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Fully gapped, spin singlet superconductors with antisymmetric spin-orbit coupling in a Zeeman
magnetic field provide a promising route to realize superconducting states with non-Abelian
topological order and therefore fault-tolerant quantum computation. Here we use a quantum Monte
Carlo dynamical cluster approximation to study the superconducting properties of a doped two-
dimensional attractive Hubbard model with Rashba spin-orbit coupling in a Zeeman magnetic field.
We generally find that the Rashba coupling has a beneficial effect towards s-wave superconductivity.
In the presence of a finite Zeeman field, when superconductivity is suppressed by Pauli pair-breaking,
the Rashba coupling counteracts the spin imbalance created by the Zeeman field by mixing the
spins, and thus restores superconductivity at finite temperatures. We show that this favorable
effect of the spin-orbit coupling is traced to a spin-flip driven enhancement of the amplitude for the
propagation of a pair of electrons in time-reversed states. Moreover, by inspecting the Fermi surface
of the interacting model, we show that for sufficiently large Rashba coupling and Zeeman field, the
superconducting state is expected to be topologically non-trivial.

INTRODUCTION

In topological superconductors, the non-trivial
topology of the bulk electronic structure leads to the
emergence of Majorana bound states within the bulk
superconducting gap [1–3]. These quasiparticles may be
used for fault-tolerant quantum computing [4], and the
search for new topological superconductors that host
robust Majorana modes has therefore been an important
priority but also a central challenge in quantum materials
research. While topological superconductivity is usually
associated with odd-parity spin triplet pairing, it was
shown that spin-singlet, even parity superconductors can
also host a non-Abelian topological phase in the presence
of spin-orbit coupling and a Zeeman magnetic field [5, 6].
Experimental platforms to realize such a system include
heterstructures of a semiconducting thin film sandwiched
between an s-wave superconductor and a ferromagnetic
insulator [7], a two-dimensional electron gas adjacent to
an interdigitated superconductor/ferromagnet structure
[8], electric double layer transistors with an s-wave
superconductor/ferromagnet heterostructure [9], and
superfluids of cold atoms [5, 10]

Realizing topological superconductivity requires an
intricate cooperation between helical states created by
spin-orbital coupling, time-reversal symmetry breaking
and superconductivity. Most studies of these ingredients,
however, have used Bogoliubov-de-Gennes (BdG) weak-
coupling mean-field theory [5, 11–13], which assumes
that superconductivity is present and unaffected by the
correlations, the spin-orbit coupling, or the Zeeman
field. However, in order to provide general guiding
principles for the design of topological superconducting
materials, the effects of correlations, spin-orbit coupling
and magnetic fields have to be treated on the same

footing on a microscopic, beyond weak-coupling mean-
field level, in order to properly assess the interplay
between strong correlations and topology. Such work,
however, is scarce, with only a few exceptions that
include the dynamical mean-field theory (DMFT) work
by Nagai et al. [9] and Lu et al. [14]. Here
we investigate these effects and the feedback between
them on a microscopic level within numerical quantum
Monte Carlo (QMC) dynamical cluster approximation
(DCA) calculations of a Rashba-Hubbard model using
a large enough cluster that properly accounts for the
effects of the non-local Rashba coupling. We also
use additional density matrix renormalization group
(DMRG) calculations on a two-leg ladder (reported in
Appendix B) to show that our DCA results are robust.
Here we consider an out-of-plane Zeeman field. Systems
with in-plane magnetic field were considered in Refs. [15,
16].

MODEL AND METHODS

We consider a two-dimensional square lattice
attractive Rashba-Hubbard model in a Zeeman magnetic
field. Its Hamiltonian is given by

H =
∑
k

ψ†
k(ϵk1 − hσ3 + 2λSOC σ · gk)ψk

+ U
∑
i

ni↑ni↓ . (1)

