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Abstract

This report demonstrates satisfactory data compression of SOLPS-ITER sim-

ulation output ranging from 2D fields, 1D profiles, and 0D scalar variables

with a novel matrix decomposition approach. The singular value decom-

position (SVD) scales poorly for large matrix sizes and is unsuited to the

application on high dimensional data common to fusion plasma physics sim-

ulation. We employ the columns-submatrix-rows (CUR) matrix factorization

technique in order to compute a low-rank approximation up to two orders of

magnitude faster than the SVD, but within a nominal L2-norm relative error

of ϵ = 10−2. In addition, the CUR approach maintains the original format

of the data, in its extracted columns and rows, allowing for interpretable

data storage at the original resolution of the simulation. We utilize an it-

erative algorithm to compute the CUR decomposition of simulation output

by maximizing the volume, or linearly independent information content, of

a low-rank submatrix contained within the data. Experiments over n × n
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randomized test matrices with embedded rank-deficient features show that

this maximum volume implementation of CUR matrix approximation has re-

duced asymptotic computational complexity on the order of n compared to

the SVD, which scales approximately as n3. These results show that the CUR

technique can be used to effectively select time step snapshots (columns) of

over 140 SOLPS-ITER output variables and the associated discretized coordi-

nate timeseries (rows) allowing for reconstruction of the complete simulation

dynamics.

Keywords: SOLPS-ITER, scrape-off-layer, CUR matrix decomposition,

low-rank matrix approximation, dimensionality reduction, data compression
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1. Introduction1

The singular value decomposition (SVD) has found wide application to2

several important problems in fusion plasma physics. It has been used in3

stellarator design to extract physically relevant dynamics from experiment4

(1), analyze turbulent transport in tokamaks through a separation of scales5

(2), (3), filter noise from particle-in-cell kinetic simulations (4), and identify6

damped eigenmodes in gyrokinetic simulations (5), (6). The utility of the7

SVD is derived from its theoretical determination of matrix rank, the maxi-8

mum number of linearly independent column or row vectors in the assembled9

data. With the SVD, features in a data set are identified with respect to a10

least-squares factorization of anm×nmatrix into rank r components ordered11

by the coverage of variance in the data (7), (8). This “best-fit” interpreta-12

tion of the SVD product components comes with a challenging cost, the al-13

gorithms employed typically have a computational complexity that scales as14

O(min(m2n, nm2)) (9), (10). Several investigations have circumvented this15

restriction in the attempt to effectively compress high degrees-of-freedom16

plasma physics simulation data into a storable format for recording MHD17

magnetic fields (11) and the evolution of the gyrokinetic distribution func-18

tion (12), (13) by opting to apply the SVD only over subsets of a matrix19

dimension to lower the scope of the problem.20

This paper pursues further development of data compression using ma-21

trix decomposition in circumstances where fusion plasma physics simulation22

have high dimensionality that is unfavorable to the application of the SVD.23

The primary aim of an alternative approach is to efficiently balance the fi-24

delity of matrix reconstruction error with the degree of data compression.25
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We attempt to overcome the approximately cubic scaling of the SVD with26

a technique that extracts actual columns and rows within a matrix, which27

are found to be quasi-linearly independent, to perform faster factorization of28

simulation-based data. The entries at the intersection of these components29

form a submatrix that represents important features extracted from within30

the data. This columns-submatrix-rows (CUR) approach was first adapted31

from a modified quasi-Gram-Schmidt procedure to obtain compressed fac-32

torizations of rank-deficient matrices (14), (15). Other schemes randomly33

sample over a probability distribution of the normalized column space (16),34

(17), leading to preferential selection of components. The works of (18), (19),35

& (20) have shown additive error bounds for hybridized CUR when using a36

statistical leverage score based on the span of top right singular vectors from37

the SVD. We prioritize computational efficiency and follow the “pseudoskele-38

ton” approximation developed by (21), (22), & (23). The prescribed CUR39

decomposition calculates a “maximum volume” submatrix by rapidly search-40

ing for close to uncorrelated columns and rows of matrix data up to a target41

number (pseudo-rank) (24).42

The data-driven aspect of this work also offers the distinct advantage of43

preserving exact quantities in the original format of the simulation data to44

construct a low-rank matrix approximation. Compared to the SVD, which45

reduces dimensionality by projecting matrix data onto a new orthonormal46

basis, the CUR decomposition avoids attaching physical meaning to the47

product components beyond what the data already contain (9), (20). For48

example, application of matrix factorization to a tensor requires transforma-49

tion of a discretized scalar field produced by simulation into an “unfolded,”50
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or stacked dimension, matrix of the data, often arranged in spatial by tem-51

