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Abstract. Additive manufacturing (AM) may have many advantages over traditional casting and wrought
methods, but our understanding of the various processes is still limited. Computational models are useful to study
and isolate underlying physics and improve our understanding of the AM process-microstructure-property
relations. However, these models necessarily rely on simplifications and parameters of uncertain value. These
assumptions reduce the overall reliability of the predictive capabilities of these models, so it is important to
estimate the uncertainty in model output. In doing so, we quantify the effect of model limitations and identify
potential areas of improvement, a procedure made possible by uncertainty quantification (UQ). Here we highlight
recent work which coupled and propagated statistical and systematic uncertainties from a melt pool transport model
based in OpenFOAM, through a grain scale cellular automaton code. We demonstrate how a UQ framework can
identify model parameters which most significantly impact the reliability of model predictions through both
models and thus provide insight for future improvements in the models and suggest measurements to reduce output
uncertainty.

1. Introduction
Additive manufacturing of metal alloys such as Ti-6A1-4V, 316 SS, IN625, and IN718 [1] is a class of
metallurgical processes whereby components are printed in a layer-by-layer manner directed by a digital
model of the part. Laser powder bed fusion (L-PBF) involves laser melting and localized consolidation
of metal powders at sub-millimeter length scales, allowing for the production of complex components
difficult to produce via more traditional casting or deformation processing. As such, metal additive
manufacturing has found applications in aerospace, automotive, and biomedical fields [2]; yet
detrimental defects and inconsistent build quality and performance [3-7] make certification of critical
components difficult and limit industrial adaptation. Given the potential upsides of AM, reducing these
defects and thus broadening the applicability of the process is at the forefront of ongoing research efforts.
However, process complexity, laser system costs, and material costs mean experimental studies are
difficult. Computational models offer a supplementary means of investigating the process while
allowing for reproducibility and isolation of underlying physics.

Unfortunately, the complexity and scale of influential physics involved in metal additive
manufacturing is too great to be captured by a single computational model. Instead, multiple models



which specialize in a particular physical phenomenon must be developed and coupled to fully capture
the process. Examples of computational models for AM research include melt pool transport models
such as those used in [8-12], which provide temperature history data and melt pool geometries to aid in
the development of scan strategies [13]. Also, microstructure evolution models [14-17] are vital for
understanding as-built microstructures and crystal plasticity codes [18-21] predict the constitutive
mechanical behavior. While computational models such as these are powerful tools to investigate and
provide insight into metal additive manufacturing, their practical use relies on trade-offs between
computational efficiency and model fidelity which reduce overall reliability of their predictions.
Additionally, the data used to drive simulations (e.g., thermophysical properties) have inherent
uncertainty that propagate to simulation results. It is therefore important to quantify the reliability of
model predictions and the uncertainty therein, a process made possible via uncertainty quantification
UQ).

Two types of uncertainty are present in computational models such as those used for AM research,
both of which must be considered. The first is statistical uncertainty, referred to as aleatoric uncertainty,
resulting from natural variations in observations or measurements, oftentimes resulting from the
equipment making the measurements. Aleatoric uncertainty is typically easy to quantify and therefore
the propagation to model predictions can be readily determined. The second type of uncertainty is
systematic uncertainty, referred to as epistemic uncertainty, resulting from a lack of knowledge due to
data scarcity or model form error due to simplifications or non-physical parameters. Epistemic
uncertainty can only be inferred, and correlations must be drawn. Given the role of simulation in AM
research, it is vital that both forms of uncertainty and their propagation be accounted for, and their
influences understood to quantify model limitations as well as identify potential areas of improvement.

The present work highlights a few key results from recent studies where an uncertainty quantification
framework developed using TASMANIAN [22-26] was applied to two coupled models, a finite volume
transport model based in OpenFOAM [9] and ExaCA [27], a cellular automata model for grain scale
solidification, to demonstrate how both aleatoric and epistemic uncertainties can be studied and their
influence quantified.

