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Background: Modeling nuclear reaction networks for nuclear science applications and for simulations of astro-
physical environments relies on cross section data for a vast number of reactions, many of which have never been
measured. Cross sections for neutron-induced reactions on unstable nuclei are particularly scarce, since they are
the most difficult to measure. Consequently, we must rely on theoretical predictions or indirect measurements to
obtain the requisite reaction data. For compound nuclear reactions, the surrogate reaction method can be used
to determine many cross sections of interest.

Purpose: Earlier work has demonstrated that cross sections for neutron-induced fission and radiative neutron
capture can be determined from a combination of surrogate reaction data and theory. For the fission case, it was
shown that Weisskopf-Ewing approximation, which significantly simplifies the implementation of the surrogate
method, can be employed. Capture cross sections cannot be obtained, and require a detailed description of the
surrogate reaction process. In this paper we examine the validity of the Weisskopf-Ewing approximation for
determining unknown (n, n′) and (n, 2n) cross sections from surrogate data.

Methods: Using statistical reaction calculations with realistic parametrizations, we investigate first whether
the assumptions underlying the Weisskopf-Ewing approximation are valid for (n, n′) and (n, 2n) reactions on
representative target nuclei. We then produce simulated surrogate reaction data and assess the impact of applying
the Weisskopf-Ewing approximation when extracting (n, n′) and (n, 2n) cross sections in situations where the
approximation is not strictly justified.

Results: We find that peak cross sections can be estimated using the Weisskopf-Ewing approximation, but the
shape of the (n, n′) and (n, 2n) cross sections, especially for low neutron energies, cannot be reliably determined
without accounting for the angular-momentum differences between the neutron-induced and surrogate reaction.

Conclusions: To obtain reliable (n, n′) and (n, 2n) cross sections from surrogate reaction data, a detailed de-
scription of the surrogate reaction mechanisms is required. To do so for the compound-nucleus energies and decay
channels relevant to these reactions, it becomes necessary to extend current modeling capabilities.

I. BACKGROUND AND NEED

Nuclear reaction data are required for many applica-
tions in both basic and applied science, whether it be for
modeling the origin of elements in the universe, the safe
operation of a next-generation reactors, or for national-
security applications [1, 2]. Nuclear reaction libraries
provide evaluated reaction data for many such applica-
tions [3]. These evaluations are based on nuclear reaction
calculations anchored to experimental data and state-of-
the-art nuclear theory. As many reaction cross sections
of interest cannot be measured directly, due to short life-
times or high radioactivity of the target nuclei involved,
indirect methods are being developed [4–7] to address the
gaps and shortcomings in present databases.

In this paper we focus on the “surrogate reac-
tion method” [6, 8], an indirect approach for deter-
mining cross sections for compound-nuclear reactions.
Compound-nuclear, or “statistical” reactions, proceed
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through the formation of an intermediate “compound”
nucleus n + A → B∗, followed by a decay into reac-
tion products B∗ → c + C. The appropriate formal-
ism for calculating cross sections for these reactions is
the Hauser-Feshbach formalism [9, 10]. Hauser-Feshbach
calculations are often quite limited in accuracy due to un-
certainties in the nuclear physics inputs needed, in par-
ticular the nuclear structure inputs associated with the
decay of the compound nucleus (CN).

In a surrogate reaction experiment, the CN of interest
is produced via an alternative, experimentally accessible
reaction, and the probability of decay into the reaction
channel of interest is measured. From this data, con-
straints for the Hauser-Feshbach calculations can be ob-
tained.

The surrogate method has some significant advantages
over alternative indirect approaches: 1) the method does
not require measurement of auxiliary nuclear proper-
ties that are not available for unstable nuclei and for
which interpolation or extrapolation procedures are as-
sociated with uncontrolled uncertainties [14, 15], and 2)
The method can be used for reactions that populate ener-
gies well above particle separation thresholds in the CN,
i.e. it is applicable not only to (n, γ), but also to (n, n′),
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FIG. 1. Surrogate reactions approach for the simultaneous
measurement of 90Zr(n, γ), 90Zr(n, n′), and 90Zr(n, 2n) cross
sections. A recent inelastic scattering experiment produced
the CN up to about 30 MeV, i.e. above the two-neutron
threshold [11]. Subsequent decay via emission of γs, one neu-
tron, and two neutrons, produces final 91Zr, 90Zr, and 89Zr
nuclei, respectively. The example here displays a situation
in which discrete γ transitions between low-lying states in
three nuclei are used to determine the decay channel prob-
abilities. A complementary decay measurement that focuses
on the detection of neutrons is under development as well [12].
The 90Zr experiment serves as a benchmark, since multi-
ple neutron-induced reactions for the stable 90Zr nucleus are
known from direct measurements [13].