poral entries (25), (26). In this reorganized representation, the columns and52

rows extracted by CUR provide a “maximal” representative set of the coor-53

dinates and time step states of the solution at the original resolution of the54

simulation. Here the components of CUR can be used to identify coordi-55

nate timeseries (as synthetic diagnostics) and output time step (as snapshot56

cadence) that together yield complete state information via matrix recon-57

struction. We extend this concept to the application of CUR decomposition58

as a data compression method for archival preservation of tokamak plasma59

boundary simulations with SOLPS-ITER (Scrape Off Layer Plasma Simu-60

lator), a state-of-the-art multi-fluid plasma and kinetic neutrals transport61

solver that has been benchmarked against decades of ITER development62

research (27), (28), (29).63

SOLPS-ITER is computationally expensive to run, placing high value on64

the many possible output quantities of simulation. There can be up to 14065

output variables, depending on the number of plasma species, that span thou-66

sands of time steps and hundreds of million floating point numbers. Instead67

of pruning the simulation calculation, the CUR may be imposed to “trun-68

cate” all or part of the simulation data suite as an interpretable record. In69

this paper we demonstrate the favorable characteristics of a Maximum Vol-70

ume Skeletal Decomposition (MVSD) algorithm for CUR when compared71

against the SVD. Section 2 follows with a description of the procedure for an72

alternating maximum volume algorithm for matrix skeleton decomposition73

and demonstrates its computational scaling against the SVD. In Sec. 3.1 we74

present SOLPS-ITER simulations of the tokamak plasma boundary carried75
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Figure 1: Example decomposition of a randomized 100×100 test matrix into its Columns-

sUbmatrix-Rows (CUR) components. Left panel shows an ad hoc randomized matrix

with embedded low-rank (r = 10) features. Center panel shows the corresponding r = 10

CUR components identified by the Maximum Volume Skeletal Decomposition (MVSD)

algorithm, with the submatrix defined by the entries at the intersections of the columns

and rows. Right panel shows the low-rank approximation of the original data using this

matrix factorization scheme. Each panel is presented on the same color scale range.

out for this work. The subsequent Secs. 3.2 – 3.4 discuss the advantages of76

our approach on the full computational domain of SOLPS-ITER as well as77

on profiles and scalars of the system state. We conclude with a summary78

on the limitations of this data compression approach and suggest opportuni-79

ties available for future work including, integration with computational and80

experimental workflows for the efficient scientific and operational analysis of81

fusion plasma devices.82

2. Low-Rank Matrix Approximation via a Maximum Volume Al-83

gorithm84

The aim of low-rank matrix approximation is to reduce a collection of85

data arranged in columns and rows by the product of components with lower86
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dimensionality. This problem can be described in terms of a minimization87

between the fit of the approximation and the number of linearly independent88

column vectors, or rank, extracted from the data. A reduction in rank serves89

to promote both the modeling of a matrix and the compression of its data90

assuming that low-rank information is contained to sufficient degree. The91

focus of this paper is on the latter category of approaches and is discussed in92

this part by way of example. Figure 1 presents in the right panel a random-93

ized test matrix of size 100× 100 with a rank-10 feature explicitly embedded94

in its construction, determined by a break in the spectrum of the singular95

value decomposition (SVD). The center panel shows the application of the96

columns-submatrix-rows (CUR) decomposition carried out by the algorithm97

used in this work. In effect, each of the selected columns and rows in the98

CUR decomposition is the result of an optimization that we will show can be99

carried out faster than the standard SVD for high dimensional data. These100

components highlight the only entries of the original data set necessary to101

reproduce the matrix, and in a descriptive sense form the supporting “skele-102

ton” of its structure. In this case the reconstruction to good fidelity is shown103

in the right panel of Fig. 1.104

In comparison to the SVD, the CUR decomposition trades a guaranteed105

minimum least-squares error and rank ordered variance for an efficient and106

interpretable low-rank matrix approximation (7), (8). These procedures are107

well-defined on experimental or simulation timeseries of dynamics when the108

data is arranged into a matrix of spatial by temporal measurements. With109

respect to the CUR, the extracted columns represent full time step states110

and the rows represent independent coordinates or variables. The submatrix111
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of this decomposition is defined by the block of entries at the intersection112

of these columns and rows. Given an adequate submatrix Urr of rank-r,113

data from the original timeseries matrix is preserved along the subset of r114

columns Cir and rows Rrj identifying the coordinates and time steps most115

significant to the complete reconstruction. In that sense, CUR decomposition116

determines the underlying spatio-temporal structure that supports the rest117

of the data in a matrix and is appropriately also known as the pseudoskeleton118

approximation (21).119

We now define these terms in detail for our application of the CUR ap-120

proach with a maximum volume skeletal decomposition (MVSD) algorithm.121

Suppose we select from a matrixM an invertible r×r submatrix, composed of122

entries at the intersection of r columns and rows. Without loss of generality123

permute the indices to obtain the block structure124

M =

U X

Y Z

 . (1)

such that an approximation of the information contained in Z can be recov-125

ered from only a limited set of entries by126

Mr =

U
Y

U−1
[
U X

]
=

U X

Y Y U−1X

 = CU−1R. (2)

At a given rank specified as the retained number of columns and rows in the127

CUR factorization or singular values in the SVD, the CUR requires r(1 + r)128

fewer entries than the SVD to be stored. For low-rank matrices the differences129

in memory requirements are negligible. We define a relative compression130

ratio, R, between the original m × n matrix size and the number of entries131
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extracted by a rank-r decomposition with either the SVD or MVSD as:132

