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Abstract

This report demonstrates satisfactory data compression of SOLPS-ITER sim-
ulation output ranging from 2D fields, 1D profiles, and 0D scalar variables
with a novel matrix decomposition approach. The singular value decom-
position (SVD) scales poorly for large matrix sizes and is unsuited to the
application on high dimensional data common to fusion plasma physics sim-
ulation. We employ the columns-submatrix-rows (CUR) matrix factorization
technique in order to compute a low-rank approximation up to two orders of
magnitude faster than the SVD, but within a nominal L2-norm relative error
of € = 1072, In addition, the CUR approach maintains the original format
of the data, in its extracted columns and rows, allowing for interpretable
data storage at the original resolution of the simulation. We utilize an it-
erative algorithm to compute the CUR decomposition of simulation output
by maximizing the volume, or linearly independent information content, of

a low-rank submatrix contained within the data. Experiments over n X n
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randomized test matrices with embedded rank-deficient features show that
this maximum volume implementation of CUR matrix approximation has re-
duced asymptotic computational complexity on the order of n compared to
the SVD, which scales approximately as n®. These results show that the CUR
technique can be used to effectively select time step snapshots (columns) of
over 140 SOLPS-ITER output variables and the associated discretized coordi-
nate timeseries (rows) allowing for reconstruction of the complete simulation
dynamics.

Keywords: SOLPS-ITER, scrape-off-layer, CUR matrix decomposition,

low-rank matrix approximation, dimensionality reduction, data compression
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1. Introduction

The singular value decomposition (SVD) has found wide application to
several important problems in fusion plasma physics. It has been used in
stellarator design to extract physically relevant dynamics from experiment
(1)), analyze turbulent transport in tokamaks through a separation of scales
(2), (3), filter noise from particle-in-cell kinetic simulations (4), and identify
damped eigenmodes in gyrokinetic simulations (5)), (6). The utility of the
SVD is derived from its theoretical determination of matrix rank, the maxi-
mum number of linearly independent column or row vectors in the assembled
data. With the SVD, features in a data set are identified with respect to a
least-squares factorization of an m x n matrix into rank r» components ordered
by the coverage of variance in the data (7)), (8). This “best-fit” interpreta-
tion of the SVD product components comes with a challenging cost, the al-
gorithms employed typically have a computational complexity that scales as
O(min(m?n,nm?)) (9), (10). Several investigations have circumvented this
restriction in the attempt to effectively compress high degrees-of-freedom
plasma physics simulation data into a storable format for recording MHD
magnetic fields (11)) and the evolution of the gyrokinetic distribution func-
tion (12)), (I3) by opting to apply the SVD only over subsets of a matrix
dimension to lower the scope of the problem.

This paper pursues further development of data compression using ma-
trix decomposition in circumstances where fusion plasma physics simulation
have high dimensionality that is unfavorable to the application of the SVD.
The primary aim of an alternative approach is to efficiently balance the fi-

delity of matrix reconstruction error with the degree of data compression.
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We attempt to overcome the approximately cubic scaling of the SVD with
a technique that extracts actual columns and rows within a matrix, which
are found to be quasi-linearly independent, to perform faster factorization of
simulation-based data. The entries at the intersection of these components
form a submatrix that represents important features extracted from within
the data. This columns-submatrix-rows (CUR) approach was first adapted
from a modified quasi-Gram-Schmidt procedure to obtain compressed fac-
torizations of rank-deficient matrices (I4)), (15). Other schemes randomly
sample over a probability distribution of the normalized column space (16)),
(I7), leading to preferential selection of components. The works of (18)), (19,
& (20) have shown additive error bounds for hybridized CUR when using a
statistical leverage score based on the span of top right singular vectors from
the SVD. We prioritize computational efficiency and follow the “pseudoskele-
ton” approximation developed by (21)), (22), & (23). The prescribed CUR
decomposition calculates a “maximum volume” submatrix by rapidly search-
ing for close to uncorrelated columns and rows of matrix data up to a target
number (pseudo-rank) (24]).

The data-driven aspect of this work also offers the distinct advantage of
preserving exact quantities in the original format of the simulation data to
construct a low-rank matrix approximation. Compared to the SVD, which
reduces dimensionality by projecting matrix data onto a new orthonormal
basis, the CUR decomposition avoids attaching physical meaning to the
product components beyond what the data already contain (9)), (20). For
example, application of matrix factorization to a tensor requires transforma-

tion of a discretized scalar field produced by simulation into an “unfolded,”
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or stacked dimension, matrix of the data, often arranged in spatial by tem-
poral entries (25), (26]). In this reorganized representation, the columns and
rows extracted by CUR provide a “maximal” representative set of the coor-
dinates and time step states of the solution at the original resolution of the
simulation. Here the components of CUR can be used to identify coordi-
nate timeseries (as synthetic diagnostics) and output time step (as snapshot
cadence) that together yield complete state information via matrix recon-
struction. We extend this concept to the application of CUR decomposition
as a data compression method for archival preservation of tokamak plasma
boundary simulations with SOLPS-ITER (Scrape Off Layer Plasma Simu-
lator), a state-of-the-art multi-fluid plasma and kinetic neutrals transport
solver that has been benchmarked against decades of ITER development
research (27), (28), (29).

SOLPS-ITER is computationally expensive to run, placing high value on
the many possible output quantities of simulation. There can be up to 140
output variables, depending on the number of plasma species, that span thou-
sands of time steps and hundreds of million floating point numbers. Instead
of pruning the simulation calculation, the CUR may be imposed to “trun-
cate” all or part of the simulation data suite as an interpretable record. In
this paper we demonstrate the favorable characteristics of a Maximum Vol-
ume Skeletal Decomposition (MVSD) algorithm for CUR when compared
against the SVD. Section 2 follows with a description of the procedure for an
alternating maximum volume algorithm for matrix skeleton decomposition
and demonstrates its computational scaling against the SVD. In Sec. 3.1 we

present SOLPS-ITER simulations of the tokamak plasma boundary carried
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Figure 1: Example decomposition of a randomized 100 x 100 test matrix into its Columns-
sUbmatrix-Rows (CUR) components. Left panel shows an ad hoc randomized matrix
with embedded low-rank (r = 10) features. Center panel shows the corresponding r = 10
CUR components identified by the Maximum Volume Skeletal Decomposition (MVSD)
algorithm, with the submatrix defined by the entries at the intersections of the columns
and rows. Right panel shows the low-rank approximation of the original data using this

matrix factorization scheme. Each panel is presented on the same color scale range.

