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e234s HLA Class I Supertype Classification Based on Structural Similarity

06789 Yue Shen,* Jerry M. Parks,” and Jeremy C. Smith*

Q:11 HLA class I proteins, a critical component in adaptive immunity, bind and present intracellular Ags to CD8+ T cells. The extreme
polymorphism of HLA genes and associated peptide binding specificities leads to challenges in various endeavors, including
neoantigen vaccine development, disease association studies, and HLA typing. Supertype classification, defined by clustering
functionally similar HLA alleles, has proven helpful in reducing the complexity of distinguishing alleles. However, determining
supertypes via experiments is impractical, and current in silico classification methods exhibit limitations in stability and
functional relevance. In this study, by incorporating three-dimensional structures we present a method for classifying HLA class I
molecules with improved breadth, accuracy, stability, and flexibility. Critical for these advances is our finding that structural
similarity highly correlates with peptide binding specificity. The new classification should be broadly useful in peptide-based

vaccine development and HLA—-disease association studies.

uman leukocyte Ag class I (HLA I) molecules are

expressed on the surface of almost all nucleated cells and pre-

sent intracellular antigenic peptides to CD8* T lymphocytes
(cytotoxic T cells), eliciting immune responses (1, 2). HLA T molecules
are composed of two chains: the «-chain is polymorphic and functionally
important, whereas the (3-chain is the non-HLA—encoded 3,-microglobulin
and is almost invariant. The HLA system is one of the most polymorphic
regions within the human genome, which empowers the immune system
to respond to a wide spectrum of epitopes (3). Three gene loci encode the
classical HLA I a~chain: the HLA-A, HLA-B, and HLA-C genes. As of
June 2022, the IPD-IMGT/HLA database includes 23,694 HLA 1 alleles,
encoding 13,793 unique proteins. In addition, the diploid human genome
creates a very large number of haplotypes, making the HLA system one
of the most complex and diverse protein families.

The complexity arising from HLA polymorphism, in particular
the largely unknown yet dissimilar functions, that is, peptide binding
specificities, of alleles, is a challenging problem for researchers. For
example, in peptide vaccine development, a key step is to find anti-
genic peptides that bind tightly to the specific HLA alleles carried
by the patient. Because the frequencies of alleles and haplotypes
vary greatly in populations, with many being very rare, most efforts
were made focusing on populated alleles. However, only 150 alleles
have experimentally characterized binding motifs and submotifs (4),
and only 112 alleles have accurate allele-specific prediction models
(5, 6). Still, uncharacterized alleles are carried by ~15% of the global
population, as revealed by a simple calculation using the Immune
Epitope Database population coverage tool (7), and some have been
demonstrated to play a unique role in pathogenesis (8—11). In such
cases, the rare and less common alleles need to be studied and can-
not simply be neglected. Furthermore, the large number of alleles
makes it difficult to identify associations between individual HLA
phenotypes and disease susceptibility (12, 13).
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Although HLA alleles do differ in peptide binding specificities,
they are not always functionally distinct. Since the 1990s, studies
have shown that some HLA alleles have largely overlapping peptide
binding specificity (14-20). Accordingly, most HLA alleles could
be clustered into supertypes and thus represented by a few typical
alleles (21, 22), which greatly reduces the difficulty of discriminating
between the huge number of HLA alleles.

Determining supertypes via experiments is very time- and effort-
consuming, and thus it is impractical for classifying large numbers
of alleles (23-25). As viable alternatives, several in silico classifi-
cation methods have been proposed. Among these sequence-based
approaches cluster alleles based on global (whole sequence) (26, 27)
or local (binding groove or contact residues) (28-30) sequence
similarity using sequence alignment. Prediction-based approaches
calculate peptide binding specificity from predicted peptide-HLA
affinities, instead of experimental data (31, 32). Structure-based meth-
ods use three-dimensional (3D) information derived from HLA
structures, such as spatial similarity and molecular interaction fields
(33), the number of hydrogen bonds, interface area, and the gap vol-
ume between HLA and peptide (34).

Current HLA [ supertype classifications have proven to be helpful
and are widely used but have limitations. Some methods cluster
alleles based on sequence or structural similarities between the
molecules. However, the correlation of sequence or structure with
functional similarity is not well established, and thus the resulting
supertypes are not guaranteed to include functionally similar alleles.
Prediction-based methods are limited by the coverage and accuracy
of peptide HLA affinity prediction methods. The accuracy of predic-
tors relies heavily on training data, which are not abundant in general,
leading to poor performance of widely used predictors on both rare
and populated alleles (35, 36). Structure-based methods are potentially
more informative than sequence-based methods but have been limited
by the availability of high-quality HLA structures and the overall
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complexity of structure analysis. In addition, due to the existence of
interlocus interactions and coevolution of HLA genes, association
analysis on the haplotype level has advantages over single-locus
genotype approaches (37, 38), but most widely used supertype clas-
sifications are locus specific, and thus are not capable of describing
functional relationships between alleles at different loci. These limi-
tations indicate that advanced approaches to supertype classification
are needed to further facilitate HLA studies.

In this study, we explore the use of 3D structural similarity to
measure peptide binding specificity and cluster HLA alleles. By
using the revolutionary structural modeling tool ColabFold (39) and
an automated analysis pipeline, issues of structure-based methods
in structure availability and analysis complexity were addressed,
enabling the present method to be straightforwardly extended over
the whole of the HLA I space and not be restricted to alleles with
sufficient experimental data. Also, we establish that structural simi-
larity between allele pairs is highly correlated with peptide binding
specificity. Finally, based on structural similarity, 449 populated
alleles are hierarchically clustered into 12 supertypes and 20 subtypes,
giving flexibility in the resolution of describing epitope similarities
between alleles. Compared to previous classifications, the present
clustering method has better performance (cohesion), meaning that
the classification better represents similarity in peptide binding spe-
cificity. Also, higher stability infers better confidence and extensi-
bility, ensuring that users can add more custom alleles without
perturbing the existing classification structure.

Materials and Methods
Structure modeling of HLA I molecules

3D structure of HLA I molecules. HLA 1 protein molecules are hetero-
dimers composed of two chains of different length: a polymorphic a-chain
and a conserved B-chain (Fig. 1A). The a-chain contains the peptide binding
domains (al and «2), the membrane-proximal domain (a3), the trans-
membrane (TM) region, and the cytoplasmic tail. Between the ol and a2
domains, a binding groove is formed by two roughly parallel a helices on
a 3 sheet surface (40). Residues of presented peptides occupy six character-
istic binding pockets (named A-F) along the groove (Fig. 1B). Two deep
pockets, B and F, contribute the most to the binding affinity and correspond
to anchor residues on peptides (41).

