o

Pacific
Northwest

NATIONAL LABORATORY

PNNL-32485

VOLTTRON Modular
Framework

Enabling flexible and scalable
deployment solutions

January 2022

Craig H. Allwardt

Chandrika Sivaramakrishanan
Shwetha Niddodi

Jereme Haack

LS. DEFARTMEMT CF

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memorial
Institute. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information,
P.O. Box 62, Oak Ridge, TN 37831-0062;
ph: (865) 576-8401
fax: (865) 576-5728
email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service
5301 Shawnee Rd., Alexandria, VA 22312
ph: (800) 553-NTIS (6847)
email: orders@ntis.gov <https://www.ntis.gov/about>
Online ordering: http://www.ntis.gov

mailto:reports@adonis.osti.gov
https://www.ntis.gov/about
http://www.ntis.gov/

PNNL-32485

VOLTTRON Modular Framework

Enabling flexible and scalable deployment solutions

January 2022

Craig H. Allwardt

Chandrika Sivaramakrishanan
Shwetha Niddodi

Jereme Haack

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99354

Acknowledgments

The authors would like to thank Andrew Rodgers of ACE IoT Solutions, Ben Bartling of
Slipstream, David Raker of University of Toledo, Nancy Min at Ecolong and the rest of the
Eclipse VOLTTRON Community for their engagement with the project and this effort in
particular.

Acknowledgments

Version History

Version | Date Description
1.0 12/30/2021 Initial Draft Release
1.1 01/13/2022 | Added section using copier for agent generation

Version History

Contents

Yol g [0 11T/ [=To [o [41T | (SR i
1. 1 1o o 11 ox 1o o [PPSR 5
2. IVOTIVATION ... e 6
3. =T 010 1S (o] 1= 8
3.1, VORION-SEIVEN ..o 8
3.2, VORION-ClENT ..o 9
3.3, VORLION-ULIIS .o 10
S Yo [T o £ PP 10
4 VOLTTRON INSTAIALION ...t 11
5. NEW agent AEVEIOPIMENTttt eeeeennee 12
5.1. Example agent and agent template..............ccoovviiiiiiiiiiiiiiiii 12
5.2. Packaging and dependencCyoouuiiiiiieeiiiieiiees e 14
5.3, Agent data dir€CIONYcoouiiiiiiiiiiiiiie e 15
6. Porting agents from monolithic code base..............iieiiiiiiic e 16
7. [ty r= V| T o AN o [=T | €O USRPPPPRRPPN 18
8. PUBIISNING 10 PYPI .. e 19
8.1. PYPLAnNd PYPI TSt ..t e e e 19
8.2. Preparing your PACKAQJEccovviiiiiiiiiiiiiie e 19
8.3. Build your package ... 20
8.4. Publish USING TWINEoiiiiiii e e e 20
8.5. Publish USING POGLIYcooiiiiiiiiiii 21
9. DEPIOYMENT USE CASES.....coeiiiiiii i eee it e e e et s e e e e e e e e ettt e e e e e e e e e e sttt e e aeeaaeeennnes 22
10. I LS Y (=] 6P 23
Figures
Figure 1: Archit@Cture gOAIooiiiiiiiiiiiiiiiiiiiii ettt 6
Figure 2: Modular VOLTTRON COMPONENTSccvviiiiiiiiiiiiiiiiiiiiiiiieeiees 8
Figure 3: Agent template rEPOSIIONYuuiiiiiiiiiiiiiiiiiiiiee ettt 12
Figure 4 Create new agent repository from agent template..........ccoooiiiiiiiiiiiiiii 13
Figure 5 Installed Agent direCtory COMPAIISONcueieiiiiiiiiiiiiiiieiieeieeeieeeieeee et ee e e 16
Figure 6: Separation of Agent’s code from dataoooviiiiiiiiii 17

Contents

1. Introduction

VOLTTRON™ is an open-source platform for distributed sensing and control. The platform
provides services for collecting and storing data from buildings and devices and provides an
environment for developing applications which interact with that data. The platform allows
developers to build out their use cases by utilizing these frameworks and integrating new
capabilities. To simplify the deployment of systems built on VOLTTRON, a hew way of
organizing the codebase is being explored. This document details these efforts through a new
code repository layout for the VOLTTRON platform and services, and how this new layout
provides targeted deployments using standard python deployment packages (wheels). In
addition, this paper will discuss the development of third-party agents and how they can be
integrated within the VOLTTRON ecosystem. Finally, we will discuss core platform
development and direction for the modularized version of VOLTTRON.