out for this work. The subsequent Secs. 3.2 — 3.4 discuss the advantages of
our approach on the full computational domain of SOLPS-ITER as well as
on profiles and scalars of the system state. We conclude with a summary
on the limitations of this data compression approach and suggest opportuni-
ties available for future work including, integration with computational and
experimental workflows for the efficient scientific and operational analysis of

fusion plasma devices.
2. Low-Rank Matrix Approximation via a Maximum Volume Al-
gorithm

The aim of low-rank matrix approximation is to reduce a collection of

data arranged in columns and rows by the product of components with lower

6
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dimensionality. This problem can be described in terms of a minimization
between the fit of the approximation and the number of linearly independent
column vectors, or rank, extracted from the data. A reduction in rank serves
to promote both the modeling of a matrix and the compression of its data
assuming that low-rank information is contained to sufficient degree. The
focus of this paper is on the latter category of approaches and is discussed in
this part by way of example. Figure [1| presents in the right panel a random-
ized test matrix of size 100 x 100 with a rank-10 feature explicitly embedded
in its construction, determined by a break in the spectrum of the singular
value decomposition (SVD). The center panel shows the application of the
columns-submatrix-rows (CUR) decomposition carried out by the algorithm
used in this work. In effect, each of the selected columns and rows in the
CUR decomposition is the result of an optimization that we will show can be
carried out faster than the standard SVD for high dimensional data. These
components highlight the only entries of the original data set necessary to
reproduce the matrix, and in a descriptive sense form the supporting “skele-
ton” of its structure. In this case the reconstruction to good fidelity is shown
in the right panel of Fig. [T}

In comparison to the SVD, the CUR decomposition trades a guaranteed
minimum least-squares error and rank ordered variance for an efficient and
interpretable low-rank matrix approximation (7), (§). These procedures are
well-defined on experimental or simulation timeseries of dynamics when the
data is arranged into a matrix of spatial by temporal measurements. With
respect to the CUR, the extracted columns represent full time step states

and the rows represent independent coordinates or variables. The submatrix



112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

131

of this decomposition is defined by the block of entries at the intersection
of these columns and rows. Given an adequate submatrix U,, of rank-r,
data from the original timeseries matrix is preserved along the subset of r
columns Cj, and rows R,; identifying the coordinates and time steps most
significant to the complete reconstruction. In that sense, CUR decomposition
determines the underlying spatio-temporal structure that supports the rest
of the data in a matrix and is appropriately also known as the pseudoskeleton
approximation (21)).

We now define these terms in detail for our application of the CUR ap-
proach with a maximum volume skeletal decomposition (MVSD) algorithm.
Suppose we select from a matrix M an invertible r X submatrix, composed of
entries at the intersection of r columns and rows. Without loss of generality

permute the indices to obtain the block structure

U X
M = . (1)
Y Z

such that an approximation of the information contained in Z can be recov-

ered from only a limited set of entries by

ul U X .
M, =| |U [U X} - — CU'R. 2)
Y Y YUIX
At a given rank specified as the retained number of columns and rows in the
CUR factorization or singular values in the SVD, the CUR requires (1 + r)
fewer entries than the SVD to be stored. For low-rank matrices the differences

in memory requirements are negligible. We define a relative compression

ratio, R, between the original m x n matrix size and the number of entries
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extracted by a rank-r decomposition with either the SVD or MVSD as:

rim+n-+1
Rsyp = %, Ryvsp = o

r(m-+mn—r)

(3)

Note that in the unintended case of a full rank “decomposition,” the SVD rel-
ative compression can exceed Rgyp > 1 whereas the MVSD yields Ry;yvsp =
1.

In order to ensure a well-conditioned submatrix U with invertability, we

devise a measure of the volume as the modulus of the determinant
vol(U) = |det(U)] (4)

following (22). Instead of an expensive deterministic search for the global
submatrix that satisfies vol(Upax) > vol(U,«,) > 0, we pursue an iterative
algorithm that avoids any submatrix being too close to singular by increasing
the volume towards a local, or dominant, maximum. Reference (23) derives
an inequality for the bounded error of a CUR approximation taken with

respect to a globally maximum volume submatrix
IM = My[[oe < (r + 1)o,41(M) ()

where 0,,.1(M) is the r + 1 singular value of the SVD of M. As it would
be exceedingly costly to find U,.y, we proceed with dominant submatrices
satisfying vol(Upax) < 77/2vol(U,y,). The standard scheme for finding a
locally dominant submatrix in particular can be expressed in pseudocode as
shown in Algorithm [I}

This algorithm utilizes the products MU, ' and Ur\M to define a domi-
nant submatrix for rectangular matrices m x n instead of the square matrix

determinant, requiring that the absolute value of all entries in each are no

9



Algorithm 1 Alternating Column/Row Maximum Volume Submatrix

Require: det(Up) # 0
Ensure: £ < 1000

k=1
Cij:].‘l‘QT
rij:1+27_

while (¢;;|r;;) > 1+ 7 do
if k is even then
Vi = Ug\M,;.
¢;; = max(|V], all)
Up = U, + 5" column of M
else if k is odd then
Vi = MU !
ri; = max(| V|, all)
Uy = Uj. + i row of M
end if
k=k+1

end while

10
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larger than a tolerance of 1+7. Alternating rows and columns are exchanged
between the partitioned submatrix U;; and the data matrix M until the in-
formation content changes by at most a factor of 14+7. We note that the ratio
between the volume of any sequential interchange of row or column in two
invertible submatrices is preserved, such that vol(U;) = |v;;|vol(Up). This
implies that the series vol(Uy) increases until we obtain a dominant subma-
trix. For this study we allow 7 = 107! with max(k) = 1000 and initialize Uy
as a r X r submatrix consisting of column and row entries taken from the r
randomly selected indices of the m x n matrix M. Reference (24]) advances
this methodology through a greedy algorithm for image processing where up
to r rows and columns are swapped at a time on each iteration, enabling
faster determination of the maximum volume submatrix. We showcase here
the efficacy of the original algorithm and leave further developments to future

work.

