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Abstract. Additive manufacturing (AM) may have many advantages over traditional casting and wrought 
methods, but our understanding of the various processes is still limited. Computational models are useful to study 
and isolate underlying physics and improve our understanding of the AM process-microstructure-property 
relations. However, these models necessarily rely on simplifications and parameters of uncertain value. These 
assumptions reduce the overall reliability of the predictive capabilities of these models, so it is important to 
estimate the uncertainty in model output. In doing so, we quantify the effect of model limitations and identify 
potential areas of improvement, a procedure made possible by uncertainty quantification (UQ). Here we highlight 
recent work which coupled and propagated statistical and systematic uncertainties from a melt pool transport model 
based in OpenFOAM, through a grain scale cellular automaton code. We demonstrate how a UQ framework can 
identify model parameters which most significantly impact the reliability of model predictions through both 
models and thus provide insight for future improvements in the models and suggest measurements to reduce output 
uncertainty. 

1.  Introduction
Additive manufacturing of metal alloys such as Ti-6Al-4V, 316 SS, IN625, and IN718 [1] is a class of 
metallurgical processes whereby components are printed in a layer-by-layer manner directed by a digital 
model of the part. Laser powder bed fusion (L-PBF) involves laser melting and localized consolidation 
of metal powders at sub-millimeter length scales, allowing for the production of complex components 
difficult to produce via more traditional casting or deformation processing. As such, metal additive 
manufacturing has found applications in aerospace, automotive, and biomedical fields [2]; yet 
detrimental defects and inconsistent build quality and performance [3-7] make certification of critical 
components difficult and limit industrial adaptation. Given the potential upsides of AM, reducing these 
defects and thus broadening the applicability of the process is at the forefront of ongoing research efforts. 
However, process complexity, laser system costs, and material costs mean experimental studies are 
difficult. Computational models offer a supplementary means of investigating the process while 
allowing for reproducibility and isolation of underlying physics. 

Unfortunately, the complexity and scale of influential physics involved in metal additive 
manufacturing is too great to be captured by a single computational model. Instead, multiple models 



which specialize in a particular physical phenomenon must be developed and coupled to fully capture 
the process. Examples of computational models for AM research include melt pool transport models 
such as those used in [8-12], which provide temperature history data and melt pool geometries to aid in 
the development of scan strategies [13]. Also, microstructure evolution models [14-17] are vital for 
understanding as-built microstructures and crystal plasticity codes [18-21] predict the constitutive 
mechanical behavior. While computational models such as these are powerful tools to investigate and 
provide insight into metal additive manufacturing, their practical use relies on trade-offs between 
computational efficiency and model fidelity which reduce overall reliability of their predictions. 
Additionally, the data used to drive simulations (e.g., thermophysical properties) have inherent 
uncertainty that propagate to simulation results. It is therefore important to quantify the reliability of 
model predictions and the uncertainty therein, a process made possible via uncertainty quantification 
(UQ).

Two types of uncertainty are present in computational models such as those used for AM research, 
both of which must be considered. The first is statistical uncertainty, referred to as aleatoric uncertainty, 
resulting from natural variations in observations or measurements, oftentimes resulting from the 
equipment making the measurements. Aleatoric uncertainty is typically easy to quantify and therefore 
the propagation to model predictions can be readily determined. The second type of uncertainty is 
systematic uncertainty, referred to as epistemic uncertainty, resulting from a lack of knowledge due to 
data scarcity or model form error due to simplifications or non-physical parameters. Epistemic 
uncertainty can only be inferred, and correlations must be drawn. Given the role of simulation in AM 
research, it is vital that both forms of uncertainty and their propagation be accounted for, and their 
influences understood to quantify model limitations as well as identify potential areas of improvement. 

The present work highlights a few key results from recent studies where an uncertainty quantification 
framework developed using TASMANIAN [22-26] was applied to two coupled models, a finite volume 
transport model based in OpenFOAM [9] and ExaCA [27], a cellular automata model for grain scale 
solidification, to demonstrate how both aleatoric and epistemic uncertainties can be studied and their 
influence quantified. 