2. Methodology

The present work focuses on key findings from two separate studies. The first looks at uncertainty in
solidification dynamics resulting from the role of solidification pathway selection. Second, the
uncertainty in solidification dynamics is propagated to the as-built microstructure, specifically the grain

morphology. The results presented here summarize a few key observations which are more thoroughly
detailed in [29].

2.1. Melt Pool Transport Model

The melt pool transport model detailed in this work is based in OpenFOAM for simulations of laser
powder bed fusion of Inconel 625 [9]. This model treats the domain as a continuum with volume-
weighted thermophysical properties for all phases present in a computational cell.

2.1.1. Conservation Equations. The transport model solves the conservation of mass, momentum, and
energy equations. In the present studies, fluid flow driven by Marangoni effects are disregarded and
therefore the conservation of mass and momentum can be disregarded leaving only the conservation of
energy given by Eqn. (1),

i) :
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where p is density, t is time, Cp is the specific heat capacity, T is temperature in Kelvin, and Kk is the
thermal conductivity of IN625. St is an energy source term given by Eqn. (2) which accounts for the
evolution of latent heat release due to phase change.
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Q is a volumetric laser heat source given by Eqn. (3) where 1 is the laser absorption efficiency, P is laser
power, 1 is the laser radius and d is the penetration depth over which the laser energy is integrated. x, y,

and z are the laser center location and x, is the laser center starting point.
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2.1.2. Boundary Conditions. For the present model, radiative heat transfer along the top boundary is
governed by a heat transfer coefficient h given by Eqn. (4), and vaporization by heat flux (q",) given

h = eo(T* — T4) 4)
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by Eqn. (5). Here ¢ is emissivity, ¢ is the Stefan-Boltzmann coefficient, T, is the far field temperature
taken to be 300K, and A, B, and C are algebraic coefficients. Input parameter values are provided in
Table 1.

2.1.3. Simulation Domain, Time Step, and Grid Spacing. In the presented results two different
simulation domains were used. A single line scan was used in Section 3.1 with a domain size of 5.0 x
0.8 x 0.4 mm to ensure a steady state melt pool was established at the probe locations while still
approximating a semi-infinite domain surrounding the melt pool. In Section 3.2 and 3.3 a multi-pass,
multi-layer simulation based on the AMB2018-01 test bed series [30] was used to create a build volume
over which the microstructure was analyzed. This consists of alternating even/odd scan pattern totalling
65 layers. For both simulation domains a uniform grid spacing of 5 um was used to ensure sufficient
spatial resolution needed to capture the melt pool curvature. A 0.1 ps timestep was used for the single
line scan, while an adaptive timestep was used for the multi-pass multi-layer simulation to reduce
simulation time when the laser is off during dwell periods.

2.1.4. Outputs of Interest. For the single line scan study, the output of interest is the cooling rate through
the tail of the melt pool along the top surface defined by a relative position through the mushy zone (
Xre) Where x . = 0 at the liquidus isotherm and x,; = 1 at the solidus isotherm. For the coupled models
study, the outputs of interest were selected based on the inputs required by the weakly coupled CA grain
scale solidification model. Here, the time at which each computational cell drops below the liquidus
temperature and the instantaneous cooling rate at the liquidus isotherm are recorded and passed to
ExaCA.

2.2. CA Grain Growth Model

2.2.1. Initialization. The grid spacing used by the transport model is too coarse to adequately resolve
grain competition and nucleation, therefore the OpenFOAM temperature data was interpolated down to
the CA grid spacing (2.5 pm here). Additionally, a substrate was simulated using a substrate grain size
So which was then used to calculate the number of grains (and thus grain seeds) in the substrate. Each
grain seed was assigned to a random cell in the substrate with 1 of 10,000 possible cubic grain



orientations. Cells not assigned a seed were grouped to the nearest seed to develop the final substrate
grain structure..

