

Highlights

Compression of Tokamak Boundary Plasma Simulation Data Using a Maximum Volume Algorithm for Matrix Skeleton Decomposition

Sebastian De Pascuale, Kenneth Allen, David L. Green, Jeremy D. Lore

- CUR matrix decomposition shows improved asymptotic computational complexity over SVD.
- SOLPS-ITER data is compressed at orders of magnitude faster compute time than SVD.
- CUR technique provides an interpretable framework for archiving simulation data.

NOTICE OF COPYRIGHT: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The publisher acknowledges the US government license to provide public access under the DOE Public Access Plan (<http://energy.gov/downloads/doe-public-access-plan>).

Compression of Tokamak Boundary Plasma Simulation Data Using a Maximum Volume Algorithm for Matrix Skeleton Decomposition

Sebastian De Pascuale^a, Kenneth Allen^b, David L. Green^{a,c}, Jeremy D. Lore^a

^a*Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, 37830, Tennessee, United States*

^b*University of Georgia, 210 S Jackson St, Athens, 30602, Georgia, United States*

^c*Commonwealth Scientific and Industrial Research Organization, Sydney, New South Wales, Australia*

Abstract

This report demonstrates satisfactory data compression of SOLPS-ITER simulation output ranging from 2D fields, 1D profiles, and 0D scalar variables with a novel matrix decomposition approach. The singular value decomposition (SVD) scales poorly for large matrix sizes and is unsuited to the application on high dimensional data common to fusion plasma physics simulation. We employ the columns-submatrix-rows (CUR) matrix factorization technique in order to compute a low-rank approximation up to two orders of magnitude faster than the SVD, but within a nominal L2-norm relative error of $\epsilon = 10^{-2}$. In addition, the CUR approach maintains the original format of the data, in its extracted columns and rows, allowing for interpretable data storage at the original resolution of the simulation. We utilize an iterative algorithm to compute the CUR decomposition of simulation output by maximizing the volume, or linearly independent information content, of a low-rank submatrix contained within the data. Experiments over $n \times n$

randomized test matrices with embedded rank-deficient features show that this maximum volume implementation of CUR matrix approximation has reduced asymptotic computational complexity on the order of n compared to the SVD, which scales approximately as n^3 . These results show that the CUR technique can be used to effectively select time step snapshots (columns) of over 140 SOLPS-ITER output variables and the associated discretized coordinate timeseries (rows) allowing for reconstruction of the complete simulation dynamics.

Keywords: SOLPS-ITER, scrape-off-layer, CUR matrix decomposition, low-rank matrix approximation, dimensionality reduction, data compression

¹ **1. Introduction**

² The singular value decomposition (SVD) has found wide application to
³ several important problems in fusion plasma physics. It has been used in
⁴ stellarator design to extract physically relevant dynamics from experiment
⁵ (1), analyze turbulent transport in tokamaks through a separation of scales
⁶ (2), (3), filter noise from particle-in-cell kinetic simulations (4), and identify
⁷ damped eigenmodes in gyrokinetic simulations (5), (6). The utility of the
⁸ SVD is derived from its theoretical determination of matrix rank, the maxi-
⁹ mum number of linearly independent column or row vectors in the assembled
¹⁰ data. With the SVD, features in a data set are identified with respect to a
¹¹ least-squares factorization of an $m \times n$ matrix into rank r components ordered
¹² by the coverage of variance in the data (7), (8). This “best-fit” interpreta-
¹³ tion of the SVD product components comes with a challenging cost, the al-
¹⁴ gorithms employed typically have a computational complexity that scales as
¹⁵ $\mathcal{O}(\min(m^2n, nm^2))$ (9), (10). Several investigations have circumvented this
¹⁶ restriction in the attempt to effectively compress high degrees-of-freedom
¹⁷ plasma physics simulation data into a storable format for recording MHD
¹⁸ magnetic fields (11) and the evolution of the gyrokinetic distribution func-
¹⁹ tion (12), (13) by opting to apply the SVD only over subsets of a matrix
²⁰ dimension to lower the scope of the problem.

²¹ This paper pursues further development of data compression using ma-
²² trix decomposition in circumstances where fusion plasma physics simulation
²³ have high dimensionality that is unfavorable to the application of the SVD.
²⁴ The primary aim of an alternative approach is to efficiently balance the fi-
²⁵ delity of matrix reconstruction error with the degree of data compression.

26 We attempt to overcome the approximately cubic scaling of the SVD with
27 a technique that extracts actual columns and rows within a matrix, which
28 are found to be quasi-linearly independent, to perform faster factorization of
29 simulation-based data. The entries at the intersection of these components
30 form a submatrix that represents important features extracted from within
31 the data. This columns-submatrix-rows (CUR) approach was first adapted
32 from a modified quasi-Gram-Schmidt procedure to obtain compressed fac-
33 torizations of rank-deficient matrices (14), (15). Other schemes randomly
34 sample over a probability distribution of the normalized column space (16),
35 (17), leading to preferential selection of components. The works of (18), (19),
36 & (20) have shown additive error bounds for hybridized CUR when using a
37 statistical leverage score based on the span of top right singular vectors from
38 the SVD. We prioritize computational efficiency and follow the “pseudoskele-
39 ton” approximation developed by (21), (22), & (23). The prescribed CUR
40 decomposition calculates a “maximum volume” submatrix by rapidly search-
41 ing for close to uncorrelated columns and rows of matrix data up to a target
42 number (pseudo-rank) (24).

43 The data-driven aspect of this work also offers the distinct advantage of
44 preserving exact quantities in the original format of the simulation data to
45 construct a low-rank matrix approximation. Compared to the SVD, which
46 reduces dimensionality by projecting matrix data onto a new orthonormal
47 basis, the CUR decomposition avoids attaching physical meaning to the
48 product components beyond what the data already contain (9), (20). For
49 example, application of matrix factorization to a tensor requires transforma-
50 tion of a discretized scalar field produced by simulation into an “unfolded,”

51 or stacked dimension, matrix of the data, often arranged in spatial by tem-
52 poral entries (25), (26). In this reorganized representation, the columns and
53 rows extracted by CUR provide a “maximal” representative set of the coor-
54 dinates and time step states of the solution at the original resolution of the
55 simulation. Here the components of CUR can be used to identify coordi-
56 nate timeseries (as synthetic diagnostics) and output time step (as snapshot
57 cadence) that together yield complete state information via matrix recon-
58 struction. We extend this concept to the application of CUR decomposition
59 as a data compression method for archival preservation of tokamak plasma
60 boundary simulations with SOLPS-ITER (Scrape Off Layer Plasma Simu-
61 lator), a state-of-the-art multi-fluid plasma and kinetic neutrals transport
62 solver that has been benchmarked against decades of ITER development
63 research (27), (28), (29).

64 SOLPS-ITER is computationally expensive to run, placing high value on
65 the many possible output quantities of simulation. There can be up to 140
66 output variables, depending on the number of plasma species, that span thou-
67 sands of time steps and hundreds of million floating point numbers. Instead
68 of pruning the simulation calculation, the CUR may be imposed to “trun-
69 cate” all or part of the simulation data suite as an interpretable record. In
70 this paper we demonstrate the favorable characteristics of a Maximum Vol-
71 ume Skeletal Decomposition (MVSD) algorithm for CUR when compared
72 against the SVD. Section 2 follows with a description of the procedure for an
73 alternating maximum volume algorithm for matrix skeleton decomposition
74 and demonstrates its computational scaling against the SVD. In Sec. 3.1 we
75 present SOLPS-ITER simulations of the tokamak plasma boundary carried

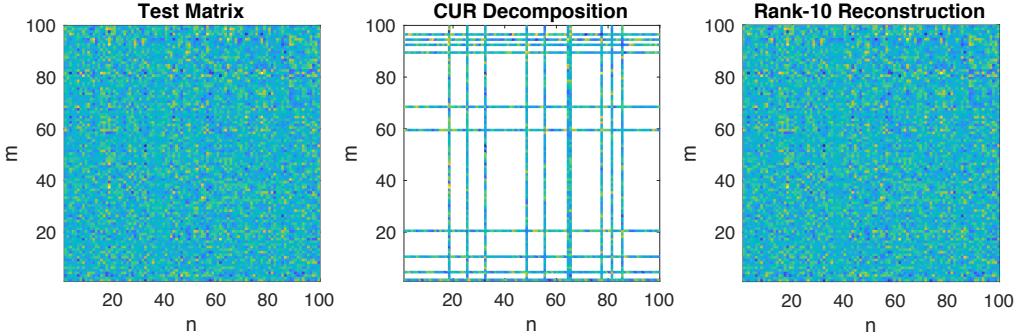


Figure 1: Example decomposition of a randomized 100×100 test matrix into its ColumnssUbmatrix-Rows (CUR) components. Left panel shows an *ad hoc* randomized matrix with embedded low-rank ($r = 10$) features. Center panel shows the corresponding $r = 10$ CUR components identified by the Maximum Volume Skeletal Decomposition (MVSD) algorithm, with the submatrix defined by the entries at the intersections of the columns and rows. Right panel shows the low-rank approximation of the original data using this matrix factorization scheme. Each panel is presented on the same color scale range.

76 out for this work. The subsequent Secs. 3.2 – 3.4 discuss the advantages of
 77 our approach on the full computational domain of SOLPS-ITER as well as
 78 on profiles and scalars of the system state. We conclude with a summary
 79 on the limitations of this data compression approach and suggest opportuni-
 80 ties available for future work including, integration with computational and
 81 experimental workflows for the efficient scientific and operational analysis of
 82 fusion plasma devices.