RSV D =
r(m+ n+ 1)

mn
, RMV SD =

r(m+ n− r)

mn
(3)

Note that in the unintended case of a full rank “decomposition,” the SVD rel-133

ative compression can exceed RSV D > 1 whereas the MVSD yields RMV SD =134

1.135

In order to ensure a well-conditioned submatrix U with invertability, we136

devise a measure of the volume as the modulus of the determinant137

vol(U) = |det(U)| (4)

following (22). Instead of an expensive deterministic search for the global138

submatrix that satisfies vol(Umax) > vol(Ur×r) > 0, we pursue an iterative139

algorithm that avoids any submatrix being too close to singular by increasing140

the volume towards a local, or dominant, maximum. Reference (23) derives141

an inequality for the bounded error of a CUR approximation taken with142

respect to a globally maximum volume submatrix143

∥M−Mr∥∞ ≤ (r + 1)σr+1(M) (5)

where σr+1(M) is the r + 1 singular value of the SVD of M. As it would144

be exceedingly costly to find Umax, we proceed with dominant submatrices145

satisfying vol(Umax) ≤ rr/2vol(Ur×r). The standard scheme for finding a146

locally dominant submatrix in particular can be expressed in pseudocode as147

shown in Algorithm 1.148

This algorithm utilizes the products MU−1
I and UI\M to define a domi-149

nant submatrix for rectangular matrices m× n instead of the square matrix150

determinant, requiring that the absolute value of all entries in each are no151
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Algorithm 1 Alternating Column/Row Maximum Volume Submatrix

Require: det(U0) ̸= 0

Ensure: k < 1000

k = 1

cij = 1 + 2τ

rij = 1 + 2τ

while (cij|rij) > 1 + τ do

if k is even then

Vk = Uk\Mi:

cij = max(|Vk|, all)

Uk = U:i ← jth column of M

else if k is odd then

Vk = M:jU
−1
k

rij = max(|Vk|, all)

Uk = Uj: ← ith row of M

end if

k = k + 1

end while
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larger than a tolerance of 1+τ . Alternating rows and columns are exchanged152

between the partitioned submatrix Uij and the data matrix M until the in-153

formation content changes by at most a factor of 1+τ . We note that the ratio154

between the volume of any sequential interchange of row or column in two155

invertible submatrices is preserved, such that vol(U1) = |vij|vol(U0). This156

implies that the series vol(Uk) increases until we obtain a dominant subma-157

trix. For this study we allow τ = 10−10 with max(k) = 1000 and initialize U0158

as a r × r submatrix consisting of column and row entries taken from the r159

randomly selected indices of the m× n matrix M. Reference (24) advances160

this methodology through a greedy algorithm for image processing where up161

to r rows and columns are swapped at a time on each iteration, enabling162

faster determination of the maximum volume submatrix. We showcase here163

the efficacy of the original algorithm and leave further developments to future164

work.165

2.1. Empirical Scaling with Data Size166

As an illustration of the advantages of this approach, we first demonstrate167

asymptotic behavior for the extraction of low-rank data embedded in high168

matrix degrees-of-freedom. Let r be the intended rank of the feature set169

and consider a n × n square matrix M. We construct a randomized low-170

rank matrix of real entries C = ABT , where A and B are independent171

normally distributed n × r matrices. To artificially create a rapid fall off of172

singular values distinct break in magnitude at rank r characteristic of low-173

rank information, we embed the matrix C in a randomized n × n Matlab174

test matrix with preassigned logarithmic decay in singular values, σ. Figure175

2 shows the characteristic spectrum of the singular value decomposition of M176
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for n = 100 (the matrix corresponding to these values can be seen in the left177

panel of Fig. 2). There are r = 10 significant singular values with energies,178

σ2, at least 4 orders of magnitude higher than the tail of the distribution. This179

ad hoc formulation allows for the evaluation of separate matrix decomposition180

schemes for compressing the test data down to the low-rank Mr information181

it contains. We use the total compute time on a 2.4 GHz Intel Core i7182

processor from algorithm initialization to reconstruction of Mr under the183

Matlab svd(M, r), svds(M, r), and our implementation of maxvol(M, r).184

The relative error, ϵ, achieved by each respective decomposition scheme for185

a rank-r approximation is defined in terms of the spectral norm (natural186

matrix norm induced by the L2-norm) with respect to the normalization187

ϵ =
∥Mr −M∥2
∥M∥2

=
σmax (Mr −M)