(n, 2n), (n, p), (n, f) reactions (and similarly to charged-
particle-induced reactions).

Alternative indirect approaches, in particular the Oslo
and β-Oslo methods [7], aim at extracting level densities
and γ-ray strength functions by populating a CN below
the neutron separation energy via a transfer reaction or β
decay, respectively, and measuring the resulting gamma
emission. To separate the level density from the gamma-
ray strength function, the Oslo-type analyses require the
use of additional information; typically, this includes av-
erage neutron resonance spacings (D0) and the average
radiative widths, ⟨Γγ⟩. For neutron-induced reactions on
unstable nuclei, however, these quantities are not avail-
able and are difficult to estimate reliably. In addition,
the (n,n’) and (n,2n) reactions of interest here require
CN decay information for excitation energies well above
the neutron separation energy.

Both the surrogate method and the Oslo/β-Oslo meth-
ods require the calculation of the formation of the CN in
the desired reaction. This involves, for neutron-induced
reactions, knowledge of a neutron-nucleus optical model
potential. For target nuclei near stability, global nucleon-
nucleus optical models exist [16, 17], which are expected

to be reliable at least a few isotopes away from stability.
While these optical models are often applied far from sta-
bility, little is known about how well they work in these
areas of the isotopic chart [18–20]. More theoretical work
is needed to develop the next generation of optical model
potentials. These need to display the proper dispersive
properties and reflect the correct isospin dependence, and
are ideally based on microscopic theories [21–24]. In ad-
dition, new experiments at radioactive beam facilities are
needed to constrain and test the optical models.

Applications of the surrogate method to (n, f) reac-
tions have a long history [6] and in recent years scientists
successfully used the approach to obtain neutron cap-
ture cross sections [14, 15, 25]. In this paper, we focus
on possible applications to (n, n′) and (n, 2n) reactions.

Figure 1 illustrates how the surrogate approach can be
used to determine 90Zr(n, γ), 90Zr(n, n′), and 90Zr(n, 2n)
cross sections from a surrogate inelastic scattering exper-
iment. For incident neutron energies below a few MeV,
neutron capture and inelastic neutron scattering com-
pete with each other, above En ≈ 10 MeV, one- and
two-neutron emission compete with each other. Proton
and α emission compete only weakly and have to be ac-
counted for, but are not shown here. In actinides, fission
may compete at all energies. If the surrogate reaction
measurement is designed to cover a broad energy range,
it becomes possible to determine cross sections for all
three neutron-induced reactions in one experiment. The
decay channel of interest is determined either by mea-
suring γ transitions specific to one of the three decay
products, or by detecting outgoing neutrons, in coinci-
dence with the scattered 3He particle. Experimentalists
conducting these measurements have utilized discrete γ
rays and are currently developing the capability to use
neutron measurements.

In principle, a careful description of the surrogate re-
action mechanism is required to obtain the cross section
of the desired reaction. This is because one must ac-
count for the differences in the decay of the CN due to
the angular-momentum and parity differences in the sur-
rogate and desired reactions (the spin-parity mismatch).
Indeed, (n, γ) reactions are very sensitive to spin effects,
particularly in nuclei with low level density [26–28]. On
the other hand, sensitivity studies for surrogate (n, f)
applications have shown that neglecting the spin-parity
mismatch yields reasonable results, except at low neutron
energies [29–31]. Neglecting the spin-parity mismatch be-
tween the surrogate and desired reactions is known as the
Weisskopf-Ewing approximation, and it greatly simplifies
the extraction of the cross sections from surrogate data,
as only a simple theoretical treatment is required.

It is the purpose of this paper to investigate what is
required to determine reliable cross sections for (n, n′)
and (n, 2n) reactions from surrogate data. Specifically,
we carry out sensitivity studies that examine the valid-
ity of the Weisskopf-Ewing approximation for these two
reactions for several regions of the nuclear chart.

In the next section, we review the surrogate reaction
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formalism and provide details on the Weisskopf-Ewing
approximation. In Section III, we describe our proce-
dure for testing the assumption of the approximation,
and for investigating the consequences of applying the ap-
proximation in situations where its assumptions are not
strictly valid. In Section IV, we present results for zirco-
nium, gadolinium and uranium nuclei, which are repre-
sentative of spherical and deformed nuclei, respectively.
We summarize our findings and make recommendations
in Section V.