83 **2. Low-Rank Matrix Approximation via a Maximum Volume Al-
 84 gorithm**

85 The aim of low-rank matrix approximation is to reduce a collection of
 86 data arranged in columns and rows by the product of components with lower

87 dimensionality. This problem can be described in terms of a minimization
88 between the fit of the approximation and the number of linearly independent
89 column vectors, or rank, extracted from the data. A reduction in rank serves
90 to promote both the modeling of a matrix and the compression of its data
91 assuming that low-rank information is contained to sufficient degree. The
92 focus of this paper is on the latter category of approaches and is discussed in
93 this part by way of example. Figure 1 presents in the right panel a random-
94 ized test matrix of size 100×100 with a rank-10 feature explicitly embedded
95 in its construction, determined by a break in the spectrum of the singular
96 value decomposition (SVD). The center panel shows the application of the
97 columns-submatrix-rows (CUR) decomposition carried out by the algorithm
98 used in this work. In effect, each of the selected columns and rows in the
99 CUR decomposition is the result of an optimization that we will show can be
100 carried out faster than the standard SVD for high dimensional data. These
101 components highlight the only entries of the original data set necessary to
102 reproduce the matrix, and in a descriptive sense form the supporting “skele-
103 ton” of its structure. In this case the reconstruction to good fidelity is shown
104 in the right panel of Fig. 1.

105 In comparison to the SVD, the CUR decomposition trades a guaranteed
106 minimum least-squares error and rank ordered variance for an efficient and
107 interpretable low-rank matrix approximation (7), (8). These procedures are
108 well-defined on experimental or simulation timeseries of dynamics when the
109 data is arranged into a matrix of spatial by temporal measurements. With
110 respect to the CUR, the extracted columns represent full time step states
111 and the rows represent independent coordinates or variables. The submatrix

112 of this decomposition is defined by the block of entries at the intersection
 113 of these columns and rows. Given an adequate submatrix U_{rr} of rank- r ,
 114 data from the original timeseries matrix is preserved along the subset of r
 115 columns C_{ir} and rows R_{rj} identifying the coordinates and time steps most
 116 significant to the complete reconstruction. In that sense, CUR decomposition
 117 determines the underlying spatio-temporal structure that supports the rest
 118 of the data in a matrix and is appropriately also known as the pseudoskeleton
 119 approximation (21).

120 We now define these terms in detail for our application of the CUR ap-
 121 proach with a maximum volume skeletal decomposition (MVSD) algorithm.
 122 Suppose we select from a matrix \mathbf{M} an invertible $r \times r$ submatrix, composed of
 123 entries at the intersection of r columns and rows. Without loss of generality
 124 permute the indices to obtain the block structure

$$\mathbf{M} = \begin{bmatrix} U & X \\ Y & Z \end{bmatrix}. \quad (1)$$

125 such that an approximation of the information contained in Z can be recov-
 126 ered from only a limited set of entries by

$$\mathbf{M}_r = \begin{bmatrix} U \\ Y \end{bmatrix} U^{-1} \begin{bmatrix} U & X \end{bmatrix} = \begin{bmatrix} U & X \\ Y & YU^{-1}X \end{bmatrix} = CU^{-1}R. \quad (2)$$

127 At a given rank specified as the retained number of columns and rows in the
 128 CUR factorization or singular values in the SVD, the CUR requires $r(1 + r)$
 129 fewer entries than the SVD to be stored. For low-rank matrices the differences
 130 in memory requirements are negligible. We define a relative compression
 131 ratio, R , between the original $m \times n$ matrix size and the number of entries

132 extracted by a rank- r decomposition with either the SVD or MVSD as:

$$R_{SVD} = \frac{r(m+n+1)}{mn}, \quad R_{MVSD} = \frac{r(m+n-r)}{mn} \quad (3)$$

133 Note that in the unintended case of a full rank “decomposition,” the SVD rel-
134 ative compression can exceed $R_{SVD} > 1$ whereas the MVSD yields $R_{MVSD} =$
135 1.

136 In order to ensure a well-conditioned submatrix U with invertability, we
137 devise a measure of the volume as the modulus of the determinant

$$\text{vol}(U) = |\det(U)| \quad (4)$$

138 following (22). Instead of an expensive deterministic search for the global
139 submatrix that satisfies $\text{vol}(U_{\max}) > \text{vol}(U_{r \times r}) > 0$, we pursue an iterative
140 algorithm that avoids any submatrix being too close to singular by increasing
141 the volume towards a local, or dominant, maximum. Reference (23) derives
142 an inequality for the bounded error of a CUR approximation taken with
143 respect to a globally maximum volume submatrix

$$\|\mathbf{M} - \mathbf{M}_r\|_\infty \leq (r+1)\sigma_{r+1}(\mathbf{M}) \quad (5)$$

144 where $\sigma_{r+1}(\mathbf{M})$ is the $r+1$ singular value of the SVD of \mathbf{M} . As it would
145 be exceedingly costly to find U_{\max} , we proceed with dominant submatrices
146 satisfying $\text{vol}(U_{\max}) \leq r^{r/2}\text{vol}(U_{r \times r})$. The standard scheme for finding a
147 locally dominant submatrix in particular can be expressed in pseudocode as
148 shown in Algorithm 1.

149 This algorithm utilizes the products $\mathbf{M}U_I^{-1}$ and $U_I \setminus \mathbf{M}$ to define a domi-
150 nant submatrix for rectangular matrices $m \times n$ instead of the square matrix
151 determinant, requiring that the absolute value of all entries in each are no

Algorithm 1 Alternating Column/Row Maximum Volume Submatrix

Require: $\det(U_0) \neq 0$

Ensure: $k < 1000$

$k = 1$

$c_{ij} = 1 + 2\tau$

$r_{ij} = 1 + 2\tau$

while $(c_{ij}|r_{ij}) > 1 + \tau$ **do**

if k is even **then**

$V_k = U_k \setminus \mathbf{M}_i$

$c_{ij} = \max(|V_k|, \text{all})$

$U_k = U_{:i} \leftarrow j^{\text{th}} \text{ column of } \mathbf{M}$

else if k is odd **then**

$V_k = \mathbf{M}_{:j} U_k^{-1}$

$r_{ij} = \max(|V_k|, \text{all})$

$U_k = U_{j:} \leftarrow i^{\text{th}} \text{ row of } \mathbf{M}$

end if

$k = k + 1$

end while

152 larger than a tolerance of $1 + \tau$. Alternating rows and columns are exchanged
153 between the partitioned submatrix U_{ij} and the data matrix \mathbf{M} until the in-
154 formation content changes by at most a factor of $1 + \tau$. We note that the ratio
155 between the volume of any sequential interchange of row or column in two
156 invertible submatrices is preserved, such that $\text{vol}(U_1) = |v_{ij}| \text{vol}(U_0)$. This
157 implies that the series $\text{vol}(U_k)$ increases until we obtain a dominant subma-
158 trix. For this study we allow $\tau = 10^{-10}$ with $\max(k) = 1000$ and initialize U_0
159 as a $r \times r$ submatrix consisting of column and row entries taken from the r
160 randomly selected indices of the $m \times n$ matrix \mathbf{M} . Reference (24) advances
161 this methodology through a *greedy* algorithm for image processing where up
162 to r rows and columns are swapped at a time on each iteration, enabling
163 faster determination of the maximum volume submatrix. We showcase here
164 the efficacy of the original algorithm and leave further developments to future
165 work.

166 *2.1. Empirical Scaling with Data Size*

167 As an illustration of the advantages of this approach, we first demonstrate
168 asymptotic behavior for the extraction of low-rank data embedded in high
169 matrix degrees-of-freedom. Let r be the intended rank of the feature set
170 and consider a $n \times n$ square matrix \mathbf{M} . We construct a randomized low-
171 rank matrix of real entries $C = AB^T$, where A and B are independent
172 normally distributed $n \times r$ matrices. To artificially create a rapid fall off of
173 singular values distinct break in magnitude at rank r characteristic of low-
174 rank information, we embed the matrix C in a randomized $n \times n$ MATLAB
175 test matrix with preassigned logarithmic decay in singular values, σ . Figure
176 2 shows the characteristic spectrum of the singular value decomposition of \mathbf{M}

177 for $n = 100$ (the matrix corresponding to these values can be seen in the left
 178 panel of Fig. 2). There are $r = 10$ significant singular values with energies,
 179 σ^2 , at least 4 orders of magnitude higher than the tail of the distribution. This
 180 *ad hoc* formulation allows for the evaluation of separate matrix decomposition
 181 schemes for compressing the test data down to the low-rank M_r information
 182 it contains. We use the total compute time on a 2.4 GHz Intel Core i7
 183 processor from algorithm initialization to reconstruction of \mathbf{M}_r under the
 184 MATLAB $\text{svd}(M, r)$, $\text{svds}(M, r)$, and our implementation of $\text{maxvol}(M, r)$.
 185 The relative error, ϵ , achieved by each respective decomposition scheme for
 186 a rank- r approximation is defined in terms of the spectral norm (natural
 187 matrix norm induced by the L2-norm) with respect to the normalization

$$\epsilon = \frac{\|M_r - M\|_2}{\|M\|_2} = \frac{\sigma_{\max}(M_r - M)}{\sigma_{\max}(M)} \quad (6)$$

188 and is used as a measure of algorithm performance.