HLA nomenclature. To maintain data integrity, HLA alleles are given unique
names according to the nomenclature adopted by the WHO Nomenclature
Committee for Factors of the HLA System (42). The allele name starts with
the HLA prefix and gene name, followed by up to four sets of digits that
identify the allotype group, specific protein, synonymous DNA variations
within the coding region, and DNA variations in noncoding regions, respec-
tively. For example, alleles HLA-A*01:01:01:01 and HLA-A*01:01:01:02
belong to the same gene locus and allotype group, encode the same proteins,
and have the same DNA sequences in the coding regions, but they differ in
the noncoding regions. For convenience, all alleles are referred to as unique
proteins by the gene name and first two sets of digits, and the full names are
used only when necessary.

HLA allele frequency analysis. Due to the large number of HLA alleles,
protein structural modeling and supertype classification were limited to popu-
lated alleles. Allele frequency data were derived from the Allele Frequency
Net Database (43). Alleles with a frequency >0.01 in any population with
>50 samples were determined as populated alleles and selected for sub-
sequent structural modeling and clustering. There were 128 HLA-A,
235 HLA-B, and 86 HLA-C alleles that met the above criterion.

Collecting HLA sequences and crystal structures. Protein sequences of
populated HLA alleles were downloaded from the IPD-IMGT/HLA database
(44). Crystal structures were downloaded from the IMGT/3Dstructure-DB
(45). The allele name of each crystal structure was validated by extracting
the HLA a-chain protein sequence and comparing it to the record in the
IPD-IMGT/HLA database. There were 397 crystal structures of 40 alleles
collected (Supplemental Table I). Structure cleaning was performed with
PyMOL (version 2.5.2) (46), during which water molecules, ions, binding
peptides, and the B-chain were removed, leaving the a-chain only.

Dataset split for validation purpose. Alleles were split into several datasets
for different purposes. The model quality evaluation set was used to assess

HLA CLASSIFICATION

how closely the structural models reproduce experimentally determined
crystal structures for the 40 alleles that have crystal structures available
(Supplemental Table I). The reference panel was used to estimate the
performance of present and previous methods, including 31 HLA-A,
57 HLA-B, and 22 HLA-C alleles that were classified into supertypes
with high confidence in previous studies (Supplemental Table II). The
HLA-A and HLA-B alleles were taken directly from the reference panel
used in Sidney et al. (30), the supertype classifications of which were
based on the experimentally established peptide binding motif. The HLA-C
alleles were picked from the alleles of the consensus of the two supertype
classification methods reported in Reche and Reinherz (33).
Structural modeling and coarse gaining. A total of 451 HLA structures,
including 449 populated alleles plus 2 rare alleles that belong to the reference
panel (B*08:02 and B*27:09), were modeled using ColabFold (39), an
implementation of AlphaFold2 (47), that accelerates predictions by using fast
homolog sequence searching with MMseqs2 (48, 49). The TM domains
were trimmed and not modeled, as the TM domain is far from the peptide
binding groove and is expected to have a negligible influence on the folding
of the binding domain. Also, because the models were evaluated by overall
quality, a poorly modeled TM domain may dominate scoring of model qual-
ity, concealing details in the peptide binding domain. Models were generated
with the AlphaFold2_batch.ipynb (version 1.3) Google Colaboratory note-
book. For each allele, five models were built with three rounds of recycles.
The model with the highest predicted local distance difference test Ca score
was then relaxed using the Rosetta FastRelax protocol (50) with fixed back-
bone to minimize steric clashes and optimize side chain positioning, because
the constraint is not available in current ColabFold Amber implementation.
We generated 20 relaxed replicas for each model and selected the one with
the lowest total score calculated by the ref 2015 Rosetta energy function (51).
Finally, all models were trimmed to include only the peptide binding
domain using Biopython (version 1.78) (52) and then superimposed onto
the crystal structure of the most widely studied allele, HLA-A*02:01 (Pro-
tein Data Bank [PDB] ID: 1i4f) (53), with PyMOL by aligning the residues
of the o helices and (B sheets that form the binding groove in the al and
o2 domains. The alignment is important for calculating structure distances
(SDs) in the following step because the SD metric, which is defined below,
is sensitive to the relative orientations of two structures.

Side-chain positioning is important in HLA—peptide interactions but is

difficult to predict accurately (54). Coarse graining approximations reduce Q:13

the number of df and achieve balance between predictive power and compu-
tational cost, and thus have been successfully used in studying peptide-MHC
interactions (55-57). Also, most protein chemical and physical similarities
are analyzed at the residue level rather than the atomic level. Therefore, to
simplify calculation and minimize errors introduced by modeling, the HLA
models were coarse-grained using Python scripts. In this step, each residue
was represented by the center of mass of its side chain (hydrogen atom for
glycine), whereas backbone atoms (N, CA, C, and O in the PDB naming
scheme) were not explicitly output.

Evaluating model quality. The quality of ColabFold models was measured
by the root mean square deviation (RMSD) between models in the model
quality evaluation set and crystal structures of the same allele. Some alleles
have multiple crystal structures available. To represent the average of each
of such alleles, the centroid structure was selected for comparison: first, the
mean structure was generated in the way that the coordinates of any atom in
the mean structure are the average coordinates of that atom in all crystal
structures; next, the all-atom RMSDs between crystal structures and the
mean structure were calculated using PyMOL; and finally, the structure with
the lowest RMSD from the mean structure was selected as the centroid struc-
ture. The use of a centroid structure, rather than the mean structure itself,
avoids comparisons with an unphysical structure obtained by averaging. To
estimate natural structural variation, RMSDs between crystal structures and
the centroid structure were also calculated.

Three kinds of RMSDs were used to describe structural similarity: all-atom,
backbone (Ca), and coarse-grained. The all-atom and backbone RMSDs were
calculated using PyMOL, and the coarse grained RMSD between two struc-
tures, P/ and P2, was calculated with Eq. 1:

RMSD(P1, P2) = ,/%Zﬁilfﬁ, ()

where J; is the distance between residue i of P/ and the equivalent Q:14

residue of P2, and N is the number of matching residues between
PI and P2.
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Calculating SD

Definition of coarse-grained SD. In this study, we aim to cluster alleles
with similar functions, that is, peptide binding specificity. However, that
information is unavailable for most alleles due to the high demand of time
and effort of peptide binding assays. As an alternative, because structure and
function are closely related, the similarity in function might be able to be
predicted from the similarity in structure. Specifically, the major assumption
in this work is that alleles with similar peptide binding groove structures have
similar peptide binding specificities. Structural similarity in this study is
described by a distance metric, adapted from an atomic-detail distance metric
defined and validated in a previous study (58) and modified in the present
study for use with coarse-grained models. First, a kernel function is defined as

1

FX)= m

2

Conforming to Hoffmann et al. (58), the kernel function in Eq. 2 trans-
forms the distance X (X € R|X =0) between two residues into a value in
[0, 1], and closer residues have larger values, which means higher weight in
determining structure similarity and vice versa. Parameters & and ¢ fine-tune
the shape of the kernel function and determine the sensitivity to displace-
ments between the two corresponding residues. For large ¢ and & values, dis-
tant residues will have small kernel function output, whereas small ¢ and &k
are more tolerant and distant residues will have higher values. To find opti-
mal ¢ and k values, several shape/parameter combinations were tested (see
Comparing SD and PD), and we found that ¢ = 0.3,k = 1 showed the
highest correlation with peptide binding specificity distance (PD), indicated
by the largest Pearson correlation coefficient (Supplemental Table III), and
thus were applied in the current study.