II. REACTION FORMALISM

Here we summarize the Hauser-Feshbach formalism for
calculating the cross section of a compound-nuclear re-
action and its relationship to the description of a surro-
gate reaction. This clarifies how surrogate reaction data
can be used to constrain calculations for unknown cross
sections. We outline the circumstances under which the
Weisskopf-Ewing approximation can be used to simplify
the analysis used to obtain the desired compound cross
section.

A. Theory for the desired reaction

The Hauser-Feshbach (HF) statistical reaction formal-
ism properly accounts for conservation of angular mo-
mentum and parity in compound-nuclear reactions. For
a reaction with entrance channel α = a+A that forms the
CN B∗, which subsequently decays into the exit channel
χ = c+ C,

a+A → B∗ → c+ C,

the HF cross section can be written as

σαχ(Ea) =
∑
J,π

σCN
α (Eex, J

π)GCN
χ (Eex, J

π). (1)

Here Ea and Eex are the kinetic energy of the projec-
tile a and the excitation energy of the compound nu-
cleus B∗, respectively. They are related to each other via
Ea = mA

ma+mA
(Eex−Sa), where Sa is the energy needed to

separate the particle a from the nucleus B∗. ma and mA

are the masses of the projectile and target, respectively.
J and π are the spin and parity of the compound nucleus
and σCN

α (Eex, J
π) is the cross section for the forming the

compound nucleus B∗ with spin and parity Jπ at energy
Eex. The σCN

α (Eex, J
π) and their sum, the compound-

formation cross section σCN
α (Eex) =

∑
J,π σ

CN
α (Eex, J

π),
can be determined using an appropriate optical model for
the a-nucleus interaction. Width fluctuation corrections
have been omitted to simplify the notation in Equation 1,
but are included in the calculations.

GCN
χ (Eex, J

π) is the probability that the CN decays
via the exit channel χ. For reactions that emit one parti-
cle (neutron, proton, alpha, etc.) it depends on the con-
volution of the transmission coefficient T J

χlcjχ
with the

level density ρjC (U) for the residual nucleus, divided by
analogous terms for all competing decay modes χ′:

GCN
χ (Eex, J

π) =

∑
lcjχjC

∫
T J
χlcjχ

ρjC (U)dEχ∑
χ′l′cj

′
χj

′
C

∫
T J
χ′l′cj

′
χ
(Eχ′)ρj′C (U

′)dEχ′
.

(2)
The quantities lc and l′c are the relative orbital angular

momenta in the exit channels. j⃗χ = j⃗c + j⃗C is the exit

channel spin, related to the total spin J⃗ = l⃗a+j⃗α = l⃗c+j⃗χ
by conservation of momentum with the entrance channel
spin, j⃗α = j⃗a + j⃗A. ρC(U, jC) is the density of levels of
spin jC at energy U in the residual nucleus.

Contributions from decays to discrete levels and to re-
gions described by a level density have to be accounted
for and are implicitly included in the integrals in both
the numerator and denominator of Eq. (2). For reac-
tions that involve sequential decays, e.g. the emission of
two neutrons in (n,2n), Eq. (2) is repeatedly applied:
First, to determine the possible outcomes of the CN de-
cay in the first step of the emission chain, and second,
to follow the subsequent decays of the intermediate com-
pound nuclei created. In HF calculations, the final cross
sections are obtained by tracking all possible decays in
this manner. All sums over quantum numbers must re-
spect parity conservation, although this is not explicitly
expressed here.

In this paper, we focus on neutron-induced reactions,
i.e. α = n + A. For such reactions, the optical model
potential, used to calculate the first factor in Eq. (1),
is well approximated by a one-body potential [32]. By
far the greatest source of uncertainty comes from the de-
cay probabilities, a fact that can be attributed to uncer-
tainties in the nuclear structure inputs. ab initio shell-
model calculations can provide nuclear structure infor-
mation for nuclei with only a dozen or so nucleons, and
traditional shell-model calculations cover a limited num-
ber of nuclei, primarily near closed shells, containing up
to around 100 nucleons. Mean-field and beyond-mean
field approaches cover a wider range of nuclei, but cal-
culating the relevant structure quantities (level densities
and gamma-ray strength functions) is nontrivial. While
much progress has been made toward achieving micro-
scopic nuclear structure inputs for HF calculations of
medium-mass and heavy nuclei, many isotopes needed
for applications and for simulating stellar environments
are currently out of reach.

