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1 Introduction

Recent years have seen a revolution in our understanding of symmetries in quantum field
theory. The familiar notion of a global symmetry, it turns out, is merely one example of
a rich zoo of related phenomena, which go under names like higher-form symmetries [1],
exotic symmetries [2], cobordisms [3], non-invertible symmetries, and higher-group sym-
metries [4–6].

These generalizations of global symmetries have also played an increasingly important
role in the quest to understand and characterize field theories in the quantum gravity land-
scape. It has long been argued that exact global symmetries are forbidden in quantum grav-
ity [7–21], and likely this extends to other generalizations of symmetries as well [3, 17, 22].
This means that any global symmetry in an effective field theory must be removed when
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the theory is coupled to gravity, either through breaking or gauging the symmetry. This
in turn is related to many familiar phenomena in quantum field theory and quantum grav-
ity [23], and to the Completeness Hypothesis [17, 22, 24–26], which holds that any EFT in
the landscape should have states in every representation of its gauge group.

While exact global symmetries may be forbidden in quantum gravity, there is no law
forbidding emergent and/or approximate global symmetries at low energies. Emergent
global symmetries — and their breaking at high energies — has interesting connections
with black hole physics [27, 28] and the Weak Gravity Conjecture (WGC) [29, 30], a
conjecture which demands the existence of light particles charged under a gauge group.1

There is likewise no restriction against emergent and/or approximate higher-form sym-
metries, non-invertible symmetries, higher-group symmetries, and the like. Recently, Bren-
nan and Córdova [33] have argued that emergent higher-group global symmetries impose
interesting constraints on effective field theory. More explicitly, in a higher-group global
symmetry, two higher-form global symmetries are mixed up with one another, and one of
these two symmetries is subordinate to the other in the sense that it cannot exist while the
other is broken. This means that the superior symmetry must emerge at an energy scale
at or above the emergence scale of the subordinate symmetry, which leads to meaningful
constraints on field theory parameters.

A particularly notable example of a field theory with an emergent higher-group sym-
metry is axion electrodynamics, which involves a periodic scalar field (axion) θ coupled to
electromagnetism via a θF ∧F coupling. Here, a higher-group symmetry emerges in which
the superior symmetry has Noether current dθ, while the subordinate symmetry shifts the
gauge field A by a flat connection. Consistency of the theory then requires that the latter
symmetry must emerge below the scale of the former.

This same theory of axion electrodynamics was also recently investigated in relation
to the WGC in [34]. In particular, if we denote the axion decay constant by fθ and assume
(a) an “axion string” (i.e., a string around which θ undergoes monodromy, θ → θ + 2π) of
tension

T . fθMPl, (1.1)

(b) an instanton of action
S .MPl/fθ , (1.2)

and (c) a relationship S ∼ 1/e2 between the instanton action and the electric gauge coupling
e, then [34] argued that the string excitations of the axion string should carry charge under
the gauge field A and have a mass of order

m . eMPl , (1.3)

Here, (1.1) is simply the WGC for axion strings, (1.2) is the WGC for instantons, and (1.3)
is the WGC for charged particles. From this, we see that these distinct versions of the
WGC are “mixed up” with one another in the presence of the θF ∧ F coupling.

In this paper, we will argue that within the context of axion electrodynamics, the
mixing of global symmetries into a higher-group structure and the mixing of WGCs are in

1For more on the WGC, see the original paper [31] or the recent review article [32].
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fact related to one another, thereby unifying the recent observations of [33] and [34]. We
will also show that these 4d results can be generalized to a wide array of higher dimensions,
as the structure of supergravity in dimensions 5-10 concurrently produces both emergent
higher-group symmetries and WGC mixing amidst couplings of the form Cd−4 ∧ F ∧ F .

We will further generalize our analysis to theories with other couplings between differ-
ent gauge fields. Though the connection with higher-group symmetries is not as sharp in
these contexts, we will see that a similar sort of WGC mixing occurs in BF theories and
in theories with kinetic mixing. The former plays a role in the abelian Higgs mechanism
and axion monodromy inflation [35, 36], while the latter plays a role in decay constant
alignment inflation [37].

The remainder of this paper is structured as follows: in section 2, we review higher-form
and higher-group global symmetries. In section 3, we review higher-group symmetries and
WGC mixing in axion electrodynamics, then generalize these observations to supergravites
in 5, 6, 7, 8, 9, and 10 dimensions. In section 4.1, we discuss the mixing of higher-form
symmetries and WGCs in BF theories, and in section 5 we do the same for theories with
kinetic alignment.

In what follows, we use capital letters A,B,C, . . . to denote dynamical gauge fields and
lower case letters a, b, c, . . . to denote background gauge fields. Form degrees are labeled
by subscripts, so e.g. A1 represents a dynamical 1-form gauge field, while h3 represents a
background 3-form field strength. Subscripts will at times be omitted when they are clear
from context. The signature of spacetime is taken to be (−,+, . . . ,+), and supergravity
actions are always written in Einstein frame. We work in units with 8πG = 1, though at
times we will restore factors of the reduced Planck mass for sake of exposition.

2 Higher-group global symmetries

In this section, we review relevant aspects of higher-group global symmetries. For further
reading on the topic, consult e.g. [5, 6, 38, 39].

First, we introduce the related notion of a higher-form global symmetry [1]. A p-form
global symmetry is a symmetry whose charged operators are supported on manifolds of
dimension p. An ordinary global symmetry is therefore a 0-form global symmetry: the
charged operators are local operators, such as a field which rotates by a phase.

A p-form global symmetry is associated with a group, G.2 For an ordinary symmetry,
i.e. p = 0, G may be either abelian or nonabelian, but for a higher-form symmetry p > 0,
G is necessarily abelian.

G may be either discrete or continuous. In the continuous case, under reasonable cir-
cumstance, there will be an associated Noether current, which is a closed d−p−1-form, i.e.,

dJd−p−1 = 0 . (2.1)

2Recently, there has been significant interest in non-invertible global symmetries, which are not associ-
ated with a group, but rather a more complicated fusion algebra. See e.g. [22, 25, 40–45] for more on this
topic.
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We may couple a p-form global symmetry to a (p+ 1)-form background gauge field Ap+1,
which will transform under a background gauge transformation as

Ap+1 → Ap+1 + dΛp . (2.2)

With this lightning review of higher-form global symmetries, we are now in a position
to introduce the notion of a higher-group global symmetry. Suppose we have a collection
of pk-form global symmetries with background gauge fields A(k)

pk+1. Each such field will
transform under its own symmetry transformation as in (2.2), but it may also transform
under background gauge transformations of the other gauge fields as

A
(k)
pk+1 → A

(k)
pk+1 + dΛ(k)

pk
+
∑
i

αpk+1−pi(A(j)
pj

)Λpi + Schwinger terms, (2.3)

where pi < pk + 1. Here, αpk+1−pi(A
(j)
pj ) is a (pk + 1 − pi)-form consisting of products

of the background gauge fields A(j)
pj , and Schwinger terms are terms that are nonlinear in

the gauge parameters. This collection of gauge fields is then referred to as a higher-group
global symmetry, and specifically it is called a p-group if p = max(pk + 1) is the largest
form degree of a background gauge field transforming nontrivially under the higher-group
structure.

In what follows, we will see examples of higher-form symmetries, higher-group sym-
metries, and further generalizations thereof.

3 Magnetic strings and CF F couplings

In this section, we discuss WGC mixing and higher-group structures in theories with Cd−4∧
F2∧F2 Chern-Simons couplings. This WGC mixing was previously discussed in 4d and 5d
in [34], but here we extend the analysis to higher dimensions and elaborate on connections
to higher-group symmetries.

We begin with a discussion of higher-group symmetries in such theories, generalizing
the work of [33] (see also [46]). Our starting point is the action

S =
∫
− 1

2g2
A

F2 ∧ ?F2 −
1

2g2
C

Gd−3 ∧ ?Gd−3 −
K

8π2Cd−4 ∧ F2 ∧ F2 , (3.1)

where F2 = dA1, Gd−3 = dCd−4 and K is an integer.
We may couple this system to background gauge fields as follows:

S=
∫
X

[
− 1

2g2
A

(F2 − a(e)
2 ) ∧ ?(F2 − a(e)

2 )− 1
2g2
C

(Gd−3 − c
(e)
d−3) ∧ ?(Gd−3 − c

(e)
d−3)

− 1
2πA1 ∧ da(m)

d−2 −
1

2πCd−4 ∧ dc(m)
3

]
+ K

8π2

∫
Y

(Gd−3 − c
(e)
d−3) ∧ (F2 − a(e)

2 ) ∧ (F2 − a(e)
2 ) .

(3.2)

Here, X is the d-dimensional spacetime, Y is a d+ 1-manifold whose boundary is X, and
the electric background gauge fields satisfy

Ka
(e)
2 = dλ(a)

1 , Kc
(e)
d−3 = dλ(c)

d−2 , (3.3)
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where λa1 and λcd−2 are gauge parameters with periods dλ valued in 2πZ, reflecting the fact
that the Chern-Simons coupling breaks the electric global symmetries to a ZK subgroup.
The “electric” symmetries, indicated by an e superscript, are so named because the Wilson
line/surface operators of A1 and Cd−4 are charged under these symmetries, whereas ’t
Hooft operators for A1 and Cd−4 are charged under the “magnetic” symmetries, which are
labeled by an m subscript.

