̃I,L1 ≈ −16txB (y − 2)κ
1
2
t

Q (xB − 2) y2 , (B.56)

b̃I,L0 ≈ 8txB (y − 1)
(xB − 2)y2 , (B.57)
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C̃I,L coefficients:

c̃I,L3 ≈ 0 , (B.58)

c̃I,L2 ≈ xB
xB − 2 ã

I,L
2 , (B.59)

c̃I,L1 ≈ 8(y − 2)κ
1
2
t

Q(xB − 2)2y2

{
8M2x2

B(xB − 2)−Q2(xB − 2)− 2t(4x2
B − 11xB + 7)

}
, (B.60)

c̃I,L0 ≈ 8(y2 − 6y + 6)κt
(xB − 2)y2(y − 1) . (B.61)

B.5 Unpolarized beam transversely polarized target

We shall again decompose the UT cross section here in terms of its in plane and out of
plane components

σUTI = cos(φS − φ)σUT,inI + sin(φS − φ)σUT,out
I . (B.62)

Parallel to Hadronic plane:

σUT,inI = Γ
Q2t

(2ΛT )FUT,inI , (B.63)

FUT,inI =− 2
N

{
ÃI,U

[
ξF1

(
ξImH̃+

(
ξ2

1+ξ+ t

4M2

)
ImẼ

)
+F2

t

4M2

(
(ξ2−1)ImH̃+ξ2ImẼ

)]

+B̃I,U(F1+F2)
[
ImH̃+

(
t

4M2−
ξ

1+ξ

)
ξImẼ

]

+C̃I,U(F1+F2)
[
ξImH+

(
ξ2

1+ξ+ t

4M2

)
ImE

]}
. (B.64)

Perpendicular to Hadronic plane:

σUT,out
I = Γ

Q2t
(2ΛT )FUT,out

I , (B.65)

FUT,out
I = 2

N
Im
{
AI,U

[
F1

(
ξ2ImH+

(
ξ2+ t

4M2

)
ImE

)
+ t

4M2F2
(
(ξ2−1)ImH+ξ2ImE

)]

+BI,U(F1+F2)
(
ImH+ t

4M2 ImE
)
−CI,Uξ(F1+F2)

(
ImH̃+ t

4M2 ImẼ
)}

.

(B.66)

B.6 Polarized beam transversely polarized target

Finally, the LT interference cross section is given by

σLTI = cos(φS − φ)σLT,inI + sin(φS − φ)σLT,out
I . (B.67)
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Parallel to Hadronic plane:

σLT,inI = Γ
Q2t

(2h)(2ΛT )FLT,inI , (B.68)

FLT,inI = 2
N

{
ÃI,L

[
ξF1

(
ξReH̃+

(
ξ2

1+ξ+ t

4M2

)
ReẼ

)
+F2

t

4M2

(
(ξ2−1)ReH̃+ξ2ReẼ

)]

+B̃I,L(F1+F2)
[
ReH̃+

(
t

4M2−
ξ

1+ξ

)
ξReẼ

]

+C̃I,L(F1+F2)
[
ξReH+

(
ξ2

1+ξ+ t

4M2

)
ReE

]}
. (B.69)

Perpendicular to Hadronic plane:

σLT,out
I = Γ

Q2t
(2h)(2ΛT )FLT,out

I , (B.70)

FLT,out
I =− 2

N

{
AI,L

[
F1

(
ξ2ReH+

(
ξ2+ t

4M2

)
ReE

)
+ t

4M2F2
((
ξ2−1

)
ReH+ξ2ReE

)]

+BI,L(F1+F2)
(
ReH+ t

4M2ReE
)

−CI,Lξ(F1+F2)
(
ReH̃+ t

4M2ReẼ
)}

. (B.71)

C Definition of Compton form factor expressions

We define here the recurring quadratic and linear expressions of CFFs which arise in our
DVCS observables. Starting with the quadratic expressions, we define