σmax (M)
(6)

and is used as a measure of algorithm performance.188

The singular value decomposition (SVD) command utilizes LAPACK to189

compute all n (or min (m,n)) singular values of a matrix and therefore has190

a compute time independent of rank selected after the distribution of singu-191

lar values is obtained. As an alternative approach to this baseline we also192

consider the subset of singular value decomposition (SVDS) routine, which193

returns the r largest singular values and associated components of the ma-194

trix M using Lanczos Bidiagonalization (30)(31) and is especially effective at195

handling large sparse matrices faster than the SVD. Finally, the maximum196

volume pseudoskeleton decomposition (MVSD) follows Alg. 1 in Matlab197

and approximates the original data up to rank r in the form of Eq. 2. The198

right panel of Fig. 2 shows the performance of repeated application of these199

methods at r = 10 for embedding matrix sizes of n : 100, · · · , 3000. A mono-200
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Figure 2: Projected scaling of the MVSD, SVDS, and SVD matrix factorization meth-

ods with system size for embedded low-rank features. Left panel shows the singular value

energy spectrum for a 100×100 random square matrix constructed with a rank 10 substruc-

ture. Right hand panel shows the compute time in seconds for a rank r = 10 reconstruction

using the aforementioned methods versus the number of entries, n, along one dimension

of the generated square test matrices. Each point is represented in color against the total

relative error in terms of the L2-norm of the decomposition. Unweighted monomial fits of

the asymptotic behavior of the MVSD and SVD are shown by the dashed, n, and solid,

n3, lines.
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mial fit, linear and cubic in n, is used as a reference for extrapolating the201

prospective compute time, in seconds, out to larger matrices. From this test202

we find that the accuracy of extracting fixed low-rank information improves203

in all three methods with matrix size, but presents less than an order of mag-204

nitude L2-norm relative error difference between them. In general, the SVD205

approaches n3 scaling while the SVDS nears a n2 asymptotic limit. Though206

the MVSD has higher relative error to within a small (< 5) factor, the CUR207

algorithm implemented in this work maintains very close to n scaling across208

the entire range of sampled matrices. These results are at least dependent209

on the presence of a distinct singular value spectrum, but for the purposes of210

data compression presuming the possibility of a reduced rank approximation211

we take them as sufficient for highlighting the expected behavior.212

3. Data Compression of Fusion Plasma Physics Coupled Simula-213

tions214

3.1. Modeling the Tokamak Plasma Boundary with SOLPS-ITER215

SOLPS-ITER is the state-of-the-art release of the coupled 2D multi-fluid216

plasma solver (B2.5) and 3D kinetic neutrals Monte-Carlo code (EIRENE)217

(27) (28). The simulation suite is widely used, spanning several decades, for218

ITER divertor design and studying plasma physics at the tokamak boundary219

spanning from the outer plasma core, across the scrape-off-layer to the vac-220

uum vessel and divertor. Transport dynamics are determined from evolution221

of coupled fluid continuity, energy, and momentum equations, coupled to222

parallelized computation of neutral trajectories with the associated plasma-223

neutral and plasma-surface interactions. Each fluid equation is advanced224
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implicitly, with the coupled nonlinear system solved through Picard itera-225

tion. The plasma equations are solved on a field-aligned grid to handle the226

large anisotropy, with classical (Braginskii-like) transport in the parallel di-227

rection and ad hoc form of Fick’s Law for convective and cross-field diffusion.228

Computational resources are available to EIRENE in terms of the total time229

per MC iteration and the number of CPU cores. Fundamentally, SOLPS-230

ITER is limited to restrictive time step size (typically 10−5 to 10−7 s) due231

to the strong nonlinearities, particularly in the plasma-neutral and radiative232

rate coefficients. At the same time, the timescales for particle balance (puff233

source and pumping terms are a small fraction of the recycled flux) can be234

long ( seconds) and the simulations can take on the order of days-weeks-235

months to converge towards the steady-state for experimental and reactor236

class devices, such as DIII-D and ITER, respectively (32).237

The primary time-dependent output of the software suite is the b2time.nc238

netcdf file, which comprises the time series of numerous state variables and239

post-processed quantities of interest. For any given run this can account240

for upwards of 50 million floating point numbers of varying degrees of or-241

ders of magnitude, which for extensive simulations can occupy a gigabyte242

of memory when multiple ion species are present and 10s of thousands of243

time steps are recorded. Additionally, SOLPS-ITER is often utilized to per-244

form many runs over several input parameter scans that can increase these245

storage requirements by a multiplicative factor. Since the kinetic neutral246

dynamics are taken to be on a timescale much faster than the fluid plasma247

transport, time-dependent information from EIRENE is not typically pre-248

served and time-independent information is kept in a separate file format249
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due to the code coupling requirements with B2.5. Recent validation efforts250