In the absence of microscopic predictions of structural
properties, phenomenological models are used for nuclear
level densities and electromagnetic transition strengths,
with parameters that are fitted to available data. Much
effort has been devoted to generate global or regional
parameter systematics [3] that can be utilized as to per-
form HF calculations and build nuclear reaction evalua-
tions [33–36]. Alternatively, it is possible to use surrogate
reaction data to obtain experimental constraints on the
decay probabilities.
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B. Full modeling of the surrogate reaction

In a surrogate experiment, such as the one schemat-
ically shown in Figure 1, the compound nucleus B∗ is
produced by an inelastic scattering or transfer reaction
d + D → b + B∗, and the desired decay channel is ob-
served in coincidence with the outgoing particle b at angle
θb.

The probability for forming B∗ in the surrogate
reaction (with specific values for Eex, J , π) is
FCN
δ (Eex, J, π, θb), where δ refers to the surrogate re-

action d+D → b + B∗. The quantity

Pδχ(Eex, θb) =
∑
J,π

FCN
δ (Eex, J

π, θb) GCN
χ (Eex, J

π) ,

(3)
which gives the probability that the CN B∗ was formed
with energy Eex and decayed into channel χ, can be ob-
tained experimentally by detecting a discrete γ-ray tran-
sition characteristic of the residual nucleus (or some other
suitable observable).

The distribution FCN
δ (Eex, J, π, θb), which may be

very different from the CN spin-parity populations fol-
lowing the absorption of a neutron in the desired reaction,
has to be determined theoretically, so that the branching
ratios GCN

χ (Eex, J
π) can be extracted from the measure-

ments.
In practice, the decay of the CN is modeled us-

ing a Hauser-Feshbach-type decay model and the
GCN

χ (Eex, J
π) are obtained by adjusting parameters

in the model to reproduce the measured probabilities
Pδχ(Eex, θb). Subsequently, the sought-after cross sec-
tion for the desired (neutron-induced) reaction can be
obtained by combining the calculated cross sections
σCN
n+A(Eex, J

π) for the formation of B∗ (from n+A)

with the extracted decay probabilities GCN
χ (Eex, J

π), see
Eq. (1). Modeling the CN decay begins with an initial
(“prior”) description of structural properties of the reac-
tion products (level densities, branching ratios, internal
conversion rates), plus a fission model for cases which in-
volve that decay mode. Finally, a procedure for fitting
the parameters of the decay models, e.g. via a Bayesian
approach as introduced in Ref. [14], needs to be imple-
mented to determine the desired cross section, along with
uncertainties.

This procedure was recently employed to determine
cross sections for neutron capture on the stable 90Zr and
95Mo isotopes (for benchmark purposes), as well as for
neutron capture on the unstable 87Y nucleus [14, 15].
It was also used to simultaneously infer the (n, γ) and
low-energy (n,f) cross sections for 239Pu [25]
Such a full treatment of a surrogate experiment is chal-

lenging: It involves taking into account differences in the
angular momentum J and parity π distributions between
the compound nuclei produced in the desired and Sur-
rogate reactions, as well as their effect on the decay of
the compound nucleus. Predicting the spin-parity dis-
tribution FCN

δ (Eex, J, π, θb) resulting from a Surrogate

reaction is a nontrivial task since a proper treatment of
direct reactions leading to highly excited states in the in-
termediate nucleus B∗ involves a description of particle
transfers, and inelastic scattering, to unbound states. In
addition, a complete treatment should include consider-
ation of width fluctuation corrections and the possible
decay prior to reaching equilibrium.
For capture cross sections, it was shown that this type

of approach is needed to account for the spin-parity mis-
match in the surrogate experiment [26, 27], while for fis-
sion applications it often suffices to employ the much
simpler Weisskopf-Ewing or ratio approximations [31].

C. Weisskopf-Ewing approximation for
neutron-nucleus reactions and surrogate coincidence

probabilities

The Hauser-Feshbach expression for the cross section
of the desired neutron-induced reaction, Eq. (1), con-
serves total angular momentum J and parity π. Un-
der certain conditions the branching ratiosGCN

χ (Eex, J
π)

can be treated as independent of J and π and the cross
section for the desired reaction simplifies to

σWE
n+A,χ(Ea) = σCN

n+A(Eex) GCN
χ (Eex) (4)

where σCN
n+A(Eex) =

∑
Jπ σ

CN
n+A(Eex, J

π) is the cross
section describing the formation of the compound nu-
cleus at energy Eex and GCN