2.  Methodology
The present work focuses on key findings from two separate studies. The first looks at uncertainty in 
solidification dynamics resulting from the role of solidification pathway selection. Second, the 
uncertainty in solidification dynamics is propagated to the as-built microstructure, specifically the grain 
morphology. The results presented here summarize a few key observations which are more thoroughly 
detailed in [29].  

2.1.  Melt Pool Transport Model
The melt pool transport model detailed in this work is based in OpenFOAM for simulations of laser 
powder bed fusion of Inconel 625 [9]. This model treats the domain as a continuum with volume-
weighted thermophysical properties for all phases present in a computational cell. 

2.1.1.  Conservation Equations. The transport model solves the conservation of mass, momentum, and 
energy equations. In the present studies, fluid flow driven by Marangoni effects are disregarded and 
therefore the conservation of mass and momentum can be disregarded leaving only the conservation of 
energy given by Eqn. (1),

ρCp
∂T
∂t

 =  ∇ ∙  (k∇T) +  ST +  Q (1)

where ρ is density, t is time, CP is the specific heat capacity, T is temperature in Kelvin, and k is the 
thermal conductivity of IN625. ST is an energy source term given by Eqn. (2) which accounts for the 
evolution of latent heat release due to phase change.



ST =  ― ρLf
∂𝑓𝑙

∂t
(2)

Q is a volumetric laser heat source given by Eqn. (3) where η is the laser absorption efficiency, P is laser 
power, r is the laser radius and d is the penetration depth over which the laser energy is integrated. x, y, 
and z are the laser center location and xb is the laser center starting point.

Q(x,y,z) =  2ηP

r2d π 3
3 2 exp

―3((x ― xb) +  y)2

r2  +  
―3z2

d2 (3)

2.1.2.  Boundary Conditions. For the present model, radiative heat transfer along the top boundary is 
governed by a heat transfer coefficient h given by Eqn. (4), and vaporization by heat flux (𝑞"𝑣) given  

h =  εσ T4 ―  T4
∞

(4)

q"v =  A ∙  
exp B ―  C

T
T

(5)

by Eqn. (5). Here ε is emissivity, σ is the Stefan-Boltzmann coefficient, T∞ is the far field temperature 
taken to be 300K, and A, B, and C are algebraic coefficients. Input parameter values are provided in 
Table 1.

2.1.3.  Simulation Domain, Time Step, and Grid Spacing. In the presented results two different 
simulation domains were used. A single line scan was used in Section 3.1 with a domain size of 5.0 x 
0.8 x 0.4 mm to ensure a steady state melt pool was established at the probe locations while still 
approximating a semi-infinite domain surrounding the melt pool. In Section 3.2 and 3.3 a multi-pass, 
multi-layer simulation based on the AMB2018-01 test bed series [30] was used to create a build volume 
over which the microstructure was analyzed. This consists of alternating even/odd scan pattern totalling 
65 layers. For both simulation domains a uniform grid spacing of 5 μm was used to ensure sufficient 
spatial resolution needed to capture the melt pool curvature. A 0.1 μs timestep was used for the single 
line scan, while an adaptive timestep was used for the multi-pass multi-layer simulation to reduce 
simulation time when the laser is off during dwell periods.  

2.1.4.  Outputs of Interest. For the single line scan study, the output of interest is the cooling rate through 
the tail of the melt pool along the top surface defined by a relative position through the mushy zone (
xrel) where xrel = 0 at the liquidus isotherm and xrel = 1 at the solidus isotherm. For the coupled models 
study, the outputs of interest were selected based on the inputs required by the weakly coupled CA grain 
scale solidification model. Here, the time at which each computational cell drops below the liquidus 
temperature and the instantaneous cooling rate at the liquidus isotherm are recorded and passed to 
ExaCA. 