The gauge transformations for the electric background fields are standard:

a
(e)
2 → a

(e)
2 + dΛ(a,e)

1 , c
(e)
d−3 → c

(e)
d−3 + dΛ(c,e)

d−4 , (3.4)

but the gauge transformations for the magnetic background fields are mixed up into a
higher-group structure:

a
(m)
d−2 → a

(m)
d−2 + dΛ(a,m)

d−3 −
K

2πΛ(a,e)
1 ∧ c(e)

d−3 −
K

2πΛ(c,e)
d−4 ∧ a

(e)
2 −

K

2πΛ(a,e)
1 ∧ dΛ(c,e)

d−4 (3.5)

c
(m)
3 → c

(m)
3 + dΛ(c,m)

2 − K

2πa
(e)
2 ∧ dΛ(a,e)

1 − K

4πΛ(a,e)
1 ∧ dΛ(a,e)

1 , (3.6)

The gauge-invariant field strengths are given by

f
(m)
d−1 = da(m)

d−2 + K

2πc
(e)
d−3 ∧ a

(e)
2 (3.7)

g
(m)
4 = dc(m)

3 + K

4πa
(e)
2 ∧ a

(e)
2 . (3.8)

The appearance of Λa,e1 in the transformation of c(m)
3 underscores an important fact: in the

presence of the Chern-Simons coupling, electric charge of A1 can dissolve in the worldsheet
of the string charged magnetically under Cd−4, so the string states of this string may carry
A1 charge. We will see that this plays an important role in WGC mixing in the examples
that follow.

Suppose now that we have a renormalization group trajectory which flows to our
theory (3.1), so that a ZK electric 1-form symmetry emerges at low energies. As noted by
Brennan and Córdova [33],3 (3.8) implies any background for a(e)

2 necessarily turns on a
background for c(m)

3 , which means that the 2-form magnetic symmetry must also be a good
symmetry of the theory. If Λscreen is the energy scale below which the 1-form symmetry
emerges and Λstring is the energy scale below which the 2-form symmetry emerges, we then
have the constraint

Λscreen . Λstring . (3.9)

From here, we observe that the electric 1-form symmetry is broken by charged particles
(see e.g. [22, 25]), which means that the mass m of the lightest charged particle necessarily
satisfies

m . Λscreen . (3.10)

Analogously, the 2-form symmetry is broken by strings charged magnetically under the
gauge field Cd−4. Let T be the tension of the lightest charged string. Then, above the

3The analysis of [33] was specific to four dimensions, but it may be straightforwardly generalized to
arbitrary dimensions.
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string scale Mstring :=
√

2πT , the effective field theory will either break down entirely (in
the case of a fundamental string) or it will complete to a different effective field theory
without a 2-form symmetry (for instance, if the axion represents the angular part of a
Higgs field [33]). In either case, the 2-form symmetry is broken, so we have

Λstring .
√
T , (3.11)

In other words, the 2-form symmetry breaks down at a scale no larger than the string scale
Mstring :=

√
2πT .

Next, we use the fact that in the presence of a Cd−4 ∧ F2 ∧ F2 coupling (or a Cd−4 ∧
Tr(F2 ∧F2) coupling, if the gauge group is nonabelian), we expect instantons with tension

Tinst ∼
8π2

g2
A

. (3.12)

Here, an “instanton” is an object of codimension 4, which is charged under Cd−4. For a
nonabelian gauge group, these are the usual Yang-Mills instantons, whereas for an abelian
group these instantons arise from monopole loops [47].4

Finally, we assume that these codimension-4 instantons satisfy the WGC for the gauge
field Cd−4:

8π2

g2
A

∼ Tinst . gCM
(d−2)/2
Pl;d , (3.13)

and we assume that there exists a charged string of tension Tstring which satisfies the
magnetic WGC for Cd−4:

Tstring . g−1
C M

(d−2)/2
Pl;d . (3.14)

Together with (3.12), these bounds imply

Tstring . g−1
C M

(d−2)/2
Pl;d . g2

AM
d−2
Pl;d . (3.15)

Combining this with the consistency conditions for the higher-group structure (3.10), (3.11),
we conclude that the mass of the lightest charged particle satisfies

m . Λscreen . Λstring .
√
Tstring . g

−1/2
C M

(d−2)/4
Pl;d . gAM

(d−2)/2
Pl;d , (3.16)

which implies (up to O(1) factors) the WGC for the gauge field A1, m . gAM
(d−2)/2
Pl;d .

One can alternatively argue for the WGC in these contexts on the basis of anomaly
inflow on the string worldsheet, following [34], which implies that the string states of mass
Mstring must carry electric charge, which together with the bound Mstring . gAM

(d−2)/2
Pl;d

implies that the WGC will be satisfied for A1. Of course, these are two sides of the
same coin.

We can say even more if the charged string is a fundamental string, i.e., if the core
of the string probes physics in the deep ultraviolet [48]. In this case, there is a whole

4The monopole loop calculation of [47] was also carried out in four dimensions, but it can be extended
to higher dimensions straightforwardly, as the d− 4 dimensions of the instanton worldvolume simply come
along for the ride. We thank Matthew Reece for pointing this out to us.
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tower of superextremal string excitations, i.e., string excitations which satisfy the WGC
bound. This means that in addition to the WGC, the tower and sublattice WGC [49–51]
are satisfied for the gauge field A1 as well, and furthermore the tower of superextremal
charged particles stipulated by these conjectures is a stringy one. In four dimensions, this
has interesting phenomenological consequences [34].

The upshot of all of this is that, in a sense, the electric WGC for A1 and the magnetic
WGC for Cd−4 have been “mixed up” with one another in the presence of the Cd−4∧F2∧F2
coupling: the excitations of a string that satisfies the magnetic WGC for Cd−4 will satisfy
the electric WGC for A1. Meanwhile, the Chern-Simons coupling also implies that the
electric 1-form symmetry for A1 and the magnetic 2-form symmetry for Cd−4 are tied up
into a higher-group structure (3.6), and the consistency condition (3.16) for this higher-
group structure implies the WGC for A1. The mixing of higher-form symmetries into
a higher group structure is thus intimately connected with the mixing of Weak Gravity
Conjectures for the gauge fields A1 and Cd−4.

It is worth noting, however, that this WGC mixing persists when |K| = 1 even though
the higher-group structure disappears. This suggests that we should not view the higher-
group symmetry as the fundamental principle underlying the WGC mixing, but rather
the Chern-Simons term itself is the fundamental cause of both the WGC mixing and the
higher-group symmetry. We will see more evidence for this perspective in the following
section, where a version of WGC mixing exists in the presence of a Chern-Simons term
even though a higher-group structure is absent. Nonetheless, the fact that the higher-group
consistency bound (3.16) leads to WGC mixing for |K| > 1 suggests that these phenomena
are closely tied to one another, even if one does not always underlie the other.

Finally, it is worth noting that consistency of the higher-group structure places an
upper bound (3.16) on the mass of a superextremal charged particle that is well below
the Planck scale in a weakly coupled gauge theory. This suggests that the WGC should
be satisfied not only by black holes with subleading corrections to their charge-to-mass
ratios [52], but also by light particles in the effective field theory. In the case of a funda-
mental string, this suggests that the sublattice WGC should be satisfied by a sublattice of
superextremal particles that is not too sparse.

In the remainder of this section, we will show how the Chern-Simons couplings studied
here lead to WGC mixing in diverse dimensions, as expected from higher-group consistency
conditions and/or anomaly inflow on the string worldsheet. In particular, we will see that
the relation g−1

C ∼ g2
A is imposed by supersymmetry in dimensions 5–10. By (3.16), this

means that the magnetic WGC for Cd−4 implies the WGC for A1. Thus, WGC mixing is
built into the structure of supergravity.

3.1 Review: 4d axion strings

We begin by reviewing the 4d story, which may have important implications for phe-
nomenology. This story was originally presented in greater detail in [34].

In four dimensions, the action (3.1) takes the form:

S =
∫
− 1

2g2
A

F2 ∧ ?F2 −
f2
θ

2 dθ ∧ ?dθ + K

8π2 θ ∧ F2 ∧ F2 , (3.17)
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where fθ is the axion decay constant. The axion WGC for the field θ implies

fθ .
MPl
S

, (3.18)

where S is the instanton action. The WGC for strings implies

T . fθMPl , (3.19)

where T is the tension of the axion string charged magnetically under θ.
Here, we make one additional assumption, which is that the instanton action takes

the form
S = 8π2

g2
A

. (3.20)

This form of the instanton action is most familiar from QCD, but it is also valid for
abelian gauge theories, with instantons coming in the form of monopole loops with dyonic
winding [47].

Together, (3.18)–(3.20) imply a bound

T .
g2
A

4πM
2
Pl . (3.21)

This in turn places a bound on the string scale of the form

Mstring :=
√

2πT . gAMPl . (3.22)

Because of the θF ∧ F coupling, the excitations of this string will carry electric charge
under the gauge field A. This follows from anomaly inflow on the string worldsheet [53].
Such an excitation has string scale mass:

m ∼Mstring . gAMPl , (3.23)

which is simply the statement that this charged string excitation satisfies the WGC, up to
O(1) factors. We learn that the WGC for particles is guaranteed by the WGC for axions
and axion strings in the presence of the θF ∧ F Chern-Simons coupling, assuming the
instanton action takes the form (3.20). Note that the inequalities in (3.16) are also obeyed,
thanks to the superextremal charged string excitations, as they must be for consistency of
the higher-group structure when |K| > 1.