χ (Eex) denotes the Jπ-
independent branching ratio for the exit channel χ. This
is the Weisskopf-Ewing limit of the Hauser-Feshbach the-
ory [32].
The Weisskopf-Ewing limit provides a simple and pow-

erful approximate way of calculating cross sections for
compound-nucleus reactions. In the context of surro-
gate reactions, it greatly simplifies the application of the
method. In section II B we described the process re-
quired to obtain the Jπ-dependent branching ratios GCN

χ

from measurements of Pδχ(Eex). In the Weisskopf-Ewing
limit, and because

∑
Jπ F

CN
δ (Eex, J

π) = 1,

Pδχ(Eex) = GCN
χ (Eex). (5)

Calculating the direct-reaction probabilities
FCN
δ (Eex, J, π, θb) and modeling the decay of the

compound nucleus are no longer required in this ap-
proximation. (In actual applications, experimental
efficiencies have to be included when determining
Pδχ(Eex); these are omitted for simplicity here, but are
accounted for in the analysis of surrogate experiments.)

The conditions under which the approximate expres-
sions (4)) and (5) are obtained from equations (1) and
(3) are discussed in the appendix.

In addition, the Weisskopf-Ewing approximation can
be used in situations in which the surrogate reaction pro-
duces a spin distribution that is very similar to that of
the desired reaction, i.e.

FCN
δ (Eex, J

π) ≈ FCN
n+A(Eex, J

π), (6)
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where,

FCN
n+A(Eex, J

π) ≡
σCN
n+A(Eex, J

π)∑
Jπ′ σCN

n+A(Eex, Jπ′)
, (7)

since the weighting of the Jπ-dependent decay probabili-
ties in the measured Pδχ(Eex) is the same as the weight-
ing relevant to the desired reaction. While some intuitive
arguments have been forwarded in favor of specific sur-
rogate reaction mechanisms that might satisfy the con-
dition (6), not much is actually known about what spin-
parity distributions FCN

δ are obtained when producing
a CN at high excitation energies (Eex > 5 MeV) via in-
elastic scattering or a transfer reaction. We therefore
investigate both the dependence of realistic decay proba-
bilities GCN

χ (Eex, J
π) on spin and parity (Section IIIA)

and the impact of using the Weisskopf-Ewing approxi-
mation in situations in which GCN

χ (Eex, J
π) depends on

spin and parity (Section III B).

III. ASSESSING THE VALIDITY OF THE
WEISSKOPF-EWING APPROXIMATION

As discussed in the previous section, there are two sce-
narios in which it is clearly valid to employ the Weisskopf-
Ewing approximation in the analysis of a surrogate ex-
periment: (a) The decay probabilities GCN

χ (Eex, J
π) are

independent of Jπ for the decay channel χ of interest;
or (b) The surrogate and desired reactions produce iden-
tical spin distributions (“serendipitous” or “matching”
approach [6]). In addition, there are some intermedi-
ate situations in which a Weisskopf-Ewing analysis can
give a good approximation to the true cross section.
For instance, it is possible that the decay probabilities
GCN

χ (Eex, J
π) are only moderately sensitive to Jπ, and

that the surrogate and desired reactions populate some-
what similar compound nucleus spins and parities, so
that violations of the Weisskopf-Ewing limit may have
little impact on the extracted cross section. Investiga-
tions into the possibility of using the Weisskopf-Ewing
approximation must therefore consider both the behavior
of the decay probabilities GCN

χ (Eex, J
π) for the decay

channel χ of interest and their influence in typical surro-
gate reaction analyses.

Earlier studies, which have done that, demonstrated
that it is not a priori clear whether the Weisskopf-Ewing
limit applies to a particular reaction in a given energy
regime [26–28, 31]. For fission applications, it was found
that using the Weisskopf-Ewing approximation gives rea-
sonable cross sections, with violations of the Weisskopf-
Ewing limit occurring primarily at low energies (En be-
low 1-2 MeV) and at the onset of first and second-chance
fission [31]. For neutron capture reactions, however, the
GCN

γ (Eex, J
π) were found to be very sensitive to the Jπ

and no circumstances have been identified so far in which
the Weisskopf-Ewing limit can be used to obtain capture
cross sections [27].

In the present study we focus on the proposed use of
the surrogate method to determine (n, n′) and (n, 2n)
cross sections. To study the validity of the Weisskopf-
Ewing approximation, we proceed in two steps:

1. Investigation of the Jπ dependence of the decay
probabilities GCN

χ (Eex, J
π) for χ = 1n and 2n, i.e.

for one- and two-neutron emission.