2.2.  CA Grain Growth Model

2.2.1.  Initialization. The grid spacing used by the transport model is too coarse to adequately resolve 
grain competition and nucleation, therefore the OpenFOAM temperature data was interpolated down to 
the CA grid spacing (2.5 μm here). Additionally, a substrate was simulated using a substrate grain size 
𝑆0 which was then used to calculate the number of grains (and thus grain seeds) in the substrate. Each 
grain seed was assigned to a random cell in the substrate with 1 of 10,000 possible cubic grain 



orientations. Cells not assigned a seed were grouped to the nearest seed to develop the final substrate 
grain structure..

2.2.2.  Grain Growth. The decentered octahedron method is leveraged by ExaCA [27] which tracks the 
solidification front as it grows. An octahedral grain envelope half-diagonal direction, each half-diagonal 
aligned with one of the <001> crystallographic directions) is assigned to each active cell. During each 
time step where an active cell has a temperature below the liquidus, the half-diagonal length L of each 
octahedron is updated using Eqns. (6) and (7). 

∆L =  ∆t
∆x

(V(∆T)) (6)

V(∆T) =  A(∆T)3 +  B(∆T)2 +  C(∆T) (7)

Here, ∆L is the increment in octahedron half-diagonal length, ∆t is the CA timestep, ∆x is the grid 
spacing, and ∆T is the cell undercooling relative to the liquidus temperature. A, B, and C are fitting 
constants for a polynomial fit to experimental dendrite growth velocities V(∆T) based on work by [30]. 
The octahedron half-diagonal length governed by Eqn. (6) was limited to 0.05 to prevent an order of 
iteration dependence growth. A timestep of 0.1μs was used to ensure the growth limit is not reached by 
the advancing melt pool periphery during steady state. 

2.2.3.  Heterogeneous Nucleation. In addition to grain growth, heterogeneous nucleation ahead of the 
front is modelled by ExaCA. All cells that will undergo solidification were assigned a random number 
𝑅𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛 between 0 and 1. In Eqn. (8) N0 is a heterogeneous nucleation site density. If Eqn. (8) is true, 
then the cell is a potential nucleation site.

Rnucleation <  N0(∆x)3 (8)

Each cell is then assigned a nucleation undercooling value sampled from a Gaussian distribution 
centered around ∆TN with a standard deviation of ∆Tσ. If the nucleation undercooling value of a cell is 
reached prior to the cell becoming active via a cell capture event associated with grain growth, the 
nucleation event is successful, a new grain envelope with a random orientation is assigned to the cell, 
and the cell becomes active. All input parameter values used by the CA model are provided in Table 2.

2.2.4.  Outputs of Interest. The grain growth model was used to produce as-built microstructures 
resulting from temperature data produced by the transport model. The presented work was focused on 
grain size and shape and thus the outputs of interest were 1) grain misorientation relative to the +Z axis, 
2) average grain count, 3) volume weighted aspect ratio, and 4) average grain diameter of a sphere with 
the same volume.  All these values were calculated in a representative value element (RVE) taken out 
of the middle of the as-built microstructure as depicted in Figure 1. 



Figure 1. Representative volume element out of which the grain morphology data is drawn. The RVE 
avoids simulation boundaries and is taken near the top of the build when the microstructure is assumed 

to fully evolved. Gray indicates epitaxial grains and red grains are nucleated.

2.3.  Uncertainty Quantification
To determine the influences of aleatoric and epistemic uncertainties on model reliability, the uncertainty 
quantification framework detailed in [11] was leveraged here for the analysis of solidification pathway 
selection using TASMANIAN[21-25].. This framework involves first establishing uncertainty bounds 
for each input parameters from the literature where possible, or by inference when not. A sensitivity 
analysis then revealed how the uncertainty in each parameter propagates and manifests as uncertainty 
in the outputs of interest. In doing so, not only can the most significant contributing uncertainties be 
determined, but so too can those which are negligible and can be disregarded to simplify the uncertainty 
space. Next, a sparse grid, which only features the parameters with the highest sensitivity, was 
constructed where grid points correspond to sets of simulation input parameters. Simulation results 
corresponding to these points are then used to construct a polynomial response surface. This response 
surface acts as a surrogate model which approximates the behavior of the computational model/models 
but can be interrogated rapidly. By sampling the surrogate 10 million times via a Monte Carlo based 
method, probability density functions (PDFs) are formed. These PDFs represent the uncertainty 
distribution for each output of interest due to the uncertainty in the considered input parameters.