Even more can be said if the axion in question is a fundamental axion, i.e., core of the
axion string probes physics in the deep ultraviolet [48]. In this case, there is a whole tower
of superextremal string excitations, so not only is the WGC satisfied, but the tower and
sublattice WGC [49–51] are satisfied for the gauge field A1 as well.

This is our first example of WGC mixing in the presence of Chern-Simons terms (and
their accompanying higher-group structure): the WGC for particles follows from the electric
and magnetic WGCs for the axion in the presence of the θF ∧ F term. Certainly, this is
not the case in the absence of such a θF ∧ F term: here, the string excitations will not
carry electric charge, and the expression (3.20) will be invalid.

– 8 –
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An illustrative example in which the θF ∧ F coupling is not present occurs in the
compactification of minimal 5d supergravity on a circle. In the presence of a Chern-Simons
term A1 ∧ F2 ∧ F2 in 5d, one finds that the resulting 4d theory has an axion string with
string scale [34]

Mstring =
√

2πT ∼ e1/3
KKMPl ∼MPl;5 , (3.24)

where eKK =
√

2/(RMPl) is the gauge coupling of the KK gauge field. The fact that the
string scale is the 5d Planck scale indicates that the theory is secretly a 5d gravity theory,
so effective field theory breaks down at the 5d Planck scale rather than the 4d Planck scale,
the latter of which is much larger at large radius. The fact that the string scale is NOT
given by eKKMPl is an indication of the absence of a Chern-Simons coupling θF (KK)∧F (KK)

between the KK photon and the axion, so the preceding argument does not apply to this
scenario.

An important corollary to the above analysis is that we expect effective field theory
to break down at the string scale Mstring ∼ gAMPl in the presence of the Chern-Simons
coupling θF ∧ F , whereas effective field theory may remain valid up to the higher scale
g

1/3
A MPl in the absence of such a Chern-Simons coupling. This has important phenomeno-
logical consequences for effective field theories requiring both tiny gauge couplings and high
energy scales [34, 54].

3.2 Review: strings in 5d supergravity

We will now see that a very similar story plays out in 5d supergravity: the presence of a
Chern-Simons coupling C ∧ F ∧ F between two 1-form gauge fields leads to WGC mixing,
thereby preserving a higher-group structure between background gauge fields. A more
detailed presentation can be found in [34, 55].

We suppose we have a 5d supergravity theory with exactly two 1-form gauge fields, A1
and C1. The relevant part of the action takes the form

S⊃
∫
− 1

2g2
A

F2∧?F2−
1

2g2
C

G2∧?G2−
1

2g2
AC

(F2∧?G2 +G2∧?F2)+ K

8π2C1∧F2∧F2 . (3.25)

Due to the supersymmetry, the Chern-Simons coupling K and the gauge couplings gA, gC ,
and gAC are correlated: all of them can be computed in terms of the cubic prepotential.
We defer the reader to [34] for the details, and instead simply quote the main results.

If K 6= 0, then in the limit gA → 0, then the structure of the 5d prepotential gives

gC ∼ g−2
A M

−3/2
Pl;5 ,

1
gAC

= 0 . (3.26)

The latter equality implies that there is no mixing whatsoever between the two gauge
fields. The former relation implies that the charge of a string charged magnetically under
C1 vanishes in the gA → 0 limit. Excitations of this string will carry charge under A1, by
the same anomaly inflow argument as in 4d above. If we further suppose that the string
satisfies the WGC:

T . g−1
C M

3/2
Pl;5 , (3.27)
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then we conclude from (3.26) that its lightest string excitations will have a mass m of
the form

m ∼Mstring =
√

2πT . gAM
3/2
Pl;5 . (3.28)

From this inequality, we learn that these string excitations will be superextremal and satisfy
the WGC. If the core of the string probes the deep ultraviolet, we expect an entire tower
of superextremal string modes, satisfying the tower/sublattice WGC for A1. This is our
second example of WGC mixing in the presence of Chern-Simons terms: the WGC for
A1 follows from the magnetic WGC for the string charged under B1, under the additional
constraints of supersymmetry. Note also that the WGC bound for A1 is consistent with
the inequality (3.16), as required by the higher-group structure for |K| > 1.

On the other hand, if K = 0, so there is no Chern-Simons coupling, then one can show:

gC ∼ g−1/2
A M

−3/4
Pl;5 ,

1
gAC

= O(g5/4
A M

9/8
Pl;5) . (3.29)

The latter equality implies that any mixing between the two gauge fields is heavily sup-
pressed, and therefore insignificant, in the gA → 0 limit. The former relation implies
that the charge of a string charged magnetically under C1 vanishes in the gA → 0 limit.
However, assuming this string satisfies the WGC, its string scale takes the form

Mstring =
√

2πT . g
1/4
A M

9/8
Pl;5 . (3.30)

This one-quarter scaling parallels the one-third scaling seen in the Kaluza-Klein example in
four dimensions above: if A1 is a Kaluza-Klein gauge field, so that gA ∼ 1/(RM3/2

Pl;5), then
the string scale here is nothing but the 6d Planck scale, Mstring ∼MPl;6 = R−1/4M

3/4
Pl;5. We

expect, therefore, that K = 0 whenever A1 is a Kaluza-Klein gauge field, and gA → 0 is a
decompactification limit.

3.3 Strings in 6d supergravity

We will now argue that a similar phenomenon occurs in 6d supergravity. To begin, we
review relevant aspects of 6d supergravity coupled to abelian gauge fields, following [56]
(see also [57, 58]).

A generic 6d supergravity features one supergravity multiplet, nT tensor multiplets,
and nV vector multiplets. It may also include hypermultiplets, but we can safely ignore
these multiplets, as they do not affect the kinetic terms of the gauge fields or the Chern-
Simons couplings between them. The supergravity multiplet includes the metric and an
anti-self-dual 2-form gauge field, but no scalar field. A tensor multiplet features one self-
dual 2-form gauge field and a scalar field. A vector multiplet features a 1-form gauge field,
but no scalar field.

The upshot of this is that a theory with nT tensor multiplets will have nT + 1 2-
form gauge fields and nT scalar fields. (Again, we can safely ignore scalar fields in the
hypermultiplets.) The scalar fields parametrize the coset SO(1, nT )/SO(nT ), which is also
known as the tensor multiplet moduli space. We may describe these in terms of the
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SO(1, nT ) matrix

V =
(
vr
xMr

)
, (3.31)

where r = 0, 1, . . . , nT and M = 1, 2, . . . , nT . These are subject to the conditions

vrvr = 1 , − vrvs + xMr x
M
s = ηrs , vrxMr = 0 , (3.32)

where here, repeated indices are summed, and r and s indices are raised and lowered via
the metric ηrs = diag(−1, 1, 1, . . . , 1). Thus, for instance, v0 = −v0, v1 = v1.

The gauge kinetic matrix for the tensor fields is given by

Grs = vrvs + xMr x
M
s . (3.33)

Then, the relevant part of the action is given by

S =
∫
−1

2GrsH
r
3 ∧ ?Hs

3 + 1
4dv

r ∧ ?dvr + 1
2vrc

rabF a ∧ ?F b + 1
2c

ab
r B

r
2 ∧ F a2 ∧ F b2 . (3.34)

Here, a, b = 1, . . . , nV run over the (abelian) vector multiplets, and these indices can be
raised and lowered freely. The cabr are constants.

3.3.1 One tensor multiplet

In the particular case nT = 1, there is just one scalar field, and the equations for the scalar
field matrix V can be solved simply as

V =
(

cosh(φ) sinh(φ)
sinh(φ) cosh(φ)

)
. (3.35)

We then have
1
4dv

r ∧ ?dvr = −1
4dφ ∧ ?dφ (3.36)

for the scalar kinetic term. We further have

G00 = G11 = cosh(2φ) , G01 = G10 = sinh(2φ) (3.37)

for the 2-form gauge kinetic term. This metric has eigenvalues and eigenvectors given
respectively by

λ1 = e−2φ , w1 = (−1, 1) , λ2 = e2φ , w2 = (1, 1) . (3.38)

The former eigenvector is the one of interest to us, as its eigenvalue vanishes in the limit
φ→∞. In other words, the field B− := −B0 + B1 becomes strongly coupled in the limit
φ → ∞, with gauge coupling g2

− ∼ e2φ. Meanwhile, B+ := B0 + B1 becomes weakly
coupled in this limit.

Let us assume that there is only one vector multiplet, nV = 1. We may then write the
numbers c11

r simply as cr. The last term in (3.34) may be written in the B± basis as

1
2crB

r
2 ∧ F2 ∧ F2 = 1

2F2 ∧ F2 ∧
[(c0 + c1)

2 B+
2 + (−c0 + c1)

2 B−2

]
. (3.39)
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For c0 6= c1, this gives a nonzero Chern-Simons coupling, B− ∧ F ∧ F , and consequently a
non-trivial higher-group structure. The kinetic term for F may then be written as

− 1
2(c0 cosh(φ)− c1 sinh(φ))F2 ∧ ?F2 , (3.40)

where the relative minus sign comes from the relation c0 = −c0. For c0 6= c1, the coefficient
diverges as eφ ∼ g−2

A . Thus, we have the relation

g− ∼ g−2
A ∼ e

φ (3.41)

in the limit φ→∞.
We next assume that the WGC is satisfied for strings charged magnetically under the

two-forms B±. We also assume that the charges are quantized such that there exists a
string charged magnetically under B− but not under B+. This quantization assumption
is relatively mild: it will hold, for instance, provided the charges are quantized in either
the B0, B1 basis or the B+, B− basis. (In the former case, the string in question will have
magnetic charges q0 = −q1 ∈ Z, whereas in the later case the string will have magnetic
charges q+ = 0, q− 6= 0 ∈ Z.)