Here, we have used a spinor notation ψ†
k = (c†k↑, c

†
k↓),

with c†kσ creating an electron with wavevector k and
spin σ =↑, ↓. For the square lattice with only nearest-
neighbor hopping t, which we use as the energy unit
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(t = 1), the energy dispersion is ϵk = −2t(cos kx +
cos ky). σ = (σ1, σ2, σ3) are the Pauli matrices, h the
Zeeman magnetic field, and λSOC the Rashba spin-orbit
coupling with gk = (− sin ky, sin kx, 0). The second
part of the Hamiltonian describes the on-site attractive
interaction U < 0 with the density operators niσ =

c†iσciσ. Here we have set U = −4t and the electron
density ⟨n⟩ = 0.25. We note that orbital effects of
the magnetic field are ignored in this Hamiltonian. Our
results are therefore more relevant to systems in which
these effects are expected to not be important, such
as, e.g., strongly correlated systems or ultracold charge
neutral fermionic atoms [6]. In addition, it was argued
that in heterostructures of a semiconducting thin film
sandwiched between a ferromagnetic insulator and an
s-wave superconductor [7], the Zeeman field primarly
arises from electron tunneling and not the magnetic
field generated by the ferromagnetic insulator, justifying
the neglect of orbital effects of the magnetic field for
such systems [3]. Other systems consisting of a Tl-Pb
monolayer on a Si(111) substrate and an ion gel, s-wave
superconductor, ferromagnet heterostructure were also
proposed in Ref. [9] as a possible realization of the physics
described by this Hamiltonian.

The bandstructure E(k) that results from
diagonalizing the non-interacting part of the Hamilonian
is schematically illustrated in Fig. 1. In the presence of
a finite spin-orbit coupling λSOC but zero Zeeman field,
the bandstructure splits into two pseudospin bands that
are degenerate only at the Γ point (k = 0), resulting in
a Dirac cone (blue surface). The Fermi surface always
has two sheets, no matter where the chemical potential
is located. For finite Zeeman field h, a gap opens at
Γ (green surface). In this case, when the chemical
potential µ is tuned to fall within the gap, the Fermi
surface consists of only a single (pseudospin) sheet with
a helical spin structure, where the physical electron
spin is pointing in opposite directions on opposite
sides of the Fermi surface due to the spin-momentum
locking induced by the spin-orbit coupling. This allows
for the formation of spin-singlet Cooper pairs with
opposite momenta k, ↑ and −k, ↓ in the presence of an
attractive interaction. However, the pairing in this case
is effectively spinless, since the other pseudospin degree
of freedom is gapped out, and the superconducting state
is expected to be topologically non-trivial. We note that
while this pairing state is a spin-singlet pairing state in
the original spin basis, it corresponds to a spin-triplet
state in the pseudospin basis. In fact, Sato et al. have
shown that the s-wave BdG Hamiltonian can be mapped
to a spin-less chiral p-wave superconductor in the chiral
pseudospin basis [6].

In principle, the topological character of the
superconducting phase of the model in Eq. (1
be determined by calculating the Thouless-Kohmoto-
Nightingale-Nijs (TKNN) invariant [6]. However, the
calculation of topological invariants for interacting
systems is more difficult than for non-interacting

FIG. 1. Illustration of the bandstructure with Rashba
spin-orbit coupling and Zeeman field. In the presence
of finite Rashba spin-orbit coupling λSOC, the Kramers
degenerate bands for spin ↑ and ↓ split into two pseudospin
bands, resulting in a Dirac cone near the Γ point where the
two bands touch (blue bandstructure). When the Zeeman
field breaks time-reversal symmetry, a gap opens at Γ (green
bandstructure) resulting in a single (”spinless”) Fermi surface
(red line) when the chemical potential is tuned to an energy
within the gap.

systems and would involve calculations inside the
superconducting phase and an additional analytic
continuation of the imaginary time quantumMonte Carlo
data to real frequency to construct the zero frequency
single-particle Green’s function, from which an effective
Hamiltonian can be defined [14]. We therefore resorted
to the method introduced by Sato et al. [6] for Rashba
superconductors relating the TKNN invariant to the
winding number defined as the xy-plane spin rotation
on the Fermi surface. Specifically, we use the argument
by Nagai et al. [9] that a superconducting state below Tc
with non-trivial topological character is associated with
a non-zero winding number on the normal state Fermi
surface just above Tc. Consistent with the argument
presented above, the winding number is non-zero when
only a single non-degenerate Fermi surface sheet is
present.
Here we use non-perturbative QMC/DCA [17–19]

calculations for the model in Eq. (1) to study whether
this physics can indeed be realized and to determine
the superconducting transition temperature Tc in the
presence of both finite Rashba spin-orbit coupling λSOC

and Zeeman field h. In the absence of these terms, the
attractive Hubbard model in Eq. (1) has been studied
extensively over the past several decades [20–30]. Away
from half-filling ⟨n⟩ = 1, this model has a finite-
temperature Kosterlitz-Thouless s-wave superconducting
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transition that can be mapped out essentially exactly as
QMC does not face a Fermion sign problem for this model
[26, 29, 30].