2.1. Empirical Scaling with Data Size

As an illustration of the advantages of this approach, we first demonstrate
asymptotic behavior for the extraction of low-rank data embedded in high
matrix degrees-of-freedom. Let r be the intended rank of the feature set
and consider a n X n square matrix M. We construct a randomized low-
rank matrix of real entries C = ABT, where A and B are independent
normally distributed n x r matrices. To artificially create a rapid fall off of
singular values distinct break in magnitude at rank r characteristic of low-
rank information, we embed the matrix C' in a randomized n x n MATLAB
test matrix with preassigned logarithmic decay in singular values, . Figure

shows the characteristic spectrum of the singular value decomposition of M

11
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for n = 100 (the matrix corresponding to these values can be seen in the left
panel of Fig. . There are r = 10 significant singular values with energies,
o2, at least 4 orders of magnitude higher than the tail of the distribution. This
ad hoc formulation allows for the evaluation of separate matrix decomposition
schemes for compressing the test data down to the low-rank M, information
it contains. We use the total compute time on a 2.4 GHz Intel Core i7
processor from algorithm initialization to reconstruction of M, under the
MATLAB svd(M,r), svds(M,r), and our implementation of maxvol(M,r).
The relative error, €, achieved by each respective decomposition scheme for
a rank-r approximation is defined in terms of the spectral norm (natural

matrix norm induced by the L2-norm) with respect to the normalization

_ HMT—M”2 _ Omax (MT—M> (6)
M1, Omaz (M)

and is used as a measure of algorithm performance.
The singular value decomposition (SVD) command utilizes LAPACK to

compute all n (or min (m,n)) singular values of a matrix and therefore has

a compute time independent of rank EENEENESIONORSE
[ERNEIESSOBEed. As an alternative approach to this baseline we also

consider the subset of singular value decomposition (SVDS) routine, which
returns the r largest singular values and associated components of the ma-
trix M using Lanczos Bidiagonalization (30))(31)) and is especially effective at
handling large sparse matrices faster than the SVD. Finally, the maximum
volume pseudoskeleton decomposition (MVSD) follows Alg. |1| in MATLAB
and approximates the original data up to rank r in the form of Eq. 2| The
right panel of Fig. [2] shows the performance of repeated application of these
methods at » = 10 for embedding matrix sizes of n : 100, - - - ,3000. A mono-

12
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Figure 2: Projected scaling of the MVSD, SVDS, and SVD matrix factorization meth-
ods with system size for embedded low-rank features. Left panel shows the singular value
energy spectrum for a 100 x 100 random square matrix constructed with a rank 10 substruc-
ture. Right hand panel shows the compute time in seconds for a rank » = 10 reconstruction
using the aforementioned methods versus the number of entries, n, along one dimension
of the generated square test matrices. Each point is represented in color against the total
relative error in terms of the L2-norm of the decomposition. Unweighted monomial fits of
the asymptotic behavior of the MVSD and SVD are shown by the dashed, n, and solid,

n3, lines.
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mial fit, linear and cubic in n, is used as a reference for extrapolating the
prospective compute time, in seconds, out to larger matrices. From this test
we find that the accuracy of extracting fixed low-rank information improves
in all three methods with matrix size, but presents less than an order of mag-
nitude L2-norm relative error difference between them. In general, the SVD
approaches n?® scaling while the SVDS nears a n? asymptotic limit. Though
the MVSD has higher relative error to within a small (< 5) factor, the CUR
algorithm implemented in this work maintains very close to n scaling across
the entire range of sampled matrices. These results are at least dependent
on the presence of a distinct singular value spectrum, but for the purposes of
data compression presuming the possibility of a reduced rank approximation

we take them as sufficient for highlighting the expected behavior.

3. Data Compression of Fusion Plasma Physics Coupled Simula-

tions

3.1. Modeling the Tokamak Plasma Boundary with SOLPS-ITER

SOLPS-ITER is the state-of-the-art release of the coupled 2D multi-fluid
plasma solver (B2.5) and 3D kinetic neutrals Monte-Carlo code (EIRENE)
(27) (28). The simulation suite is widely used, spanning several decades, for
ITER divertor design and studying plasma physics at the tokamak boundary
spanning from the outer plasma core, across the scrape-off-layer to the vac-
uum vessel and divertor. Transport dynamics are determined from evolution
of coupled fluid continuity, energy, and momentum equations, coupled to
parallelized computation of neutral trajectories with the associated plasma-

neutral and plasma-surface interactions. Each fluid equation is advanced

14
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implicitly, with the coupled nonlinear system solved through Picard itera-
tion. The plasma equations are solved on a field-aligned grid to handle the
large anisotropy, with classical (Braginskii-like) transport in the parallel di-
rection and ad hoc form of Fick’s Law for convective and cross-field diffusion.
Computational resources are available to EIRENE in terms of the total time
per MC iteration and the number of CPU cores. Fundamentally, SOLPS-
ITER is limited to restrictive time step size (typically 1075 to 1077 s) due
to the strong nonlinearities, particularly in the plasma-neutral and radiative
rate coefficients. At the same time, the timescales for particle balance (puff
source and pumping terms are a small fraction of the recycled flux) can be
long ( seconds) and the simulations can take on the order of days-weeks-
months to converge towards the steady-state for experimental and reactor
class devices, such as DIII-D and ITER, respectively (32)).