These assumptions together imply that in the limit φ→∞, some string charged under
B− should become tensionless, as the WGC implies that its tension must be bounded above
as T . g−1

− → 0.
Note that the quantization assumption will be satisfied provided the string charges are

quantized in either the B0, B1 basis or the B± basis, so it
Assuming a string charged magnetically under B− satisfies the WGC for strings, its

string scale satisfies
Mstring =

√
2πT . g

−1/2
− ∼ gA , (3.42)

which means that the charged string excitations of the string satisfy the WGC, as expected
in the presence of the B− ∧ F ∧ F Chern-Simons term.

On the other hand, if c0 = c1, then there is no Chern-Simons coupling B−∧F ∧F , and
consequently no higher-group structure (3.6) between B− and F . From (3.40), the gauge
coupling gA diverges as g2

A ∼ eφ. Thus, the gauge field A actually becomes strongly coupled
in the limit φ→ 0, whereas the string charged magnetically under B− becomes tensionless.
As expected, the relation (3.42) breaks down in the absence of the Chern-Simons coupling,
and the excitations of the light string do not satisfy the WGC for the gauge field.

A similar conclusion holds for B− ↔ B+ in the limit φ→ −∞.

3.3.2 Two tensor multiplets

To illustrate the robustness of the above results, we now consider the case of two ten-
sor multiplets, nT = 2, where there are two scalar fields, which parametrize the coset
SO(1, 2)/SO(2). The equations (3.32) can be solved with

vr =
(
cosh(φ1), sinh(φ1) sin(φ2), sinh(φ1) cos(φ2)

)
(3.43)

x1
r =

(
sinh(φ1), cosh(φ1) sin(φ2), cosh(φ1) cos(φ2)

)
(3.44)

x2
r =

(
0, cos(φ2), − sin(φ2)

)
. (3.45)
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Thus we have

V =

cosh(φ1) sinh(φ1) sin(φ2) sinh(φ1) cos(φ2)
sinh(φ1) cosh(φ1) sin(φ2) cosh(φ1) cos(φ2)

0 cos(φ2) − sin(φ2)

 . (3.46)

This leads to a gauge kinetic matrix for the 2-form gauge fields of the form

Grs =

 cosh(2φ1) sin(φ2) sinh(2φ1) cos(φ2) sinh(2φ1)
sin(φ2) sinh(2φ1) cosh2(φ1)− cos(2φ2) sinh2(φ1) sinh(φ1)2 sin(2φ2)
cos(φ2) sinh(2φ1) sinh2(φ1) sin(2φ2) cos(2φ2) sinh2(φ1) + cosh2(φ1)


(3.47)

with eigenvalues and eigenvectors:

w1 =
(
1, sin(φ2), cos(φ2)

)
with λ1 = e2φ1

w2 =
(
−1, sin(φ2), cos(φ2)

)
with λ2 = e−2φ1 (3.48)

w3 =
(
0, − cos(φ2), sin(φ2)

)
with λ3 = 1.

Using these eigenvectors, we define 2-form gauge fields

B+ = B0 + sin(φ2)B1 + cos(φ2)B2

B− = −B0 + sin(φ2)B1 + cos(φ2)B2 (3.49)
B∗ = − cos(φ2)B1 + sin(φ2)B2.

We are especially interested in B−, which becomes strongly coupled in the limit φ1 →∞.
Meanwhile, the gauge kinetic term for the 1-form gauge field takes the form

− 1
2(cosh(φ1)c0 − sinh(φ1) sin(φ2)c1 − sinh(φ1) cos(φ2)c2)F2 ∧ ?F2

= −1
2
(
eφ1(c0 − c1 sin(φ2)− c2 cos(φ2)) + e−φ1(c0 + c1 sin(φ2) + c2 cos(φ2))

)
F2 ∧ ?F2

(3.50)

The 1-form gauge field couples to the 2-forms via the Chern-Simons terms

−1
2F2 ∧ F2∧

[(c0 + c1 sin(φ2) + c2 cos(φ2))
2 B+

2 + (−c0 + c1 sin(φ2) + c2 cos(φ2))
2 B−2

+ (−c1 cos(φ2 + c2 sin(φ2))B∗2
]
. (3.51)

For c0 6= c1 sin(φ2) + c2 cos(φ2), we see from (3.51) that B− couples to F via a Chern-
Simons coupling B− ∧ F ∧ F , so there is a nontrivial higher-group structure. In addition,
from (3.50), we see that the gauge coupling gA scales as g−2

A ∼ eφ1 . This implies a relation
between the gauge coupling of B− and the gauge coupling gA:

g− ∼ g−2
A ∼ e

φ1 (3.52)

in the limit φ1 →∞.
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We now assume, as in the case of a single tensor multiplet above, that the WGC is
satisfied for strings in the theory, and we assume that charges are quantized so that there
exists a WGC-satisfying string charged magnetically only under B− (but not under B+

or B∗). This latter assumption will be violated when tan(φ2) is irrational if charges are
quantized in the original B0, B1, B2 basis. However, it will be satisfied if charges are
quantized in the B+, B−, B∗ basis. Furthermore, in F-theory compactifications to 6d,
Lee, Lerche, and Weigand argued that any infinite distance, weak coupling limit of a 2-
form gauge field which keeps gravity dynamical will lead to an asymptotically tensionless,
weakly coupled heterotic string [59]. Here, gravity indeed remains dynamical in the limit
φ1 →∞, and the requirement that the asymptotically tensionless string is weakly coupled
implies that it must be magnetically charged under B− only, since the magnetic duals of B+

and B∗ are not weakly coupled in this limit. Thus, our assumption of a WGC-satisfying
string charged magnetically under B− only appears to be satisfied in the context of 6d
F-theory compactifications, which relies on a charge quantization condition that depends
on additional input from compactification geometry rather than 6d supergravity alone.

Assuming there is such a WGC-satisfying string charged magnetically under B− only,
its string scale satisfies

Mstring =
√

2πT . g
−1/2
− ∼ gA , (3.53)

which means that the charged string excitations of the string satisfy the WGC, as expected
from the presence of the B− ∧ F ∧ F Chern-Simons term.

On the other hand, for c0 = c1 sin(φ2) + c2 cos(φ2), we see from (3.51) that B− does
NOT couple to F via a Chern-Simons coupling B− ∧ F ∧ F , so B− and F are not tied up
into the higher-group structure of (3.6). Furthermore, from (3.50), we see that the gauge
coupling gA scales as g−2

A ∼ e−φ1 , so A actually becomes strongly coupled while the string
charged magnetically under B− becomes tensionless in the φ1 → 0 limit. As expected, the
relationship (3.53) does not hold in the absence of the Chern-Simons coupling, just as in
the nT = 1 case above.

A similar conclusion holds for B− ↔ B+ in the limit φ1 → −∞.

3.4 Strings in 7d supergravity

We will now show how a similar story plays out in 7d supergravity. At first, we introduce
and review the relevant aspects of 7 dimensional supergravity following the notation in [60].

7d supergravity features one supergravity multiplet, and n vector multiplets. The
supergravity multiplet has one scalar field, three abelian vector fields, and one 2-form
gauge field, whereas each vector multiplet has three scalar fields and one vector field.
Thus, there are a total of 3n + 1 scalar fields: the dilaton σ coming from the gravity
multiplet, and 3n scalars φα which come from the vector multiplets and parametrize the
coset SO(3, n)/(SO(3)× SO(n)). These may be described by the (n+ 3)× (n+ 3) matrix
LAI (I, A = 1, . . . , n+ 3) which satisfies the orthogonality condition

LT ηL = η (3.54)

where η has signature (−,−,−,+, . . . ,+).
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It is useful to decompose LAI into n+ 3 Sp(1) matrices (LI)ij , i, j = 1, 2 and n SO(3, n)
vectors LaI , a = 1, . . . , n [60]. The orthogonality condition in terms of these new matrices
reads

− (LI)ij(LJ)ji + LaIL
a
J = ηIJ . (3.55)

We also have matrices associated with the decomposition of the inverse matrix (defined as
L−1 = ηLT η):

(LI)ij = −ηIJ [(LJ)ji ]
∗ . (3.56)

We also define
LIa = ηIJLaJ . (3.57)

These satisfy the following relations:

LaI (LI)ij = 0 (3.58)
LaIL

I
b = δab (3.59)

(LI)ij(LI)kl = δilδ
k
j −

1
2δ

i
jδ
k
l (3.60)

We define
(Pa)ij = (Pµ,a)ijdxµ = LIa∂µ(LI)ijdxµ (3.61)

as well as the modified field strength for the 2-form gauge field Bµν :

H3 = dB2 −
1

3
√

2
ηIJA

I
1 ∧ F J2 . (3.62)