189 The singular value decomposition (SVD) command utilizes LAPACK to
 190 compute all n (or $\min(m, n)$) singular values of a matrix and therefore has
 191 a compute time independent of rank selected after the distribution of singu-
 192 lar values is obtained. As an alternative approach to this baseline we also
 193 consider the subset of singular value decomposition (SVDS) routine, which
 194 returns the r largest singular values and associated components of the ma-
 195 trix \mathbf{M} using Lanczos Bidiagonalization (30)(31) and is especially effective at
 196 handling large sparse matrices faster than the SVD. Finally, the maximum
 197 volume pseudoskeleton decomposition (MVSD) follows Alg. 1 in MATLAB
 198 and approximates the original data up to rank r in the form of Eq. 2. The
 199 right panel of Fig. 2 shows the performance of repeated application of these
 200 methods at $r = 10$ for embedding matrix sizes of $n : 100, \dots, 3000$. A mono-

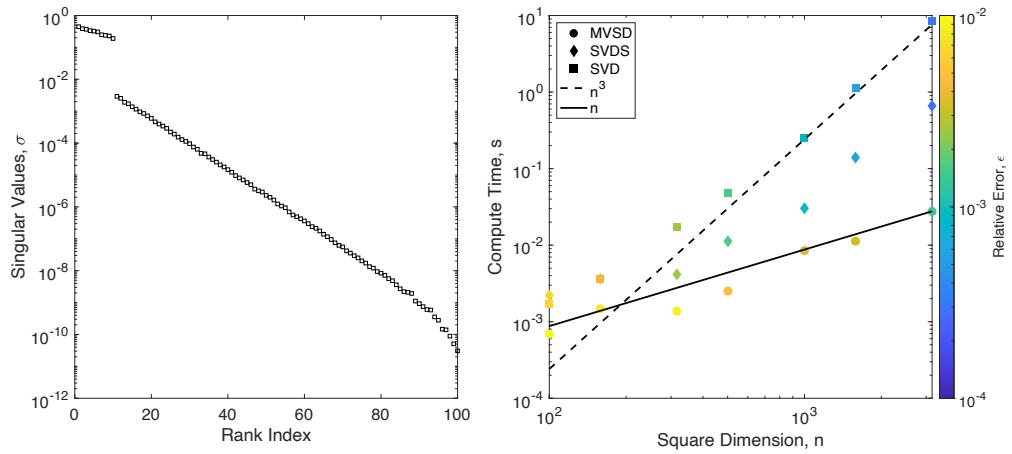


Figure 2: Projected scaling of the MVSD, SVDS, and SVD matrix factorization methods with system size for embedded low-rank features. Left panel shows the singular value energy spectrum for a 100×100 random square matrix constructed with a rank 10 substructure. Right hand panel shows the compute time in seconds for a rank $r = 10$ reconstruction using the aforementioned methods versus the number of entries, n , along one dimension of the generated square test matrices. Each point is represented in color against the total relative error in terms of the L2-norm of the decomposition. Unweighted monomial fits of the asymptotic behavior of the MVSD and SVD are shown by the dashed, n , and solid, n^3 , lines.

201 mial fit, linear and cubic in n , is used as a reference for extrapolating the
202 prospective compute time, in seconds, out to larger matrices. From this test
203 we find that the accuracy of extracting fixed low-rank information improves
204 in all three methods with matrix size, but presents less than an order of mag-
205 nitude L2-norm relative error difference between them. In general, the SVD
206 approaches n^3 scaling while the SVDS nears a n^2 asymptotic limit. Though
207 the MVSD has higher relative error to within a small (< 5) factor, the CUR
208 algorithm implemented in this work maintains very close to n scaling across
209 the entire range of sampled matrices. These results are at least dependent
210 on the presence of a distinct singular value spectrum, but for the purposes of
211 data compression presuming the possibility of a reduced rank approximation
212 we take them as sufficient for highlighting the expected behavior.

213 **3. Data Compression of Fusion Plasma Physics Coupled Simula-
214 tions**

215 *3.1. Modeling the Tokamak Plasma Boundary with SOLPS-ITER*

216 SOLPS-ITER is the state-of-the-art release of the coupled 2D multi-fluid
217 plasma solver (B2.5) and 3D kinetic neutrals Monte-Carlo code (EIRENE)
218 (27) (28). The simulation suite is widely used, spanning several decades, for
219 ITER divertor design and studying plasma physics at the tokamak boundary
220 spanning from the outer plasma core, across the scrape-off-layer to the vac-
221 uum vessel and divertor. Transport dynamics are determined from evolution
222 of coupled fluid continuity, energy, and momentum equations, coupled to
223 parallelized computation of neutral trajectories with the associated plasma-
224 neutral and plasma-surface interactions. Each fluid equation is advanced

225 implicitly, with the coupled nonlinear system solved through Picard iteration.
226 The plasma equations are solved on a field-aligned grid to handle the
227 large anisotropy, with classical (Braginskii-like) transport in the parallel di-
228 rection and *ad hoc* form of Fick's Law for convective and cross-field diffusion.
229 Computational resources are available to EIRENE in terms of the total time
230 per MC iteration and the number of CPU cores. Fundamentally, SOLPS-
231 ITER is limited to restrictive time step size (typically 10^{-5} to 10^{-7} s) due
232 to the strong nonlinearities, particularly in the plasma-neutral and radiative
233 rate coefficients. At the same time, the timescales for particle balance (puff
234 source and pumping terms are a small fraction of the recycled flux) can be
235 long (seconds) and the simulations can take on the order of days-weeks-
236 months to converge towards the steady-state for experimental and reactor
237 class devices, such as DIII-D and ITER, respectively (32).

238 The primary time-dependent output of the software suite is the b2time.nc
239 netcdf file, which comprises the time series of numerous state variables and
240 post-processed quantities of interest. For any given run this can account
241 for upwards of 50 million floating point numbers of varying degrees of or-
242 ders of magnitude, which for extensive simulations can occupy a gigabyte
243 of memory when multiple ion species are present and 10s of thousands of
244 time steps are recorded. Additionally, SOLPS-ITER is often utilized to per-
245 form many runs over several input parameter scans that can increase these
246 storage requirements by a multiplicative factor. Since the kinetic neutral
247 dynamics are taken to be on a timescale much faster than the fluid plasma
248 transport, time-dependent information from EIRENE is not typically pre-
249 served and time-independent information is kept in a separate file format

250 due to the code coupling requirements with B2.5. Recent validation efforts
251 with SOLPS-ITER have tested the significance of different contributions to
252 the error in predictions of the final converged steady state. It was found
253 that using a fast fluid neutrals model in place of expensive EIRENE cal-
254 culations can introduce up to 50% error in edge electron densities, while a
255 hybrid-kinetic approach offers a speed up factor of 6 with maximum error
256 constrained to 20% (33). A scoping study separating out the B2.5 finite
257 volume and EIRENE Monte Carlo sources of numerical error found that the
258 choice of discretization in the plasma grid contributes up to 18% discrep-
259 ancies in the density and temperature profiles. Though statistical errors
260 introduced by the Monte Carlo coupling can be brought down to a level less
261 than 0.5% through an iteration averaging procedure the finite particle sam-
262 pling still limits the maximum bias error to be on the order of 1% (34). A
263 key challenge evident in the implementation of SOLPS-ITER simulations is
264 the balance of reasonable numerical accuracy with computational cost. For
265 the purposes of data compression of the simulation output presented here, we
266 target a numerical fidelity on the order of 1%, or an absolute relative error
267 of 10^{-2} .

268 A typical SOLPS-ITER simulation up to steady-state conditions for an
269 experimental configuration, such as DIII-D shot equilibria, can produce as
270 much as 140 output dynamic variables on the order of 1000 - 10000 time steps.
271 The scope of these physically relevant quantities encompasses up to 3-6 2D
272 matrices per plasma species (n_s, T_s, p_s) of size 98×38 , around 60 1D profiles
273 (including line integrated measurements and fluxes) of size 38×1 , and 80 0D
274 scalar timeseries (including total power and currents) of size 1×1 . In total,