2.2.2. Grain Growth. The decentered octahedron method is leveraged by ExaCA [27] which tracks the
solidification front as it grows. An octahedral grain envelope half-diagonal direction, each half-diagonal
aligned with one of the <001> crystallographic directions) is assigned to each active cell. During each
time step where an active cell has a temperature below the liquidus, the half-diagonal length L of each
octahedron is updated using Eqns. (6) and (7).

AL = v ©)
AX

V(AT) = A(AT)? + B(AT)? + C(AT) (7

Here, AL is the increment in octahedron half-diagonal length, At is the CA timestep, Ax is the grid
spacing, and AT is the cell undercooling relative to the liquidus temperature. A, B, and C are fitting
constants for a polynomial fit to experimental dendrite growth velocities V(AT) based on work by [30].
The octahedron half-diagonal length governed by Eqn. (6) was limited to 0.05 to prevent an order of
iteration dependence growth. A timestep of 0.1us was used to ensure the growth limit is not reached by
the advancing melt pool periphery during steady state.

2.2.3. Heterogeneous Nucleation. In addition to grain growth, heterogeneous nucleation ahead of the
front is modelled by ExaCA. All cells that will undergo solidification were assigned a random number
Ryucieation between 0 and 1. In Eqn. (8) N, is a heterogeneous nucleation site density. If Eqn. (8) is true,
then the cell is a potential nucleation site.

Ruucleation < No (AX) 3 )

Each cell is then assigned a nucleation undercooling value sampled from a Gaussian distribution
centered around ATy with a standard deviation of AT If the nucleation undercooling value of a cell is
reached prior to the cell becoming active via a cell capture event associated with grain growth, the
nucleation event is successful, a new grain envelope with a random orientation is assigned to the cell,
and the cell becomes active. All input parameter values used by the CA model are provided in Table 2.

2.2.4. Outputs of Interest. The grain growth model was used to produce as-built microstructures
resulting from temperature data produced by the transport model. The presented work was focused on
grain size and shape and thus the outputs of interest were 1) grain misorientation relative to the +Z axis,
2) average grain count, 3) volume weighted aspect ratio, and 4) average grain diameter of a sphere with
the same volume. All these values were calculated in a representative value element (RVE) taken out
of the middle of the as-built microstructure as depicted in Figure 1.
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Figure 1. Representative volume element out of which the grain morphology data is drawn. The RVE
avoids simulation boundaries and is taken near the top of the build when the microstructure is assumed
to fully evolved. Gray indicates epitaxial grains and red grains are nucleated.

2.3. Uncertainty Quantification

To determine the influences of aleatoric and epistemic uncertainties on model reliability, the uncertainty
quantification framework detailed in [11] was leveraged here for the analysis of solidification pathway
selection using TASMANIAN][21-25].. This framework involves first establishing uncertainty bounds
for each input parameters from the literature where possible, or by inference when not. A sensitivity
analysis then revealed how the uncertainty in each parameter propagates and manifests as uncertainty
in the outputs of interest. In doing so, not only can the most significant contributing uncertainties be
determined, but so too can those which are negligible and can be disregarded to simplify the uncertainty
space. Next, a sparse grid, which only features the parameters with the highest sensitivity, was
constructed where grid points correspond to sets of simulation input parameters. Simulation results
corresponding to these points are then used to construct a polynomial response surface. This response
surface acts as a surrogate model which approximates the behavior of the computational model/models
but can be interrogated rapidly. By sampling the surrogate 10 million times via a Monte Carlo based
method, probability density functions (PDFs) are formed. These PDFs represent the uncertainty
distribution for each output of interest due to the uncertainty in the considered input parameters.

Table 1. Transport model input parameters and associated uncertainties.