The relevant part of the action can then be written as

S =
∫
−1

2e
σaIJF

I
2F

J
2 −

1
2e

2σH3 ∧ ?H3 −
5
8dσ ∧ ?dσ −

1
2(P a)ij ∧ ?(Pa)

j
i (3.63)

where aIJ is defined as
aIJ = (LI)ij(LJ)ji + LaILJa. (3.64)

3.4.1 No vector multiplets

In the absence of vector multiplets, the action (3.64) simplifies to

S =
∫
−1

2e
2σH3 ∧ ?H3 −

1
2e

σaIJF
I
2 ∧ ?F J2 −

5
8dσ ∧ ?dσ , (3.65)

where
H3 = dB2 + 1

3
√

2
(A1

1 ∧ F 1
2 +A2

1 ∧ F 2
2 +A3

1 ∧ F 3
2 ) . (3.66)

Here, the gauge coupling gB for the 2-form B2 scales with the gauge couplings gA := gA,I
for the 1-forms AI1 as

gB ∼ g2
A ∼ e2σ . (3.67)

This means that a string charged (electrically) under B2 will have a string scale of the form

Mstring =
√

2πT ∼ g1/2
B ∼ gA . (3.68)
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Due to the AI ∧F I term in (3.66), the action features Chern-Simons couplings of the form
?H3 ∧ AI1 ∧ F I2 for all three gauge fields, I = 1, 2, 3. Dualizing B2 to C3, this leads to
Chern-Simons couplings of the form C3 ∧F I2 ∧F I2 . By the usual anomaly inflow argument,
this means that there are string excitations charged under each of the three gauge fields,
which by (3.68) will satisfy the WGC, as expected.

3.4.2 One vector multiplet

Next, we consider a theory with a single vector multiplet, n = 1. We parametrize the
matrix LAI from (3.54) in terms of three scalar fields φi as follows:

LAI =


cos(φ3) cosh(φ1) sin(φ2) cos(φ2) cos(φ3) cosh(φ1) cosh(φ1) sin(φ3) sinh(φ1)

cos(φ2) − sin(φ2) 0 0
sin(φ2) sin(φ3) cos(φ2) sin(φ3) − cos(φ3) 0

cos(φ3) sin(φ2) sinh(φ1) cos(φ2) cos(φ3) sinh(φ1) sin(φ3) sinh(φ1) cosh(φ1)


(3.69)

Here, φ1 can be viewed as a radial mode, whereas φ2 and φ3 are angular coordinates. For
simplicity, we focus on a particular direction in field space, setting φ2 = 0, φ3 = π/2 and
letting φ1 vary. We then have

Li1j = 1√
2

(
0 1
1 0

)
, Li2j = 1√

2

(
0 i

−i 0

)

Li3j = 1√
2

cosh(φ1)
(

1 0
0 −1

)
, Li4j = 1√

2
sinh(φ1)

(
1 0
0 −1

)
(3.70)

L1
I =

(
0, 0, sinh(φ1), cosh(φ1)

)
.

The matrix P iµj from (3.61) takes the form

P iµj = 1√
2

(
∂µφ1 0

0 −∂µφ1

)
(3.71)

so the φ1 kinetic term is given by

− 1
2P

i
j ∧ ?P

j
i = −1

2dφ1 ∧ ?dφ1 . (3.72)

From (3.64), the gauge kinetic matrix takes the form

aIJ =


1 0 0 0
0 1 0 0
0 0 cosh(2φ1) sinh(2φ1)
0 0 sinh(2φ1) cosh(2φ1)

 (3.73)

This has eigenvalues/eigenvectors given by

λ1 = 1 , v1 =
(
1, 0, 0, 0

)
, λ2 = 1, v2 =

(
0, 1, 0, 0

)
(3.74)

λ3 = e−2φ1 , v3 =
(
0, 0, −1, 1

)
, λ4 = e2φ1 , v4 =

(
0, 0, 1, 1

)
(3.75)
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We therefore define the linear combinations:

A± = 1√
2

(A3 ±A4) . (3.76)

With this, the action (3.63) takes the form5

S =
∫
−1

2e
σ
(
F 1

2 ∧ ?F 1
2 + F 2

2 ∧ ?F 2
2

)
− 1

2e
σ
(
e2φ1F+

2 ∧ ?F
+
2 + e−2φ1F−2 ∧ ?F 2−

)
− 1

2e
2σH3 ∧ ?H3 −

5
8dσ ∧ ?dσ −

1
2dφ1 ∧ ?dφ1 , (3.77)

where

H3 = dB2 + 1
3
√

2

(
A1 ∧ F 1

2 +A2
1 ∧ F 2

2 + 1
2(A+

1 ∧ F
−
2 +A−1 ∧ F

+
2 )
)
. (3.78)

Upon dualizing the 2-form B2 to a 3-form C3, the modified field strength will lead to
Chern-Simons terms of the form

C3 ∧ (F 1 ∧ F 1 + F 2 ∧ F 2 + F− ∧ F+) . (3.79)

Note that the relevant Chern-Simons terms C ∧F ∧F are present for F = F 1 and F 2, but
they are absent for F±: there is instead only a mixed Chern-Simons term C ∧ F+ ∧ F−.

Relatedly, the gauge coupling of B2 scales with the gauge couplings g1, g2 for A1 and
A2 as

gB ∼ g2
1 = g2

2 ∼ e−σ . (3.80)

As above, this means that string excitations of a string charged under B2 carry charge
under A1 and A2, and these charged strings excitations satisfy the WGC for the 1-form
gauge fields provided the string satisfies the WGC for B2. Here, similar to the 6d story
above, we are assuming that the gauge charges are quantized so that there exist states
charged under A0 and A1 but not A+ or A−.

On the other hand, the relation (3.80) does not hold for the gauge couplings g±, since
these couplings scale with φ1 as

g2
± ∼ e−σ∓2φ1 . (3.81)

Thus, as expected, the string excitations charged under A± need not satisfy the WGC in
the limit σ →∞, since there is no C ∧ F ∧ F coupling for these gauge fields.

It is worth noting, however, that there is a C3∧F+∧F− coupling, and correspondingly
the string scale of a WGC-satisfying string charged magnetically under C3 will scale as

Mstring . g
1/2
B ∼ (g+g−)1/2 . (3.82)

The presence of the mixed Chern-Simons term C3 ∧ F+ ∧ F− on the one hand and the
geometric mean of g+ and g− in this scaling relation on the other is quite tantalizing.
Indeed, [34] found this same connection between Kaluza-Klein and winding charges in 4d

5The angular scalar fields φ2 and φ3 also have kinetic terms, but they are omitted here as they are
irrelevant for our purposes.
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upon Kaluza-Klein reduction of 5d abelian gauge theory, and below we will see that the
same scaling relation occurs in 8d and 9d supergravities with Cd−4 ∧ F+ ∧ F− Chern-
Simons couplings. The upshot is that in the presence of the mixed Chern-Simons coupling
C ∧ F+ ∧ F−, string excitations of the charged string will satisfy the WGC for either A+

or A− (depending on the sign of φ1), but not both.

3.5 Strings in 8d supergravity

We now review relevant aspects of 8d supergravity, following [61].
There are two types of multiplets in 8d supergravity: the supergravity multiplet, and

the vector multiplet. The former features a graviton, a 4-form gauge field C4, a dilaton
σ, and two vector bosons Ai1, i = 1, 2. A vector multiplet features a vector boson A1
and a pair of scalar fields φi. In a theory with n vector multiplets, the scalar fields φx,
x = 1, . . . , 2n parametrize the coset space SO(n, 2)/(SO(2) × SO(n)), and can be usefully
represented by the matrices

LiI , LIi , LaI , LIa , (3.83)

where I = 1, . . . n+ 2, a = 1, . . . , n and i = 1, 2. Let us define

L±I = 1√
2

(L1
I1 + Γ9L

2
I) , LI± = 1√

2
(LI11 + Γ9L

I2) , (3.84)

with 1 the 8 × 8 identity matrix, and Γ9 is the Dirac gamma matrix satisfying Γ2
9 = −1,

Tr(Γ9) = 0. Then, the L’s satisfy

Tr(LI±L∓I ) = 8 , LaIL
Ib = δab

LI±L±I = 0 , LI±LaI = 0 , LIaL±I = 0 . (3.85)

Here, I indices are raised and lowered using ηIJ , which we take to have signature (−,−, . . . ,
−,+,+).

The relevant part of the action takes the form

S=
∫
−1

2e
−2σG5∧?G5−

1
2aIJe

σF I2∧?F J2 −
1
48dσ∧?dσ−

1
2gxydφ

x∧?dφy+ 1√
2
cIJC4∧F I2∧F J2 ,

(3.86)
where G5 = dC4, and

aIJ = 1
8Tr(L

+
(IL
−
J)) + La(IL

a
J) , cIJ = 1

8Tr(L
+
(IL
−
J))− L

a
(IL

a
J) . (3.87)

3.5.1 No vector multiplets

In the absence of vector multiplets, the relevant part of the action takes the simple form

S =
∫
−1

2e
−2σG5 ∧ ?G5 −

1
2e

σ(F 1
2 ∧ ?F 1

2 + F 2
2 ∧ ?F 2

2 )− 1
48dσ ∧ ?dσ

+ 1√
2
C4 ∧ (F 1

2 ∧ F 1
2 + F 2

2 ∧ F 2
2 ) . (3.88)
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In the limit σ →∞, the gauge couplings g1, g2 for the gauge fields A1, A2 scale as e−σ/2,
whereas the gauge coupling gB for the 2-form gauge field B2 dual to C4 scales as

gB ∼ g2
1 ∼ g2

2 ∼ e−σ . (3.89)

Due to the presence of the Chern-Simons couplings C4 ∧ F 1 ∧ F 1 and C4 ∧ F 2 ∧ F 2, the
excitations of a string charged under B2 will also be charged under the 1-form gauge fields.
If the string satisfies the WGC for B2, then its excitations will have mass of order the
string scale,

Mstring =
√

2πT ∼ g1/2
B ∼ g1 ∼ g2 , (3.90)

which means that these string states will satisfy the WGC for the 1-form gauge fields. Once
again, we see that WGC mixing occurs in the presence of the Chern-Simons terms.