The structural similarity, K, between two proteins, P/ and P2, is defined as:

1

K(PLP2) =3 . coshf(o - x; —x))’

e N5 ®

In this equation, x; and x; represent the Cartesian coordinates of coarse-
grained residues i and j. The input of the kernel function is the Euclidean
distance x; — x;. The residue similarity S;; measures the physicochemical sim-
ilarity between residues i and j, which is derived from 1 — G;;/215, where
G;; is Grantham distance between the two amino acids (59) (Table I). The
Grantham distance matrix is widely used in calculating sequence and struc-
tural similarities between HLA alleles (60—62). We tested the performance
of several amino acid similarity matrices (63, 64), and with properly tuned
shape parameters the transformed Grantham similarity matrix outperformed
others (Supplemental Table III). The weight factor w; controls the importance
of residue 7 and is described in detail below.

The similarity, K(P1, P2), is dependent on the number of residues that are
defined to form the binding groove. Thus, the SD metric SD(P1, P2), which
measures the SD between P1 and P2 and fulfills the three axioms of metric
space, that is, minimality, symmetry, and triangle inequality (65), is defined as:

SD(P1,P2) = VK(P1,P1) + K(P2,P2) — 2K(P1,P2).  (4)

Residue weight factor w. Some residues in the binding groove contribute
more toward peptide binding affinity and selectivity than others; for example,
the residues B and F in the binding pocket are more important than other
residues. To represent realistic HLA-peptide binding, 21 key residues were
selected and weighted according to a previous study (Table II) (66). In that
work, single-residue substitutions of each position on HLA were performed,
exhibiting changed peptide binding specificities compared with the wild
type. Substitution of a position causing a larger difference suggests higher
impact on binding specificity. The position that caused a minimum differ-
ence, residue 7, led to a 4.5% difference, so its weight was set to 1. The
next lowest difference is in position 24, which resulted in a 5.2% difference
and thus was assigned a weight of 5.2/4.5 = 1.2. Weight factors of other res-
idues were determined in the same way. Other residues have weight 0 and
thus were ignored in calculating the SD.

Peptide binding specificity distance. The function of an allele as defined in
the current study is represented by its peptide binding specificity. By this
definition, the functional relationships between alleles are measured by pep-
tide PDs, which were calculated using the method adapted from MHCcluster

T2

(31). First, the binding affinities of each allele to a set of 50,000 random pep- Q:15

tides of length 8—14 (Table III) were calculated using the NetMHCpan 4.1
server (67). The random peptides were generated by Expasy RandSeq tool
(68), and the ratio of different lengths was in accordance with natural peptide
length preference (69). Next, the PD(P1,P2) between two alleles P/ and P2
was calculated by the correspondence of the top 10% strongest binders
(including 50,000 X 10% = 5000 peptides) of each allele, calculated as:

n(b1 N b2)
5000 ° )

where b/ and b2 are the top 10% strongest binding peptides of alleles P1
and P2, respectively, and n(bl N b2) is the number of peptides that are
strong binders to both alleles. If both alleles have the same set of strong bind-
ers (n(bl N b2) = 5000), the distance is 0, whereas for completely different
sets of strong binders (n(b1 N 52) = 0) the distance is 1.

Comparing SD and PD. The locus-wise matrices of the SD and PD of the
reference panel alleles were compared. For this, two pairwise distance matri-
ces (SD and PD) for each of the three loci (HLA-A, HLA-B, and HLA-C)
were calculated using Python scripts and were visualized as heatmaps by
Matplotlib (version 3.4.3) (70) and seaborn (version 0.11.2) (71). The corre-
lation between the two distances was further investigated via linear regres-
sion. Both SD and PD matrices of the same locus were normalized to the
range in [0, 1] using scikit-learn (version 1.1.1) (72) The MinMaxScaler func-
tion and then the PD were linearly fitted on SD using the SciPy (version 1.8.0)
(73) linregress function. The correlation between PD and SD was derived with
the Pearson correlation coefficient, which ranges in [—1, 1], and a larger abso-
lute value of this coefficient indicates stronger correlation.

PD(P1,P2)=1—

Hierarchical clustering based on SD

SD clustering. In this study, we propose an SD clustering method that per-
forms hierarchical clustering based on the pairwise SD. The method was
implemented using the AgglomerativeClustering function in the scikit-learn
package, with the complete-linkage method that has been shown to obtain a
coherent and compact clustering result (4, 25, 33).

Table I. Residue similarity matrix adapted from Grantham distance matrix, derived as described in Definition of coarse-grained SD
Arg Leu Pro Thr Ala Val Gly Ile Phe Tyr Cys His Gln Asn Lys Asp Glu Met Trp
049 033 066 073 054 042 074 034 028 033 048 059 068 079 044 070 0.63 037 0.18 Ser
1.00 053 052 0.67 048 055 042 055 055 064 016 087 080 060 088 055 075 058 053 Arg
1.00 054 057 055 085 036 098 09 0.83 0.08 054 047 029 050 020 036 093 0.72 Leu
1.00 082 087 0.68 0.80 0.56 047 049 021 064 065 058 052 050 057 060 032 Pro
1.00 073 068 073 059 052 057 031 078 080 070 064 060 070 062 040 Thr
1.00 0.70 0.72 056 047 048 0.09 0.60 058 048 051 041 050 061 031 Ala
1.00 049 087 077 074 0.11 0.61 055 038 055 029 044 090 059 Val
1.00 037 029 032 026 054 060 063 041 056 054 041 0.14 Gly
1.00 090 085 0.08 056 049 031 053 022 038 095 072 Il
1.00 090 005 053 046 027 053 0.18 035 0.87 0.81 Phe
1.00  0.10 0.61 054 033 0.60 026 043 083 083 Tyr
1.00  0.19 028 035 0.06 028 021 0.09 0.00 Cys
1.00 089 068 085 062 081 0.60 047 His
1.00 079 0.75 072 0.87 053 040 Gln
1.00 056 089 0.80 034 0.19 Asn
1.00 053 0.74 056 049 Lys
1.00 079 026 0.16 Asp
1.00 041 029 Glu
1.00  0.69 Met
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Table II. Contact residue positions in HLA class I proteins and corre-
sponding weight factor