When λSOC is finite but h = 0, the model preserves
time reversal symmetry. In this case, there is still no
sign problem in the QMC [31]. For |h| > 0, however, time
reversal symmetry is broken, and the QMC calculations
are not protected by symmetry from a sign problem
(in this case a phase problem since the Hamiltonian
is complex). The model with finite λSOC and h was
studied with single-site DMFT by Nagai et al. in
Ref. [9]. The single-site calculation is sign-problem
free, but the purely non-local Rashba spin-orbit coupling
vanishes in the effective single-site DMFT problem and
is therefore not adequately treated in the calculation.
Here, to properly take into account the effects of the
Rashba coupling, we use an 8-site cluster for the DCA
calculations and a continuous-time auxiliary-field QMC
algorithm [32, 33] to solve the effective cluster problem
as implemented in the DCA++ code [34]. The 8-
site cluster is the smallest cluster for which the λSOC

coupling does not vanish for the effective cluster problem.
For the parameters of interest in this work, we do not
find a strong phase problem for this cluster, allowing
us to perform simulations for very low temperatures
and accurately study the effects of λSOC and h on the
superconducting properties of the model.

In order to do so, we calculate the s-wave pair-field
susceptibility

Ps(T ) =

∫ β

0

dτ⟨Tτ∆s(τ)∆
†
s(0)⟩ , (2)

with ∆†
s = 1/

√
N

∑
k c

†
k↑c

†
−k↓. The calculation of

Ps(T ) within the DCA method is described in detail in
Appendix A. Tc is determined as the temperature T at
which Ps(T ) diverges, or equivalently, 1/Ps(T ) becomes
zero (see Fig. 6 in Appendix A). We will also study its
leading order term, the intrinsic pair-field susceptibility
Ps,0(T ), which reflects the amplitude for the propagation
of a pair of electrons in time-reversed momentum and
spin states, in order to get insight into the pairing
behavior. This quantity is given by

Ps,0 =
T

N

∑
k

[G↑↑(k)G↓↓(−k)−G↑↓(k)G↓↑(−k)] . (3)

Here we have used the notation k = (k, iωn) for fermionic
Matsubara frequencies ωn = (2n + 1)πT and Gσσ′(k) is
the fully interacting Green’s function for the model in
Eq. 1. The first term is the usual term for spin-singlet
(k ↑,−k ↓) pairs. The second, spin-flip term G↑↓G↓↑
is only finite when the spin-orbit coupling λSOC mixes
↑ and ↓ spins, which leads to finite off-diagonal Green’s
function components G↑↓ and G↓↑.

RESULTS AND DISCUSSION

Fig. 2 shows the superconducting transition
temperature Tc versus the Rashba spin-orbit coupling
λSOC for different values of the Zeeman magnetic field
h. Tc was obtained as the temperature at which the
s-wave pair-field susceptibility Ps(T ) diverges (see Fig. 6
in Appendix A). We find non-monotonic behavior for
h = 0 and 0.5t, while for h = t, Tc monotonically
increases up to the largest λSOC we have studied. For
h = 0 and λSOC = 0, Tc ≈ 0.11t and increases by about
20% to Tc ∼ 0.13t at λSOC ≈ 0.4t before it decreases
at larger λSOC. This initial increase in Tc with λSOC