3.5.2 One vector multiplet

Defining La=1
I := L0

I , the equations (3.85) are solved by

L0
I =

(
cosh(φ1), sinh(φ1) sin(φ2), sinh(φ1) cos(φ2)

)
L1
I =
√

2
(
sinh(φ1), cosh(φ1) sin(φ2), cosh(φ1) cos(φ2)

)
(3.91)

L2
I =

(
0, cos(φ2), − sin(φ2)

)
These give

aIJ =

 cosh(2φ1) sin(φ2) sinh(2φ1) cos(φ2) sinh(2φ1)
sin(φ2) sinh(2φ1) cosh(2φ1) sin2(φ2) + cos2(φ2) sinh(φ1)2 sin(2φ2)
cos(φ2) sinh(2φ1) sinh2(φ1) sin(2φ2) cos2(φ2) cosh(2φ1) + sin2(φ2)

 .

(3.92)
The associated eigenvalues and eigenvectors are

w1 =
(
1, sin(φ2), cos(φ2)

)
with λ1 = e2φ1

w2 =
(
−1, sin(φ2), cos(φ2)

)
with λ2 = e−2φ1 (3.93)

w3 =
(
0, − cos(φ2), sin(φ2)

)
with λ3 = 1.

Using these eigenvectors, we define gauge fields

A+ = A0 + sin(φ2)A1 + cos(φ2)A2

A− = −A0 + sin(φ2)A1 + cos(φ2)A2 (3.94)
A∗ = − cos(φ2)A1 + sin(φ2)A2.

In terms of these gauge fields, there is no kinetic mixing, and their associated gauge cou-
plings scale as

g2
+ ∼ e−σ−2φ1 , g2

− ∼ e−σ+2φ1 , g2
∗ ∼ e−σ . (3.95)

The Chern-Simons couplings are determined by the matrix CIJ = ηIJ = diag(−1, 1, 1)
to be

1√
2
C4 ∧

(
F ∗ ∧ F ∗ + F+ ∧ F−

)
. (3.96)
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The gauge coupling of the 2-form B2 dual to C4 then obeys

gB ∼ g2
∗ (3.97)

as in pure supergravity, and the C4∧F ∗2 ∧F ∗2 Chern-Simons term implies that the excitations
of a superextremal string will satisfy the WGC for A∗1, assuming that charges are quantized
so that there exist states charged under A∗ but not under A+ or A−.

On the other hand, there is no C4∧F±2 ∧F
±
2 Chern-Simons coupling, and consequently

the string excitations of a string charged under B2 need not satisfy the WGC for A±1 .
Relatedly, as expected, the scaling (3.97) does not apply with g∗ replaced by g±, since
these gauge couplings scale not only with σ, but also with φ1. There is a C4 ∧ F+

2 ∧ F
−
2

coupling, and correspondingly there is a relation between the gauge couplings gB, g± of the
form gB ∼ g+g−, as we saw in 7d supergravity in (3.82). This ensures that the excitations
of a string which satisfies the WGC for B2 will generically satisfy the WGC for exactly one
of the gauge fields A+ and A−, depending on the sign of φ1.

3.6 Strings in 9d supergravity

9d supergravity [62] is very similar to the cases we have already seen above. The only
multiplets are the supergravity multiplet and the vector multiplet. The former features a
graviton, a 2-form gauge field, a 1-form gauge field, and a scalar. The latter contains a
vector field and a scalar field. Together, the scalar fields of a supergravity multiplet and n
vector multiplets parametrize the coset space SO(1, n)/SO(n).

In pure supergravity, the action for the gauge fields takes the form

S =
∫
−1

2e
2σH3 ∧ ?H3 −

1
2e

σF2 ∧ ?F2 , (3.98)

where H3 = dB2−A1∧F2. The modified 3-form field strength H3 implies a Chern-Simons
coupling C5∧F2∧F2, where C5 is the magnetic dual of B2, so excitations of a string charged
under B2 will carry charge under A1. From the action, we have the expected behavior

gB ∼ g2
A ∼ e−2σ , (3.99)

so as σ →∞, string excitations of a string which satisfies the WGC for the 2-form B2 will
have mass of order

Mstring =
√

2πT . g
1/2
B ∼ gA , (3.100)

so these excitations will satisfy the WGC for A1.
With one vector multiplet, on the other hand, the action takes the form

S =
∫
−1

2e
2σH3 ∧ ?H3 −

1
2e

σ+2φF+
2 ∧ ?F

+
2 −

1
2e

σ−2φF−2 ∧ ?F
−
2 , (3.101)

where H3 = dB2 −A+
1 ∧ F

−
2 . The gauge couplings for B2, A±1 scale as

g2
B ∼ e−2σ , g2

+ ∼ e−σ−2φ , g2
− ∼ e−σ+2φ , . (3.102)

The relationship (3.99) does not hold for either g+ or g−, as each of these gauge couplings
scale not only with σ, but also with φ. Relatedly, there is no C5 ∧ F2 ∧ F2 coupling for
these gauge fields, but there is a there is a C5 ∧ F+

2 ∧ F
−
2 coupling, and correspondingly

there is a relation between the gauge couplings gB, g± of the form gB ∼ g+g−, as expected.
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3.7 Strings in 10d supergravity

Finally, we turn our attention to 10d supergravity. There are three types of supergravity
to consider: Type IIA, Type IIB, Type I. Type IIB supergravity does not have a 1-form
gauge field, so it is not relevant for our purposes. Thus, we restrict our analysis to Type
IIA and Type I supergravity.

The actions for these theories can be found in [63]. After converting to Einstein frame,
the relevant terms in the respective actions take the form

SIIA = 1
2

(∫
−1

2dσ ∧ ?dσ −
1
2e

σH3 ∧ ?H3 −
1
2e
−3σ/2F2 ∧ ?F2

)
(3.103)

SI = 1
2

(∫
−1

2dσ ∧ ?dσ −
1
2e

σH3 ∧ ?H3 −
1
g2
A

eσ/2Tr(F2 ∧ ?F2)
)
. (3.104)

Here, the gauge group associated with the connection A1 is necessarily U(1) for Type IIA
supergravity, but for Type I supergravity it is an unspecified nonabelian Lie group.

Crucially, the definitions of the 3-form H3 differ between Type IIA and Type I super-
gravity. In Type IIA, we have simply H3 = dB2, whereas in Type I, we have

Type I: H3 = dB2 −
1
g2
A

Tr(A1 ∧ dA1 −
2i
3 A1 ∧A1 ∧A1) . (3.105)

Upon dualizing B2 to a 6-form C6, this leads to a Chern-Simons coupling of the form
C6 ∧ Tr(F2 ∧ F2). This coupling is absent in Type IIA supergravity.

We are interested in the scaling of the gauge coupling gB with gA. From the form of
the respective actions, we have

Type IIA: gB ∼ g−2/3
A ∼ e−σ/2 , Type I: gB ∼ g2

A ∼ e−σ/2 . (3.106)

As σ → ∞ in Type I supergravity, we see the expected scaling gB ∼ g2
A, hence the string

excitations of a string which satisfies the WGC for the 2-form B2 will satisfy the WGC for
the 1-form A1, by the usual argument.

In contrast, as σ → ∞ in Type IIA supergravity, the 1-form gauge field actually be-
comes strongly coupled while the 2-form B2 becomes weakly coupled. This is unsurprising,
however, since there is no C6 ∧ F2 ∧ F2 Chern-Simons coupling, hence no WGC mixing is
expected.