with SOLPS-ITER have tested the significance of different contributions to251

the error in predictions of the final converged steady state. It was found252

that using a fast fluid neutrals model in place of expensive EIRENE cal-253

culations can introduce up to 50% error in edge electron densities, while a254

hybrid-kinetic approach offers a speed up factor of 6 with maximum error255

constrained to 20% (33). A scoping study separating out the B2.5 finite256

volume and EIRENE Monte Carlo sources of numerical error found that the257

choice of discretization in the plasma grid contributes up to 18% discrep-258

ancies in the density and temperature profiles. Though statistical errors259

introduced by the Monte Carlo coupling can be brought down to a level less260

than 0.5% through an iteration averaging procedure the finite particle sam-261

pling still limits the maximum bias error to be on the order of 1% (34). A262

key challenge evident in the implementation of SOLPS-ITER simulations is263

the balance of reasonable numerical accuracy with computational cost. For264

the purposes of data compression of the simulation output presented here, we265

target a numerical fidelity on the order of 1%, or an absolute relative error266

of 10−2.267

A typical SOLPS-ITER simulation up to steady-state conditions for an268

experimental configuration, such as DIII-D shot equilibria, can produce as269

much as 140 output dynamic variables on the order of 1000 - 10000 time steps.270

The scope of these physically relevant quantities encompasses up to 3–6 2D271

matrices per plasma species (ns, Ts, ps) of size 98×38, around 60 1D profiles272

(including line integrated measurements and fluxes) of size 38×1, and 80 0D273

scalar timeseries (including total power and currents) of size 1× 1. In total,274
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Figure 3: Snapshots of the full finite volume SOLPS simulation at 100δt. Left column

shows the computational domain matrix of the calculation and right column shows the

magnetic equilibrium configuration for DIII-D shot 174310 at 3500 ms corresponding to

the same variables and time steps. Top panels show the 2D electron density and bottom

panels show the 2D electron temperature.
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nearly 25000 entries are calculated and advanced in time with respect to the275

plasma transport fluid variables. Though SOLPS-ITER simulation is largely276

encumbered by the Monte Carlo treatment of the kinetic neutral trajectories,277

the resulting interactions are preserved only in the plasma response unless278

EIRENE data is specifically recorded in a separate output file. It is assumed279

that the kinetic neutral dynamics are much faster than the fluid plasma280

timescales and reach convergence at each integration time step such that it281

can be feasible to restart SOLPS-ITER intermittently over a simulation run,282

provided the appropriate plasma state information is retained. SOLPS-ITER283

is often utilized in a time-independent manner to predict steady-state con-284

ditions for operational scenarios and experimental design, implying that the285

simulation data can be compressed through extraction of the latent solutions286

as low-rank features within matrix data.287

3.2. 2D Field Data288

Figure 3 shows two snapshots of the plasma state at 100 time steps, δt =289

10−5 s, into a SOLPS simulation using a magnetic equilibrium corresponding290

to DIII-D shot 174310 at 3500 ms with only deuterium plasma species for the291

fluid ions. Both the 2D electron density (SOLPS label, ne3da) and electron292

temperature (te3da), as fundamental variables governing the dynamics of the293

scrape-off-layer, are shown in the top and bottom panels respectively. The294

rightmost panels illustrate the finite-volume geometry of the experimental295

configuration. In the leftmost panels of Fig. 3, the computational domain296

associated with this mapping is presented. The x-axis corresponds to the par-297

allel to magnetic field direction and the y-axis corresponds to the perpendicu-298

lar to magnetic field direction. Subdivisions with respect to the the following299
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plasma regions can be identified: along the y-axis the inboard divertor volume300

is recorded from 1 to 26 on the x-axis, the core and scrape-off layer share the301

domain between x = 26–74 and are split across the separatrix between y = 19302

& 20, lastly the outboard divertor occupies x = 76–98. In terms of synthetic303

diagnostic quantities typically utilized in the analysis of SOLPS simulations,304

we also consider 1D profiles of the following target quantities. The outboard305

divertor target (ODT) electron density (nesepa) is obtained at Z = −1.25 m306

from R = 1.378 m – 1.645 m and electron temperature (tesepa) over the same307

range as illustrated by the red line highlight. These profiles are asymmetric308

across the separatrix in the nonuniform sampling across R, and are located309

in the computational domain at (x = 98, y = 1–38). For this baseline case a310

steady-state solution was perturbed by doubling the input power and running311

to approximate convergence. As expected, on the outboard divertor target312

the electron density falls to a level of 1.5×1019 m−3 just inside the separatrix313

while the electron temperature gradually rises past 9 eV over 1600 time steps,314

δt = 1× 10−5s.315

We apply matrix decomposition schemes for data compression to the out-316

put of SOLPS simulations directly in the discretized coordinate-time step317

domain without accounting for the measured spatio-temporal sampling. To318

enable the required matrix operations over the tensor output, Figure 4 takes319

the preceding simulation in the 2D computational domain and reshapes the320

spatial dimensions into a single column major ordered list of coordinates321

versus time steps. This procedure follows the spatio-temporal separation of322

matrix “unfolding,” or stacking, that allows a discretized scalar field tensor323

to be represented by a tensor product of Topos and Chronos elements com-324
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Figure 4: SOLPS 2D simulations of the electron density on the left and electron tempera-

ture on the right reshaped into an expanded coordinates-time steps matrix. Each column

vector represents a snapshot of the full computational domain (98× 38 = 3724).
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monly utilized in principal component analysis (PCA) (25), (26). The left325