Overlap of Binding Difference in Binding

Position” (i) Specificity” (%) Specificity® (%) Weight (w;)
63 55.4 44.6 9.9
67 65.7 343 7.6
116 73.9 26.1 5.8
9 75.6 24.4 54
97 78.7 21.3 4.7
152 79.4 20.6 4.6
167 82.8 17.2 3.8
156 83.2 16.8 3.7
74 83.9 16.1 3.6
70 85.6 14.4 3.2
80 86.3 13.7 3.0
171 84.0 13.0 2.9
45 87.3 12.7 2.8
66 88.0 12.0 2.7
77 88.0 12.0 2.7
76 89.4 10.6 2.4
114 89.7 10.3 2.3
99 90.4 9.6 2.1
163 93.1 6.9 1.5
95 93.1 6.9 1.5
59 93.5 6.5 1.4
158 93.8 6.2 1.4
69 94.5 5.5 1.2
24 94.8 5.2 1.2
7 95.5 4.5 1.0

Positions are listed in descending order of weight.

“There are no insertions or deletions in the binding domain of most existing
HLA T alleles and all alleles considered in this study. Thus, residue positions are
constant.

Overlap of binding specificity between altered HLA with single point mutation
and wild type.

“The difference was calculated as (1 — overlap)%.

Assessing clustering performance. Good clustering members within a clus-
ter are highly similar whereas members of different clusters are highly differ-
ent. The effectiveness of clustering was represented here by intracluster
similarity (cohesion), measured by the sum of squared errors (SSEs) and sil-
houette coefficient (SC) using Python scripts with the subsequent procedure.
The calculation of the SSE requires identification of the cluster centers,
which is usually the mean of cluster members. As a practical alternative, the
centroids of clusters were used here instead, given the following equation:

SSE = Zczz‘ec distance® (i, centroid(C)), (6)

in which the distance refers to the SD metric when calculating SD SSE, and
the PD when calculating PD SSE. Given the same number of clusters, a
smaller SSE value suggests better clustering because members of each
cluster are more homogeneous. Usually, as the number of clusters
increases, the SSE decreases monotonically. If all clusters are homoge-
neous, or the number of clusters equals the number of samples, the SSE
reaches its minimal value of 0.

Table III. Random peptide set for measuring peptide binding specificity
distance
Natural Relative Recalculated Number of Random
Peptide Length Abundance” Ratio (%)” Peptides  Sequence Length®
8 0.207 8.2 4,120 4,127
9 1 39.8 19,904 19,912
10 0.422 16.8 8,400 8,409
11 0.366 14.6 7,285 7,295
12 0.244 9.7 4,857 4,868
13 0.179 7.1 3,563 3,575
14 0.094 3.7 1,871 1,884
15 0.065 — — —

“Relative abundance compared with 9-mer as reported in Pierini and Lenz (60).

The ratio was recalculated as NetMHCpan only accept residue length from 8
to 14.

“The input of NetMHCpan is a long protein sequence, and then the NetMHCpan
server split the sequence into peptides of certain length using a sliding window algorithm.

HLA CLASSIFICATION

The SC compares the intracluster variation to the distances to the neigh-
boring clusters. For each allele i that belongs to cluster C, the average dis-
tance to all other alleles in the same cluster is

. 1
ali) = ——-——
@ size(C) — 1
If cluster C contains only one allele, then a(i) is set to 0 to avoid a

divide-by-zero error. Next, the average distance to the closest neighboring
cluster for each allele 7 is defined as

Zwec’ i distance(i, ). (7)

1
b(i) = min ——— distance(i, k), 8
@ c/=Dsize(D) ZkED @5 ®
where k is the member of neighboring cluster D. The SC for the clustering
result regarding all alleles is calculated as

1 N b(i) —ala
> (i) — a(a)

SC= N 24 max(@(). b))’ v

N
where N is number of alleles included in clustering. The range of the SC is
[-1, 1], and a high SC indicates proper clustering.

Hierarchical clustering of the reference panel. Alleles in the reference panel
were clustered locus-wise by the method described in SD clustering, as well
as three other methods for comparison. A second method, “direct clustering,”
also uses complete linkage hierarchical clustering but is based on PD. Third,
we reproduced the classifications from two previous studies: Sidney et al.
(30) proposed six HLA-A and six HLA-B supertypes, and Doytchinova
et al. (33) proposed three HLA-A, three HLA-B, and two HLA-C super-
types. Finally, the “random even split” method provides the baseline perfor-
mance, randomly clustering alleles into any given number of clusters of
equal size. The performance of each method was assessed by the PD SSE of
its clustering result. Because the SSE is dependent on the number of clusters
(N), methods including the structure clustering, direct clustering, and random
even split were performed on a series of N clusters to show the trend.
Hierarchical clustering of 449 populated HLA alleles. All 449 populated HLA
I alleles were hierarchically clustered across all alleles simultaneously for
two purposes. First, possible interlocus functional overlapping is investigated.
Also, such an approach ensures that supertypes are clustered with the same
degree of functional similarity for all alleles rather than vary from locus to
locus. The SD matrix of populated alleles was calculated, based on which
clustering was performed as described in SD clustering. The optimal number
of clusters was determined by analyzing the elbow plot and silhouette plot,
which show the SSE and SC based on SD as a function of the number of
clusters (N), respectively. With stepwise increasing of N, clustering was per-
formed, and the SSE and SC were calculated for the resulting clusters. The
optimal values of N are indicated by elbow points and SC peaks. The corre-
sponding dendrogram was generated with the SciPy dendrogram function
and visualized with the Interactive Tree of Life (iTOL) Web server (74).
Cluster stability estimated by bootstrapping. Clustering stability refers to the
addition of new members without perturbing the clustering hierarchy. One
major issue with hierarchical clustering is unsatisfying stability against inde-
pendent resampling, which is a type of robustness measurement (75-77).
The stability of the hierarchical clustering result was calculated in this study
using a bootstrapping strategy. The HLA alleles were randomly sampled
100 times with replacement, and then the SD clustering was performed on the
100 bootstrapped samples, with the same setting as the original sample. The
correspondence between bootstrapped cluster 4 and corresponding original
cluster B was calculated using the Jaccard index (78), which is defined as

ANB
J(A4,B)= ——. 10
(4.8)= 2 (10)
The stability of each cluster was then calculated as the mean Jaccard
index of that cluster among 100 bootstrapped clustering results.

Associated content

Structures, scripts, and instructions for use are available at https://github.
com/yshen25/HLA_clustering. The modeled all-atom structures of all 451
HLA T alleles are available in the GitHub repository.