is also found for finite h. In this case, when λSOC = 0,
superconductivity is suppressed for fields larger than
the upper critical field due to Pauli pair breaking. For
h = 0.5t (t), we do not find a superconducting transition
for λSOC = 0 (0 and 0.125t). For larger λSOC, however,
superconductivity is restored and Tc initially increases
with λSOC before it decreases at larger λSOC. This
behavior is consistent with our DMRG calculations of a
two-leg Rashba-Hubbard ladder as reported in Appendix
B, where we find that the binding energy for a pair of
holes is negative and has a minimum at intermediate
Rashba coupling for finite Zeeman fields. The DMRG
calculations also show non-monotonic behavior in the
λSOC dependence of the on-site pair-pair correlations
with a pronounced enhancement for intermediate Rashba
coupling. Our results are also consistent with those
found previously in single-site DMFT calculations for
this model [9] and note that, as shown in that work,
mean-field theory does not capture the non-monotonic
behavior. For the data points with the square symbols at
large λSOC and finite h, we expect the superconducting
state to be topologically non-trivial, based on results
for the normal state Fermi surface, as we will discuss
later. For h = 0.5t and λSOC = 0.75t, the Tc of this
topological state is only reduced by about 20% to that
of the topologically trivial state for h = λSOC = 0 from
Tc ≈ 0.11t to Tc ≈ 0.085t.

From Fig. 2 it is clear that λSOC increases the Pauli-
limit upper critical field above which superconductivity
is suppressed, and thus restores superconductivity for
fields above the upper critical field of the system with
λSOC = 0. We now discuss results for the intrinsic
s-wave pair-field susceptibility Ps,0 defined in Eq. 3
in order to provide insight into this behavior. In
Fig. 3, we show results for the temperature and λSOC

dependence of Ps,0. In conventional (BCS) theory, this
quantity has a logarithmic (Cooper) divergence as T →
0, so that any attractive interaction, no matter how
weak, leads to a superconducting transition at finite
temperature. In an unconventional superconductor,
however, the physics can be different. In the cuprate
pseudogap phase, for example, this Cooper instability
is absent, and the superconducting transition is driven
by an effective interaction that increases with decreasing
temperature [35]. Thus, a logarithmic divergence in
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FIG. 2. Superconducting transition in the attractive
Rashba Hubbard model. The superconducting transition
temperature Tc versus Rashba spin-orbit coupling λSOC

for different Zeeman magnetic fields h. The data points
with square symbols indicate the parameters for which the
superconducting state is expected to be topologically non-
trivial based on the results for the Fermi surface shown in
Fig. 4. Results are shown for an electron filling ⟨n⟩ = 0.25
and U = −4t, and the DCA calculations were performed for
an 8-site cluster.

Ps,0(T ) is a sufficient, but not necessary condition for
a superconducting instability to occur.

Panel (a) in Fig. 3 plots the temperature T dependence
of Ps,0(T ) for two different values of h and λSOC. For
λSOC = 0 (solid circles), finite h = 0.5t splits the Kramers
degenerate Fermi surface into two (↑ and ↓) sheets. As
a result, there are no states available at −k on the ↓
sheet to pair with the k, ↑ state. Consequently, Ps,0(T )
is significantly suppressed at low temperatures by the
Zeeman field. A finite λSOC mixes spin ↑ with spin ↓
and thus counteracts the spin imbalance created by the h
field. Consistent with this expectation, for λSOC = 0.25t
(open cirlces), the low temperature behavior of Ps,0(T )
changes significantly, now showing a strong upturn with
decreasing temperature even for h > 0, which eventually
leads to the finite Tc shown in Fig. 2. Albeit less
dramatic, this enhancement occurs even for h = 0 and
is the reason for the enhancement of Tc with finite spin-
orbit coupling λSOC. For h = 0.5t and λSOC = 0.25t,
the two terms, G↑↑G↓↓ and G↑↓G↓↑ that contribute
to Ps,0 in Eq. (3) are shown as shaded regions. The
standard G↑↑G↓↓ contribution remains suppressed at
low temperatures, even in the presence of finite λSOC.
In contrast, the spin-flip G↑↓G↓↑ contribution keeps
rising with decreasing temperature, leading to the low-
temperature increase of Ps,0(T ) for finite λSOC. The
λSOC and h dependence of Ps,0(T ) at fixed T = 0.05t
in panel (b) closely tracks the λSOC dependence of Tc
in Fig. 2, showing that it is indeed the effect of λSOC

and h on the intrinsic pair-field susceptibility Ps,0 that
determines Tc.

h=0      |  λSOC=0
h=0      |  λSOC=0.25t
h=0.5t |  λSOC=0
h=0.5t |  λSOC=0.25t
G G
G G

P s
,0(

T)

0.20

0.25

0.30

T/t
0 0.1 0.2 0.3 0.4

(a)