Table 1. Transport model input parameters and associated uncertainties.

Parameter Most likely value Uncertainty Units
ρs,l 7670.0 1.0% kg/m3

Cp,s 579.28 4.0% J/(kg K)
Cp,l 750.65 4.0% J/(kg K)
ks 8.275 + 0.01472T 5.0% J/(m s K)
kl 4.889 + 0.01474T 5.0% J/(m s K)
P 195.0 4.5 W W
η 0.30 15.0% ---
d 20 25.0% μm
r 85.7 --- μm

Lf 2.18 × 105 4.0% J/kg
Lv 6.10 × 106 4.0% J/kg
ε 0.40 --- ---
A 2.121 × 1010 --- W K1/2/m2

B 14.29 --- ---
C 44,756 --- K



Table 2. Input parameter values and associated uncertainties for the CA grain growth model.

Parameter Most likely value Uncertainty Units
S0 25.0 10.0μm μm

∆TN 20.0 75% K
∆Tσ 2 2K K
A -1.0302 × 10 -7 50% m/(s K3)
B 1.0533 ×10 -4 50% m/(s K2)
C 2.2196 × 10 -3 50% m/(s K)
N0 1015 --- m-3

3.  Results and Discussion

3.1.  Influence of Solidification Pathway Selection on Solidification Dynamics
One common assumption made in additive manufacturing modelling is that, due to the cooling rates and 
melt pool size, transport models lack the necessary resolution to resolve the release of the latent heat 
profile in the mushy zone and therefore any fs(T) function used in Eqn. (2) can be used if the entirety of 
the latent heat is accounted for. For this reason, in addition to thermodynamic models such as 
equilibrium or Scheil, non-physical but numerically convenient linear or sigmoidal functions (shown 
for IN625 in Figure 2) are oftentimes used. If the ‘lack of resolution’ assumption does not hold, then 
selection of the solidification pathway and latent heat release profile will impact model prediction 
reliability by increasing the uncertainty therein.   

Figure 2. Common solidification pathways which dictate the release of latent heat during 
solidification. 

Using the UQ framework and sensitivity analysis detailed [11], a 3-dimensional sparse grid was 
constructed for each of the solidification pathways which accounts for the uncertainty in laser absorption 
efficiency, and solid and liquid specific heat capacities of IN625 (the three parameters model predictions 
had the highest sensitivity to). 19 simulations were run using each of the pathways and used to construct 
polynomial response surfaces which act as surrogate models. All four surrogate models were sampled 
10-million times to generate the statistics presented in Table 3. These statistics represent the uncertainty 
in model predictions due to the uncertainty in input parameters. Comparing results for each model 
illustrates the epistemic uncertainty associated with the solidification pathway selection. Differences 



between the pathways indicates that the lack of resolution assumption does not hold for the melt pool 
length or cooling rate at the liquidus isotherm.

Table 3. Probability density function statistics generated by sampling polynomial surrogate models 10 
million times. Differences between the model indicates the lack of resolution assumption does not 

hold for melt pool length and cooling rate.

Output Solidification pathway Mean 2σ

Width [µm]

Scheil
Equilibrium
Linear
Sigmoidal

140.91
134.01
140.35
140.42

2.10
2.15
2.10
2.08

Depth [µm]

Scheil
Equilibrium
Linear
Sigmoidal

46.21
42.48
45.84
45.93

1.28
1.28
1.26
1.26

Length [µm]

Scheil
Equilibrium
Linear
Sigmoidal

404.91
370.85
418.22
417.91

14.72
13.86
15.38
15.34

Cooling rate [K/s]

Scheil
Equilibrium
Linear
Sigmoidal

418,751
360,329
923,000

1,632,218

27,015
19,112
56,035
76,071

In addition to the statistic provided above, Figure 3 depicts the cooling rate through the mushy zone 
at the tail of the melt pool. If the latent heat release profile were not adequate resolved, these curves 
would overlap significantly. However, this figure shows how the linear (black) and sigmoidal (blue) 
predict larger cooling rates near the liquidus isotherm (xrel =  1) relative to the equilibrium and Scheil 
thermodynamic relations, but lower cooling rates near the end of solidification. Figure 2 shows how 
sigmoidal and linear release a significant amount of latent heat near the onset of solidification, but much 
less later, whereas sigmoidal and linear are more gradual in their latent heat release throughout the 
freezing range. These observations agree with those drawn from the surrogate model sampling as the 
latent heat release profile influences the solidification dynamics. 