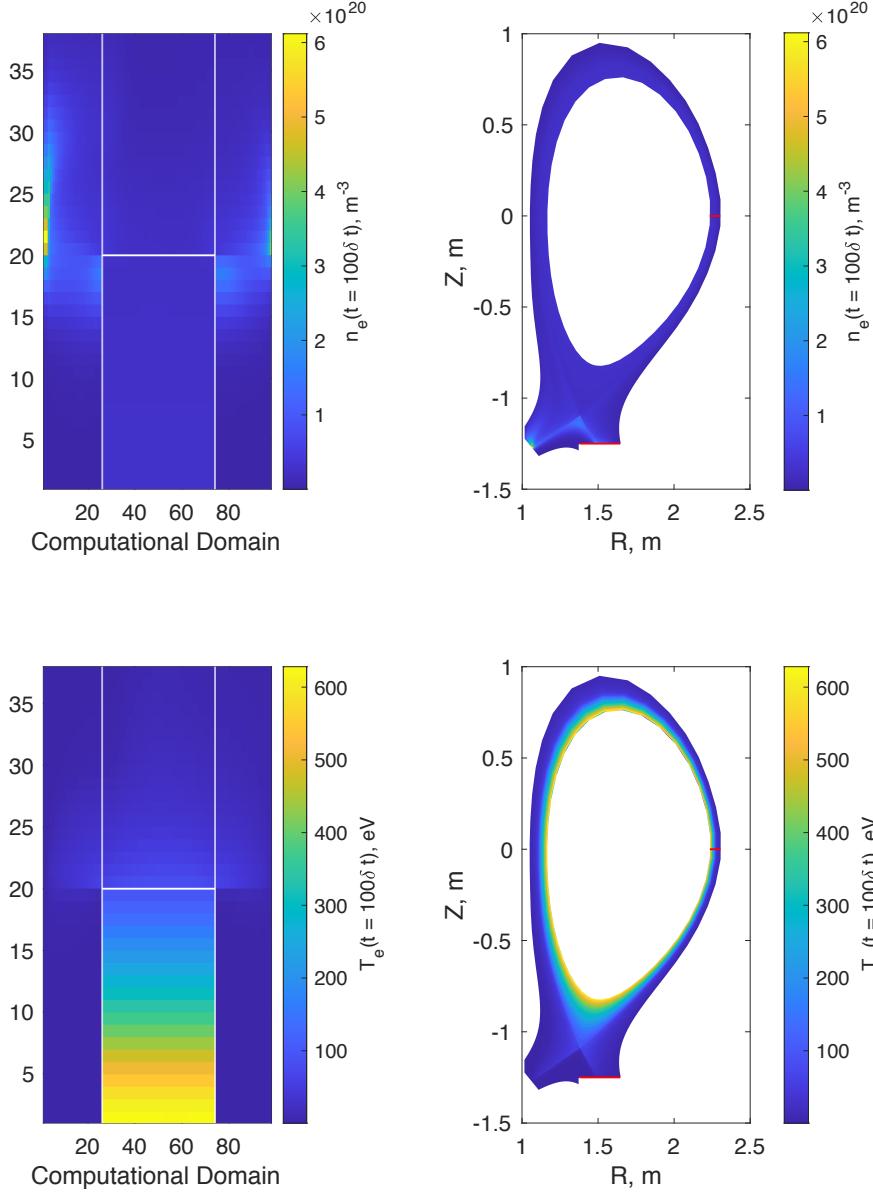


Figure 3: Snapshots of the full finite volume SOLPS simulation at $100\delta t$. Left column shows the computational domain matrix of the calculation and right column shows the magnetic equilibrium configuration for DIII-D shot 174310 at 3500 ms corresponding to the same variables and time steps. Top panels show the 2D electron density and bottom panels show the 2D electron temperature.

275 nearly 25000 entries are calculated and advanced in time with respect to the
276 plasma transport fluid variables. Though SOLPS-ITER simulation is largely
277 encumbered by the Monte Carlo treatment of the kinetic neutral trajectories,
278 the resulting interactions are preserved only in the plasma response unless
279 EIRENE data is specifically recorded in a separate output file. It is assumed
280 that the kinetic neutral dynamics are much faster than the fluid plasma
281 timescales and reach convergence at each integration time step such that it
282 can be feasible to restart SOLPS-ITER intermittently over a simulation run,
283 provided the appropriate plasma state information is retained. SOLPS-ITER
284 is often utilized in a time-independent manner to predict steady-state con-
285 ditions for operational scenarios and experimental design, implying that the
286 simulation data can be compressed through extraction of the latent solutions
287 as low-rank features within matrix data.

288 *3.2. 2D Field Data*

289 Figure 3 shows two snapshots of the plasma state at 100 time steps, $\delta t =$
290 10^{-5} s, into a SOLPS simulation using a magnetic equilibrium corresponding
291 to DIII-D shot 174310 at 3500 ms with only deuterium plasma species for the
292 fluid ions. Both the 2D electron density (SOLPS label, *ne3da*) and electron
293 temperature (*te3da*), as fundamental variables governing the dynamics of the
294 scrape-off-layer, are shown in the top and bottom panels respectively. The
295 rightmost panels illustrate the finite-volume geometry of the experimental
296 configuration. In the leftmost panels of Fig. 3, the computational domain
297 associated with this mapping is presented. The x-axis corresponds to the **par-**
298 **allel to magnetic field** direction and the y-axis **corresponds to the perpendicu-**
299 **lar to magnetic field** direction. Subdivisions with respect to the the following

300 plasma regions can be identified: along the y -axis the inboard divertor volume
301 is recorded from 1 to 26 on the x -axis, the core and scrape-off layer share the
302 domain between $x = 26\text{--}74$ and are split across the separatrix between $y = 19$
303 & 20, lastly the outboard divertor occupies $x = 76\text{--}98$. In terms of synthetic
304 diagnostic quantities typically utilized in the analysis of SOLPS simulations,
305 we also consider 1D profiles of the following target quantities. The outboard
306 divertor target (ODT) electron density ($nesepa$) is obtained at $Z = -1.25$ m
307 from $R = 1.378$ m – 1.645 m and electron temperature ($tesepa$) over the same
308 range as illustrated by the red line highlight. These profiles are asymmetric
309 across the separatrix in the nonuniform sampling across R , and are located
310 in the computational domain at $(x = 98, y = 1\text{--}38)$. For this baseline case a
311 steady-state solution was perturbed by doubling the input power and running
312 to approximate convergence. As expected, on the outboard divertor target
313 the electron density falls to a level of 1.5×10^{19} m $^{-3}$ just inside the separatrix
314 while the electron temperature gradually rises past 9 eV over 1600 time steps,
315 $\delta t = 1 \times 10^{-5}$ s.

316 We apply matrix decomposition schemes for data compression to the out-
317 put of SOLPS simulations directly in the discretized coordinate-time step
318 domain without accounting for the measured spatio-temporal sampling. To
319 enable the required matrix operations over the tensor output, Figure 4 takes
320 the preceding simulation in the 2D computational domain and reshapes the
321 spatial dimensions into a single column major ordered list of coordinates
322 versus time steps. This procedure follows the spatio-temporal separation of
323 matrix “unfolding,” or stacking, that allows a discretized scalar field tensor
324 to be represented by a tensor product of *Topos* and *Chronos* elements com-

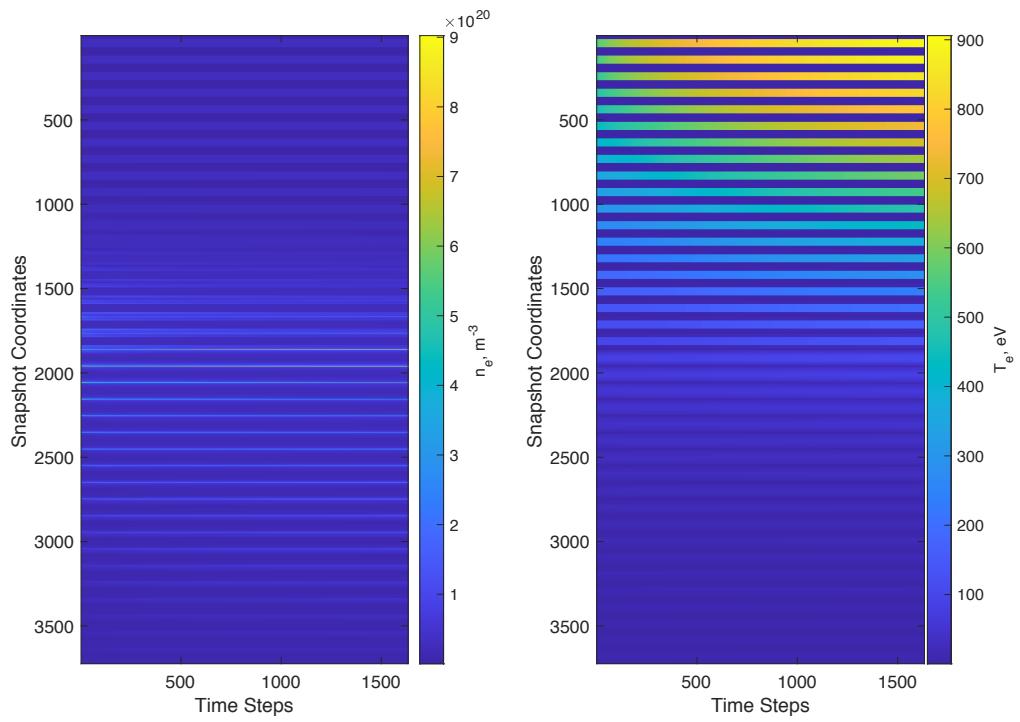


Figure 4: SOLPS 2D simulations of the electron density on the left and electron temperature on the right reshaped into an expanded coordinates-time steps matrix. Each column vector represents a snapshot of the full computational domain ($98 \times 38 = 3724$).

325 monly utilized in principal component analysis (PCA) (25), (26). The left
326 hand panel shows the evolution of electron density and the right hand panel
327 shows the corresponding dynamics of the electron temperature for the same
328 plasma regions. This transformation augments the system size of the simu-
329 lation data matrix from $38 \times 98 \times 1600$ to 3724×1600 requiring additional
330 processing to achieve a successful decomposition.

331 In Figures 5 & 6 the performance of the three data compression methods
332 is compared, highlighting the prospective gains due to the MVSD algorithm.
333 For the electron density simulation, which features highly localized peaks in
334 values at the divertor target separatrix, the low-rank reconstruction at $r = 4$
335 for the MVSD results in a total relative error of 5×10^{-2} with a compute
336 time of 10^{-2} s, greater than 2 orders of magnitude faster than the SVD and
337 nearly 1 order of magnitude faster than the SVDS. The MVSD plateaus at
338 an accuracy of 10^{-3} around a rank reconstruction of $r = 25$, and intersects
339 the SVDS routine at $r = 12$ for 10^{-1} s compute time.