(b)

h=0
h=0.5t
h=t

P s
,0(

T=
0.0

5t
)

0.15

0.20

0.25

0.30

λSOC/t
0 0.2 0.4 0.6 0.8 1.0

FIG. 3. Intrinsic pair-field susceptibility. Panel (a):
Temperature dependence of the s-wave intrinsic pair-field
susceptibility Ps,0(T ) for different Zeeman fields h and Rashba
couplings λSOC. The light (dark) shaded regions show the
contributions in Eq. (3) of the first G↑↑G↓↓ (second G↑↓G↓↑)
terms to Ps,0(T ) for h = 0.5, λSOC = 0.25. Panel (b): Ps,0(T )
at fixed temperature T = 0.05t versus λSOC. All results are
shown for an electron filling ⟨n⟩ = 0.25 and U = −4t, and the
DCA calculations were performed for an 8-site cluster.

The key for understanding the different effects of λSOC

and h on Ps,0(T ) is the Fermi surface and bandstructure
plotted in Fig. 4. Here we show two different parameter
sets: h = 0.5t, λSOC = 0.25t in panel (a) and h = t,
λSOC = t in panel (b). The top two panels show
|∇kn

σ
k| as a proxy for the Fermi surface, where nσk =

c†kσckσ is the occupation in momentum space for spin
σ. The bottom panels show the bandstructure of the
non-interacting model, but including the Hartree term of
the self-energy, to serve as a leading order approximation
of the interacting single-particle spectrum that can be
compared with |∇kn

σ
k| in the top panels. As is clear

from these plots, the Fermi level crossing of the bands
and their spin σ weights are consistent with the Fermi
surface plots in the top panels.

For the case with h = 0.5t, λSOC = 0.25t in panel
(a), one sees two bands crossing the Fermi level and two
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FIG. 4. Fermi surface and bandstructure. Top panels: The gradient of the momentum space occupation, |∇kn(k)| for (a)
h = 0.5, λSOC = 0.5 and (b) h = 1.0, λSOC = 1.0 for spin ↑ and ↓. Bottom panels: Corresponding bandstructure in Hartree
approximation with the weight of spin ↑ and ↓ indicated by line thickness.

Fermi surface sheets closed around the Γ point with very
different spin weights. The spin-orbit induced admixture
of the opposite spin, although weak, leads to a finite spin-
flip G↑↓G↓↑ contribution to Ps,0(T ) that is immune to
the field induced suppression at low temperature, thus
restoring the superconducting instability.

For the second case with h = t, λSOC = t in panel
b, the situation is very different. The splitting of the
bands is much larger resulting in a single Fermi surface
sheet only. The states on this sheet have predominantly
spin ↓ character, but now with a much larger admixture
of spin ↑ electrons. For this case of a single sheet, the
superconducting state is expected to be topologically
non-trivial, since the pairing (in the chiral pseudospin
basis) is effectively spinless due to the absence of the
second Fermi surface sheet. As indicated by the square
data points in Fig. 2, the cases with h = 0.5t and
λSOC ≥ 0.75t are also expected to be topologically non-
trivial based on their Fermi surface (not shown).

SUMMARY AND CONCLUSIONS

We have used a dynamic cluster quantum Monte Carlo
approximation to study s-wave superconductivity in the
attractive Hubbard model in the presence of a Rashba
spin-orbit coupling λSOC and a Zeeman magnetic field
h for an electron filling ⟨n⟩ = 0.25. Under certain

conditions, these ingredients can lead to a spin-singlet
superconducting state that is topologically non-trivial.
We have found that a Rashba coupling with moderate
strength λSOC ∼ 0.5t has a beneficial effect towards
superconductivity. By mixing spin ↑ with ↓ states,
it counteracts the spin imbalance generated by the h
field and thus creates −kF , ↓ Fermi level states that
can pair with degenerate kF , ↑ states. This promotes
a superconducting transition for fields well above the
Pauli limit upper critical field at λSOC = 0. We show
that this favorable effect of λSOC is traced to a spin-
flip driven enhancement of the electron pair propagation
amplitude Ps,0, which is induced by the spin mixture.
Finally, we used the gradient of the momentum space
occupation n(k) to obtain information on the Fermi
surface of the interacting system for different λSOC and
h. For sufficiently large λSOC and h, we find that
the Fermi level falls within the gap of the effective
two-band system, and the Fermi surface consists of
only a single (pseudospin) sheet. For this case, the
superconducting state below Tc is effectively spin-less
and therefore expected to be topologically non-trivial.
For the parameters we have studied, we find that the
highest Tc for this topological state is only reduced by
about 20% from the Tc of the topologically trivial state
in the absence of spin-orbit coupling and magnetic field.
These results give new insight into the effects of spin-orbit
coupling and magnetic fields on the superconducting
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behavior of correlated electron systems, and thus provide
general guidance on how to tune the relative strengths
of these couplings in the search for new topological
superconductors.
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Appendix A: DCA calculation of the s-wave
pair-field susceptibility