Figure 3. Cooling rate throughout the mushy zone for each of the solidification pathways. Sigmoidal 
and linear predict higher cooling rates early on, but lower near the end of solidification. 



3.2.  Grain Morphology Sensitivity Analysis
To begin the uncertainty propagation, a sensitivity analysis was conducted where input parameters for 
each model were individually adjusted by the uncertainties reported in Tables 1 and 2. These sensitivities 
are depicted in Figure 4 for each of the outputs of interest. Uncertainty in the interfacial response 
function coefficients (V(T)), the mean nucleation undercooling temperature, and the laser absorption 
efficiency showed the highest sensitivities and therefore were included in the surrogate model 
construction. All other input parameter uncertainties were neglected. 

Figure 4. Sensitivity analysis for grain morphology showing uncertainty in laser absorption efficiency, 
IRF, and the mean nucleation undercooling temperature propagate significantly through the models.

3.3.  Influence of Solidification Pathway on Grain Morphology
To determine the extent of uncertainty in grain morphology resulting from the solidification pathway 
assumption, temperature data from the OpenFOAM transport model for the linear and Scheil 
solidification pathways was propagated to ExaCA to generate an explicit microstructure.  The 
equilibrium and sigmoidal relations were not carried forward to reduce the total number of simulations. 
A new 3D sparse grid was generated which included the uncertainty in laser absorption efficiency, mean 
undercooling for heterogeneous nucleation, and the coefficients dictating the interfacial response 
function. Surrogate models were generated for the linear and Scheil relations for each of the grain 
morphology outputs of interest discussed above. Sampling these surrogate models 10-million times 
produced the statistics presented in Table 4 and show a dependence of the microstructure on the 
solidification pathway.

Additionally, the probability density functions for the two latent heat release profiles are given in 
Figure 5. Differences between the curves can be attributed to the latent heat release profile through the 
mushy zone. These results indicate that the solidification pathway selection does impact the predicted 
as-built grain morphology, yet the significant overlap indicates that the influence is fairly small.

  



Table 4. Statistical generated by sampling the polynomial surrogate models 10-million times.

Mean misorientation 

with Z-Axis

[°]

2σ
Number of 

grains
2σ

Volume 

weighted 

aspect ratio

2σ
Mean grain 

diameter [µm]
2σ

Scheil 33.2 1.69 3,910 12,100 2.75 0.124 31.4 11.1

Linear 32.3 1.10 4,290 12,700 2.76 0.343 30.2 11.4

Figure 5. Probability density functions for grain morphology data showing a dependence on the 
solidification pathway selected. 

4.  Concluding Remarks
The results presented here are from a series of studies which investigated how statistical and systemic 
uncertainties impact the reliability of computational model predictions. Key observations from this work 
include:

 Uncertainty quantification frameworks such as that discussed in [11] allow for critical 
examination of modelling assumptions and their impact on model performance.

 The lack of resolution assumption often made in additive manufacturing modelling may not 
hold in the tail of the melt pool where mushy zone thickness is the greatest. When the 
assumption does not hold, selection of the solidification pathway may impact solidification 
dynamics and therefore the reliability of model predictions.

 Uncertainty in solidification dynamic predictions arising from the solidification pathway 
selection were shown to propagate to the predictions of as-built microstructure thus further 
reducing the reliability of model predictions.

 Lastly, while the results here only include a melt pool transport and cellular automaton grain 
growth model, it will be important to include a crystal plasticity code such as ExaConstit 
[27] to fully encompass the process-microstructure-property relations in future propagation 
studies.
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