Introduction

2. Motivation

The current VOLTTRON source code is in a single repository —
https://github.com/VOLTTRON/volttron - and contains the code for core platform, essential
service agents, commonly used agents, documents, and test cases. This document will refer
this version of VOLTTRON source as the monolithic version.

Although the current structure makes it easy to search for VOLTTRON features and agents, it
requires users to clone the entire VOLTTRON code repository into their local environment to
create a running VOLTTRON instance. End users cannot pick and choose only the required
agents to download/setup in their environment. Updates done to individual agents cannot be
released to the community as soon as they are available but must be held back to be a part of
the bigger VOLTTRON release. The monolithic structure also imposes license and Python
version requirements across all the entire code base as libraries must be compatible with all the
parts of the system. All these drawbacks severely limit ease of deployment and flexibility.

We want to update VOLTTRON's code structure such that VOLTTRON server and agents can
be developed, deployed, and maintained independently, each even in its own environment or
container. Figure 1 shows our vision for this new VOLTTRON modular architecture.

~

rg')
e/ | Simulation

v
—_—— =
O . 05/VM/Container 0S/VM/Container
([Message bus

* VOLTTRON Agentl =
—r 0 "
A .

e
Agent
Files

communication

* VOLTTRON Server

- . -
] Server |
_ ' Agent DB | Files._ J

O !I! 0OS/VM/Container 0S/VM/Container OS/VM/Container

Cloud/Web Service * VOLTTRONAgentl - Rasl:txxai + VOLTTRON Server
wee) - | e — S re—
—— 1 Agent | [AgentDB Sgwer L
=2 | Fileg = ["5T | Files_!

External Databases

Figure 1: Architecture goal

As a first step towards this modular architecture, we have split the VOLTTRON code into
multiple logical or modular units. This modular version of VOLTTRON, helps us overcome many
of the limitations of monolithic code and provide additional benefits as well

o End users can install volttron-server (the base platform) and only the agents they are
interested in using Python’s standard package installer: pip

Motivation

https://github.com/VOLTTRON/volttron

Each of the modular component can be updated and released for community use
independently

Agent developers need not clone core VOLTTRON code and can pick a package
management tool of their choice. For example: setuptools, poetry, pipenv

Agent developers can pin specific version of volttron client as requirement for their
agent. This also simplifies testing, as changes in agent code need not trigger a
regression testing of VOLTTRON core

Agents can be published to PyPI and deployed from PyPI

Allows community members to maintain their code in their own repositories making code
ownership clear for agents and packages

Licenses need to be compatible only within individual repository/wheel

Multiple instances of an installed agent share the same source code

While this modular design simplifies aspects of deployment, it creates more complexity for core
VOLTTRON development. Contributors will need to clone multiple repositories and manage
version compatibility across full VOLTTRON releases. However, we believe the benefits to the
VOLTTRON community outweighs the added burden on core VOLTTRON development. The
goal here is to improve the long-term flexibility of the platform and enable deployers to better
tailor the platform to their needs. We welcome feedback from the community on this effort and
hope to address as many use cases as possible.

Motivation

3. Repositories

In the current modular version of VOLTTRON, VOLTTRON's core code is split between three
main components, each in its own github repository:

1. volttron-server (https://qgithub.com/VOLTTRON/volttron-server)

2. volttron-client (https://github.com/VOLTTRON/volttron-client)

3. volttron-utils (https://github.com/VOLTTRON/volttron-utils)

Each of these code repositories is responsible for building a python wheel, an installable
component for use in a python environment. The volttron-server wheel depends on volttron-
client, and volttron-client depends on volttron-utils. In addition to the core components,
VOLTTRON agents are broken out into their own repositories. In the following sections we
describe these three core components in detail. Figure 2 shows the components and its
relations.