340 Both the SVDS and SVD reach 5×10^{-5} relative error at high rank re-
341 constructions of the original data matrix, here truncated to $r = 98$. Due
342 to the large size the overall difference in relative compression with respect
343 to the ratio of number of terms retained is negligible. On the right hand
344 panel of Fig. 5 the MVSD and SVD algorithm provide similar accuracy at
345 low rank for compression down to a relative ratio of 0.01. The methods are
346 further separated by one order of magnitude in relative error at the MVSD
347 threshold level of 10^{-3} for a relative compression of 0.04. Therefore, for an
348 acceptable relative error tolerance of 10^{-2} the MVSD algorithm achieves one
349 (two) order(s) of magnitude faster data compression down to 0.01 than the

350 SVDS (SVD) method.

351 The simulation of electron temperature presents the same results, albeit
352 with higher accuracy in all three methods due to the global gradients in
353 values shown by the right hand panel of Fig. 4. In Figure 6 the MVSD
354 relative error begins at 5×10^{-3} for a $r = 4$ low-rank reconstruction and falls
355 to a threshold level of 10^{-5} around a high-rank reconstruction of $r = 40$,
356 intersecting the SVDS at an $r = 14$ and compute time of 2×10^{-1} s. Again,
357 the MVSD algorithm is two orders of magnitude faster than the standard
358 SVD and demonstrates high data compression to a ratio of 0.01 at a relative
359 error of 10^{-4} for $r = 10$.

360 In practice, the *a priori* selection of appropriate rank is challenging. When
361 the SVD is computed, the full range of singular values give a measure of
362 the least-squares error captured by each component. A requested fidelity
363 could be maintained across the range of simulation outputs by setting the
364 rank separately for each dataset according to the singular value truncation
365 *a posteriori*. However, computation of the SVD is prohibitive in matrices
366 with high degrees-of-freedom as identified in the scaling argument of Fig. 2.
367 The SVDS, which requires a rank assignment for reasonable compute times,
368 would rather need to be pursued. In Figs. 5 & 6 the SVDS method demon-
369 strates an asymptotic limit in accuracy gain that approaches the compute
370 time of the SVD for increasing rank. Though the MVSD algorithm instead
371 shows a relative error threshold about 1 order of magnitude higher than this
372 range, overall it performs the fastest of the three methods for low-rank re-
373 constructions. This suggests that it might be adequate to choose a desired
374 relative compression, at 0.01 or so for these 2D datasets, and base the rank

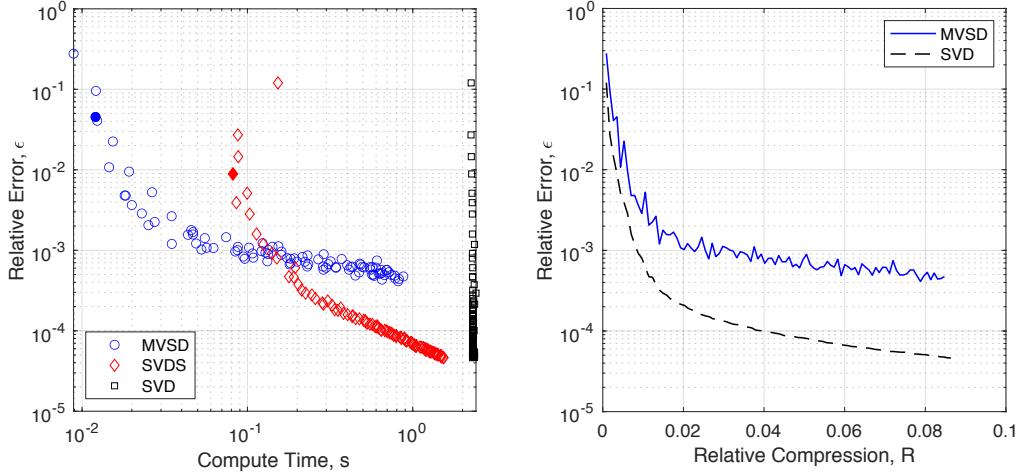


Figure 5: Performance of the MVSD, SVDS, and SVD on the SOLPS 2D simulation of electron density reshaped as a matrix (3724×1600). Left hand panel shows the total relative error for each rank reconstruction up to a partial rank of $r = 98$ versus the compute time. The low-rank $r = 4$ reconstructions are indicated by the solid blue and red points for the MVSD and SVDS methods, respectively. The right hand panel shows the relative error versus relative compression as the rank of reconstruction is increased for the MVSD and SVD methods.

375 selection off the associated number of components in the CUR decomposi-
 376 tion. In this case, the relative error between matrix approximation schemes
 377 is more reasonable and closer to a factor of 2 difference.

378 *3.3. 1D Profile Evolution*

379 Figure 7 takes the 1D profiles of electron density and temperature on the
 380 outboard divertor target more commonly recorded than the full 2D simu-
 381 lation and shows the respective dynamics in the left and right hand panels.
 382 For the case considered here, with the modification to the input power, the
 383 density at the separatrix drops gradually over 1000 time steps whereas the

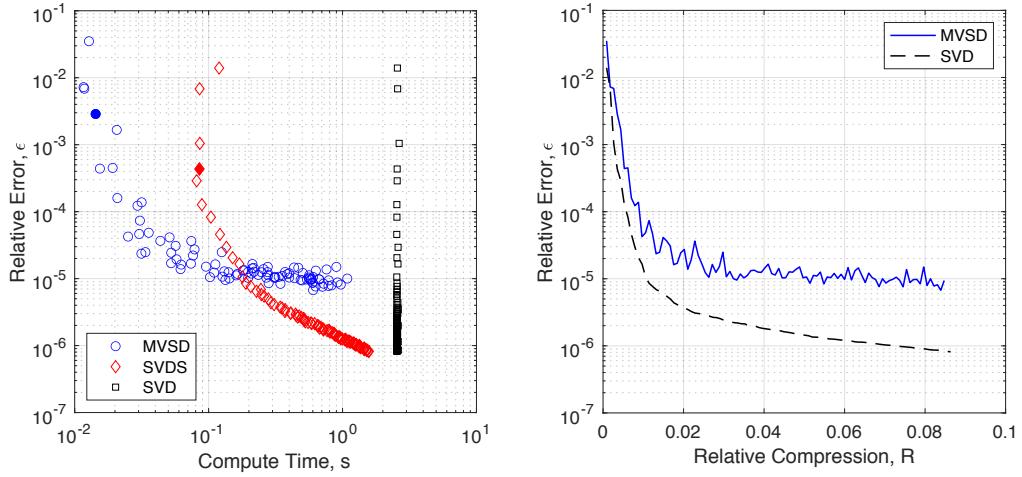


Figure 6: Performance of the MVSD, SVDS, and SVD on the reshaped matrix (3724×1600) of SOLPS 2D simulation of electron temperature. Left hand panel shows the total relative error for each rank reconstruction up to a partial rank of $r = 98$ versus the compute time. The low-rank $r = 4$ reconstructions are indicated by the solid blue and red points for the MVSD and SVDS methods, respectively. The right hand panel shows the relative error versus compression factor as the rank of reconstruction is increased for the MVSD and SVD methods.

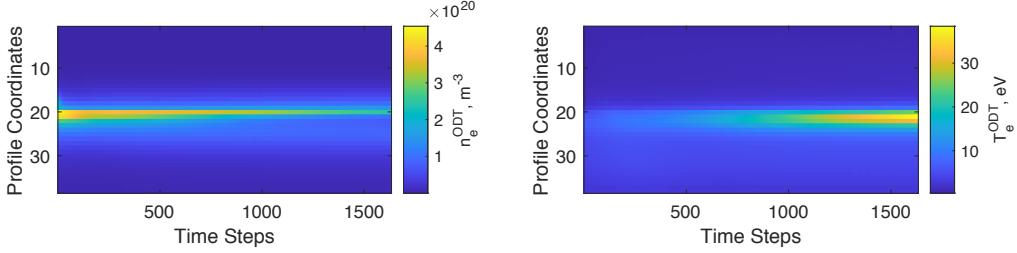


Figure 7: SOLPS 1D simulations of the outboard divertor target (ODT) electron density on the left and electron temperature on the right taken from the full computational domain. Each column vector represents a profile of coordinates at a single time step on the outboard divertor target.

384 temperature around the separatrix increases quickly in the last 500 time steps
 385 of the simulation. In contrast to the preceding reshaped calculations, all 38
 386 coordinates are stored in adjacent ordering as output from the simulation to
 387 preserve the spatial correlation of the solution.

388 Figures 8 & 9 highlight the performance of the MVSD on datasets of rect-
 389 angular matrix size. In the left hand panel of Fig. 8 for the electron density
 390 simulation, the MVSD maintains at least a factor of 2 faster computation
 391 than the SVDS method up to a low rank reconstruction of $r = 4$. The two
 392 algorithms reproduce the same total relative error of 10^{-3} – 10^{-4} and similar
 393 compute times in the range of $r = 5$ – 10 . At higher ranks, the SVDS is up to
 394 one order of magnitude more efficient than the MVSD. This abrupt change
 395 in compute time can be attributed to the implementation of the MATLAB
 396 algorithm for the SVDS, which in the documentation is described as capable
 397 of improved performance at increased rank when repeated singular values are
 398 present (as can be the case after a break in singular spectrum) (30)(31). In all
 399 cases the SVD performs slowest at a compute time of 10^{-1} s. The right hand

400 panel of Fig. 8 further shows that the difference in relative error between
401 the decomposition schemes is negligible and that the same data compression
402 relative ratio can be achieved by the MVSD as the SVD.