In order to calculate the s-wave pair-field susceptibility
(Eq. (2) in the main text) for the model in Eq. (1), we
follow the usual DCA formalism described in Refs. [18,
36] to calculate susceptibilities for the lattice in the
thermodynamic limit. This requires a calculation of the
4-point two-particle Green’s function

G2,σ1...σ4
(x1, x2;x3, x4) =

= ⟨Tτ cσ1
(x1)cσ2

(x2)c
†
σ3
(x3)c

†
σ4
(x4)⟩ , (A1)

where the combined index xi = (xi, τi) has both
spatial, xi, and imaginary time, τi coordinates. Fourier-
transforming on both the space and time variables gives

G2,σ1...σ4
(k1, k2; k3, k4) with kℓ = (kℓ, iωnℓ

). The s-wave
pair-field susceptibility Ps(T ) defined in Eq. (2) in the
main text is then obtained from

Ps(T ) =
T

N

∑
k,k′

G2,↑↓↑↓(k,−k, k′,−k′) . (A2)

The two-particle Green’s function Gs for the lattice
in the thermodynamic limit is obtained from the Bethe-
Salpeter equation in the particle-particle channel shown
diagrammatically in Fig. 5,

G2,σ1...σ4
(k,−k, k′,−k′) = Gσ1σ3

(k)Gσ2σ4
(−k)δk,k′

−Gσ1σ4
(k)Gσ2σ3

(−k)δk,−k′

+
T

N

∑
k′′

∑
σ5...σ8

Gσ1σ5
(k)Gσ2σ6

(−k)

× Γpp
σ5...σ8

(k,−k, k′′,−k′′)
×G2,σ7σ8σ3σ4(k

′′,−k′′, k′,−k′) (A3)

Here, Gσσ′(k) is the single-particle Green’s function,
which, due to the Rashba spin-orbit coupling is off-
diagonal in the spin, and Γpp

σ4...σ1
(k,−k, k′,−k′) is

the irreducible particle-particle vertex. In the DCA,
its momentum dependence is reduced to that of the
effective cluster problem, i.e. Γpp

σ4...σ1
(k,−k, k′,−k′) ≈

Γpp
σ4...σ1

(K,−K,K ′,−K ′), where K = (K, iωn) contains
the cluster momenta K. Using the cluster vertex
Γpp
σ4...σ1

(K,−K,K ′,−K ′), one can then calculate the
coarse-grained two-particle Green’s function for the
lattice

Ḡ2,σ1...σ4
(K,−K,K ′,−K ′) ≡

≡ N2
c

N2

∑
k∈PK

∑
k′∈PK′

G2,σ1...σ4(k,−k, k′,−k′)

= Ḡ0
2,σ1...σ4

(K,−K,K ′,−K ′)

+
T

Nc

∑
K′′

∑
σ5...σ8

Ḡd
2,σ1...σ4

(K,−K,−K,K)×

× Γpp
σ5...σ8

(K,−K,K ′′,−K ′′)

× Ḡ2,σ7σ8σ3σ4
(K ′′,−K ′′,K ′,−K ′) . (A4)

Here, the sums over k, k′ and k′′ have been partially
carried out over the Nc DCA coarse-graining patches PK,
etc. [18], with Nc the cluster size, so that all quantities
now depend on the cluster momenta K only. The coarse-
grained bare propagators

Ḡ0
2,σ1...σ4

(K,−K,K ′,−K ′) =

=
Nc

N

∑
k∈PK

[Gσ1σ3
(k)Gσ2σ4

(−k)] δK,K′

− Nc

N

∑
k∈PK

[Gσ1σ4
(k)Gσ2σ3

(−k)] δK,−K′ (A5)