Results
HLA I structural modeling
Structural models of 451 alleles were built using ColabFold, then

relaxed using Rosetta FastRelax (Fig. 1). The models were of high
confidence, as indicated by their average predicted local distance
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A

FIGURE 1. Structure of peptide-HLA complex (PDB ID: 3t02). (A) The
whole complex demonstrating the domains and peptide binding groove.
The transmembrane domain (TM), cytoplasmic tail, and lipid bilayer are
shown schematically. (B) The top-down view showing six characteristic
binding pockets (labeled A—F) along the binding groove. The peptide is
shown in rainbow color with the N terminus in purple and the C terminus

Q:20 in orange. Pockets are colored the same with closest peptide residue.

Q:16 difference test score of 96.2, and a minimum score of 94.0, with

values >90 indicating high accuracy (47). The quality of the models
was further tested by comparisons to the crystal structures of the
same allele. The RMSDs, calculated with respect to the correspond-
ing crystal structures or centroid structures, of the models in the
model quality evaluation set were compared with the natural struc-
tural variations measured by RMSDs between crystal structures and

F2 centroid structures (Fig. 2). The all-atom RMSDs of the models

(mean = 1.26 A) are slightly larger than those of the crystal struc-
tures (mean = 0.85 A). However, only one model (B*08:01,
RMSD = 1.97 A) exceeds the maximum RMSD of crystal structures
(PDB ID: 4QRP, RMSD = 1.74 A, compared with the centroid
structure 4QRS) (Fig. 2A). The backbone RMSDs of the two groups
are smaller than the all-atom RMSDs with the average 0.62 A for
models and 0.41 A for the crystal structures (Fig. 2B), showing that
the highest inaccuracy is in the side chain positioning. The distribu-
tion of coarse-grained RMSDs differs from the all-atom RMSDs
(Fig. 2C), whereas the average (1.35 A for models and 0.81 A for
crystal structures) is similar to the all-atom structures, showing
that coarse graining has little influence on model quality. We also
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FIGURE 2. Distribution of all-atom, backbone, and coarse-grained RMSDs
of crystal structures and ColabFold models compared with the centroid structure
of multiple crystal structures (when available) for each allele. (A—C) All-atom
(A), backbone (B), and coarse-grained (C) RMSDs.

examined the model of B*08:01 that performed poorly in all
three RMSD tests. In this study, the major differences between
the model and crystal structure occur in the loop regions
between the [ strands, which are distant from the binding
groove, and thus have only a minor impact on the clustering
results, in line with the observation that the loop regions show
flexibility in crystal structures as indicated, for example, by
high B-factor values (40).
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SD metric compared with PD

The SDs between alleles in the reference panel were compared with
their PDs. Both distances were calculated locus-wise and then nor-
malized to [0, 1], resulting in three pairs of intralocus distance
matrices (Fig. 3). It is evident that the PD and SD heatmaps display
similar patterns, suggesting that the two distances are in general
agreement. This finding was further examined by linear regression
between SD and PD. Among the three loci, HLA-B shows the high-
est coefficient (R = 0.79), followed by HLA-C (R = 0.75) and then
HLA-A (R = 0.73), which confirms the strong correlation between
the two distances. We also calculated the correlation coefficients
between PD and the pseudo-sequence distance calculated by the
BLOSUMBS2 substitution matrix (79), where the pseudo-sequence con-
sists of the 34 contact residues as defined in NetMHCpan (67). The
correlation coefficients for the BLOSUMG62 substitution matrix are
0.69, 0.69, and 0.59 for HLA-A, HLA-B, and HLA-C, respectively,
which are significantly inferior to the SDs (Supplemental Fig. 1). This
finding supports the hypothesis that peptide binding specificity of the
HLA I molecule is mainly determined by the structural landscape
of the binding groove. Although given the dependence of function
and binding in biology on 3D structure (80, 81), this result is not
unexpected, and it is of particular significance in that a quantitative
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correlation between structure and peptide binding is found over a
broad range of HLA types, emphasizing the usefulness of applying
structural information in peptide/HLA affinity prediction over using
sequence information alone.

Performance of reference panel clustering

The reference panel alleles were clustered locus-wise by four methods:
1) SD clustering, as described under SD clustering; 2) hierarchical
clustering based on pairwise PD (“direct clustering”), which should
provide the most accurate clustering among available binding data;
3) random even split representing the baseline performance; and
4) clustering results from two previous studies (30, 33). The perfor-
mance, that is, the cluster cohesion, was calculated by the PD SSE,
because the primary aim of supertype classification is to group alleles
with similar peptide binding specificities (Fig. 4). A low PD SSE indi-
cates higher intracluster similarity in peptide binding specificity, which
is improved performance. In all three loci, the PD SSEs of the present
clustering method are significantly lower than the random even split.
Compared to the direct clustering curve, the SD clustering methods
have very close SSE values, which indicates that the clustering based
on SD is a reasonable approximation to clustering based on PD. The
consistency between the two distances is also demonstrated by the SD

HLA-C
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FIGURE 3. Comparison between peptide binding specificity distance (PD) predicted by NetMHCpan and structural distance (SD) defined in the present work. In
the correlation plots, the fitted functions between two distances are shown with dotted line. Fitted function and Pearson correlation coefficient (R) are printed out.
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FIGURE 4. Elbow plot showing the sum of squared errors (SSEs) of
HLA-A, HLA-B, and HLA-C reference panel alleles clustering. The y-axis
on the left refers to SSE of the peptide binding specificity distance (PD
SSE), and y-axis on the right refers to the SSE of the structural distance
(SD SSE). The PD SSE of supertype classifications from Sidney et al. (25)
and Doytchinova et al. (28) are shown as marked points.

SSE and the PD SSE curves, which show very similar shapes after
scaling.

When compared with previous clustering methods, given the
same number of clusters the present method outperforms findings in
Doytchinova et al. (33) in all three loci, and it outperforms findings
in Sidney et al. (30) in HLA-A but not in HLA-B. Importantly, note
that the HLA-A and HLA-B alleles in the reference panel were
derived directly from Sidney et al. (30), with experimentally vali-
dated peptide binding motifs. These results illustrate that the present
classification method achieves accuracy comparable to experimen-
tally determined supertypes, and better than previous structure-based
methods. Furthermore, with the availability of high-quality mod-
els and the established correlation between SD and PD, it can be
inferred that the present method should have sustainable clustering
performance on alleles beyond the reference panel.

Supertype and subtype classification of populated HLA I alleles

Because the three classical HLA T loci, that is, A, B and C, are homol-
ogous, it is possible that alleles of different loci have overlapping pep-
tide binding specificities. Some classification methods proposed mixed
supertypes that include alleles from different loci (5, 29, 32). In the
present study, we clustered 449 populated alleles (frequency >0.01) to
investigate the possibility of overlapping peptide binding specificities
and to ensure that the clustering of all HLA I alleles achieves the
same level of functional similarity among all clusters.