403 Fig. 9 presents confirmation of the results for the simulation of electron
404 temperature. In that case there is minimal gain in accuracy when considering
405 higher rank reconstructions past $r = 10$. It is evident that a low-rank MVSD
406 of at least $r = 4$ is sufficient to represent the SOLPS simulation data to
407 within a total relative error of 10^{-2} at the fastest speed. We remark that at
408 full rank, the discrepancy between the highest fidelity reconstructions is due
409 to the default limited tolerance on the MATLAB iterative implementation
410 of the SVD and SVDS schemes. In this fringe case, the inverse operation
411 utilized by the MVSD algorithm for the full matrix and successive matrix
412 multiplications actually achieves the lowest error.

413 *3.4. 0D Scalar Timeseries*

414 Figure 10 shows the concatenated timeseries of 77 0D scalar quantities
415 obtained from the SOLPS-ITER simulation and typically used as metrics
416 for plasma state characterization. These heterogenous variables span several
417 orders of magnitude and disparate physical units. To allow satisfactory de-
418 composition of the augmented matrix data, each scalar is normalized by the
419 absolute value of the mean from the respective timeseries. This procedure
420 attempts to allow meaningful comparison of the total relative error when the
421 data is reconstructed. Fig. 10 also indicates the variable names selected by
422 the rank $r = 4$ MVSD along with the identified full-fidelity snapshot states
423 at time steps marked by the vertical black lines at $N\delta t = 1, 49, 847$, and
424 2994.

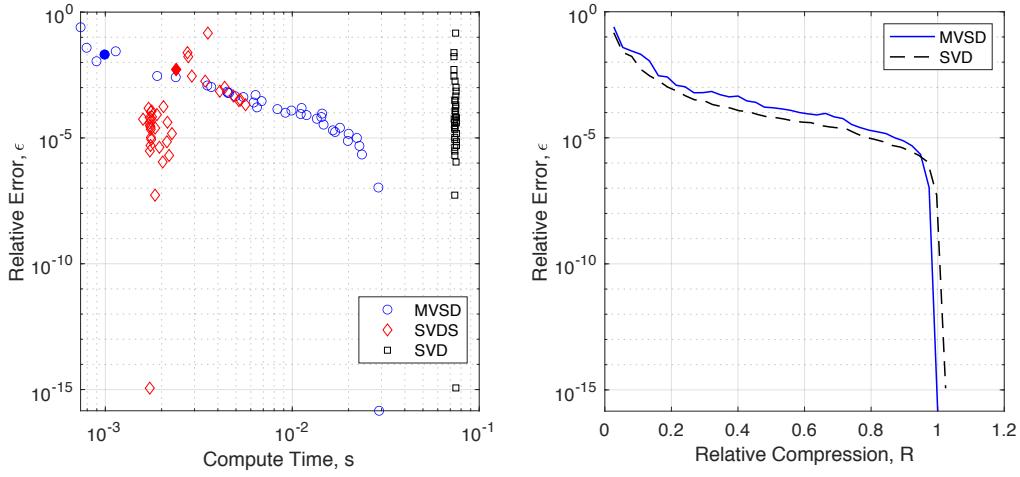


Figure 8: Performance of the MVSD, SVDS, and SVD on the SOLPS 1D simulation of outboard divertor target electron density (38×1600). Left hand panel shows the total relative error for each rank reconstruction up to full rank $r = 38$ versus the compute time. The low-rank $r = 4$ reconstructions are indicated by the solid blue and red points for the MVSD and SVDS methods, respectively. The right hand panel shows the relative error versus relative compression as the rank of reconstruction is increased for the MVSD and SVD methods.

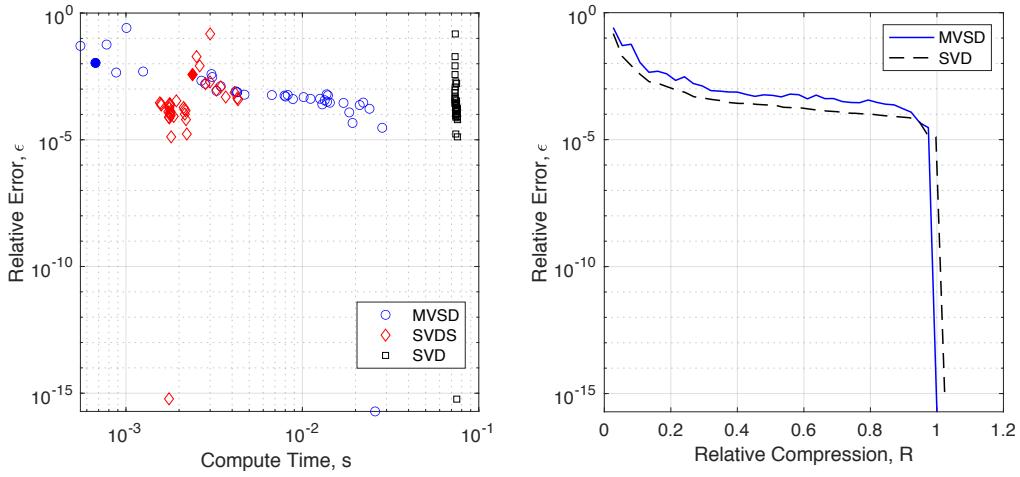


Figure 9: Performance of the MVSD, SVDS, and SVD on the SOLPS 1D simulation of outboard divertor target electron temperature (38×1600). Left hand panel shows the total relative error for each rank reconstruction up to full rank $r = 38$ versus the compute time. The low-rank $r = 4$ reconstructions are indicated by the solid blue and red points for the MVSD and SVDS methods, respectively. The right hand panel shows the relative error versus relative compression as the rank of reconstruction is increased for the MVSD and SVD methods.

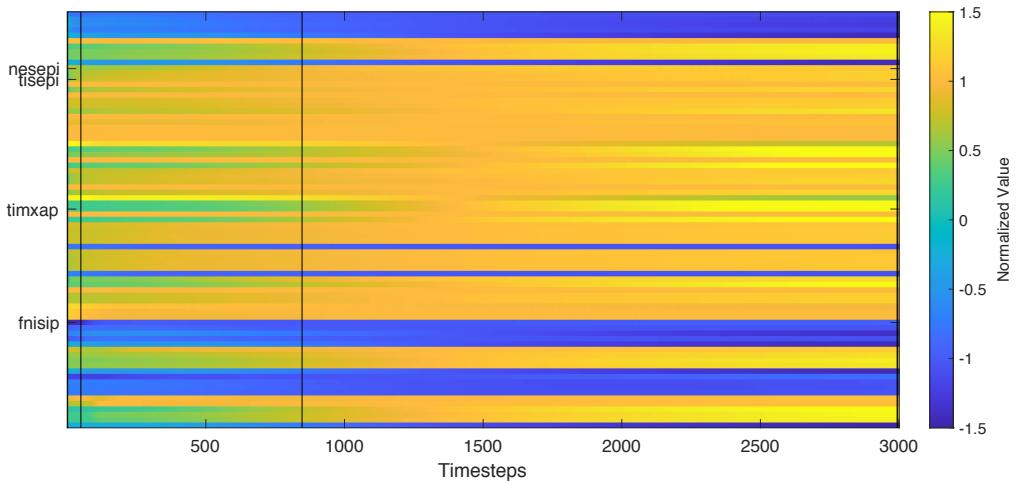


Figure 10: SOLPS 0D simulations of timeseries integrated or calculated from the full solution. Each column vector represents a snapshot of the full plasma state with respect to the scalar quantities at a single time step. The variables extracted by the MVSD low-rank $r = 4$ reconstruction are labeled along the y-axis and the corresponding time step components are denoted by vertical black lines.

425 In this case, the dynamics are reproduced from the Western (inboard
426 divertor) edge separatrix electron density, $nesepi$ (m^{-3}), and ion tempera-
427 ture, $tisepi$ (eV), as well as the Western (inboard divertor) separatrix throat
428 poloidal particle flux, $fnisip$ (s^{-1}), and Eastern (outboard divertor) edge
429 maximum ion temperature, $timxamp$ (eV). The MVSD is predominantly dis-
430 tributed along the Western separatrix and coupled to the Eastern edge by the
431 ion temperature over the first third of the simulation. Though it is clear that
432 many of these scalar quantities exhibit similar temporal evolution and that
433 the MVSD is not guaranteed to find the global submatrix of maximal infor-
434 mation content, this example displays the capability of the CUR approach to
435 extract prioritized spatio-temporal measurements from integrated simulation
436 data that could be used to indicate governing dynamics and restart intervals
437 for SOLPS-ITER.