volttron-utils

depends on

» depends on

volttron-client volttron-agent

depends on

volttron-server

Figure 2: Modular VOLTTRON components
3.1. volttron-server

This contains all core server-side functionalities of VOLTTRON. This includes essential
functions such as handling connections to ZMQ and RabbitMQ message bus, routing, tracking,
monitoring, scheduling, and necessary code for managing installed agents.

volttron-server includes dynamically loaded services as well as a standard set of core services.
The core services that are executed by default are as follows

1. Authentication service
2. Control service
3. Configuration store

4. Health service

Repositories

https://github.com/VOLTTRON/volttron-server
https://github.com/VOLTTRON/volttron-client
https://github.com/VOLTTRON/volttron-utils

5. Peer service
6. Pubsub service

7. External discovery and routing
3.2. volttron-client

This component contains all the base classes required to easily create a VOLTTRON agent and
enable agents’ connection and communication with the VOLTTRON server. It provides the base
Agent class that all VOLTTRON agents inherit. It also contains all classes and functionalities
related to the VOLTTRON INTERCONNECT PROTOCOL (VIP) enables communications
between agents, controllers, services, and the volttron. VIP enables subsystems - a point to
point protocol that defines a function or set of related functions and dictates the message format
that follows the subsystem name in a VIP message. Each subsystem provides a wrapper API
(Application Program Interface) around VIP message protocol allowing developers a higher
level interface for their code. volttron-client provides the following subsystems:

e Hello

e Ping

e RPC

e Pubsub
e Channel
e Auth

o Query

e Web

o Peerlist

e Heartbeat
e Health

o Config store

Except for RPC, all the other subsystems communicate with the corresponding service on the
server side to execute the operation.

The volttron-client repository also contains code for command line tools — volttron-ctl/vctl,
volttron-cfg/vcfg - and other helper class such as topic name parsers, and health status objects.

Repositories

3.3. volttron-utils

Volttron-utils contains useful utility methods that are used by both client and server code. For
example, certs.py module in volttron-utils contains methods to create Certificate Signing
Request (CSR) and CA signed certificates; logging.py contains functions to setup logging and
logging to file; time.py contains functions to parse timestamp string to python timestamp and
vice versa.

3.4. Agents

Keeping with the modular design paradigm, all agents that work with this new modular version
of VOLTTRON will be maintained in its own repository. All agents depend on the volttron-client
package and are installed into a volttron-server's environment/virtual environment using vctl
install command. Agents can also be pip installed on an isolated environment and run from
command line to connect to a local/remote VOLTTRON server.

Repositories

10

4. VOLTTRON installation

For users who want to use the VOLTTRON environment with currently available agents, install
process would be greatly simplified with the modular version of VOLTTRON. Instead of cloning
source code, users can install packages directly from PyPI. Steps for VOLTTRON installation
include:

e |Install system dependencies
¢ If needed, setup and activate a python virtual environment

e pip install volttron-server (this will automatically pull down volttron-client and volttron-
utils)

e Start volttron server
¢ vctl install <agent-name> - for each agent that you want to install in your environment.

Agents can be installed using pip install <package-name>. Please refer to the section -
Installing Agents - for all available options

VOLTTRON installation

11

5. New agent development

To develop a new agent that works with the modular VOLTTRON code, a developer need not
clone VOLTTRON server, client or utils code. The developer only needs a VOLTTRON setup as
described in Section 4. Section 5.1 and 5.2 provides two ways to begin projects with example
code that can be modified for your use case. The first uses github templates and the second
uses a program called copier.

5.1. Example agent and agent template
https://github.com/VOLTTRON/volttron-developer/blob/main/AGENT DEVELOPMENT.md

provides step by step instructions to create and install a simple listener agent. Developer can
use this as example to create a new agent.

Developers can also make use of the agent template at https://github.com/VOLTTRON/volttron-
new-agent-template as their starting point.

1. Click the Use this template button on the top right corner.

F main P O 01sg Go to file Add file = Code « Use this template
% craigh Dejete poetryock X t97e368 B hoursago S

in f 3

] gamt s

m =

0 .gmgnore

s B mm fig.yam

0

Figure 3: Agent template repository

2. Fillin the new repository name and select the github user the new repository will be
available from. Finally click the “create repository from template” button

New agent development

12

https://github.com/VOLTTRON/volttron-developer/blob/main/AGENT_DEVELOPMENT.md
https://github.com/VOLTTRON/volttron-new-agent-template
https://github.com/VOLTTRON/volttron-new-agent-template

Create a new repository from volttron-new-agent-template

The new repository will start with the same files and folders as VOLTTRON/valttron-new-agent-template.
Owner * Repository name *
@ craig8 - / a-new-agent v

Great repository names are short and memorable. Need inspiration? How about special-journey?