The optimal number of clusters was determined by the elbow
plot and silhouette plot method (Fig. 5). The most significant elbow
point and SC peak appears at n = 5. However, dividing all HLA I
alleles into only five supertypes may hide useful details and thus is
not selected. Two optimized numbers of clusters, n = 12 and n = 20,
are suggested by both the elbow points and SC peaks. Accordingly,
the 449 populated HLA alleles were clustered into 12 supertypes and
20 subtypes, representing two levels of resolution (Fig. 6, Table IV).
In this way, the supertypes describe the overall functional similarities,
whereas the subtypes provide more details at enhanced resolution,
which provides flexibility in application.

Subtypes are named after the most abundant allotype group in the
cluster, following the naming convention, whereas supertypes were
named after the included subtypes. The sizes of the supertypes and
subtypes are imbalanced: each supertype contains one to three sub-
types and 9-72 alleles, whereas each subtype contains 4—44 alleles,
suggesting that distribution of the sampled 449 alleles is uneven in
peptide binding specificity space.

Although the supertypes and subtypes were clustered based on
structural similarity, they generally agree with allotype groups (the
first set of digits of allele nomenclature) that are based on sequence
similarity, because alleles that belong to the same group are usually
clustered together. This agreement indicates that the allotype groups
are reasonable approximations to supertypes and subtypes, as has
been done previously (82-84). As for allotype groups that were sep-
arated in multiple clusters, single point mutations in the key residues
and subsequent change of side chain positioning explain their split.
For example, allele B¥15:09 was clustered in subtype B14 rather
than B15 where most of the B*15 allele group is situated. The full
protein sequence comparison shows that B*15:09 has 8 mismatches
with B*15:01, which belongs to B15, and 10 mismatches with
B*14:01, which belongs to B14. However, among the 21 key residues
defined in Residue weight factor w, B¥15:09 has seven mismatches
with B#15:01 but four mismatches with B*14:01. In addition, the
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FIGURE 5. Elbow plot and silhouette plot, the sum of squared errors (SSEs),
and silhouette coefficient (SC) based on SD with respect to the number of clus-
ters. Two elbow points and silhouette peaks are shown as vertical dotted lines.
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FIGURE 6. Dendrogram of 449 populated HLA alleles by hier-
archical clustering. Clades of different subtypes are shown in differ-
ent colors. Allele names were hidden for clarity. The detailed SD
heatmap and dendrogram are available in the GitHub repository.

major structural difference between the three alleles is located near the
F pocket: the orientation of residue 97 in B*15:01 is different from
B*15:01 but similar to B*14:01 (Fig. 7).

At both the supertype and subtype levels, functional overlap
between different loci is not significant, as most supertypes and sub-
types are locus specific; the only exception is subtype C02 that
includes two HLA-B alleles, B¥46:01 and B*56:03 (Table IV). The
allele B*46:01 is validated to have a close functional relationship
with HLA-C (85), which provides circumstantial evidence that sup-
ports the present classification.

Stability of present supertype and subtype classification

The stability of supertypes and subtypes, that is, invariance, is an
important concern, as more alleles will be included and clustered in
future studies. To investigate whether the present supertype and sub-
type classification is reproducible given different sets of alleles, the
stability was evaluated with a bootstrapping strategy. The stability
of each supertype and subtype was calculated by its average Jaccard
index among 100 repetitions (Table V). In previous studies, the sta-
bility of supertypes has rarely been reported, as we found only one
study that reported the bootstrap values of 12 proposed HLA-A and
HLA-B supertypes, the average of which is 0.54 in the range of
[0, 1] (22). The average stability for our classification approach is 0.61
for supertypes and 0.75 for subtypes, respectively. In comparison,
then, the present classification shows better stability than previous
methods and is expected to be more robust. In addition, the stability
represents the confidence of each cluster, as clusters of low stability
may arise from random aggregation and be likely to collapse upon
minor changes in the data. For supertypes of low stability, in partic-
ular B08-B18-B39, the structural and functional similarity may be
falsely represented, and these supertypes should thus be used with
caution. The subtypes show higher stability than supertypes, mean-
ing that the functional similarity at the subtype level is more reliable
than the supertype level. We also simulated a scenario in which
new alleles are included: by adding the two already modeled rare

HLA CLASSIFICATION
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alleles, B*08:02 and B*27:09, the pairwise distance matrix calcula-
tion and hierarchical clustering of the 451 alleles were performed
the same way as for the 449 populated alleles. The two alleles,
B*08:02 and B*27:09, were clustered into subtype BO8 and B27,
respectively. The subtypes remained the same, whereas supertypes
showed a different pattern, as subtype BO8 detached from BOS-
B18-B39 and combined with C07. This demonstrated that most
subtypes are stable while some supertypes with low stability are
less satisfying.

Discussion

HLA genes are extremely polymorphic, resulting in numerous
alleles with diverse peptide binding specificities, thus allowing the
human adaptive immune system to respond to a very wide range of
Ags. However, this polymorphism also poses a significant difficulty
in studies including, but not limited to, organ and cell transplanta-
tion, disease association studies, and peptide vaccine development.
To reduce the conceptual complexity of the HLA system, the con-
cept of supertypes was introduced to cluster alleles that have similar
peptide binding specificities. Although, in the past, a number of
experiments have been carried out for supertype classification, these
cover only a small portion of binding peptide sequence space. For
example, when considering only 8-mer, 9-mer, and 10-mer peptides
consisting of the 20 canonical amino acids, the binding peptide
sequence has 20° + 20° + 20' (~1.1 x 10") possibilities, whereas
HLA-A*02:01, one of the most studied alleles, has binding assay
data for only 71,115 unique peptides in the Immune Epitope Database
(86). Although a large fraction of those peptides will be poor binders
or have no biological significance, there is still a massive gap, and
thus supertypes can hardly be determined entirely by experiment.