DDVCS
1 =

(
1− ξ2

) [
(ReH)2 + (ImH)2 +

(
ReH̃

)2
+
(
ImH̃

)2
]

− t

4M2

[
(ReE)2 + (ImE)2 + ξ2

((
ReẼ

)2
+ (ImẼ)2

)]

− ξ2
[
(ReE)2 + (ImE)2 + 2

(
ReEReH+ ImEImH

+ ReẼReH̃+ ImẼImH̃
)]
, (C.1)

DDVCS
2 =

(
1− ξ2

)
(ReH̃ReH+ ImH̃ImH)

− ξ2(ReH̃ReE + ImH̃ImE + ReẼReH+ ImẼImH)

−
(

ξ2

1 + ξ
+ t

4M2

)
ξ(ReẼReE + ImẼImE) , (C.2)

DDVCS
3 = ReHImE − ReEImH− ξ(ReH̃ImẼ − ReẼImH̃) , (C.3)

DDVCS
4 = ReH̃ReE + ImEImH̃ − ξ(ReẼReH+ ImẼImH)

− ξ2

1 + ξ
(ReẼReE + ImẼImE) . (C.4)
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For the linear expressions which originate from the interference structure functions we have

AURe,Im = F1

{
Re
Im

}
H− t

4M2F2

{
Re
Im

}
E , (C.5)

BURe,Im = (F1 + F2)
({Re

Im

}
H+

{
Re
Im

}
E
)
, (C.6)

CURe,Im = (F1 + F2)
{

Re
Im

}
H̃ , (C.7)

ALRe,Im = F1

({Re
Im

}
H̃ − ξ2

1 + ξ

{
Re
Im

}
Ẽ
)
− F2

t

4M2

{
Re
Im

}
Ẽ , (C.8)

BLRe,Im = (F1 + F2)
({Re

Im

}
H̃+ ξ

1 + ξ

{
Re
Im

}
Ẽ
)
, (C.9)

CLRe,Im = −(F1 + F2)
({Re

Im

}
H+ ξ

1 + ξ

{
Re
Im

}
E
)
, (C.10)

Ain
Re,Im = ξF1

(
ξ

{
Re
Im

}
H̃+

(
ξ2

1 + ξ
+ t

4M2

){Re
Im

}
Ẽ
)

+ F2
t

4M2

(
(ξ2 − 1)

{
Re
Im

}
H̃+ ξ2

{
Re
Im

}
Ẽ
)
, (C.11)

Bin
Re,Im = (F1 + F2)

({
Re
Im

}
H̃+

(
t

4M2 −
ξ

1 + ξ

)
ξ

{
Re
Im

}
Ẽ
)
, (C.12)

Cin
Re,Im = (F1 + F2)

(
ξ

{
Re
Im

}
H+

(
ξ2

1 + ξ
+ t

4M2

){Re
Im

}
E
)
, (C.13)

Aout
Re,Im = F1

(
ξ2
{

Re
Im

}
H+

(
ξ2 + t

4M2

){Re
Im

}
E
)

+ F2
t

4M2

(
(ξ2 − 1)

{
Re
Im

}
H+ ξ2

{
Re
Im

}
E
)
, (C.14)

Bout
Re,Im = (F1 + F2)

({
Re
Im

}
H+ t

4M2 ξ

{
Re
Im

}
E
)
, (C.15)

Cout
Re,Im = (F1 + F2)ξ

({
Re
Im

}
H̃+ t

4M2

{
Re
Im

}
Ẽ
)
. (C.16)

D Unpolarized Bethe-Heitler cross section

The unpolarized Bethe-Heitler cross section can be expressed in terms of two kinematic
coefficients, which can each be decomposed into 3 harmonic coefficients in the lab frame.
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We express these coefficients explicitly in this appendix in the lab frame kinematics.