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
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kσ1

G2
−kσ2 −k′￼σ4

k′￼σ3 kσ1 kσ3

−kσ2 −kσ4

kσ1

−kσ2

−kσ3

kσ4

=
−kσ6 −k′￼′￼σ8

kσ1

−kσ2 −k′￼σ4

Γpp G2
k′￼σ3kσ5 k′￼′￼σ7

+ +

FIG. 5. Diagrams for the Bethe-Salpeter equation in the particle-particle channel. For finite (spin-mixing) Rashba
coupling, an additional diagram with crossing Green’s function legs contributes in leading order. This diagram gives rise to the
enhancement of s-wave pair correlations found at low temperatures.

and

Ḡd
2,σ1...σ4

(K,−K,K ′,−K ′) =

=
Nc

N

∑
k∈PK

[Gσ1σ3
(k)Gσ2σ4

(−k)] δK,−K′ (A6)

only has the (diagonal) first term. By including the spin
variables in the combined indicesK = (K, ωn, σ1, σ2) and
K ′ = (K′, ωn′ , σ3, σ4), this equation can be conveniently
written in matrix form (in K and K ′)

Ḡ2 = Ḡ0
2 + Ḡd

2Γ
ppḠ2 . (A7)

The cluster vertex Γpp is determined from an analogous
equation for the cluster two-particle Green’s function Gc

2

[18]

Gc
2 = Gc,0

2 +Gc,d
2 ΓppGc

2 . (A8)

The bare cluster propagators

Gc,0
2,σ1...σ4

(K,−K,K ′,−K ′) =

= Gc
σ1σ3

(K)Gc
σ2σ4

(−K)δK,K′

−Gc
σ1σ4

(K)Gc
σ2σ3

(−K)δK,−K′ ,

and

Gc,d
2 (K) = Gc

σ1σ3
(K)Gc

σ2σ4
(−K)δK,K′ ,

where Gc
σσ′(K) is the single-particle cluster Green’s

function.
The extraction of the cluster vertex Γpp from the

Bethe-Salpeter equation (A8) involves an inversion of

Gc
2 and Gc,0

2 . The addition of the second term with
crossed Green’s function legs proportional to δK,−K′

makes these matrices singular. However, after some
matrix arithmetics, an equation can be obtained for Ḡ2

that does not involve the inversion of these matrices [9]

Ḡ2 = Gc
2

[(
[Ḡ

(1)
2 ]−1 − [G

c,(1)
2 ]−1

)
Gc

2 +Bc
]−1

B .(A9)

Here B = [Ḡd
2]

−1Ḡ0
2 and the corresponding cluster

quantity Bc = [Gc,d
2 ]−1Gc,0

2 . The lattice s-wave pair-
field susceptibility Ps(T ) is then obtained from Ḡ2 as

Ps(T ) =
T

Nc

∑
K,K′

Ḡ2,↑↓↑↓(K,−K,K ′,−K ′) , (A10)

and the intrinsic pair-field susceptibility Ps,0(T ) in
Eq. (3) in the main text from

Ps,0(T ) =
T

Nc

∑
K,K′

Ḡ0
2,↑↓↑↓(K,−K,K ′,−K ′) . (A11)

The temperature dependence of the inverse of Ps(T ) is
shown for a selected set of parameters in Fig. 6.

h=0      |  λSOC=0
h=0.5t |  λSOC=0
h=0.5t |  λSOC=0.25t
h=t       |  λSOC=t

1/
P s

 (T
)

0

0.5

1.0

1.5

2.0

T/t
0 0.1 0.2 0.3 0.4

FIG. 6. Temperature dependence of inverse s-wave
pair-field susceptibility. The inverse s-wave pair-field
susceptibility 1/Ps(T ) calculated according to Eq. (A10)
versus temperature for different combinations of magnetic
field h and Rashba spin-orbit coupling λSOC . The values
for the superconducting transition temperature Tc shown in
Fig. 1 in the main text are obtained from the temperature
where 1/Ps(T ) crosses zero (dashed line).