hand panel shows the evolution of electron density and the right hand panel326

shows the corresponding dynamics of the electron temperature for the same327

plasma regions. This transformation augments the system size of the simu-328

lation data matrix from 38× 98× 1600 to 3724 × 1600 requiring additional329

processing to achieve a successful decomposition.330

In Figures 5 & 6 the performance of the three data compression methods331

is compared, highlighting the prospective gains due to the MVSD algorithm.332

For the electron density simulation, which features highly localized peaks in333

values at the divertor target separatrix, the low-rank reconstruction at r = 4334

for the MVSD results in a total relative error of 5 × 10−2 with a compute335

time of 10−2 s, greater than 2 orders of magnitude faster than the SVD and336

nearly 1 order of magnitude faster than the SVDS. The MVSD plateaus at337

an accuracy of 10−3 around a rank reconstruction of r = 25, and intersects338

the SVDS routine at r = 12 for 10−1 s compute time.339

Both the SVDS and SVD reach 5 × 10−5 relative error at high rank re-340

constructions of the original data matrix, here truncated to r = 98. Due341

to the large size the overall difference in relative compression with respect342

to the ratio of number of terms retained is negligible. On the right hand343

panel of Fig. 5 the MVSD and SVD algorithm provide similar accuracy at344

low rank for compression down to a relative ratio of 0.01. The methods are345

further separated by one order of magnitude in relative error at the MVSD346

threshold level of 10−3 for a relative compression of 0.04. Therefore, for an347

acceptable relative error tolerance of 10−2 the MVSD algorithm achieves one348

(two) order(s) of magnitude faster data compression down to 0.01 than the349
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SVDS (SVD) method.350

The simulation of electron temperature presents the same results, albeit351

with higher accuracy in all three methods due to the global gradients in352

values shown by the right hand panel of Fig. 4. In Figure 6 the MVSD353

relative error begins at 5× 10−3 for a r = 4 low-rank reconstruction and falls354

to a threshold level of 10−5 around a high-rank reconstruction of r = 40,355

intersecting the SVDS at an r = 14 and compute time of 2× 10−1 s. Again,356

the MVSD algorithm is two orders of magnitude faster than the standard357

SVD and demonstrates high data compression to a ratio of 0.01 at a relative358

error of 10−4 for r = 10.359

In practice, the a priori selection of appropriate rank is challenging. When360

the SVD is computed, the full range of singular values give a measure of361

the least-squares error captured by each component. A requested fidelity362

could be maintained across the range of simulation outputs by setting the363

rank separately for each dataset according to the singular value truncation364

a posteriori. However, computation of the SVD is prohibitive in matrices365

with high degrees-of-freedom as identified in the scaling argument of Fig. 2.366

The SVDS, which requires a rank assignment for reasonable compute times,367

would rather need to be pursued. In Figs. 5 & 6 the SVDS method demon-368

strates an asymptotic limit in accuracy gain that approaches the compute369

time of the SVD for increasing rank. Though the MVSD algorithm instead370

shows a relative error threshold about 1 order of magnitude higher than this371

range, overall it performs the fastest of the three methods for low-rank re-372

constructions. This suggests that it might be adequate to choose a desired373

relative compression, at 0.01 or so for these 2D datasets, and base the rank374
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Figure 5: Performance of the MVSD, SVDS, and SVD on the SOLPS 2D simulation of

electron density reshaped as a matrix (3724 × 1600). Left hand panel shows the total

relative error for each rank reconstruction up to a partial rank of r = 98 versus the

compute time. The low-rank r = 4 reconstructions are indicated by the solid blue and red

points for the MVSD and SVDS methods, respectively. The right hand panel shows the

relative error versus relative compression as the rank of reconstruction is increased for the

MVSD and SVD methods.

selection off the associated number of components in the CUR decomposi-375

tion. In this case, the relative error between matrix approximation schemes376

is more reasonable and closer to a factor of 2 difference.377

3.3. 1D Profile Evolution378

Figure 7 takes the 1D profiles of electron density and temperature on the379

outboard divertor target more commonly recorded than the full 2D simula-380

tion and shows the respective dynamics in the left and right hand panels.381

For the case considered here, with the modification to the input power, the382

density at the separatrix drops gradually over 1000 time steps whereas the383
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Figure 6: Performance of the MVSD, SVDS, and SVD on the reshaped matrix (3724×1600)

of SOLPS 2D simulation of electron temperature. Left hand panel shows the total relative

error for each rank reconstruction up to a partial rank of r = 98 versus the compute time.

The low-rank r = 4 reconstructions are indicated by the solid blue and red points for the

MVSD and SVDS methods, respectively. The right hand panel shows the relative error

versus compression factor as the rank of reconstruction is increased for the MVSD and

SVD methods.
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Figure 7: SOLPS 1D simulations of the outboard divertor target (ODT) electron density

on the left and electron temperature on the right taken from the full computational domain.