Parameter Most likely value Uncertainty Units

sl 7670.0 1.0% kg/m3
Cp.s 579.28 4.0% J/(kg K)
Cp.l 750.65 4.0% I/(kg K)
ke 8.275+0.01472T 5.0% J/(m s K)
ki 4.889 +0.01474T 5.0% J/(m s K)

P 195.0 45W w

n 0.30 15.0% -

d 20 25.0% pum

r 85.7 - um
Le 2.18 x 10° 4.0% J/kg
L. 6.10 x 10° 4.0% J/kg

€ 0.40 - ---

A 2.121 x 10" - W K12/m?2
B 14.29 - ---

C 44,756 --- K




Table 2. Input parameter values and associated uncertainties for the CA grain growth model.

Parameter Most likely value Uncertainty Units
Sa 25.0 10.0pum pm
AT 20.0 75% K
AT, 2 2K K
A -1.0302 x 10 7 50% m/(s K3)
B 1.0533 x104 50% m/(s K?)
C 2.2196 x 10 -3 50% m/(s K)
No 1015 - m'3

3. Results and Discussion

3.1. Influence of Solidification Pathway Selection on Solidification Dynamics

One common assumption made in additive manufacturing modelling is that, due to the cooling rates and
melt pool size, transport models lack the necessary resolution to resolve the release of the latent heat
profile in the mushy zone and therefore any fy(T) function used in Eqn. (2) can be used if the entirety of
the latent heat is accounted for. For this reason, in addition to thermodynamic models such as
equilibrium or Scheil, non-physical but numerically convenient linear or sigmoidal functions (shown
for IN625 in Figure 2) are oftentimes used. If the ‘lack of resolution’ assumption does not hold, then
selection of the solidification pathway and latent heat release profile will impact model prediction
reliability by increasing the uncertainty therein.
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Figure 2. Common solidification pathways which dictate the release of latent heat during
solidification.

Using the UQ framework and sensitivity analysis detailed [11], a 3-dimensional sparse grid was
constructed for each of the solidification pathways which accounts for the uncertainty in laser absorption
efficiency, and solid and liquid specific heat capacities of IN625 (the three parameters model predictions
had the highest sensitivity to). 19 simulations were run using each of the pathways and used to construct
polynomial response surfaces which act as surrogate models. All four surrogate models were sampled
10-million times to generate the statistics presented in Table 3. These statistics represent the uncertainty
in model predictions due to the uncertainty in input parameters. Comparing results for each model
illustrates the epistemic uncertainty associated with the solidification pathway selection. Differences



between the pathways indicates that the lack of resolution assumption does not hold for the melt pool
length or cooling rate at the liquidus isotherm.

Table 3. Probability density function statistics generated by sampling polynomial surrogate models 10
million times. Differences between the model indicates the lack of resolution assumption does not
hold for melt pool length and cooling rate.

Output Solidification pathway Mean 26
Scheil 14091 2.10

. Equilibrium 134.01 2.15
Width [pm] Linear 140,35 2.10
Sigmoidal 140.42 2.08

Scheil 4621 128

Equilibrium 42.48 1.28

Depth [pm] Linear 45.84 1.26
Sigmoidal 45.93 1.26
Scheil 404.91 14.72
Equilibrium 370.85 13.86
Length [um] Linear 41822 15.38
Sigmoidal 41791 1534
Scheil 418751 27.015
. Equilibrium 360,329 19.112
Cooling rate [K/s] Linear 923,000 56.035
Sigmoidal 1632218 76.071

In addition to the statistic provided above, Figure 3 depicts the cooling rate through the mushy zone
at the tail of the melt pool. If the latent heat release profile were not adequate resolved, these curves
would overlap significantly. However, this figure shows how the linear (black) and sigmoidal (blue)
predict larger cooling rates near the liquidus isotherm (x,.; = 1) relative to the equilibrium and Scheil
thermodynamic relations, but lower cooling rates near the end of solidification. Figure 2 shows how
sigmoidal and linear release a significant amount of latent heat near the onset of solidification, but much
less later, whereas sigmoidal and linear are more gradual in their latent heat release throughout the
freezing range. These observations agree with those drawn from the surrogate model sampling as the
latent heat release profile influences the solidification dynamics.

le6

—— sigmoidal
— linear
4 —— scheil
equilibrium

Cooling rate [K/s]

0 1
Xrel
Figure 3. Cooling rate throughout the mushy zone for each of the solidification pathways. Sigmoidal
and linear predict higher cooling rates early on, but lower near the end of solidification.