Appendix B: Density matrix renormalization group
analysis of an attractive Rashba-Hubbard two-leg

ladder

In order to investigate the robustness of the DCA
results, we also carry out complementary density matrix
renormalization group (DMRG) [37, 38] calculations on a
two-leg ladder with open boundaries using the DMRG++
software [39], working at zero temperature. This provides
accurate insight into the real-space behavior of a minimal
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0.0 0.2 0.4 0.6 0.8 1.0
SOC

1.0

0.5
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E

h = 0.00 h = 0.25 h = 0.50 h = 1.00

1 10
R

10 4
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|P
(R

)|

SOC = 0.000
SOC = 0.125
SOC = 0.250
SOC = 0.375

SOC = 0.500
SOC = 0.625
SOC = 0.750
SOC = 1.000

(a)

(b)

FIG. 7. Rashba-Hubbard two-leg ladder. Panel (a):
binding energy for Lx = 32. Panel (b): on-site singlet
pair-pair correlations for Lx = 48 and h = 0.5. Results
in both panels are obtained using DMRG for electron filling
⟨n⟩ = 0.25 and U = −4t.

version of the 2D problem [40, 41]. We first rewrite the
hopping part of Eq. (1) in real space as,

H0 = −t
∑

⟨i,j⟩,σ

[
c†iσcjσ +H.c.

]
− h

∑
i

(ni↑ − ni↓)

+ 2λSOC

∑
⟨i,j⟩

∑
σ,σ′

c†iσ
[
αx
ijσ

y
σσ′ − αy

ijσ
x
σσ′

]
cjσ′ , (B1)

where ⟨. . . ⟩ denotes summation over nearest neighbors,
αµ
ij ≡ i

(
δi,j+aµ

− δi,j−aµ

)
, aµ denotes translation in

the µ direction [42], and we take x̂ (ŷ) to be the long
(short) direction of the ladder, namely along legs (across
rungs). Here we consider ladders up to length Lx = 48
(and width Ly = 2). In obtaining the ground states, a
truncation error below 10−9 was targeted and obtained
for all parameters by keeping up to m = 1500 states.
Explicit reorthogonalization was used at each step.

The first quantity of interest is the binding energy [43],

∆E (N) = E0 (N − 2) + E0 (N)− 2E0 (N − 1) , (B2)

where E0 (N) denotes the ground state energy of the
system with N electrons present. ∆E (N) < 0 indicates
it is favorable for two holes to form a Cooper pair bound
state, a requirement for pairing to occur. ∆E = 0 for
two independent holes, but ∆E > 0 can also occur due
to finite-size effects. The binding energy for Lx = 32
is plotted for several fields and λSOC values in Fig. 7(a).
For intermediate fields 0.25 ≤ h ≤ 0.5 we find a minimum
in the binding energy at intermediate Rashba coupling,
which reflects an enhanced tendency to pairing and is
in qualitative agreement with the DCA results. At
h = 0.5 the value of the binding energy only becomes
appreciably negative at finite λSOC ≥ 0.25. At zero field,
however, the trend is monotonous in λSOC. Some such
differences between the DMRG and DCA results may be
expected due to the difference in dimensionality, but the
qualitative agreement at h = 0.5 indicates the trend is
general and robust.

We next consider pair-pair correlations for h = 0.5.
We focus on on-site singlet pairs, which are favored by
the attractive Hubbard interaction. The pair creation

operator on rung i and leg a can be written S†
on−site (i) =

c†ia↑c
†
ia↓ and the corresponding correlation function is

given by

P (R) =
1

NR

∑
i

〈
S†
on−site(i)Son−site(i+R)

〉
, (B3)

where NR denotes the number of total neighbors at
distance R from site i, summed over all sites. We
neglect eight rungs at each end of the ladder in order
to minimize edge effects. Correlations for a ladder with
Lx = 48 are plotted in Fig. 7(b), showing power-law
behavior as expected for a quasi-1D system. We see
a pronounced enhancement of the correlation function
upon introduction of the Rashba coupling, with a
maximum near λSOC = 0.375. The non-monotonous
behavior matches that of the binding energy in Fig. 7(a),
and is consistent with the behavior of the s-wave intrinsic
pair-field susceptibility of the 2D system shown in Fig. 3.
The beneficial effect of Rashba spin-mixing on singlet
pairing becomes evident by comparing the correlations
at finite λSOC with the much weaker correlations at
λSOC = 0.
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