4 BF theory

In this section, we consider theories with two-term Chern-Simons couplings, also known as
BF theories. Our starting point is the action

S =
∫
X
− 1

2g2
A

Fp+1 ∧ ?Fp+1 −
1

2g2
B

Hd−p ∧ ?Hd−p + K

2πBd−p−1 ∧ Fp+1 , (4.1)

where Fp+1 = dAp, Hd−p = dBd−p−1. Without the BF coupling (i.e., for K = 0), the
system has four higher form symmetries, with conserved currents

1
2g2
A

?Fp+1 ,
1

2g2
B

?Hd−p ,
1

2πFp+1 ,
1

2πHd−p . (4.2)

– 21 –



J
H
E
P
0
7
(
2
0
2
2
)
0
4
0

The first two of these generate electric symmetries of Ap+1 and Bd−p−1, respectively,
whereas the latter two generate magnetic symmetries. In the presence of the BF cou-
pling (i.e., for K 6= 0), the magnetic symmetries are gauged, and the electric symmetries
are each broken to a ZK subgroup. The action can then be written as

S =
∫
X

[
− 1

2g2
A

(Fp+1 − a(e)
p+1) ∧ ?(Fp+1 − a(e)

p+1)− 1
2g2
B

(Hd−p − b
(e)
d−p) ∧ ?(Hd−p − b

(e)
d−p)

]
+ K

2π

∫
Y

(Hd−p − b
(e)
d−p) ∧ (Fp+1 − a(e)

p+1) , (4.3)

Here, Y is a (d+1)-manifold whose boundary is X, and the background gauge fields satisfy

Ka
(e)
p+1 = dλ(a)

p , Kb
(e)
d−p = dλ(b)

d−p−1 , (4.4)

This means that the background fields are flat gauge fields whose holonomies are Kth
roots of unity. Mathematically, we may describe the gauge invariant information of these
background gauge fields in terms of cohomology classes[

K

2πa
(e)
p+1

]
∈ Hp+1(X,ZK) ,

[
K

2πb
(e)
d−p

]
∈ Hd−p(X,ZK) . (4.5)

The electric background gauge fields transform simply as

a
(e)
p+1 → a

(e)
p+1 + dΛ(a,e)

p , b
(e)
d−p → b

(e)
d−p + dΛ(b,e)

d−p−1 , (4.6)

which means that the gauge parameters λ(a)
p , λ(b)

d−p−1 transform as

λ(a)
p → λ(a)

p +KΛ(a,e)
p , λ

(b)
d−p−1 → λ

(b)
d−p−1 +KΛ(b,e)

d−p−1 . (4.7)

Since the magnetic symmetries are gauged, there is no possibility of a higher-group struc-
ture.

Things become slightly more interesting if we couple the system to dynamical currents
jad−p, jbp+1, which couple to Ap and Bd−p−1, respectively. In this case, the gauged currents
are no longer 1

2πFp+1 and 1
2πHd−p, but rather the linear combinations

K

2πFp+1 + jbp+1 ,
K

2πHd−p + jad−p . (4.8)

1
2πFp+1 and 1

2πHd−p remain as valid symmetries of the theory, though they will be broken
in the presence of magnetic monopoles for Ap and Bd−p−1, respectively.

We may couple this system to background gauge fields as

S =
∫
X

[
− 1

2g2
A

(Fp+1 − a(e)
p+1) ∧ ?(Fp+1 − a(e)

p+1)− 1
2g2
B

(Hd−p − b
(e)
d−p) ∧ ?(Hd−p − b

(e)
d−p)

+ 1
2πAp ∧ f

(m)
d−p + 1

2πBd−p−1 ∧ h
(m)
p+1

]
+ K

2π

∫
Y

(Hd−p + 2π
K
jad−p − b

(e)
d−p) ∧ (Fp+1 + 2π

K
jbp+1 − a

(e)
p+1) . (4.9)

Once again, Y is a (d+ 1)-manifold whose boundary is X.
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The electric background gauge fields transform simply as

a
(e)
p+1 → a

(e)
p+1 + dΛ(a,e)

p , b
(e)
d−p → b

(e)
d−p + dΛ(b,e)

d−p−1 , (4.10)

but the gauge transformations for the magnetic background fields would seem to be mixed
up into a higher-group-like6 structure:

a
(m)
d−p−1 → a

(m)
d−p−1 + dΛ(a,m)

d−p−2 −KΛ(b,e)
d−p−1 (4.11)

b(m)
p → b(m)

p + dΛ(b,m)
p−1 −KΛ(a,e)

p , (4.12)

with gauge-invariant field strengths given by

f
(m)
d−p = da(m)

d−p−1 +Kb
(e)
d−p (4.13)

h
(m)
p+1 = db(m)

p +Ka
(e)
p+1 . (4.14)

However, we see from (4.4) that the terms Kb(e)d−p and Ka
(e)
p+1 on the right-hand side of

these equations are pure gauge. In other words, they contain no nontrivial gauge-invariant
information, and they can be set trivial by a gauge transformation. There is no higher-
group structure to speak of, even in the presence of the dynamical currents jad−p, jbp+1, and
the electric ZK symmetries may exist even when the magnetic U(1) symmetries are broken.

4.1 Abelian Higgs model

Despite the absence of a higher-group structure, there remains an interesting interplay be-
tween weak gravity conjectures for different gauge fields in the presence of the BF coupling.
Consider a particular ultraviolet completion of BF theory in four dimensions: namely, the
abelian Higgs model with a complex scalar of charge K. The action takes the form

S =
∫
− 1

2e2F ∧ ?F − dAΦ† ∧ ?dAΦ− V (Φ) , (4.15)

with dA the covariant derivative,

dA = d + iKA1 (4.16)

and
V (Φ) = 1

2λ
(
|Φ|2 − f2

)2
. (4.17)

We assume that we are working at sufficiently low energies, so that we may integrate out
the radial mode, and we are left with a (non-fundamental) axion θ, of decay constant f ,
coupled to the gauge field via a Stueckelberg coupling. Dualizing the axion, we find a
2-form B2, which couples to A1 via a BF coupling at level K, as in (4.1).

However, if we want to discuss the WGC, we cannot work at energies that are too low.
At energies below the mass of the photon and 2-form gauge field,

mA ∼ mB ∼ Kef , (4.18)
6We use the term “higher-group-like” because the form degrees of Λb,e

d−p−1 and Λa,e
p appearing on the

right-hand side are too large to fit the definition of a higher-group (2.3).
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the U(1) gauge symmetries for A1 and B2 are broken to ZK subgroups. For K = 1, the
gauge symmetries are thus completely broken. There is at present no well-justified analog
of the WGC for discrete gauge groups, and there is certainly no WGC statement for trivial
gauge groups, so the WGC is vacuous at very low energies.

However, it is generally believed that the WGC should be satisfied for a massive p-form
gauge field at energies well above the mass of the gauge field. This may be related to the
fact that a U(1) electric (p+ 1)-form symmetry is restored at such energies, and the WGC
may be related to the breaking of higher-form global symmetries [29].

As a result, in order for the WGC to provide a nontrivial bound on strings charged
under B2, we must have a parametric separation of energy scales

Kef �
√
λf . (4.19)

If this inequality is not satisfied, then there is no energy scale at which B2 behaves as a
U(1) 2-form gauge field, and there is no energy scale at which an approximate U(1) electric
2-form symmetry exists, so the WGC for strings is satisfied trivially.

If the scale separation in (4.19) is obeyed, however, then the 2-form WGC requires the
existence of a charged string whose tension satisfies

T . fMPl . (4.20)

The tension of such a string can be estimated as T ∼ f2 [64, 65], so the 2-form WGC
bound (4.20) becomes

f .MPl . (4.21)
This bound will be satisfied provided the Higgs field satisfies the WGC for the 1-form A1:

√
λf ∼ mΦ . KeMPl , (4.22)

since together with (4.19) this implies the 2-form WGC bound (4.21). Thus, we see that a
sort of WGC mixing persists in the presence of the two-term Chern-Simons term, B ∧ F .

As in section 3 above, we are making some assumptions here that go beyond the state-
ments of the WGCs themselves. We are assuming that we have a Stueckelberg description,
which completes at high energies to an abelian Higgs model. We are assuming that the
1-form and 2-form WGCs can be applied at energy scales well above the mass of A1 and
B2, and we are assuming that an (intermediate) energy range exists over which B2 behaves
like a U(1) gauge field. We are assuming that the Higgs field itself satisfies the WGC.

It is worth noting that the energy scale of the charged string Mstring =
√

2πT ∼ f here
may be well above the energy scale

√
λf at which the 2-form symmetry itself breaks down.

Perhaps this means that the WGC need not apply to strings charged under the gauge field
B2. A better understanding of the domain of validity of the WGC is needed, and we leave
this to future work.

4.2 Axion monodromy

Finally, we consider axion monodromy, which may be described in terms of a 4-form flux
F4 = dC3 [66]:

S =
∫
−f

2
θ

2 dθ ∧ ?dθ − 1
2g2
C

G4 ∧ ?G4 + 1
2πθG4 , (4.23)
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where G4 = dC3, and θ is periodic under θ → θ + 2π. This gives rise to a multi-branched
potential for the axion of the form

V (φ) = g2
C

2

(
1 + θ

2π

)2
+ Λ4 cos(θ) , (4.24)

where Λ4 = e−SΛ4
UV, where S is the instanton action and ΛUV is some UV scale, such as

the Planck scale or the string scale.
As expected for a BF theory, the gauge fields θ and C3 acquire masses from the θG4

coupling,
mθ ∼ mC ∼ gC/fθ . (4.25)

Below this energy scale, then, the gauge symmetries of θ and C3 are spontaneously broken,
and their associated 0-form and 3-form electric symmetries are explictly broken. Any
application of the WGCs for these gauge fields must therefore involve energy scales which
are large compared to gC/fθ: the WGC is vacuous at energies below this.

The WGC for the axion implies

fθS < MPl . (4.26)

Meanwhile, the WGC for C3 implies the existence of a domain wall with tension T satisfying

T . gCMPl , (4.27)

which interpolates between the different branches of the potential. The tension of this
domain wall is sensitive to ultraviolet physics. In order to uncover any relationships between
these two WGCs, therefore, we seemingly require input from the UV completion of this
system, just as how the previous subsection relied on input from the UV completion of BF
theory, namely, the abelian Higgs model. At present, however, we are not aware of any UV
completion of φG4 theory into a four-dimensional EFT. It would be worthwhile to explore
this possibility, but we leave this for future work.