σUUBH = Γ
Ω0P1P2

2∑
n=0

[
aBH
n

(
F 2

1 −
t

4M2F
2
2

)
+ t

2b
BH
n G2

M

]
cos(nφ) , (D.1)

where
Ω0 = −M2x2

By
2Q6(1 + γ2)3 . (D.2)

And each of the unapproximated harmonic coefficients are given by

aBH
0 = 8M2Q2

(
1+γ2

){
Q6
[
2M2txB

[
−2xB

(
y2+y−1

)
+3y2−4y+4

]
+4M4x3

B

(
y2+y−1

)
+t2

[
−xB (y−2)2+y2−2y+2

]]

+Q4
[
M2t2x2

B

[
−2x2

B

(
y2−2y+2

)
+4xB

(
y2+y−1

)
+y2−2y+2

]
−12M4tx4

B

[
(xB−1)y2+2y−2

]
+12M6xB6y2

]
−Q8

(
y2−2y+2

)
×
[
t(xB−1)−M2xB2

]
−4M4Q2tx4

B

[
2M2xB2y2+t

(
xB2−3xB−1

)
y2

−ty+t
]
+12M6t2x6

By
2
}
, (D.3)

aBH
1 =−16M2xBQ

5 (y−2)
(
1+γ2

)[
Q4
(
t−2M2xB

)
+Q2txB

(
t−2M2 (xB−1)

)
+2M2t2x2

B

]

×

√
1−y− y

2γ2

4

√
Q4 [t(xB−1)−M2x2

B

]
+Q2txB [t(xB−1)−2M2xB]−M2t2x2

B

Q2+txB
,

(D.4)

aBH
2 = 32M4x2

BQ
2
(
1+γ2

)[
Q4
(
M2x2

B+t(1−xB)
)

+Q2txB
(
2M2xB+t(1−xB)

)
+M2t2x2

B

]
×
[
M2x2

By
2+Q2 (y−1)

]
, (D.5)

bBH
0 = 4M2txB2Q2

(
1+γ2

){
Q4
[
−4M2tx2

B

[
(xB+1)y2−2y+2

]
+12M4x4

By
2

+t2
[
2x2

B

(
y2−6y+6

)
−2xB

(
y2−6y+6

)
+y2−2y+2

]]
+2Q6

[
2M2x2

B

(
y2+y−1

)
+txB

(
y2−6y+6

)
−t(y−2)2

]
−4M2Q2tx2

B

[
2M2x2

By
2+t

(
x2
B−xB−1

)
y2−ty+t

]
+12M4t2x4

By
2+Q8

(
y2−2y+2

)}
, (D.6)

bBH
1 =− txB

[
Q2+t(2xB−1)

]
Q2 (t−2M2xB)+2M2txB

aBH1 , (D.7)

bBH
2 = t

2M2a
BH
2 . (D.8)
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E Definition of Compound coefficients

When one multiplies a total DVCS cross section by the propagator factor P1P2, they are
always left with a product of two harmonic series in the pure DVCS term. This product can
then be reduced into a single series by implementing multiple angle trigonometric identities.
We define one such recurring series’ coefficients below.

Present in eq. (2.25) are the following coefficients,

(
BH ⊗ hU

)
0

= hU
0 (BH)0 + hU

1 (BH)1
2 + hU

2 (BH)2
2 , (E.1)

(BH ⊗ hU )1 = hU
0 (BH)1 + hU

1 (BH)0 + hU
1 (BH)2

2 + hU
2 (BH)1

2 + hU
3 (BH)2

2 , (E.2)(
BH ⊗ hU

)
2

= hU
0 (BH)2 + hU

2 (BH)0 + hU
1 (BH)1

2 + hU
2 (BH)1

2 , (E.3)(
BH ⊗ hU

)
3

= hU
3 (BH)0 + hU

1 (BH)2
2 + hU

2 (BH)1
2 + hU

3 (BH)0 , (E.4)(
BH ⊗ hU

)
4

= hU
3 (BH)1

2 + hU
2 (BH)2

2 + hU
3 (BH)0 , (E.5)(

BH ⊗ hU
)

5
= hU

3 (BH)2
2 . (E.6)
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