The primary time-dependent output of the software suite is the b2time.nc
netcdf file, which comprises the time series of numerous state variables and
post-processed quantities of interest. For any given run this can account

for upwards of 50 million floating point numbers of varying degrees of or-

ders of magnitude, which for extensive simulations can occupy a gigabyte
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A typical SOLPS-ITER simulation up to steady-state conditions for an
experimental configuration, such as DIII-D shot equilibria, can produce as
much as 140 output dynamic variables on the order of 1000 - 10000 time steps.
The scope of these physically relevant quantities encompasses up to 3-6 2D

matrices per plasma species (ng, T, ps) of size 98 x 38, around 60 1D profiles

—~

including line integrated measurements and fluxes) of size 38 x 1, and 80 0D

scalar timeseries (including total power and currents) of size 1 x 1. In total,
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Figure 3: Snapshots of the full finite volume SOLPS simulation at 1006t. Left column
shows the computational domain matrix of the calculation and right column shows the
magnetic equilibrium configuration for DIII-D shot 174310 at 3500 ms corresponding to
the same variables and time steps. Top panels show the 2D electron density and bottom

panels show the 2D electron temperature.
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nearly 25000 entries are calculated and advanced in time with respect to the
plasma transport fluid variables. Though SOLPS-ITER simulation is largely
encumbered by the Monte Carlo treatment of the kinetic neutral trajectories,
the resulting interactions are preserved only in the plasma response unless
EIRENE data is specifically recorded in a separate output file. It is assumed
that the kinetic neutral dynamics are much faster than the fluid plasma
timescales and reach convergence at each integration time step such that it
can be feasible to restart SOLPS-ITER intermittently over a simulation run,
provided the appropriate plasma state information is retained. SOLPS-ITER
is often utilized in a time-independent manner to predict steady-state con-
ditions for operational scenarios and experimental design, implying that the
simulation data can be compressed through extraction of the latent solutions

as low-rank features within matrix data.

3.2. 2D Field Data

Figure [3| shows two snapshots of the plasma state at 100 time steps, 0t =
107° s, into a SOLPS simulation using a magnetic equilibrium corresponding
to DIII-D shot 174310 at 3500 ms with only deuterium plasma species for the
fluid ions. Both the 2D electron density (SOLPS label, ne3da) and electron
temperature (te3da), as fundamental variables governing the dynamics of the
scrape-off-layer, are shown in the top and bottom panels respectively. The
rightmost panels illustrate the finite-volume geometry of the experimental
configuration. In the leftmost panels of Fig. [3| the computational domain
associated with this mapping is presented. The x-axis corresponds to the par-
allel to magnetic field direction and the y-axis corresponds to the perpendicu-

lar to magnetic field direction. Subdivisions with respect to the the following
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plasma regions can be identified: along the y-axis the inboard divertor volume
is recorded from 1 to 26 on the x-axis, the core and scrape-off layer share the
domain between x = 26-74 and are split across the separatrix between y = 19
& 20, lastly the outboard divertor occupies x = 76-98. In terms of synthetic
diagnostic quantities typically utilized in the analysis of SOLPS simulations,
we also consider 1D profiles of the following target quantities. The outboard
divertor target (ODT) electron density (nesepa) is obtained at Z = —1.25 m
from R = 1.378 m — 1.645 m and electron temperature (tesepa) over the same
range as illustrated by the red line highlight. These profiles are asymmetric
across the separatrix in the nonuniform sampling across R, and are located
in the computational domain at (z = 98,y = 1-38). For this baseline case a
steady-state solution was perturbed by doubling the input power and running
to approximate convergence. As expected, on the outboard divertor target
the electron density falls to a level of 1.5 x 10! m~2 just inside the separatrix
while the electron temperature gradually rises past 9 eV over 1600 time steps,
ot =1x 1075%s.

We apply matrix decomposition schemes for data compression to the out-
put of SOLPS simulations directly in the discretized coordinate-time step
domain without accounting for the measured spatio-temporal sampling. To
enable the required matrix operations over the tensor output, Figure [4] takes
the preceding simulation in the 2D computational domain and reshapes the
spatial dimensions into a single column major ordered list of coordinates
versus time steps. This procedure follows the spatio-temporal separation of
matrix “unfolding,” or stacking, that allows a discretized scalar field tensor

to be represented by a tensor product of Topos and Chronos elements com-
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Figure 4: SOLPS 2D simulations of the electron density on the left and electron tempera-
ture on the right reshaped into an expanded coordinates-time steps matrix. Each column

vector represents a snapshot of the full computational domain (98 x 38 = 3724).
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monly utilized in principal component analysis (PCA) (25), (26). The left
hand panel shows the evolution of electron density and the right hand panel
shows the corresponding dynamics of the electron temperature for the same
plasma regions. This transformation augments the system size of the simu-
lation data matrix from 38 x 98 x 1600 to 3724 x 1600 requiring additional
processing to achieve a successful decomposition.

In Figures [f] & [6] the performance of the three data compression methods
is compared, highlighting the prospective gains due to the MVSD algorithm.
For the electron density simulation, which features highly localized peaks in
values at the divertor target separatrix, the low-rank reconstruction at r = 4
for the MVSD results in a total relative error of 5 x 1072 with a compute
time of 1072 s, greater than 2 orders of magnitude faster than the SVD and
nearly 1 order of magnitude faster than the SVDS. The MVSD plateaus at
an accuracy of 1073 around a rank reconstruction of r = 25, and intersects
the SVDS routine at 7 = 12 for 107! s compute time.

Both the SVDS and SVD reach 5 x 107° relative error at high rank re-
constructions of the original data matrix, here truncated to r = 98. Due
to the large size the overall difference in relative compression with respect
to the ratio of number of terms retained is negligible. On the right hand
panel of Fig. |5/ the MVSD and SVD algorithm provide similar accuracy at
low rank for compression down to a relative ratio of 0.01. The methods are
further separated by one order of magnitude in relative error at the MVSD
threshold level of 1073 for a relative compression of 0.04. Therefore, for an
acceptable relative error tolerance of 102 the MVSD algorithm achieves one

(two) order(s) of magnitude faster data compression down to 0.01 than the
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SVDS (SVD) method.

The simulation of electron temperature presents the same results, albeit
with higher accuracy in all three methods due to the global gradients in
values shown by the right hand panel of Fig. [ In Figure [6] the MVSD
relative error begins at 5 x 1072 for a r = 4 low-rank reconstruction and falls
to a threshold level of 1075 around a high-rank reconstruction of r = 40,
intersecting the SVDS at an r = 14 and compute time of 2 x 107! s. Again,
the MVSD algorithm is two orders of magnitude faster than the standard
SVD and demonstrates high data compression to a ratio of 0.01 at a relative
error of 1074 for r = 10.