5 Kinetic alignment

In this section, we consider gauge kinetic mixing of two p-form gauge fields, which for p = 0
reduces to the decay constant alignment scenario of Kim, Nilles, and Peloso (KNP) [37].
This scenario is perhaps already familiar to the reader, but here we describe it in a way
that makes its connection to higher-group global symmetries more explicit.

We begin with the action for two p-form gauge fields, Ap and Bp, with associated field
strengths Fp+1 = dAp and Hp+1 = dBp and gauge couplings gA, gB:

S =
∫
− 1

2g2
A

Fp+1 ∧ ?Fp+1 −
1

2g2
B

Hp+1 ∧ ?Hp+1 . (5.1)

The gauge fields have associated transformations laws

Ap → Ap + dΛAp−1 , Bp → Bp + dΛBp−1 . (5.2)
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We further introduce background gauge fields ap+1 and bp+1 for the (electric) p-form sym-
metries associated with A and B, respectively. The action with these gauge fields included
is given by

S =
∫
− 1

2g2
A

(Fp+1− ap+1)∧ ?(Fp+1− ap+1)− 1
2g2
B

(Hp+1− bp+1)∧ ?(Hp+1− bp+1) . (5.3)

The background gauge fields have associated gauge transformations

ap+1 → ap+1 + dΛap , bp+1 → bp+1 + dΛbp . (5.4)

Now, we make a field redefinition, moving into a basis with kinetic mixing. More
specifically, we define

A′p = Ap , B′p = Bp − ϑAp . (5.5)

so that F ′p+1 = Fp+1, H ′p+1 = Hp+1 − ϑFp+1. In this new basis, the action (5.1) becomes

S =
∫
− 1

2(g′A)2F
′
p+1∧?F ′p+1−

1
2g2
B

H ′p+1∧?H ′p+1+ ϑ

2g2
B

(F ′p+1∧?H ′p+1+H ′p+1∧?F ′p+1) , (5.6)

where
1

(g′A)2 = 1
g2
A

+ ϑ2

g2
B

. (5.7)

In the A′, B′ basis, the gauge kinetic matrix is given by

τij =

 1
(g′A)2 − ϑ

g2
B

− ϑ
g2

B

1
g2

B

 . (5.8)

If ϑ is taken to be very large, then 1/(g′A)2 may be much larger than 1/g2
A and 1/g2

B, and
one eigenvalue of τij can be parametrically large even though the product of eigenvalues
remains fixed, as det(τij) = (gAgB)−2. In the case of p = 0 in 4d, where the gauge fields in
question are axions, this behavior is the hallmark of decay constant alignment, also known
as KNP alignment [37]. In this scenario, the eigenvector with the larger eigenvalue serves
as the inflaton field, ideally realizing a model of large-field inflation with a super-Planckian
traversal.

This kinetic mixing has consequences for the background gauge fields as well. We may
write the action with background gauge fields included as

S =−
∫ [ 1

2(g′A)2 (F ′p+1 − a′p+1) ∧ ?(F ′p+1 − a′p+1)

+ 1
2g2
B

(H ′p+1 + ϑF ′p+1 − b′p+1) ∧ ?(H ′p+1 + ϑF ′p+1 − b′p+1)
]
, (5.9)

where
a′p+1 = (g′A)2

g2
A

ap+1 + ϑ
(g′A)2

g2
B

bp+1 , b′p+1 = bp+1 . (5.10)

These background gauge fields then transform under background gauge transformations as

a′p+1 → a′p+1 + (g′A)2

g2
A

dΛap + ϑ
(g′A)2

g2
B

dΛbp , b′p+1 → b′p+1 + dΛbp . (5.11)
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Here, we see that the kinetic mixing of the gauge fields implies mixing of the gauge transfor-
mations Λap, Λbp for the background gauge field a′p+1. This is reminiscent of the higher-group
structure of (2.3).

The astute reader will note that this higher-group-like structure is a bit of an illusion,
since we may also define modified gauge parameters

Λa ′p = (g′A)2

g2
A

Λap + ϑ
(g′A)2

g2
B

Λbp , Λb ′p = Λbp . (5.12)

However, this redefinition comes at a cost: the periodicities of the modified gauge pa-
rameters will also be modified. Let us focus on the case p = 0, since this is the case of
interest for the purposes of axion inflation. Here, just as the axions A0, B0 are periodic
with periodicity 2π, so too are the gauge parameters Λa0, Λb0:7

Λa0 ∼ Λa0 + 2π , Λb0 ∼ Λb0 + 2π . (5.13)

From (5.12) and (5.13), we see that the periodicities of Λa ′0 , Λb ′0 are more complicated:

(Λa ′0 ,Λb ′0 ) ∼ (Λa ′0 + 2π (g′A)2

g2
A

,Λb ′0 ) ∼ (Λa ′0 + 2πϑ(g′A)2

g2
B

,Λb ′0 + 2π) . (5.14)

Likewise, this kinetic mixing leads to a mixing between the Weak Gravity Conjectures
for the gauge fields A′p, B′p. The superextremality condition for a (p − 1)-brane of charge
(qA, qB) and tension Tp is given by

g2
Aq

2
A + g2

Bq
2
B ≥ T 2

pM
2−d
Pl;d . (5.15)

In the unprimed basis, qA and qB are independent integers. However, in the primed basis,
the charge lattice is no longer rectangular, and the charges q′A and q′B are no longer inde-
pendent. This is related to the fact that the periodicity conditions (5.14) involve a mixing
between Λa ′p and Λb ′p . The superextremality condition in the primed basis is then given by

τ ijq′iq
′
j = (g2

B + g2
Aϑ

2)(q′B)2 + g2
A(q′A)2 + 2ϑg2

Aq
′
Aq
′
B ≥ T 2

pM
2−d
Pl;d , (5.16)

where τ ij = (τij)−1 In particular, note the mixing between the two gauge charges via the
cross term 2ϑg2

Aq
′
Aq
′
B.

Of course, in the case at hand, we may ultimately undo the mixing in the primed basis
by rotating back to the unprimed basis. The WGC in theories with multiple gauge fields
is a basis-independent statement (sometimes known as the “convex hull condition” [67]),
which holds that every rational direction in the charge lattice must have a superextremal
state.8 This condition makes decay constant alignment difficult to achieve [68–72].

7For p = 1, the gauge parameters Λa
1 , Λb

1 may have transition functions between neighboring patches,
and these transition functions are periodic. A similar story holds for p > 1.

8Here, the tension of a multi-brane state is defined to be the sum of the tensions of the individual branes,
T =

∑
a
T a

p , and a superextremal multi-brane state is one whose charge-to-tension ratio is greater than
that of an extremal black brane of the same charge.
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6 Conclusions

In this paper, we have studied the interplay between emergent higher-group global sym-
metries, Chern-Simons terms, and Weak Gravity Conjecture mixing. In doing so, we have
unified earlier results in axion electrodynamics and extended them to higher dimensions,
where supergravity constraints agree perfectly with our expectations. We have learned
that the gauge couplings of charged particles and charged strings in higher-dimensional
supergravities are related to one another in the presence of certain Chern-Simons cou-
plings, which points us to previously uncovered universal structures within supergravity.
Our results offer yet another illustration of the power of generalized global symmetries for
constraining and characterizing quantum field theories, including effective field theories in
the quantum gravity landscape.

A number of open questions remain. For one thing, our discussion of axion monodromy
ended with a bit of a cliffhanger: it seems that additional UV input is needed if we are to
uncover any meaningful constraints among the structures, and it would be worthwhile to
explore such UV constraints further.

Our discussion of kinetic mixing also suggests an interesting possibility: in theories with
multiple 1-form gauge fields, the statement of the WGC amounts to the aforementioned
“convex hull condition,” which depends on the kinetic mixing between various gauge fields.
Perhaps, then, there is some analog of the convex hull condition for mixing between gauge
fields of different degrees, which depends on the couplings between them? In this work,
we have shown that such couplings often mean that the WGC for one gauge field implies
the WGC for the other, but we have not entertained the possibility that quantum gravity
might impose stronger constraints, similar to the convex hull condition. This possibility is
worth exploring further by examining theories in the string landscape.

We have encountered several examples of Cd−4 ∧ F+
2 ∧ F

−
2 Chern-Simons terms (i.e.,

terms involving three different gauge fields) for which our usual WGC mixing argument
does not apply. Nonetheless, in all of these examples, the string scale for a WGC-satisfying
string charged magnetically under Cd−4 is identified with the scale √g+g−M

(d−2)/2
Pl;d , so

charged string excitations generically satisfy the WGC for either A+ or A−, but not both.
It would be interesting to understand this relation and these mixed Chern-Simons couplings
in more detail, especially since they show up not only in higher-dimensional supergravity,
but also in Kaluza-Klein reductions to four dimensions [34], so they may have important
consequences for phenomenology. It would also be worthwhile to explore WGC mixing and
higher-group symmetries in the presence of even more general Chern-Simons couplings,
such as four-term Chern-Simons couplings.

It is encouraging that the Weak Gravity Conjecture has pointed us to universal fea-
tures of supergravities across diverse dimensions. This suggests that despite the enormous
number of studies of the WGC in recent years, its power has not been fully tapped. And,
despite decades of study of supergravity, some supergravity stones remain unturned. This
gives us hope that other interesting and universal features of supergravity may soon be
discovered, and we optimistically anticipate that some of these features will hold up in the
quantum gravity landscape even when the assumption of supersymmetry is dropped.
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