3.2. Grain Morphology Sensitivity Analysis

To begin the uncertainty propagation, a sensitivity analysis was conducted where input parameters for
each model were individually adjusted by the uncertainties reported in Tables 1 and 2. These sensitivities
are depicted in Figure 4 for each of the outputs of interest. Uncertainty in the interfacial response
function coefficients (V(T)), the mean nucleation undercooling temperature, and the laser absorption
efficiency showed the highest sensitivities and therefore were included in the surrogate model
construction. All other input parameter uncertainties were neglected.

A Mean Grain Misorientation with Z-axis (32.3°) B Number of Grains (1936)
V(T) (CA) | | ATy (CA) 1
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Figure 4. Sensitivity analysis for grain morphology showing uncertainty in laser absorption efficiency,
IRF, and the mean nucleation undercooling temperature propagate significantly through the models.

3.3. Influence of Solidification Pathway on Grain Morphology

To determine the extent of uncertainty in grain morphology resulting from the solidification pathway
assumption, temperature data from the OpenFOAM transport model for the linear and Scheil
solidification pathways was propagated to ExaCA to generate an explicit microstructure. The
equilibrium and sigmoidal relations were not carried forward to reduce the total number of simulations.
A new 3D sparse grid was generated which included the uncertainty in laser absorption efficiency, mean
undercooling for heterogeneous nucleation, and the coefficients dictating the interfacial response
function. Surrogate models were generated for the linear and Scheil relations for each of the grain
morphology outputs of interest discussed above. Sampling these surrogate models 10-million times
produced the statistics presented in Table 4 and show a dependence of the microstructure on the
solidification pathway.

Additionally, the probability density functions for the two latent heat release profiles are given in
Figure 5. Differences between the curves can be attributed to the latent heat release profile through the
mushy zone. These results indicate that the solidification pathway selection does impact the predicted
as-built grain morphology, yet the significant overlap indicates that the influence is fairly small.



Table 4. Statistical generated by sampling the polynomial surrogate models 10-million times.

Mean misorientation Volume )
Number of Mean grain
with Z-Axis 20 ) 20 weighted 20 ) 20
grains ] diameter [pum]
[°] aspect ratio
Scheil 332 1.69 3,910 12,100 2.75 0.124 314 11.1
Linear 323 1.10 4,290 12,700 2.76 0.343 30.2 11.4
le—-4
—— Linear
A 12518 — Scheil
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Figure 5. Probability density functions for grain morphology data showing a dependence on the

solidification pathway selected.

4. Concluding Remarks
The results presented here are from a series of studies which investigated how statistical and systemic
uncertainties impact the reliability of computational model predictions. Key observations from this work

include:
[

Uncertainty quantification frameworks such as that discussed in [11] allow for critical
examination of modelling assumptions and their impact on model performance.

The lack of resolution assumption often made in additive manufacturing modelling may not
hold in the tail of the melt pool where mushy zone thickness is the greatest. When the
assumption does not hold, selection of the solidification pathway may impact solidification
dynamics and therefore the reliability of model predictions.

Uncertainty in solidification dynamic predictions arising from the solidification pathway
selection were shown to propagate to the predictions of as-built microstructure thus further
reducing the reliability of model predictions.

Lastly, while the results here only include a melt pool transport and cellular automaton grain
growth model, it will be important to include a crystal plasticity code such as ExaConstit
[27] to fully encompass the process-microstructure-property relations in future propagation
studies.
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