An alternative to experimental methods is to use predicted pepti-
de—HLA affinities, for example, using deep learning models trained
by experimental affinities, and this is perhaps the most direct in sil-
ico approach. However, the coverage and accuracy of peptide—HLA
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Table IV. Supertype and subtype assignment for 449 populated HLA I alleles

A01-A03-A66
A01 A03 A66
A*01:0 | A*36:0 | A*03:0 | A*11:0 | A*29:0 | A*30:0 [ A*31:0 [ A*32:0 | A*74:0 | A*25:0 | A*26:1
A*01:0 | A*80:0 | A*03:0 | A*11:0 | A*29:1 | A*30:0 | A*31:0 | A*32:1 | A*74:0 | A*26:0 | A*26:1
A*01:0 A*03:0 | A*11:0 | A*29:1 | A*30:1 | A*31:0 | A*33:0 A*26:0 [ A*34:0
A*01:0 A*03:2 [ A*11:1 | A*29:2 | A*30:1 | A*31:1 | A*33:0 A*26:0 | A*43:0
A*01:1 A*11:0 [ A*11:1 | A*29:5 | A*31:0 | A*31:2 | A*33:1 A*26:0 | A*66:0
A*01:2 A*11:0 [ A*29:0 | A*30:0 | A*31:0 | A*32:0 | A*34:0 A*26:1 | A*66:0
A*01:3 A*11:0 | A*29:0 [ A*30:0 | A*31:0 | A*32:0 | A*74:0 A*26:1 | A*66:0
A02
A02
A*02:0 [ A*02:0 | A*02:0 | A*02:1 | A*02:1 | A*02:2 | A*02:4 | A*02:5 | A*68:0 | A*68:3
A*02:0 | A*02:0 | A*02:1 | A*02:1 | A*02:1 | A*02:2 | A*02:4 | A*02:6 | A*68:0 | A*69:0
A*02:0 | A*02:0 | A*02:1 | A*02:1 | A*02:2 | A*02:3 | A*02:4 | A*68:0 | A*68:0
A*02:0 | A*02:0 | A*02:1 | A*02:1 | A*02:2 | A*02:3 | A*02:5 | A*68:0 | A*68:1
A24
A24
A*23:0 | A*23:1 | A*24:0 | A*24:0 | A*24:0 | A*24:1 | A*24:1 | A*24:1 | A*24:2 | A*24:2 | A*24:2 | A*24:5
A*23:0 [ A*24:0 | A*24:0 | A*24:0 | A*24:0 | A*24:1 | A*24:1 | A*24:2 | A*24:2 | A*24:2 | A*24:4 |
B07-B35
B07 B35
B*07:0 [ B*07:3 [ B*42:0 | B*55:0 | B*67:0 | B*15:0 | B*35:0 | B*35:1 | B*35:2 | B*35:3 | B*40:0
B*07:0 | B*07:7 | B*42:1 | B*55:1 | B*78:0 | B*15:1 | B*35:0 | B*35:1 | B*35:2 | B*35:4 | B*53:0
B*07:0 | B*07:9 | B*54:0 | B*56:0 | B*81:0 | B*15:2 | B*35:0 | B*35:1 | B*35:2 | B*35:4 | B*53:0
B*07:0 | B*07:9 | B*54:1 | B*56:0 | B*82:0 | B*18:0 | B*35:0 | B*35:1 | B*35:2 | B*35:6 | B*53:0
B*07:0 | B*39:1 | B*55:0 | B*56:0 | B*82:0 | B*35:0 | B*35:0 | B*35:1 | B*35:2 | B*35:6
B*07:0 | B*39:2 | B*55:0 | B*56:0 B*35:0 | B*35:1 | B*35:1 | B*35:2 | B*35:7
B*07:1 | B*42:0 | B*55:0 | B*56:4 B*35:0 | B*35:1 | B*35:1 | B*35:3 | B*40:0
B51-B58
B51 B58
B*51:0 | B*51:0 | B*51:0 | B*51:1 | B*51:1 | B*51.7 B*15:1 | B*57:0 | B*57:0 | B*58:0
B*51:0 | B*51:0 | B*51:0 | B*51:1 | B*51:3 | B*52:0 B*15:1 | B*57:0 | B*57:0 | B*58:0
B*51:0 | B*51:0 | B*51:1 | B*51:1 | B*51:6 | B*59:0 B*15:6 | B*57:0 | B*57:2 | B*58:0
B08-B18-B39
B08 B18 B39
B*08:0 | B*08:0 | B*18:0 | B*18:0 | B*18:0 | B*39:0 [ B*39:0 | B*39:0 | B*39:2 | B*73:0
B*08:0 | B*08:0 | B*18:0 | B*18:0 | B*18:0 | B*39:0 | B*39:0 | B*39:1 | B*39:5 |
Bl4
Bl4
B*14:0 | B*14:0 | B*14:0 | B*14:1 | B*15:1 | B*15:2 | B*15:3 | B*38:0 | B*38:0 | B*39:0 | B*78:0 |
B*14:0 | B*14:0 | B*¥14:0 | B*15:0 | B*15:1 | B*15:2 | B*15:9 | B*38:0 | B*39:0 | B*39:1 | |
B15-B40
B15 B40
B*13:0 | B*15:0 | B*15:2 | B*15:3 | B*40:0 | B*47:0 | B*15:3 | B*40:0 | B*40:1 | B*41:0 | B*49:0
B*13:0 | B*15:0 | B*15:2 | B*15:3 | B*40:0 | B*48:0 | B*15:5 | B*40:1 | B*40:2 | B*41:2 | B*50:0
B*13:0 | B*15:0 | B*15:2 | B*15:3 | B*40:0 | B*48:0 | B*37:0 | B*40:1 | B*40:3 | B*44:0 | B*50:0
B*13:3 | B*15:0 | B*15:2 | B*15:4 | B*40:0 | B*48:0 | B*39:0 | B*40:1 | B*40:4 | B*44:1 | B*50:0
B*15:0 | B*15:1 | B*15:3 | B*18:0 | B*40:2 | B*48:0 | B*39:0 | B*40:1 | B*40:4 | B*44:1
B*15:0 | B*15:1 | B*15:3 | B*35:2 | B*40:3 B*40:0 | B*40:1 | B*41:0 | B*45:0
B*15:0 | B*15:1 | B*15:3 | B*35:2 | B*47:0 B*40:0 | B*40:1 | B*41:0 | B*48:0
B27
B27
B*27:0 | B*27:0 | B*27:0 | B*27:0 | B*27:0 | B*27:0 | B*27:0 | B*27:0 | B*27:1 | | |
B44
B44
B*44:0 | B*44:0 | B¥44:0 | B*44:0 | B*44:0 | B*44:0 | B*44:0 | B*44:1 | B*44:2 | B*44:2 | |
C01-C02
o1 C02
C*01:0 [ C*03:0 [ C*03:1 | C*04:1 | C*08:0 | C*15:0 | C*15:1 | B*46:0 | C*02:1 | C*06:0 | C*12:0 | C*15:0
C*01:0 | C*03:0 | C*04:0 | C*04:1 | C*08:0 | C*15:0 | C*17:0 | B*56:0 | C*03:0 | C*06:0 | C*12:0 | C*15:0
C*01:0 | C*03:0 | C*04:0 | C*04:4 | C*08:0 | C*15:0 | C*17:0 | C*01:0 | C*03:1 | C*07:2 | C*14:0 | C*16:0
C*01:4 | C*03:0 | C*04:0 | C*05:0 | C*08:0 | C*15:0 | C*18:0 | C*02:0 | C*03:1 | C*12:0 | C*14:0 | C*16:0
C*01:5 | C*03:0 | C*04:0 | C*05:0 | C*08:1 | C*15:0 | C*18:0 | C*02:0 | C*06:0 | C*12:0 | C*14:0 | C*16:0
C*03:0 | C*03:1 | C*04:0 | C*08:0 | C*08:7 | C*15:1 C*02:0 | C*06:0 | C*12:0 | C*14:0
co7
Co07
C*07:0 [ C*07:0 [ C*07:0 [ C*07:0 | C*07:1 | C*07:1 [ C*07:1 | C*07:2 [ C*07:2 | [ |
C*07:0 | C*07:0 | C*07:0 | C*07:0 | C*07:1 | C*07:1 | C*07:1 | C*07:2 | C*07:3 | | |

affinity prediction methods are limited, with the leading issue being
the unsatisfying availability of training data, as mentioned above.
Another issue comes from the peptide binding assays themselves.