Each column vector represents a profile of coordinates at a single time step on the outboard

divertor target.

temperature around the separatrix increases quickly in the last 500 time steps384

of the simulation. In contrast to the preceding reshaped calculations, all 38385

coordinates are stored in adjacent ordering as output from the simulation to386

preserve the spatial correlation of the solution.387

Figures 8 & 9 highlight the performance of the MVSD on datasets of rect-388

angular matrix size. In the left hand panel of Fig. 8 for the electron density389

simulation, the MVSD maintains at least a factor of 2 faster computation390

than the SVDS method up to a low rank reconstruction of r = 4. The two391

algorithms reproduce the same total relative error of 10−3–10−4 and similar392

compute times in the range of r = 5–10. At higher ranks, the SVDS is up to393

one order of magnitude more efficient than the MVSD. This abrupt change394

in compute time can be attributed to the implementation of the MATLAB395

algorithm for the SVDS, which in the documentation is described as capable396

of improved performance at increased rank when repeated singular values are397

present (as can be the case after a break in singular spectrum) (30)(31). In all398

cases the SVD performs slowest at a compute time of 10−1 s. The right hand399
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panel of Fig. 8 further shows that the difference in relative error between400

the decomposition schemes is negligible and that the same data compression401

relative ratio can be achieved by the MVSD as the SVD.402

Fig. 9 presents confirmation of the results for the simulation of electron403

temperature. In that case there is minimal gain in accuracy when considering404

higher rank reconstructions past r = 10. It is evident that a low-rank MVSD405

of at least r = 4 is sufficient to represent the SOLPS simulation data to406

within a total relative error of 10−2 at the fastest speed. We remark that at407

full rank, the discrepancy between the highest fidelity reconstructions is due408

to the default limited tolerance on the Matlab iterative implementation409

of the SVD and SVDS schemes. In this fringe case, the inverse operation410

utilized by the MVSD algorithm for the full matrix and successive matrix411

multiplications actually achieves the lowest error.412

3.4. 0D Scalar Timeseries413

Figure 10 shows the concatenated timeseries of 77 0D scalar quantities414

obtained from the SOLPS-ITER simulation and typically used as metrics415

for plasma state characterization. These heterogenous variables span several416

orders of magnitude and disparate physical units. To allow satisfactory de-417

composition of the augmented matrix data, each scalar is normalized by the418

absolute value of the mean from the respective timeseries. This procedure419

attempts to allow meaningful comparison of the total relative error when the420

data is reconstructed. Fig. 10 also indicates the variable names selected by421

the rank r = 4 MVSD along with the identified full-fidelity snapshot states422

at time steps marked by the vertical black lines at Nδt = 1, 49, 847, and423

2994.424
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Figure 8: Performance of the MVSD, SVDS, and SVD on the SOLPS 1D simulation of

outboard divertor target electron density (38 × 1600). Left hand panel shows the total

relative error for each rank reconstruction up to full rank r = 38 versus the compute time.

The low-rank r = 4 reconstructions are indicated by the solid blue and red points for the

MVSD and SVDS methods, respectively. The right hand panel shows the relative error

versus relative compression as the rank of reconstruction is increased for the MVSD and

SVD methods.
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Figure 9: Performance of the MVSD, SVDS, and SVD on the SOLPS 1D simulation of

outboard divertor target electron temperature (38 × 1600). Left hand panel shows the

total relative error for each rank reconstruction up to full rank r = 38 versus the compute

time. The low-rank r = 4 reconstructions are indicated by the solid blue and red points

for the MVSD and SVDS methods, respectively. The right hand panel shows the relative

error versus relative compression as the rank of reconstruction is increased for the MVSD

and SVD methods.
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In this case, the dynamics are reproduced from the Western (inboard425

divertor) edge separatrix electron density, nesepi (m−3), and ion tempera-426

ture, tisepi (eV), as well as the Western (inboard divertor) separatrix throat427

poloidal particle flux, fnisip (s−1), and Eastern (outboard divertor) edge428

maximum ion temperature, timxamp (eV). The MVSD is predominantly dis-429

tributed along the Western separatrix and coupled to the Eastern edge by the430

ion temperature over the first third of the simulation. Though it is clear that431

many of these scalar quantities exhibit similar temporal evolution and that432

the MVSD is not guaranteed to find the global submatrix of maximal infor-433

mation content, this example displays the capability of the CUR approach to434

extract prioritized spatio-temporal measurements from integrated simulation435

data that could be used to indicate governing dynamics and restart intervals436

for SOLPS-ITER.437

Figure 11 clarifies these remarks in the comparison of performance by the438

MVSD, SVDS, and SVD on the SOLPS scalar timeseries. The left panel439

of shows that MVSD still achieves the fastest compute time, two orders of440

magnitude less than the SVD, at a level of 10−2 total relative error for the441

rank r = 4 reconstruction. The SVDS method intersects the MVSD at r = 7442

and exceeds the efficiency of the algorithm at r = 14 until reaching the lowest443

reconstruction error of 10−4 for r = 24. On the right hand panel of Fig. 11444

the data compression achieved by the MVSD is separated from the SVD by445

a factor of 3 total relative error. For relative compression ratios below 0.1446

there is about a R = 0.025 positive offset i.e., requiring higher rank, for the447