Description (optional)

g Public
m-d Anyone on the internet can see this repository. You choose who can commit.

@ E’ Private
You choose who can see and commit to this repository.

[Include all branches
Copy all branches from VOLTTRON/valttron-new-agent-template and not just main.

Create repository from template

Figure 4 Create new agent repository from agent template

3. Once complete you can clone from your new repository and modify the template to fit your
agent’s use case. The files needing to be customized are as follows (relative to the root of
https://github.com/VOLTTRON/volttron-new-agent-template or your new cloned repository)

a. Rename ‘agentpackage’ directory to your package name (package names should not
have any spaces or dashes, all lowercase and can’t start with a number). For this
example we will rename it to ‘myagentpackage’.

b. pyproject.toml file

i. Modify the name on line 2

ii. Packages on line 8 to { include = "myagentpackage" }

iii. Update line 10 and 11 to the repository you created from the template
c. myagentpackage/agent.py

i. Online 2, 25, 27, and 100 modify “VolttronListenerAgent” to be the agent you want to
be used.

d. README.md

i. Add your documentation on how to use your agent and its functionality. A default
one will be for the templated agentpackage itself.

4. Make sure you have installed poetry (using pipx is recommended https://python-
poetry.org/docs/#installing-with-pipx) or installing via command line using https://python-
poetry.org/docs/#installation.

5. Open command line to the root of your new repository and execute the command
poetry install

Doing this will install the dependencies and requirements.

New agent development 13

https://github.com/VOLTTRON/volttron-new-agent-template
https://python-poetry.org/docs/#installing-with-pipx
https://python-poetry.org/docs/#installing-with-pipx
https://python-poetry.org/docs/#installation
https://python-poetry.org/docs/#installation

6. Run command
poetry build

to create artifacts — a wheel file and source distribution for your agent — to publish to PyPI.
See section - Publishing to PyPI - to publish your artifact and - Installing Agents — to install
the agent

5.2. Copier based example

Copier is a program that allows simple question answer format to fill in templates that are
created from a github repository. To use it one can install it into an existing pip environment or
in a global user pipx environment.

pipx install copier

pip install copier

In addition one should install poetry for this example.
pipx install poetry

Executing the following will start prompting the user for information and then generating a
custom agent based upon the answers.
copier "gh:VOLTTRON/copier-poetry-volttron-agent” /path/to/your/new/project

Your project name
project_name? Format: str

& [None]: new-listener

Your project description
project_description? Format: str

& [None]: An example agent for listening to a volttron message bus and printing to standard
out

Your full name

author_fullname? Format: str

& [None]: Volttron User

The questions are formatted such that default answers are within the [] characters and there is
a description of context the answers will be used in.

Once completed your new agent is available in /path/to/your/new/project.

cd into /path/to/your/new/project and execute poetry install to download dependencies and
requirements for your new agent.

New agent development

14

5.3. Packaging and dependency

In the modular version of VOLTTRON, agent code can depend on only the volttron-client
package and developers are free to use any package manager such as pipenv, poetry, etc. to
create a standard python wheel of their agent code. Section: Preparing your package provides
more details on packaging your agent code

5.4. Agent data directory

If agents create additional files such as database files, logs, or temporary files, we recommend
that agents create those in its own assigned data directory. This will be accessible using a utility
method yet to be determined. Based on how your VOLTTRON host machine is setup (i.e.,
default system level permissions and permissions under VOLTTRON_HOME directory) your
agent might still be able to write files to other directories, but this can cause issues in two use
cases

1. If VOLTTRON is started in a secure mode where each agent runs as a different system
user, agents will have write access only to its designated data directory inside
$VOLTTRON_HOME

2. When reinstalling an agent or upgrading to a newer version of source code, only data in
the data directory is automatically backed up and restored. Data outside of designated
data directory should be handled manually by the user.