In practice, the a prioriselection of appropriate rank is challenging. When
the SVD is computed, the full range of singular values give a measure of
the least-squares error captured by each component. A requested fidelity
could be maintained across the range of simulation outputs by setting the
rank separately for each dataset according to the singular value truncation
a posteriori. However, computation of the SVD is prohibitive in matrices
with high degrees-of-freedom as identified in the scaling argument of Fig. [2|
The SVDS, which requires a rank assignment for reasonable compute times,
would rather need to be pursued. In Figs. [5] & [6] the SVDS method demon-
strates an asymptotic limit in accuracy gain that approaches the compute
time of the SVD for increasing rank. Though the MVSD algorithm instead
shows a relative error threshold about 1 order of magnitude higher than this
range, overall it performs the fastest of the three methods for low-rank re-
constructions. This suggests that it might be adequate to choose a desired

relative compression, at 0.01 or so for these 2D datasets, and base the rank
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Figure 5: Performance of the MVSD, SVDS, and SVD on the SOLPS 2D simulation of
electron density reshaped as a matrix (3724 x 1600). Left hand panel shows the total
relative error for each rank reconstruction up to a partial rank of r = 98 versus the
compute time. The low-rank r = 4 reconstructions are indicated by the solid blue and red
points for the MVSD and SVDS methods, respectively. The right hand panel shows the
relative error versus relative compression as the rank of reconstruction is increased for the

MVSD and SVD methods.

selection off the associated number of components in the CUR decomposi-
tion. In this case, the relative error between matrix approximation schemes

is more reasonable and closer to a factor of 2 difference.

3.83. 1D Profile Evolution

Figure [7| takes the 1D profiles of electron density and temperature on the
outboard divertor target more commonly recorded than the full 2D simula-
tion and shows the respective dynamics in the left and right hand panels.
For the case considered here, with the modification to the input power, the

density at the separatrix drops gradually over 1000 time steps whereas the
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MVSD and SVDS methods, respectively. The right hand panel shows the relative error

versus compression factor as the rank of reconstruction is increased for the MVSD and

SVD methods.
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Figure 7: SOLPS 1D simulations of the outboard divertor target (ODT) electron density
on the left and electron temperature on the right taken from the full computational domain.
Each column vector represents a profile of coordinates at a single time step on the outboard

divertor target.

temperature around the separatrix increases quickly in the last 500 time steps
of the simulation. In contrast to the preceding reshaped calculations, all 38
coordinates are stored in adjacent ordering as output from the simulation to
preserve the spatial correlation of the solution.

Figures 8] & [9 highlight the performance of the MVSD on datasets of rect-
angular matrix size. In the left hand panel of Fig. [§] for the electron density
simulation, the MVSD maintains at least a factor of 2 faster computation
than the SVDS method up to a low rank reconstruction of r = 4. The two
algorithms reproduce the same total relative error of 1073-10~% and similar
compute times in the range of r = 5-10. At higher ranks, the SVDS is up to
one order of magnitude more efficient than the MVSD. [EiSISBTDECHENES

in compute time can be attributed to the implementation of the MATLAB
algorithn for the SVDS, which in the documentation s described as capable
of improved performance at increased rank when repeated singular values are
present (as can be the case after a break in singular spectrum) (7011411111

cases the SVD performs slowest at a compute time of 107! s. The right hand
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panel of Fig. 8] further shows that the difference in relative error between
the decomposition schemes is negligible and that the same data compression
relative ratio can be achieved by the MVSD as the SVD.

Fig. [9] presents confirmation of the results for the simulation of electron
temperature. In that case there is minimal gain in accuracy when considering
higher rank reconstructions past » = 10. It is evident that a low-rank MVSD
of at least » = 4 is sufficient to represent the SOLPS simulation data to
within a total relative error of 1072 at the fastest speed. We remark that at
full rank, the discrepancy between the highest fidelity reconstructions is due
to the default limited tolerance on the MATLAB iterative implementation
of the SVD and SVDS schemes. In this fringe case, the inverse operation
utilized by the MVSD algorithm for the full matrix and successive matrix

multiplications actually achieves the lowest error.

3.4. 0D Scalar Timeseries

Figure shows the concatenated timeseries of 77 0D scalar quantities
obtained from the SOLPS-ITER simulation and typically used as metrics
for plasma state characterization. These heterogenous variables span several
orders of magnitude and disparate physical units. To allow satisfactory de-
composition of the augmented matrix data, each scalar is normalized by the
absolute value of the mean from the respective timeseries. This procedure
attempts to allow meaningful comparison of the total relative error when the
data is reconstructed. Fig. also indicates the variable names selected by
the rank r = 4 MVSD along with the identified full-fidelity snapshot states
at time steps marked by the vertical black lines at Nét = 1, 49, 847, and
2994.
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Figure 8: Performance of the MVSD, SVDS, and SVD on the SOLPS 1D simulation of
outboard divertor target electron density (38 x 1600). Left hand panel shows the total
relative error for each rank reconstruction up to full rank r = 38 versus the compute time.
The low-rank r = 4 reconstructions are indicated by the solid blue and red points for the
MVSD and SVDS methods, respectively. The right hand panel shows the relative error

versus relative compression as the rank of reconstruction is increased for the MVSD and

SVD methods.
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and SVD methods.
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components are denoted by vertical black lines.

29



425

426

427

428

429

431

432

433

434

435

436

437

438

440

441

442

443

444

445

446

447

448

449

In this case, the dynamics are reproduced from the Western (inboard
divertor) edge separatrix electron density, nesepi (m~3), and ion tempera-
ture, tisepi (eV), as well as the Western (inboardidivertor) separatrix throat
poloidal particle flux, fnisip (s7'), and Eastern (Gutboard divertor) edge
maximum ion temperature, timzamp (V). The MVSD is predominantly dis-
tributed along the Western separatrix and coupled to the Eastern edge by the
ion temperature over the first third of the simulation. Though it is clear that
many of these scalar quantities exhibit similar temporal evolution and that
the MVSD is not guaranteed to find the global submatrix of maximal infor-
mation content, this example displays the capability of the CUR approach to
extract prioritized spatio-temporal measurements from integrated simulation
data that could be used to indicate governing dynamics and restart intervals
for SOLPS-ITER.