2. Assessment of the impact of the Jπ dependence of
the GCN

χ (Eex, J
π) on cross sections extracted by

using the Weisskopf-Ewing approximation.

A. Method for determining spin-parity dependence

In the first step, we obtain the GCN
χ (Eex, J

π) from
well-calibrated Hauser-Feshbach calculations that in-
volve the relevant decay channels. We selected n+90Zr,
n+157Gd, and n+238U as representative cases for neu-
tron reactions on spherical and deformed nuclei, with
the uranium case representing a nucleus for which fission
competes with particle evaporation and γ emission.
For each nucleus, we carried out a full Hauser-Feshbach

calculation of the neutron-induced reaction and cali-
brated the model parameters to give an overall good fit
of the known neutron cross sections. This local opti-
mization of model parameters allows us to isolate the
spin-parity effects from model uncertainties. Our opti-
mization procedure accounted for pre-equilibrium effects
using the two-exciton model [37], and other competing
decay channels. This is necessary to accurately and real-
istically reproduce the data without biasing the model-
space parameters. In contrast, the calculations described
in this and the following section include only contribu-
tions from compound nucleus decay. This is consistent
with the goal of investigating the ability to determine the
compound cross section from a Weisskopf-Ewing analysis
of surrogate data.
The calculations were carried out with Hauser-

Feshbach codes Stapre [38] and YAHFC-MC [35]. The
results discussed here are obtained using the latter. We
extracted the branching ratios GCN

xn (E, Jπ) for one- and
two-neutron emission (x = 1 and 2, respectively) for a
range of spin and parity values of the initially formed
compound nuclei 91Zr∗, 158Gd∗, and 238U∗, and investi-
gated their behavior as a function of the excitation energy
Eex of the CN. Our findings are discussed in Section IVA.

B. Method for demonstrating impact of spin-parity
dependence

In the second step, we employ the decay probabilities
GCN

xn (Eex, J
π) extracted above to simulate the results of

possible surrogate measurements. This is done by calcu-
lating the coincidence probabilities given by equation (3),
which are ordinarily measured in a surrogate experiment,
by multiplying the GCN

xn (Eex, J
π) with several schematic
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spin-parity distributions FCN
δ (Eex, J

π), summed over all
relevant spins and parities:

P sim
xn (Eex) =

∑
Jπ

FCN
δ (Eex, J

π)GCN
xn (Eex, J

π). (8)

We normalized the distributions
∑

Jπ F
CN
δ (Eex, J

π) = 1
and did not consider angle dependencies. Multiplication
of these simulated coincidence probabilities P sim

xn (Eex) by
the CN-formation cross section σCN

n+A(Eex) then yields

cross sections σWE
(n,n′)(En) and σWE

(n,2n)(En) that corre-

spond to a Weisskopf-Ewing analysis of the simulated
surrogate measurement:

σWE
(n,xn)(En) = σCN

n+A(Eex)P
sim
xn (Eex) (9)

for x = 1, 2. In Section IVB, we compare the so extracted
cross sections for various spin-parity distributions FCN

δ
to each other and to the known desired cross sections.

To select relevant Jπ distributions for our study, we
briefly summarize what is known about Jπ distributions
that typically occur in neutron-induced as well as surro-
gate reactions.

1. Spin-parity distributions in neutron-induced reactions.

Figure 2 shows spin-parity distributions relevant to
neutron-induced reactions, as predicted by calculating
the compound-formation cross sections for various spins
and parities, at the energies indicated. For Zr, a spherical
optical-model calculation is sufficient, while rare earths
and actinides require coupled-channels treatments, which
can be carried out by suitably deforming a spherical op-
tical model, see Ref. [39, 40], or by using a coupled-
channels scheme that is specifically adjusted for the nu-
cleus or nuclear region of interest, see Refs. [27, 41–44].
We have used the Koning-Delaroche optical model [16]
for Zr and Gd, and Soukhovitskii [41, 42] for the U.

For the (n, n′) and (n, 2n) applications considered here,
neutron energies between about 5 and 20 MeV are rel-
evant. The examples selected here involve target nuclei
with low spins (3/2− for 157Gd and 0+ for the even-even
90Zr and 238U nuclei), so the spin-distributions are closely
connected to the angular-momentum transferred in the
reaction.

Panel (a) shows the population of positive and neg-
ative parity states for the n+90Zr example, for several
neutron energies En. At En ≈ 1 MeV, p-wave capture
dominates [28] and produces a distribution that favors
negative-parity states within a narrow range of spins. As
the energy increases, contributions from higher partial
waves result in smoother distributions, centered at larger
angular momentum values, and with a more equal parti-
tion between positive and negative spins.