Because of the above two reasons we highly recommend that agents write data only to its own
data directory

New agent development

15

6. Porting agents from monolithic code base

If you have an agent that currently works with monolithic VOLTTRON code base and would like
to port it to work with modular VOLTTRON code, there are four main categories of changes to
do:

1. Update path of VOLTTRON core packages imported. Since core VOLTTRON code is
split into client, server, and utils, the location of VOLTTRON classes and utility methods
in your import statements needs to be updated. For example, all imports from
volttron.platform.vip should now be imported from volttron.client.vip. You can find a
package mapping between the monolithic code and modular code at
https://github.com/VOLTTRON/volttron-developer/blob/main/PACKAGE MAPPING.csv

2. Agent should now depend on volttron-client package. setup.py needs to be updated to
remove existing dependency on “volttron”

3. Changes due to installed agent directory structure. In the modular version of
VOLTTRON, agent’s source code is separated from the data used/created by the agent.
The directory structure used for the installed agent has also been modified. The table
below show the directory structure of an installed agent in monolithic code and modular
code.

Monolithic VOLTTRON Modular VOLTTRON

/home/volttron/.volttron/agents/

/home/volttron/.volttron/agents/
L— listeneragent-3.3_1

L— 914be0d1-142a-4018-a4b5-91f6af75a296

—— IDENTITY —— AUTOSTART
— listeneragent-3.3 —— config
listener —— data
—— agent.py — keystore.json
—— __init__.py — TAG
—— settings.py L UUID
listeneragent-3.3.dist-info
—— config

—— DESCRIPTION.rst
—— entry_points.txt
—— keystore.json

—— METADATA

—— metadata.json
—— RECORD

—— top_level.txt

—— WHEEL

—TAG

Figure 5 Installed Agent directory comparison

- Agents top level directory is now agent’s VIP identity and not UUID. This makes it
easier to identify agents’ directory inside VOLTTRON home. All VOLTTRON
commands that currently work with UUID will now work with both UUID and VIP
identity (code changes not yet published)

- We highly recommend that agent write data only to its own data directory (for
example, <volttron_home>/agents/listeneragent_3.3_3/data). Path to this
directory will be accessible using a utility method yet to be determined.

Porting agents from monolithic code base

16

https://github.com/VOLTTRON/volttron-developer/blob/main/PACKAGE_MAPPING.csv

4. Add ability to push to PyPIl. Refer to section - Publishing to PyPI - for more details

5. Installed agents will have source code inside your python environment and other files
inside $VOLTTRON_HOME. When an agent is uninstalled the source code is
uninstalled only if there are no other instance of the agent referring the same code

Figure 1 shows the architecture of the installed modular VOLTTRON instance and agents inside
a virtual environment

SVOLTTRON_HOME
| _agents
| _ volttron-agentl-instancel
|—config
|—data
|— keystore.json
|—uuID
| _ volttron-agent1-instance2
|—config
|—data
|— keystore.json
|—uuID
| _ volttron-agent2-instancel
|— config
|—data
|— keystore.json
|—uuID

Python (virtual) environment

Figure 6: Separation of Agent’s code from data

https://github.com/VOLTTRON/volttron-developer/blob/main/AGENT DEVELOPMENT.md
gives step by step instruction on how to update the ListenerAgent
(https://github.com/VOLTTRON/volttron/tree/main/examples/ListenerAgent) to work with both
the monolithic VOLTTRON code and the modular version of VOLTTRON.

Porting agents from monolithic code base

17

https://github.com/VOLTTRON/volttron-developer/blob/main/AGENT_DEVELOPMENT.md
https://github.com/VOLTTRON/volttron/tree/main/examples/ListenerAgent

7. Installing Agents

Agents can be installed into a VOLTTRON server environment using the vctl install command.
Installing an agent with the vctl command will ship the agent’s wheel file to the VOLTTRON
server, install the agent’s source code into the server’s python environment, and create a
unique directory for the agent under the server's $VOLTTRON_HOME/agents directory. See
Figure 5 the agent’s directory structure.