MVSD to reproduce equivalent reconstructions. Below a total relative error448

of 2 × 10−3 this offset grows to R = 0.05, eventually nearing a threshold449
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Figure 11: Performance of the MVSD, SVDS, and SVD on the SOLPS 0D scalar timeseries

calculations (77 × 3000). Left hand panel shows the total relative error for each rank

reconstruction up to a partial rank of r = 24 versus the compute time. The low-rank

r = 4 reconstructions are indicated by the solid blue and red points for the MVSD and

SVDS methods, respectively. The right hand panel shows the relative error versus relative

compression as the rank of reconstruction is increased for the MVSD and SVD methods.
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accuracy of 7× 10−4.450

The advantage of the MVSD algorithm, as demonstrated in this work,451

is two-fold: (1) large matrices of simulation data can be efficiently com-452

pressed to acceptable error tolerances, and (2) the extracted decomposition453

is performed on exact spatial coordinates and temporal snapshots instead of454

a transformed basis. These benefits motivate inclusion of the MVSD in a455

SOLPS simulation workflow whereby more output variables could be reason-456

ably stored than is done in practice, all linked to an interpretable record of457

which data corresponds to the full fidelity solution (the components of the458

CUR factorization). Of course, the MVSD need not be applied to all of the459

simulation output but could instead be utilized in a manner to enhance the460

availability of additional sources of information describing the plasma state461

at minimal extra cost.462

4. Conclusions463

An algorithm for the compression of matrices was applied to tokamak464

boundary simulation data from the SOLPS-ITER fluid plasma and kinetic465

neutrals interactions transport code. This paper applies a maximum volume466

approach to matrix pseudoskeleton decomposition (MVSD), which extracts467

a number of columns and rows corresponding to a submatrix of “locally”468

maximal information content at the specified rank. In contrast to the sin-469

gular value decomposition (SVD), computation of the MVSD scales nearly470

linearly with square matrix size when low-rank features are present. The471

CUR approach as a data compression method is suggested to be tractable472

on high-dimensional plasma physics simulation data, at least where an ac-473
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ceptable error in the reconstruction can be tolerated. Its performance is474

characterized here on the SOLPS-ITER code, where it is common to curtail475

output variables to a reasonable number when repeated runs are carried out476

and storage is limited.477

SOLPS-ITER provides state-of-the-art simulation of the scrape-off-layer,478

the boundary region of plasma magnetic confinement in fusion experiments.479

Typically, the code is utilized to obtain a solution of the steady-state condi-480

tions for determination of component viability facing the plasma, such as the481

divertor, or interpretation of observations from experimental shots. These482

tasks can require a degree of tuning various parameters and result in an ar-483

ray of simulation runs with disjoint characteristics. Increasing the quantity of484

output variables could be useful for allowing a comprehensive analysis of the485

dynamics between runs or negate the need to repeat a simulation in order to486

obtain previously uncalculated data. For the scientist user of SOLPS-ITER,487

traceability of the MVSD is straightforward. The algorithm preserves the488

exact spatial coordinate timeseries and full fidelity time step states used in489

the CUR data compression of specific dynamic variables.490

SOLPS-ITER can produce upwards of 140 output variables over thou-491

sands of time steps, stored in matrices ranging in size from the 2D compu-492

tational domain (38 × 98) to 1D profiles (38) and 0D scalars. In total, over493

120 million floating point numbers (∼ 500 MB – 1 GB) can be recorded494

per simulation run. The results of this work show that the MVSD is at least495

2 orders of magnitude faster to compute than the SVD and maintains at496

least 10−2 total relative error with rank r = 4–6 for all cases investigated497

here. The low-rank reconstruction of SOLPS-ITER data ordered in spatial498
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coordinates versus time step snapshots yields sufficient relative compression499

ratios that improve with the size of the data. The MVSD algorithm also500

performs better than or as well as the SVDS up to a total relative error of501

at least 10−3. We note that there is substantial research being pursued to502

allow the extension of the SOLPS-ITER computational grid into the vacuum503

where neutrals reside and to the plasma facing component wall geometry for504

improved physical fidelity (35). The datasets from these simulations can be505

larger than those presented here due to the customized finite-volume grid506

discretizations.507

The efficiency of the MVSD facilitates simulation data mobility, allowing508

the full SOLPS-ITER plasma state information to be stored and transferred509

at reduced costs. In addition, two lines of research for future investigation are510

evident. The first concerns the identification of limited spatial coordinates511

extracted by the MVSD with optimal placement of synthetic diagnostics in512

SOLPS-ITER for monitoring plasma dynamics, which could be corroborated513

by experimental observations. The second concerns the complete time step514

snapshots in the MVSD, which could be chosen as intervals for recording515

dependencies required to restart SOLPS-ITER simulation. The utility of the516

MVSD algorithm for CUR matrix factorization demonstrated here on fluid517

plasma dynamics in the tokamak boundary motivates its extension to other518

high-dimensional simulations. Gyrokinetic plasma physics with much higher519

degrees of freedom, exhibiting data up to 5D in space and 1D in time, could be520

targeted as another candidate for efficient data compression where disparate521

scales from turbulent transport could be a challenge for this approach.522
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