Panels (b), for n+157Gd, and (c), for n+238U, are rep-
resentative of the situations one encounters for deformed
rare-earth and actinide nuclei, respectively. Overall, the
distributions are smoother for the deformed nuclei than

for the Zr case and involve larger values of angular mo-
mentum. With increasing En, the positive and negative
parity distributions become similar, while at low energies,
En < 1 MeV, the distributions can look quite different
from each other [27].
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(c) n + 238U

FIG. 2. Spin-parity distributions for compound nuclei pro-
duced in neutron-induced reactions, for several neutron en-
ergies En. Solid bars are positive- and hatched bars are
negative-parity probabilities. Panels (b) n+157Gd and (c)
n+238U are representative of deformed rare-earth and actinide
nuclei, respectively, while panel (a) presents the case of a
near-closed shell nucleus, n+90Zr. Neutron energies below 1
MeV are important for neutron capture reactions [27]. For
the (n, n′) and (n, 2n) applications considered in this paper,
neutron energies between about 5 and 20 MeV are relevant.

2. Spin-parity distributions in surrogate reactions.

The findings of the following illustrate that it is not
correct to assume that the spin-parity distribution of a
compound nucleus produced in a surrogate reaction is
given by the spin and parity behavior of the level density
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for that nucleus. The reaction mechanism plays a crit-
ical role in selecting which states act as doorways into
the compound nucleus. The population of these doorway
states determines the Jπ distribution for the surrogate
reaction.

Figure 1 illustrates schematically the excitation ener-
gies that a surrogate reaction has to populate in order to
produce decay information relevant to (n, γ), (n, n′) and
(n, 2n) reactions. For neutron capture, Eex values be-
tween about 5 and 10 MeV have to be reached, for inelas-
tic scattering, energies between approximately 10 and 20
MeV are relevant, and for (n, 2n) reactions, Eex = 20-30
MeV are important. These energy regimes exhibit high
level densities, and transfer reactions aiming to populate
these energy ranges are very different from those used
for traditional nuclear structure studies. It should there-
fore not surprise that standard DWBA or even coupled-
channels calculations cannot be used to reliably calculate
the direct (surrogate) reactions that produce such states.

Predicting the spin-parity distributions for these
higher excitation energies requires taking into account
both the surrogate reaction mechanism and the nuclear
structure at these higher energies. For instance, to cal-
culate the Jπ population in the compound nucleus 91Zr∗

that was produced via the 92Zr(p,d) pickup reaction in a
recent surrogate experiment with Ep = 28.5 MeV [14], it
was necessary to consider the structure of deep neutron
hole states, which exhibit considerable spreading [6, 45].
Furthermore, two-step mechanisms involving (p, d′)(d′, d)
and (p, p′)(p′, d) combinations of inelastic scattering and
pickup contribute significantly to the reaction. These
have a strong influence on the final spin-parity distribu-
tion in 91Zr∗ [14], which is shown for Eex = 7.25 MeV
in Figure 3(a). The influence of the reaction mechanism
is reflected in the differences between the predicted spin-
parity population (bars) and the spin distribution in a
representative level density model at the same excitation
energy (green curve).

Around the neutron separation energy, i.e. in the en-
ergy region of interest to neutron capture, the angu-
lar behavior of the (p,d) cross section was found to be
fairly structureless, and the Jπ distribution was seen to
vary little over several MeV around Eex = Sn(

91Zr) =
7.195 MeV [46]. These observations reflect the fact that
the surrogate reaction does not produce a simple single-
particle excitation, but populates specific doorway states
which mix with neighboring complex many-body states
to form the compound nucleus.

The (d, p) transfer reaction, which – at first glance –
seems to be a well-matched surrogate for neutron-induced
reactions, turns out to involve non-trivial reaction mech-
anisms as well. The case of interest is that in which
the deuteron breaks up in the combined Coulomb-plus-
nuclear field, and the neutron is absorbed while the pro-
ton escapes and is observed in a charged-particle detec-
tor. Calculating the resulting compound nucleus Jπ dis-
tribution requires a theoretical description that separates
elastic from nonelastic breakup and, in principle, one also

needs to separate out inelastic breakup, rearrangement,
and absorption. This challenge has generated strong in-
terest in developing a more detailed formalism for inclu-
sive (d, p) reactions [47–51]. This formalism was used to
calculate the Jπ distribution relevant to the 95Mo(d, p)
surrogate reaction described in Ref. [15]. The calculated
Jπ distribution, for excitation energies near the neutron
separation energy in 95Mo is shown in Figure 3(b). Here,
again, the predicted spin-parity distribution (bars) does
not follow the distribution of spins that are expected to
be available at this energy, based on a representative level
density model (green curve).