Figure (11| clarifies these remarks in the comparison of performance by the
MVSD, SVDS, and SVD on the SOLPS scalar timeseries. The left panel
of shows that MVSD still achieves the fastest compute time, two orders of
magnitude less than the SVD, at a level of 1072 total relative error for the
rank r = 4 reconstruction. The SVDS method intersects the MVSD at r =7
and exceeds the efficiency of the algorithm at » = 14 until reaching the lowest
reconstruction error of 107* for » = 24. On the right hand panel of Fig.
the data compression achieved by the MVSD is separated from the SVD by
a factor of 3 total relative error. For relative compression ratios below 0.1
there is about a R = 0.025 positive offset i.e., requiring higher rank, for the
MVSD to reproduce equivalent reconstructions. Below a total relative error

of 2 x 1072 this offset grows to R = 0.05, eventually nearing a threshold
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Figure 11: Performance of the MVSD, SVDS, and SVD on the SOLPS 0D scalar timeseries
calculations (77 x 3000). Left hand panel shows the total relative error for each rank
reconstruction up to a partial rank of r = 24 versus the compute time. The low-rank
r = 4 reconstructions are indicated by the solid blue and red points for the MVSD and
SVDS methods, respectively. The right hand panel shows the relative error versus relative

compression as the rank of reconstruction is increased for the MVSD and SVD methods.
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accuracy of 7 x 1074,

The advantage of the MVSD algorithm, as demonstrated in this work,
is two-fold: (1) large matrices of simulation data can be efficiently com-
pressed to acceptable error tolerances, and (2) the extracted decomposition
is performed on exact spatial coordinates and temporal snapshots instead of
a transformed basis. These benefits motivate inclusion of the MVSD in a
SOLPS simulation workflow whereby more output variables could be reason-
ably stored than is done in practice, all linked to an interpretable record of
which data corresponds to the full fidelity solution (the components of the
CUR factorization). Of course, the MVSD need not be applied to all of the
simulation output but could instead be utilized in a manner to enhance the
availability of additional sources of information describing the plasma state

at minimal extra cost.

4. Conclusions

An algorithm for the compression of matrices was applied to tokamak
boundary simulation data from the SOLPS-ITER fluid plasma and kinetic
neutrals interactions transport code. This paper applies a maximum volume
approach to matrix pseudoskeleton decomposition (MVSD), which extracts
a number of columns and rows corresponding to a submatrix of “locally”
maximal information content at the specified rank. In contrast to the sin-
gular value decomposition (SVD), computation of the MVSD scales nearly
linearly with square matrix size when low-rank features are present. The
CUR approach as a data compression method is suggested to be tractable

on high-dimensional plasma physics simulation data, at least where an ac-
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ceptable error in the reconstruction can be tolerated. Its performance is
characterized here on the SOLPS-ITER code, where it is common to curtail
output variables to a reasonable number when repeated runs are carried out
and storage is limited.

SOLPS-ITER provides state-of-the-art simulation of the scrape-off-layer,
the boundary region of plasma magnetic confinement in fusion experiments.
Typically, the code is utilized to obtain a solution of the steady-state condi-
tions for determination of component viability facing the plasma, such as the
divertor, or interpretation of observations from experimental shots. These
tasks can require a degree of tuning various parameters and result in an ar-
ray of simulation runs with disjoint characteristics. Increasing the quantity of
output variables could be useful for allowing a comprehensive analysis of the
dynamics between runs or negate the need to repeat a simulation in order to
obtain previously uncalculated data. For the scientist user of SOLPS-ITER,
traceability of the MVSD is straightforward. The algorithm preserves the
exact spatial coordinate timeseries and full fidelity time step states used in
the CUR data compression of specific dynamic variables.

SOLPS-ITER can produce upwards of 140 output variables over thou-
sands of time steps, stored in matrices ranging in size from the 2D compu-
tational domain (38 x 98) to 1D profiles (38) and 0D scalars. In total, over
120 million floating point numbers (~ 500 MB — 1 GB) can be recorded
per simulation run. The results of this work show that the MVSD is at least
2 orders of magnitude faster to compute than the SVD and maintains at
least 1072 total relative error with rank » = 4-6 for all cases investigated

here. The low-rank reconstruction of SOLPS-ITER data ordered in spatial
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coordinates versus time step snapshots yields sufficient relative compression
ratios that improve with the size of the data. The MVSD algorithm also
performs better than or as well as the SVDS up to a total relative error of
at least 1073. We note that there is substantial research being pursued to
allow the extension of the SOLPS-ITER computational grid into the vacuum
where neutrals reside and to the plasma facing component wall geometry for
improved physical fidelity (35]). The datasets from these simulations can be
larger than those presented here due to the customized finite-volume grid
discretizations.

The efficiency of the MVSD facilitates simulation data mobility, allowing
the full SOLPS-ITER plasma state information to be stored and transferred
at reduced costs. In addition, two lines of research for future investigation are
evident. The first concerns the identification of limited spatial coordinates
extracted by the MVSD with optimal placement of synthetic diagnostics in
SOLPS-ITER for monitoring plasma dynamics, which could be corroborated
by experimental observations. The second concerns the complete time step
snapshots in the MVSD, which could be chosen as intervals for recording
dependencies required to restart SOLPS-ITER simulation. The utility of the
MVSD algorithm for CUR matrix factorization demonstrated here on fluid
plasma dynamics in the tokamak boundary motivates its extension to other
high-dimensional simulations. (GNP
degeeseiisesEem® cxhibiting data up to 5D in space and 1D in time, could be
targeted as another candidate for efficient data compression where disparate

scales from turbulent transport could be a challenge for this approach.

34


De Pascuale, Sebastian


523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

Acknowledgement

This work is supported in part by the US DOE under contract DE-AC05-
000R22725. Dr. Kenneth Allen was supported in part by the DOE Office
of Science Graduate Student Research (SCGSR) program, and under thesis
advisement by Dr. Ming-Jun Lai. This research used resources of the Oak
Ridge Leadership Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-000R22725.

Data Availability Statement

The data that support the findings of this study are available from the

corresponding author upon reasonable request.

References

[1] N. Pomphrey, L. Berry, A. Boozer, R. Hatcher, S. Hirshman, L.-P. Ku,
W. Miner, H. Mynick, W. Reiersen, D. Strickler, P. Valanju, Innovations

in compact stellarator coil design, Nuclear Fusion 41 (3) (2001) 339.