Vctl install command can accept an agent source directory, or a wheel file, or a pypy project
name. When a directory name is provided, the code will attempt to create a wheel using one the
following three commands

1. pipenv run python3 setup.py bdist_wheel (if agent directory contains a setup.py file and
a pipfile)

2. python3 setup.py bdist_wheel (if agent directory contains only a setup.py file)
3. poetry build (if agent directory contains a poetry.lock file)

If you use a different mechanism for packaging your code, generate the wheel file first and then
pass the wheel file to the vctl install command.

To install and run an agent outside of VOLTTRON server’s environment, build you agent’s
package and install the wheel file using the command

pip install <wheel file name>

The agent can then be run from the command line module name, to connect to a local/remote
server

Installing Agents

18

8. Publishing to PyPI

Publishing agents to PyPI (https://pypi.org) makes it easily accessible to the VOLTTRON
community users and hence is highly recommended. Publishing to PyPI can be done in many
ways depending on how your agent development environment is setup. For this paper, we will
cover two of the most popular ways of doing this, using twine and poetry. Though it is out of
scope to go through the full installation process for with all possible options, we will describe the
minimum required details and reasoning behind using each of these two tools.

8.1. PyPl and PyPI Test

It is recommended to test your deployed wheels against the test instance of PyPI
(https://test.pypi.org/) before deploying against the regular PyPl. TestPyPl is a separate
instance of the Python Package Index (PyPI) with a different index/database of wheel files than
live PyPI. This allows you to test if your deployment is setup properly before you deploy to the
live index. The process is the same between the two services.

The first step to publishing your agent code is to create separate user accounts in PyPIl and
TestPyPl. It is important not to use the same password in both instances just to make sure you
are keeping the two separate.

Once you have created and validated your account you can see the projects that you are

responsible for and share ownership amongst many people. You can also create api keys to
allow publishing to the project from the various deployment tools (github actions, gitlabs, etc.)

8.2. Preparing your package

1. Name your package: Packages published to PyPI should have a unique name with no
underscores or spaces, not start with a number and should be easy to look up. We
recommend all volttron agent package start with the prefix “volttron-" to make searching
easy.

2. Configure your package: The location and format for specifying these configuration
details depends on the packaging tool you use. For example, these data could be part of
setup.py, setup.cfg, or pyproject.toml file.

a. Specify volttron-client package as an agent dependency.
b. Declare other third-party libraries that your agent depends on

c. Define an entry_point for your package. VOLTTRON looks for one of the below
entry points to start an agent

i. [‘console_scripts']
ii. ['setuptools.installation’]['eggsecutable’]
iii. ['volttron.agent]['launch’]

d. We also recommend adding the following metadata.

Publishing to PyPI

19

https://pypi.org/
https://test.pypi.org/

I. Author and Author email id
ii. License information
iii. Description of what the agent does
iv. Keywords
v. PyPI Classifiers:
1. Framework :: VOLTTRON
2. Framework :: VOLTTRON :: Agent
3. Framework :: VOLTTRON :: <version of volttron agent is
\(,:Vci)trrr]l]patible with> [Repeat this for all versions agent is compatible

vi. README.md - A README file with details on what the agent does, its
configurations and steps to install

e. We highly recommend semantic versioning for the package. The version number
is given as three numerical components, for instance 0.1.2. The components are
called MAJOR, MINOR, and PATCH, and simple rules define when to increment
each component (Source/Details)

i. Increment the MAJOR version when you make incompatible API
changes.
ii. Increment the MINOR version when you add functionality in a backwards-
compatible manner.
ii. Increment the PATCH version when you make backwards-compatible
bug fixes.

8.3. Build your package

Build your package to create a wheel file and source tar file. This can be achieved by multiple
ways such as setup.py or poetry. For example, if you configured your agent using an setup.py
file, you could run the following command in your agent’s source directory

python setup.py sdist bdist_wheel

This would generate a <agentname>-<version>-py3-none-any.whl file and a <agentname>-
<version>.tar.gz file in a dist sub directory. These are collectively referred to as artifacts.

8.4. Publish using Twine

Twine is a utility for publishing python packages to PyPI and other python indexes. It provides
build independent uploads of source and binary distribution artifacts securely. Twine allows you
to pre-sign your artifacts before uploading. In addition, uploading does not require executing
your setup.py file allowing testing of distribution packages before releasing.