The most widely used measurement of peptide—HLA affinity is the
ICso, which is defined as the concentration of a query peptide that
blocks 50% of standard peptide binding, but different standard
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FIGURE 7. Comparison of structures of alleles in allotype group HLA-B*15
that were clustered in subtype B14 and B15. (A) Top-down view of the peptide
binding groove. Alleles that clustered in subtype B14 are colored in blue;
BI15 alleles are in green. (B) Zoom-in near the F pocket, showing the differ-
ence of B*15:09, B*15:01, and B*14:01 in residue 97, 116, and 156. Com-
pared to B*¥15:09 and B*14:01, B*15:01 has Trp in position 156, which is
bulk in size and pushed Arg®’ toward Ser'', resulting in the difference in
the shape of the F pocket. Hydrogen atoms and residues from other alleles
in (B) were omitted for clarity.

peptides have been used for different HLA alleles (87). As a result,
the binding assay data of different alleles are in different bases and
thus not, in principle, comparable. However, they have been com-
bined in the training sets of pan-specific predictors, which may lead
to inaccuracy.

Another alternative to time-consuming experiments is to cluster
HLA alleles based on sequence or structural similarity, which recog-
nizes that the peptide binding specificity is determined by the spatial
and chemical properties of the peptide binding groove. Sequence/
structure-based methods have advantages compared with affinity
prediction-based methods. First, the sequences and structures of
HLAs are available with less effort than binding assays; second, the
methods may be applicable to all HLA alleles and not just those
with available binding affinity data, permitting reliable clustering
performance on understudied alleles.

Both sequence-based and structure-based approaches have been
successfully applied in general protein binding pocket comparison
(88-93). In the present study, we have demonstrated that both the
sequence and SDs we use for HLA I are highly correlated with
PDs. Furthermore, as structure-based methods should, in principle,
incorporate more direct functional detail than simple sequences, in
this study, indeed our structure-based method outperforms sequence-
based methods in that SD has higher correlation coefficient with PD
than sequence distance.

One limitation of structure-based methods, including the SD clus-
tering, is the imperfect quality of HLA crystal structures and pre-
dicted models (91). As illustrated above, natural structural variations
occur in crystal structures of the same HLA allele, which can be
caused by peptide-induced conformational change (94-96), chaper-
ones (e.g., tapasin) (97, 98), or crystal packing (99). To minimize
the impact of imperfect HLA models, relaxation and coarse graining
were applied in the present study. Coarse graining decreases the
number of df, thus reducing the impact of possible inaccuracies in
side chain orientations and improves its robustness. However, coarse
graining may also reduce clustering accuracy through the loss of infor-
mation that would be present in a fully atomistic structure. Clearly, the
development of all-atom methods may further improve the present
approach. Furthermore, static HLA structures cannot reveal certain
factors that may influence peptide binding specificity, such as the
conformational flexibility of a peptide—HLA complex (98, 100—-103).
Also note that the difference in peptide binding specificity cannot
fully explain certain functional differences. For example, B*27:05
and B*27:09 have very similar sequences (single mutation) and
structures (104). Thus, both alleles are included in subtype B27 in

HLA CLASSIFICATION

Table V. Supertype and subtype stability measured by average Jaccard
index in bootstrapping

Supertype Average Jaccard Index Subtype Average Jaccard Index
A01-A03-A66 0.65 A01 0.72
A03 0.70
A66 0.68
A02 0.58 A02 0.83
A24 0.66 A24 0.89
B07-B35 0.60 B07 0.70
B35 0.70
B51-B58 0.74 B51 0.91
B58 0.94
B08-B18-B39 0.25 B08 0.66
B18 0.66
B39 0.54
B14 0.68 B14 0.74
B15-B40 0.62 B15 0.54
B40 0.65
B27 0.68 B27 0.96
B44 0.38 B44 0.64
C01-C02 0.87 C01 0.87
C02 0.76
Co07 0.66 Co07 0.93

the current study, and this is validated by the experimental result
that they share an ~80% repertoire (105). However, B*27:05 is
strongly associated with ankylosing spondylitis whereas B*27:09 is
not (106), and this cannot be explained by the present method but,
rather, requires dynamical considerations (103).

The reasons for the performance differences between supertype
classification methods compared in the current study are complex.
Apart from the limited data quality available to previous studies,
there are differences in the definition of supertypes. All methods
agree that supertypes include functionally similar alleles, although
they focus on different aspects, including the selectivity of anchor
residues of binding peptides (peptide motif) (21, 22, 30), the interac-
tion profile of the binding groove (25, 33, 107), and, as adopted in
the current study, peptide binding specificity (31). Therefore, these
supertype classifications should not be used interchangeably.

In conclusion, we have quantified the correlation between struc-
tural similarity of HLA binding groove and peptide binding specific-
ity using a newly defined SD metric, based on which we propose a
new HLA classification scheme. Our results show that binding specific-
ity is mainly determined by the structural landscape of the binding
groove. Although this is not unexpected, the present results demonstrate
it at scale and thus elevate the importance of structural considerations.

Relative to previous classifications, our approach achieved advan-
ces in four aspects. First, the present supertypes and subtypes better
represent similarity in peptide binding specificity, as illustrated by
the improved clustering performance (cohesion). Also, the flexibility
of classification is improved, in that clustering at different resolutions,
supertype and subtype, is incorporated. Third, the method is demon-
strated to have better stability, meaning that the classification was
performed with higher confidence, and users can add user-defined
alleles without perturbing the existing classification structure. Finally,
the method is broadly applicable across HLA alleles.

Improvements could be expected when applying the clustering result
in developing supertype/subtype-specific affinity prediction tools and
supertype/subtype—disease association studies. With advances in the
understanding of peptide-HLA interactions and the further develop-
ment of structural modeling approaches, structure-based methods are
destined to improve further.
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Key Points

e Structural similarity is highly correlated with peptide binding specificity.
e A comprehensive HLA supertype classification method is presented.
e Improved breadth, accuracy, flexibility, and stability relative to previous methods are shown.
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