[2] S.Benkadda, T. D. de Wit, A. Verga, A. Sen, A. Team, X. Garbet, Char-
acterization of coherent structures in tokamak edge turbulence, Physical
Review Letters 73 (1994) 3403-3406. doi:10.1103/PhysRevLett.73.
3403

[3] S. Futatani, S. Benkadda, D. del Castillo-Negrete, Spatiotemporal

multiscaling analysis of impurity transport in plasma turbuluence us-

35


https://doi.org/10.1103/PhysRevLett.73.3403
https://doi.org/10.1103/PhysRevLett.73.3403
https://doi.org/10.1103/PhysRevLett.73.3403

544

545

e [4]
547
548

549

550 [5]
551

552

553 [6]
554

555

o [7]
557

558

s [8]
560

561

562 [9]

563

564 [ 1 O]
565

566

ing proper orthogonal decomposition, Physics of Plasmas 16 (042506)
(2009). doi:10.1063/1.3095865.

D. del Castillo-Negrete, D. Spong, S. Hirshman, Proper orthogonal de-
composition methods for noise reduction in particle-based transport
calculations, Physics of Plasmas 15 (092308) (2008). doi:10.1063/1.
2979680.

D. Hatch, P. Terry, F. Jenko, F. Merz, W. Nevins, Saturation of gyroki-
netic turbulence through damped eigenmodes, Physical Review Letters

106 (115003) (2011). |doi:10.1103/PhysRevLett.106.115003.

D. Hatch, P. Terry, F. Jenko, F. Merz, M. Pueschel, W. Nevins, E. Wang,
Role of subdominant stable modes in plasma microturbulence, Physics

of Plasmas 18 (055706) (2011). doi:10.1063/1.3563536.

C. Eckart, G. Young, The approximation of one matrix by another
of lower rank, Psychometrika 1 (3) (1936) 211-218. |doi:10.1007/
BF02288367.

L. Mirsky, Symmetric gauge functions and unitarily invariant norms,
Quarterly Journal of Mathematics 11 (1) (1960) 50-59. doi:10.1093/
gmath/11.1.50.

G. Golub, C. van Loan, Matrix Computations, third ed., The Johns

Hopkins University Press, London, 1996.

P. Holmds, J. Lumley, G. Berkooz, Turbulence, Coherent Structures,
Dynamical Systems and Symmetry, Cambridge University Press, New

York, 1996.

36


https://doi.org/10.1063/1.3095865
https://doi.org/10.1063/1.2979680
https://doi.org/10.1063/1.2979680
https://doi.org/10.1063/1.2979680
https://doi.org/10.1103/PhysRevLett.106.115003
https://doi.org/10.1063/1.3563536
https://doi.org/10.1007/BF02288367
https://doi.org/10.1007/BF02288367
https://doi.org/10.1007/BF02288367
https://doi.org/10.1093/qmath/11.1.50
https://doi.org/10.1093/qmath/11.1.50
https://doi.org/10.1093/qmath/11.1.50

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

[11]

[12]

[13]

[14]

[15]

[16]

D. del Castillo-Negrete, S. Hirshman, D. Spong, E. D’Azevedo, Com-
pression of magnetohydrodynamic simulation data using singular value
decomposition, Journal of Computational Physics 222 (2007) 265-286.
doi:10.1016/7j.jcp.2006.07.022.

D. Hatch, D. del Castillo-Negrete, P. Terry, Analysis and compression
of six-dimensional gyrokinetic datasets using higher order singular value
decomposition, Journal of Computational Physics 231 (2012) 4234-4256.
doi:10.1016/j.jcp.2012.02.007.

Y. Asahi, K. Fujii, D. Heim, S. Maeyama, X. Garbet, V. Grandgirard,
Y. Sarazin, G. Dif-Pradalier, Y. Idomura, M. Yagi, Compressing the
time series of five dimensional distribution function data from gyroki-

netic simulation using principal component analysis, Physics of Plasmas

28 (1) (2021) 012304. [doi:10.1063/5.0023166!

G. Stewart, Four algorithms for the efficient computation of truncated
qr approximations to a sparse matrix, Numerical Mathematics 83 (1999)

313-323.

H. Cheng, Z. Gimbutas, P. Martinsson, V. Rokhlin, On the compression
of low rank matrices, SIAM Journal of Scientific Computing 26 (2005)
1389-1404.

A. Frieze, R. Kannan, S. Vempala, Fast monte-carlo algorithms for find-
ing low-rank approximations, Journal of the ACM 51 (6) (2004) 1025-
1041. doi:10.1145/1039488.1039494.

37


https://doi.org/10.1016/j.jcp.2006.07.022
https://doi.org/10.1016/j.jcp.2012.02.007
https://doi.org/10.1063/5.0023166
https://doi.org/10.1145/1039488.1039494

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

[17]

[18]

[19]

[20]

[21]

23]

K. Hamm, L. Huang, Stability of sampling for cur decompositions, Foun-

dations of Data Science 2 (2) (2020) 1-36. doi:10.3934/fods.2020006.

P. Drineas, M. W. Mahoney, S. Muthukrishnan, Subspace sampling
and relative-error matrix approximation: Column-based methods, in:
J. Diaz, K. Jansen, J. Rolim, U. Zwick (Eds.), Approximation, Random-
ization, and Combinatorial Optimization, Vol. 4110 of Lecture Notes in

Computational Science, Springer, 2006, pp. 321-326.

P. Drineas, M. Mahoney, S. Muthukrishnan, Relative-error cur matrix
decompositions, SIAM Journal on Matrix Analysis and Applications

30 (2) (2008) 844-881. |doi:10.1137/07070471X.

M. Mahoney, P. Drineas, Cur matrix decompositions for improved data
analysis, Proceedings of the National Academy of Sciences (055706)
(2011). doi:10.1073/pnas.0803205106.

S. Goreinov, E. Tyrtyshnikov, N. Zamarashkin, A theory of pseudoskele-
ton approximations, Linear Algebra and Its Applications 261 (1997) 1-
21.

S. Goreinov, E. Tyrtyshnikov, The maximum-volume concept in approx-
imation by low-rank matrices, Contemporary Mathematics 280 (2001)

47-51.