438 Figure 11 clarifies these remarks in the comparison of performance by the
439 MVSD, SVDS, and SVD on the SOLPS scalar timeseries. The left panel
440 of shows that MVSD still achieves the fastest compute time, two orders of
441 magnitude less than the SVD, at a level of 10^{-2} total relative error for the
442 rank $r = 4$ reconstruction. The SVDS method intersects the MVSD at $r = 7$
443 and exceeds the efficiency of the algorithm at $r = 14$ until reaching the lowest
444 reconstruction error of 10^{-4} for $r = 24$. On the right hand panel of Fig. 11
445 the data compression achieved by the MVSD is separated from the SVD by
446 a factor of 3 total relative error. For relative compression ratios below 0.1
447 there is about a $R = 0.025$ positive offset i.e., requiring higher rank, for the
448 MVSD to reproduce equivalent reconstructions. Below a total relative error
449 of 2×10^{-3} this offset grows to $R = 0.05$, eventually nearing a threshold

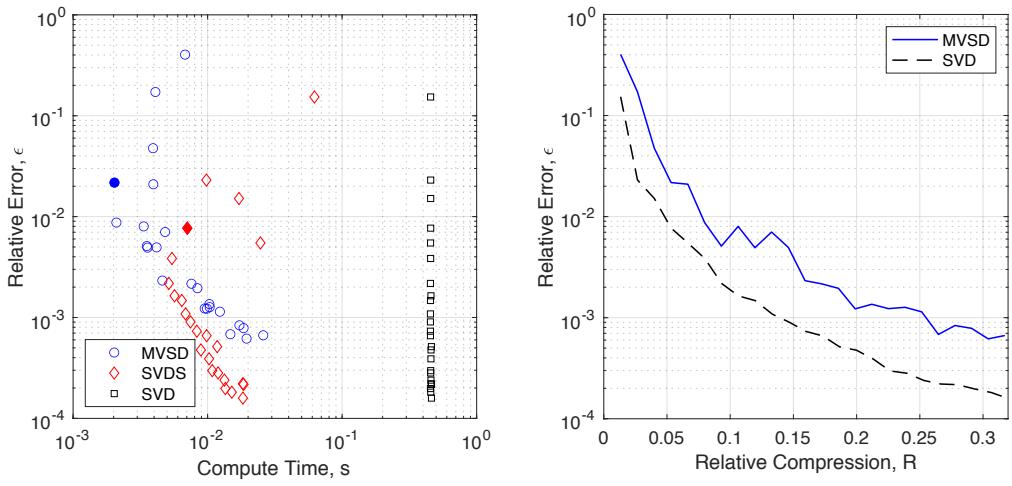


Figure 11: Performance of the MVSD, SVDS, and SVD on the SOLPS 0D scalar timeseries calculations (77×3000). Left hand panel shows the total relative error for each rank reconstruction up to a partial rank of $r = 24$ versus the compute time. The low-rank $r = 4$ reconstructions are indicated by the solid blue and red points for the MVSD and SVDS methods, respectively. The right hand panel shows the relative error versus relative compression as the rank of reconstruction is increased for the MVSD and SVD methods.

450 accuracy of 7×10^{-4} .

451 The advantage of the MVSD algorithm, as demonstrated in this work,
452 is two-fold: (1) large matrices of simulation data can be efficiently com-
453 pressed to acceptable error tolerances, and (2) the extracted decomposition
454 is performed on exact spatial coordinates and temporal snapshots instead of
455 a transformed basis. These benefits motivate inclusion of the MVSD in a
456 SOLPS simulation workflow whereby more output variables could be reason-
457 ably stored than is done in practice, all linked to an interpretable record of
458 which data corresponds to the full fidelity solution (the components of the
459 CUR factorization). Of course, the MVSD need not be applied to all of the
460 simulation output but could instead be utilized in a manner to enhance the
461 availability of additional sources of information describing the plasma state
462 at minimal extra cost.

463 4. Conclusions

464 An algorithm for the compression of matrices was applied to tokamak
465 boundary simulation data from the SOLPS-ITER fluid plasma and kinetic
466 neutrals interactions transport code. This paper applies a maximum volume
467 approach to matrix pseudoskeleton decomposition (MVSD), which extracts
468 a number of columns and rows corresponding to a submatrix of “locally”
469 maximal information content at the specified rank. In contrast to the sin-
470 gular value decomposition (SVD), computation of the MVSD scales nearly
471 linearly with square matrix size when low-rank features are present. The
472 CUR approach as a data compression method is suggested to be tractable
473 on high-dimensional plasma physics simulation data, at least where an ac-

474 ceptable error in the reconstruction can be tolerated. Its performance is
475 characterized here on the SOLPS-ITER code, where it is common to curtail
476 output variables to a reasonable number when repeated runs are carried out
477 and storage is limited.

478 SOLPS-ITER provides state-of-the-art simulation of the scrape-off-layer,
479 the boundary region of plasma magnetic confinement in fusion experiments.
480 Typically, the code is utilized to obtain a solution of the steady-state condi-
481 tions for determination of component viability facing the plasma, such as the
482 divertor, or interpretation of observations from experimental shots. These
483 tasks can require a degree of tuning various parameters and result in an ar-
484 ray of simulation runs with disjoint characteristics. Increasing the quantity of
485 output variables could be useful for allowing a comprehensive analysis of the
486 dynamics between runs or negate the need to repeat a simulation in order to
487 obtain previously uncalculated data. For the scientist user of SOLPS-ITER,
488 traceability of the MVSD is straightforward. The algorithm preserves the
489 exact spatial coordinate timeseries and full fidelity time step states used in
490 the CUR data compression of specific dynamic variables.

491 SOLPS-ITER can produce upwards of 140 output variables over thou-
492 sands of time steps, stored in matrices ranging in size from the 2D compu-
493 tational domain (38×98) to 1D profiles (38) and 0D scalars. In total, over
494 120 million floating point numbers (~ 500 MB – 1 GB) can be recorded
495 per simulation run. The results of this work show that the MVSD is at least
496 2 orders of magnitude faster to compute than the SVD and maintains at
497 least 10^{-2} total relative error with rank $r = 4\text{--}6$ for all cases investigated
498 here. The low-rank reconstruction of SOLPS-ITER data ordered in spatial

499 coordinates versus time step snapshots yields sufficient relative compression
500 ratios that improve with the size of the data. The MVSD algorithm also
501 performs better than or as well as the SVDS up to a total relative error of
502 at least 10^{-3} . We note that there is substantial research being pursued to
503 allow the extension of the SOLPS-ITER computational grid into the vacuum
504 where neutrals reside and to the plasma facing component wall geometry for
505 improved physical fidelity (35). The datasets from these simulations can be
506 larger than those presented here due to the customized finite-volume grid
507 discretizations.

508 The efficiency of the MVSD facilitates simulation data mobility, allowing
509 the full SOLPS-ITER plasma state information to be stored and transferred
510 at reduced costs. In addition, two lines of research for future investigation are
511 evident. The first concerns the identification of limited spatial coordinates
512 extracted by the MVSD with optimal placement of synthetic diagnostics in
513 SOLPS-ITER for monitoring plasma dynamics, which could be corroborated
514 by experimental observations. The second concerns the complete time step
515 snapshots in the MVSD, which could be chosen as intervals for recording
516 dependencies required to restart SOLPS-ITER simulation. The utility of the
517 MVSD algorithm for CUR matrix factorization demonstrated here on fluid
518 plasma dynamics in the tokamak boundary motivates its extension to other
519 high-dimensional simulations. **Gyrokinetic plasma physics with much higher**
520 **degrees of freedom**, exhibiting data up to 5D in space and 1D in time, could be
521 targeted as another candidate for efficient data compression where disparate
522 scales from turbulent transport could be a challenge for this approach.

523 **Acknowledgement**

524 This work is supported in part by the US DOE under contract DE-AC05-
525 00OR22725. Dr. Kenneth Allen was supported in part by the DOE Office
526 of Science Graduate Student Research (SCGSR) program, and under thesis
527 advisement by Dr. Ming-Jun Lai. This research used resources of the Oak
528 Ridge Leadership Computing Facility at the Oak Ridge National Laboratory,
529 which is supported by the Office of Science of the U.S. Department of Energy
530 under Contract No. DE-AC05-00OR22725.

531 **Data Availability Statement**

532 The data that support the findings of this study are available from the
533 corresponding author upon reasonable request.

534 **References**

535 [1] N. Pomphrey, L. Berry, A. Boozer, R. Hatcher, S. Hirshman, L.-P. Ku,
536 W. Miner, H. Mynick, W. Reiersen, D. Strickler, P. Valanju, Innovations
537 in compact stellarator coil design, Nuclear Fusion 41 (3) (2001) 339.

538 [2] S. Benkadda, T. D. de Wit, A. Verga, A. Sen, A. Team, X. Garbet, Char-
539 acterization of coherent structures in tokamak edge turbulence, Physical
540 Review Letters 73 (1994) 3403–3406. doi:10.1103/PhysRevLett.73.
541 3403.

542 [3] S. Futatani, S. Benkadda, D. del Castillo-Negrete, Spatiotemporal
543 multiscaling analysis of impurity transport in plasma turbulence us-

544 ing proper orthogonal decomposition, *Physics of Plasmas* 16 (042506)
545 (2009). [doi:10.1063/1.3095865](https://doi.org/10.1063/1.3095865).

546 [4] D. del Castillo-Negrete, D. Spong, S. Hirshman, Proper orthogonal de-
547 composition methods for noise reduction in particle-based transport
548 calculations, *Physics of Plasmas* 15 (092308) (2008). [doi:10.1063/1.2979680](https://doi.org/10.1063/1.2979680).

550 [5] D. Hatch, P. Terry, F. Jenko, F. Merz, W. Nevins, Saturation of gyroki-
551 netic turbulence through damped eigenmodes, *Physical Review Letters*
552 106 (115003) (2011). [doi:10.1103/PhysRevLett.106.115003](https://doi.org/10.1103/PhysRevLett.106.115003).

553 [6] D. Hatch, P. Terry, F. Jenko, F. Merz, M. Pueschel, W. Nevins, E. Wang,
554 Role of subdominant stable modes in plasma microturbulence, *Physics*
555 of *Plasmas* 18 (055706) (2011). [doi:10.1063/1.3563536](https://doi.org/10.1063/1.3563536).