Publishing to PyPI

https://semver.org/

The release process is as follows
1. Pip install twine into your current environment
2. Upload your artifacts to TestPyPI using the command:
twine upload -r testpypi dist/*

where -r provides the repository and dist/* is the path to the generated distribution
artifacts generated in the previous step

3. Once you verify you verify your package, upload your artifacts to PyPI using the
command:

twine upload dist/*

For more information please see (https://twine.readthedocs.io/en/stable/ and
https://packaging.python.org/en/latest/tutorials/packaging-projects/)

8.5. Publish using Poetry

Poetry is a tool for dependency management and packaging in python. By declaring your
dependencies through poetry’s command line interface (cli) or through its pyproject.toml file,
poetry will manage (update/install) the dependencies for you. Poetry provides a single interface
to build, package, and publish your project. It also makes it easy to publish your project for
multiple versions of Python.

To publish using poetry:
1. Configure a repository: Poetry allows one to use multiple repositories (PyPI or PyPITest
or other indexes) for deployment. To add a deployment repository, use the poetry config
command as follows:

poetry config test_pypi https://test.pypi.org/simple/

where test_pypi of your repository name and https://test.pypi.org/simple/ is the actual
endpoint you are publishing to.

2. To upload your wheel to the test_pypi repository you configured above, execute the
following command

poetry publish --repository test_pypi
If a --repository is not specified poetry by default publishes to PyPI.

Please see (https://python-poetry.org/docs/repositories/) for more information about repositories
and poetry.

Publishing to PyPI

21

https://twine.readthedocs.io/en/stable/
https://packaging.python.org/en/latest/tutorials/packaging-projects/
https://python-poetry.org/docs/repositories/

9. Deployment Use Cases

The modular architecture simplifies the deployment process through the ability to independently
develop, deploy and maintain the server and individual agent components. This is key to
enabling a scalable deployment process that does not require manual actions to selectively
update portions of a monolithic code base. The ability to install VOLTTRON with PyPI allows for
standard strategies for deploying large numbers of instances. Additionally, users can tailor the
installation according to their individual needs.

With the modular architecture, it's easier to isolate errors in agent code and debug them. The
monolithic repository does not need to be traversed to find the errors. The faulty agent alone
can be updated, tested, released, and deployed without disrupting other services. This feature
will be extremely useful in use cases such as the PNNL campus deployment where service
availability is crucial.

Decoupling of the message bus and authentication features from rest of the VOLTTRON
specific code will allow the flexibility to integrate with other third-party message libraries auth
mechanisms seamlessly. Implementations that follow the VIP abstraction format will be able to
easily connect, disconnect, send, and receive data in VOLTTRON ecosystem. This flexibility will
benefit users who are looking to use other message bus libraries such as MQTT, and AMQP
that better fit their use case needs. Users utilizing a tightly controlled VPN may not need the
authentication services in VOLTTRON. Allowing a no authentication option will enable this use
case to trade in-built authentication for increased throughput.

Deployment Use Cases

22

10. Next Steps

Community engagement and feedback is the next step in this process. The goal of this effort is
to simplify deployment, support new use cases, and clarify the contribution process. We
encourage any feedback from the community to ensure that there are no unforeseen issues
proceeding in this direction.

If there are no objections to the plan outlined in this document, the next step will be to complete
the modularization and make this the form of the next release. To prepare for that first release,
all core agents in the platform must be ported over to the work with the modular server. The
corresponding tests must also be made to work in this new environment. Likewise,
documentation for the platform and agents must be updated as well.

We also plan to make new agent development easier by updating templating agent to use
copier rather than github templates to make it easier to update default metadata values.
(https://github.com/VOLTTRONY/copier-poetry-volttron-agent). A docker based development
environment could potentially make it easier for community users to test this new modular
version of VOLTTRON.

The new release process will be documented to make clear the relation between version of the
modular code and the numbered VOLTTRON release. A formalized release process will be
developed in conjunction with the community.

Next Steps

23

https://github.com/VOLTTRON/copier-poetry-volttron-agent

Pacific Northwest
National Laboratory

902 Battelle Boulevard
P.O. Box 999

Richland, WA 99354
1-888-375-PNNL (7665)

www.pnnl.gov

http://www.pnnl.gov/