S. A. Goreinov, I. V. Oseledets, D. V. Savostyanov, E. E. Tyrtyshnikov,
N. L. Zamarashkin, How to find a good submatrix, in: Matrix Methods:
Theory, Algorithms, Applications, World Scientific, Hackensack, NY,
2010, pp. 247-256. doi:?

38


https://doi.org/10.3934/fods.2020006
https://doi.org/10.1137/07070471X
https://doi.org/10.1073/pnas.0803205106
https://doi.org/?

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

[24]

[25]

[26]

[27]

28]

[29]

K. Allen, A geometric approach to low-rank matrix and
tensor  completion,  Ph.D. thesis,  University of Georgia,
https://esploro.libs.uga.edu/esploro/outputs/doctoral/
A-Geometric-Approach-to-Low-Rank-Matrix/9949421027102959
(2022).

N. Aubry, R. Guyonnet, R. Lima, Spatiotemporal analysis of com-
plex signals: Theory and applications, Journal of Statistical Physics

64 (1991) 683-739.

L. de Lathauwer, B. de Moor, J. Vandewalle, A multilinear singular
value decomposition, SIAM Journal on Matrix Analysis and Applica-

tions 21 (4) (2000) 1253-1278. [doi : 10.1137/50895479896305696.

S. Wiesen, D. Reiter, V. Kotov, M. Baelmans, W. Dekeyser, A. S.
Kukushkin, S. W. Lisgo, R. A. Pitts, V. Rozhansky, G. Saibene,
I. Veselova, S. Voskoboynikov, The new solps-iter code package, Jour-
nal of Nuclear Materials 463 (2015) 480-484. doi:10.1016/j. jnucmat.
2014.10.012.

X. Bonnin, W. Dekeyser, R. Pitts, D. Coster, S. Voskoboynikov,
S. Wiesen, Presentation of the new solps-iter code package for toka-
mak plasma edge modeling, Plasma and Fusion Research 11 (1403102)
(2016) 1403102(1)—(6). [doi:10.1585/pfr.11.1403102.

R. Pitts, X. Bonnin, F. Escourbiac, H. Frerichs, J. Gunn, T. Hi-
rai, A. Kukushkin, E. Kaveeva, M. Miller, D. Moulton, V. Rozhan-
sky, 1. Senichenkov, E. Sytova, O. Schmitz, P. Stangeby, G. D. Tem-

39


https://esploro.libs.uga.edu/esploro/outputs/doctoral/A-Geometric-Approach-to-Low-Rank-Matrix/9949421027102959
https://esploro.libs.uga.edu/esploro/outputs/doctoral/A-Geometric-Approach-to-Low-Rank-Matrix/9949421027102959
https://esploro.libs.uga.edu/esploro/outputs/doctoral/A-Geometric-Approach-to-Low-Rank-Matrix/9949421027102959
https://doi.org/10.1137/S0895479896305696
https://doi.org/10.1016/j.jnucmat.2014.10.012
https://doi.org/10.1016/j.jnucmat.2014.10.012
https://doi.org/10.1016/j.jnucmat.2014.10.012
https://doi.org/10.1585/pfr.11.1403102

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

[30]

[32]

[33]

[34]

merman, [. Veselova, S. Wiesen, Physics basis for the first iter tung-
sten divertor, Nuclear Materials and Energy 20 (2019) 100696(1)—(25).
doi:10.1016/j.nme.2019.100696.

R. M. Larsen, Lanczos bidiagonalization with partial reorthogonaliza-
tion, Department of Computer Science, Aarhus University DAIMI PB-
357 (1998). |doi:10.7146/dbp.v271537.7070!

J. Baglama, L. Reichel, Augmented implicitly restarted lanczos bidi-
agonalization methods, STAM Journal on Scientific Computing 27 (1)
(2005) 19-42. |doi:10.1137/04060593X

E. Kaveeva, V. Rozhansky, 1. Senichenkov, 1. Veselova,
S. Voskoboynikov, E. Sytova, X. Bonnin, D. Coster, Speed-up of
solps-iter code for tokamak edge modeling, Nuclear Fusion 58 (2018)
126018(1)(15). doi:10.1088/1741-4326/aael162.

N. Horsten, M. Groth, W. Dekeyser, W. V. Uytven, S. Aleiferis, S. Carli,
J. Karhunen, K. D. Lawson, B. Lomanowski, A. G. Meigs, S. Men-
muir, A. Shaw, V. Solokha, B. Thomas, J. Contributors, Validation of
solps-iter simulations with kinetic, fluid, and hybrid neutral models for

jet-ilw low-confinement mode plasmas, Nuclear Materials and Energy

33 (101247) (2022) 1-9. doi:10.1016/7.nme.2022.101247.

D. Boeyaert, S. Carli, K. Ghoos, W. Dekeyser, S. Wiesen, M. Baelmans,
Numerical error analysis of solps-iter simulations of east, Nuclear Fusion

63 (016005) (2023) 1-16. doi:10.1088/1741-4326/acalab.

40


https://doi.org/10.1016/j.nme.2019.100696
https://doi.org/10.7146/dbp.v27i537.7070
https://doi.org/10.1137/04060593X
https://doi.org/10.1088/1741-4326/aae162
https://doi.org/10.1016/j.nme.2022.101247
https://doi.org/10.1088/1741-4326/aca0ab

657

658

659

660

6

I

1

[35] W. Dekeyser, P. Boerner, S. Voskoboynikov, V. Rozhansky,
I. Senichenkov, L. Kaveeva, I. Veselova, E. Vekshina, X. Bonnin,
R. Pitts, M. Baelmans, Plasma edge simulations including realistic
wall geometry with solps-iter, Nuclear Materials and Energy 27 (2021)
100999(1)—(11). doi:10.1016/j.nme.2021.100999.

41


https://doi.org/10.1016/j.nme.2021.100999

	Introduction
	Low-Rank Matrix Approximation via a Maximum Volume Algorithm
	Empirical Scaling with Data Size

	Data Compression of Fusion Plasma Physics Coupled Simulations
	Modeling the Tokamak Plasma Boundary with SOLPS-ITER
	2D Field Data
	1D Profile Evolution
	0D Scalar Timeseries

	Conclusions