556 [7] C. Eckart, G. Young, The approximation of one matrix by another
557 of lower rank, *Psychometrika* 1 (3) (1936) 211–218. [doi:10.1007/BF02288367](https://doi.org/10.1007/BF02288367).

559 [8] L. Mirsky, Symmetric gauge functions and unitarily invariant norms,
560 *Quarterly Journal of Mathematics* 11 (1) (1960) 50–59. [doi:10.1093/qmath/11.1.50](https://doi.org/10.1093/qmath/11.1.50).

562 [9] G. Golub, C. van Loan, *Matrix Computations*, third ed., The Johns
563 Hopkins University Press, London, 1996.

564 [10] P. Holm, J. Lumley, G. Berkooz, *Turbulence, Coherent Structures,
565 Dynamical Systems and Symmetry*, Cambridge University Press, New
566 York, 1996.

567 [11] D. del Castillo-Negrete, S. Hirshman, D. Spong, E. D'Azevedo, Com-
568 pression of magnetohydrodynamic simulation data using singular value
569 decomposition, *Journal of Computational Physics* 222 (2007) 265–286.
570 [doi:10.1016/j.jcp.2006.07.022](https://doi.org/10.1016/j.jcp.2006.07.022).

571 [12] D. Hatch, D. del Castillo-Negrete, P. Terry, Analysis and compression
572 of six-dimensional gyrokinetic datasets using higher order singular value
573 decomposition, *Journal of Computational Physics* 231 (2012) 4234–4256.
574 [doi:10.1016/j.jcp.2012.02.007](https://doi.org/10.1016/j.jcp.2012.02.007).

575 [13] Y. Asahi, K. Fujii, D. Heim, S. Maeyama, X. Garbet, V. Grandgirard,
576 Y. Sarazin, G. Dif-Pradalier, Y. Idomura, M. Yagi, Compressing the
577 time series of five dimensional distribution function data from gyroki-
578 netic simulation using principal component analysis, *Physics of Plasmas*
579 28 (1) (2021) 012304. [doi:10.1063/5.0023166](https://doi.org/10.1063/5.0023166).

580 [14] G. Stewart, Four algorithms for the efficient computation of truncated
581 qr approximations to a sparse matrix, *Numerical Mathematics* 83 (1999)
582 313–323.

583 [15] H. Cheng, Z. Gimbutas, P. Martinsson, V. Rokhlin, On the compression
584 of low rank matrices, *SIAM Journal of Scientific Computing* 26 (2005)
585 1389–1404.

586 [16] A. Frieze, R. Kannan, S. Vempala, Fast monte-carlo algorithms for find-
587 ing low-rank approximations, *Journal of the ACM* 51 (6) (2004) 1025–
588 1041. [doi:10.1145/1039488.1039494](https://doi.org/10.1145/1039488.1039494).

589 [17] K. Hamm, L. Huang, Stability of sampling for cur decompositions, Foundations of Data Science 2 (2) (2020) 1–36. doi:10.3934/fods.2020006.

590

591 [18] P. Drineas, M. W. Mahoney, S. Muthukrishnan, Subspace sampling and relative-error matrix approximation: Column-based methods, in: J. Díaz, K. Jansen, J. Rolim, U. Zwick (Eds.), Approximation, Randomization, and Combinatorial Optimization, Vol. 4110 of Lecture Notes in Computational Science, Springer, 2006, pp. 321–326.

592

593

594

595

596 [19] P. Drineas, M. Mahoney, S. Muthukrishnan, Relative-error cur matrix decompositions, SIAM Journal on Matrix Analysis and Applications 30 (2) (2008) 844–881. doi:10.1137/07070471X.

597

598

599 [20] M. Mahoney, P. Drineas, Cur matrix decompositions for improved data analysis, Proceedings of the National Academy of Sciences (055706) (2011). doi:10.1073/pnas.0803205106.

600

601

602 [21] S. Goreinov, E. Tyrtyshnikov, N. Zamarashkin, A theory of pseudoskeleton approximations, Linear Algebra and Its Applications 261 (1997) 1–21.

603

604

605 [22] S. Goreinov, E. Tyrtyshnikov, The maximum-volume concept in approximation by low-rank matrices, Contemporary Mathematics 280 (2001) 47–51.

606

607

608 [23] S. A. Goreinov, I. V. Oseledets, D. V. Savostyanov, E. E. Tyrtyshnikov, N. L. Zamarashkin, How to find a good submatrix, in: Matrix Methods: Theory, Algorithms, Applications, World Scientific, Hackensack, NY, 2010, pp. 247–256. doi:?

609

610

611

612 [24] K. Allen, A geometric approach to low-rank matrix and
613 tensor completion, Ph.D. thesis, University of Georgia,
614 [https://esploro.libs.uga.edu/esploro/outputs/doctoral/
615 A-Geometric-Approach-to-Low-Rank-Matrix/9949421027102959](https://esploro.libs.uga.edu/esploro/outputs/doctoral/A-Geometric-Approach-to-Low-Rank-Matrix/9949421027102959)
616 (2022).

617 [25] N. Aubry, R. Guyonnet, R. Lima, Spatiotemporal analysis of com-
618 plex signals: Theory and applications, *Journal of Statistical Physics*
619 64 (1991) 683–739.

620 [26] L. de Lathauwer, B. de Moor, J. Vandewalle, A multilinear singular
621 value decomposition, *SIAM Journal on Matrix Analysis and Applica-
622 tions* 21 (4) (2000) 1253–1278. [doi:10.1137/S0895479896305696](https://doi.org/10.1137/S0895479896305696).

623 [27] S. Wiesen, D. Reiter, V. Kotov, M. Baelmans, W. Dekeyser, A. S.
624 Kukushkin, S. W. Lisgo, R. A. Pitts, V. Rozhansky, G. Saibene,
625 I. Veselova, S. Voskoboinikov, The new solps-iter code package, *Jour-
626 nal of Nuclear Materials* 463 (2015) 480–484. [doi:10.1016/j.jnucmat.2014.10.012](https://doi.org/10.1016/j.jnucmat.2014.10.012).

627 [28] X. Bonnin, W. Dekeyser, R. Pitts, D. Coster, S. Voskoboinikov,
628 S. Wiesen, Presentation of the new solps-iter code package for tok-
629 mak plasma edge modeling, *Plasma and Fusion Research* 11 (1403102)
630 (2016) 1403102(1)–(6). [doi:10.1585/pfr.11.1403102](https://doi.org/10.1585/pfr.11.1403102).

631 [29] R. Pitts, X. Bonnin, F. Escourbiac, H. Frerichs, J. Gunn, T. Hi-
632 rai, A. Kukushkin, E. Kaveeva, M. Miller, D. Moulton, V. Rozhan-
633 sky, I. Senichenkov, E. Sytova, O. Schmitz, P. Stangeby, G. D. Tem-

634

635 merman, I. Veselova, S. Wiesen, Physics basis for the first iter tung-
636 sten divertor, Nuclear Materials and Energy 20 (2019) 100696(1)–(25).
637 [doi:10.1016/j.nme.2019.100696](https://doi.org/10.1016/j.nme.2019.100696).

638 [30] R. M. Larsen, Lanczos bidiagonalization with partial reorthogonaliza-
639 tion, Department of Computer Science, Aarhus University DAIMI PB-
640 357 (1998). [doi:10.7146/dbp.v27i537.7070](https://doi.org/10.7146/dbp.v27i537.7070).

641 [31] J. Baglama, L. Reichel, Augmented implicitly restarted lanczos bidi-
642 agonalization methods, SIAM Journal on Scientific Computing 27 (1)
643 (2005) 19–42. [doi:10.1137/04060593X](https://doi.org/10.1137/04060593X).

644 [32] E. Kaveeva, V. Rozhansky, I. Senichenkov, I. Veselova,
645 S. Voskoboinikov, E. Sytova, X. Bonnin, D. Coster, Speed-up of
646 solps-iter code for tokamak edge modeling, Nuclear Fusion 58 (2018)
647 126018(1)–(15). [doi:10.1088/1741-4326/aae162](https://doi.org/10.1088/1741-4326/aae162).

648 [33] N. Horsten, M. Groth, W. Dekeyser, W. V. Uytven, S. Aleiferis, S. Carli,
649 J. Karhunen, K. D. Lawson, B. Lomanowski, A. G. Meigs, S. Men-
650 muir, A. Shaw, V. Solokha, B. Thomas, J. Contributors, Validation of
651 solps-iter simulations with kinetic, fluid, and hybrid neutral models for
652 jet-ilw low-confinement mode plasmas, Nuclear Materials and Energy
653 33 (101247) (2022) 1–9. [doi:10.1016/j.nme.2022.101247](https://doi.org/10.1016/j.nme.2022.101247).

654 [34] D. Boeyaert, S. Carli, K. Ghoos, W. Dekeyser, S. Wiesen, M. Baelmans,
655 Numerical error analysis of solps-iter simulations of east, Nuclear Fusion
656 63 (016005) (2023) 1–16. [doi:10.1088/1741-4326/aca0ab](https://doi.org/10.1088/1741-4326/aca0ab).

657 [35] W. Dekeyser, P. Boerner, S. Voskoboynikov, V. Rozhansky,
658 I. Senichenkov, L. Kaveeva, I. Veselova, E. Vekshina, X. Bonnin,
659 R. Pitts, M. Baelmans, Plasma edge simulations including realistic
660 wall geometry with solps-iter, Nuclear Materials and Energy 27 (2021)
661 100999(1)–(11). doi:10.1016/j.nme.2021.100999.