Inelastic scattering with charged light ions is a third
type of reaction that has been employed in surrogate
reaction measurements [25, 52–55]. From these experi-
ments, as well as from traditional studies of giant reso-
nances [56–58], it is known that inelastic scattering can
produce a compound nucleus at a wide range of excita-
tion energies. There is evidence that this type of reac-
tion is also likely to produce Jπ distributions that are
broad and may be centered at angular momentum val-
ues of 5-10 ℏ [25, 52]. Furthermore, for inelastic α scat-
tering, a staggering of even and odd parity populations
is expected, since the reaction populates predominantly
natural-parity states.
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FIG. 3. Spin-parity distributions (bars) near the neutron
separation energy, as predicted for use with specific surro-
gate experiments. Solid bars are positive-parity and hatched
bars are negative-parity probabilities. Panel (a) shows the
half-integer J distribution in the compound nucleus 91Zr∗ re-
sulting from a 92Zr(p,d) reaction with Ep = 28.5 MeV at
Eex = 7.25 MeV [14]. Panel (b) shows the integer valued
result for 95Mo(d, p) surrogate reaction with Ed = 12.4 MeV
at Eex = 9.18 MeV [15]. In both cases, the predicted spin-
parity distributions were used in combination with models
for the decay of the respective compound nuclei, leading to
the successful determination of (benchmark) neutron capture
cross sections. For comparison, the spin distribution calcu-
lated from an energy-dependent level density model, which
assumes equal parity distribution, is given by the green solid
curve [59].
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3. Schematic spin-parity distributions

In order to investigate the impact of a spin-parity mis-
match between the desired and surrogate reaction on the
cross section obtained from a Weisskopf-Ewing analysis,
we employ the schematic distributions FCN

δ (Jπ) shown
in Figure 4. We include distributions that are centered at
both low and high angular-momentum values and allow
for more spread-out distributions in the latter case. The
distributions centered at low J values allow us to investi-
gate situations in which the surrogate reaction populates
lower spins than the desired reaction. Variations in parity
are not explicitly considered for this part of the sensitiv-
ity study, as we found the decay probabilities to be less
sensitive to parity than to variations in spin.

The distributions shown will be combined with the de-
cay probabilities GCN

χ (Eex, J
π) extracted from our cal-

ibrated Hauser-Feshbach calculations (see Section IVA)
to simulate a range of possible surrogate data Pδχ(Eex, θ)
using Eq. (3). For simplicity, we will neglect the energy
dependence of the Jπ distributions. This should be a
reasonable approach for our sensitivity studies, as recent
results indicate that these distributions vary slowly with
energy [14, 15].
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FIG. 4. Schematic spin distributions employed in the current
study. Each is of the form F (J, µ) ∝ N (m = µ, sd =

√
µ),

where N is a normal distribution and mean spin µ is indicated
in the legend. The spin values J are either integer or half-
integer, for even-A and odd-A nuclei, respectively, and equal
probability is assigned to positive and negative parity states.

IV. RESULTS

We first demonstrate that the one- and two-neutron
decay probabilities depend on the spin, and to a lesser
extent, the parity of the compound nucleus. The de-
pendence is strongest at low energies and for spherical
nuclei, and lesser at higher energies and for deformed nu-
clei. Then, we show the impact of the Weisskopf-Ewing

approximation on the outcome of simulated surrogate ex-
periments, giving insight into the effect that the spin de-
pendence has on predicted cross sections.

A. Decay probabilities for representative nuclei

GCN
xn (Eex, J

π) for one- and two-neutron emission from
the compound nucleus 91Zr∗ are shown in Figure 5,
for both positive and negative parities and a variety of
spins. The behavior of GCN

xn (Eex, J
π) just above the

CN separation energy, corresponding to Eex = Sn(
91Zr)

= 7.194 MeV, is governed by the interplay of the neutron-
transmission coefficients and the low-energy structure of
the residual nucleus 90Zr which is reached by one-neutron
emission. The situation is schematically illustrated in
Figure 1. Due to the shell structure of the nucleus,
the low-energy spectrum of 90Zr is very sparse, with the
first excited state occurring at 1.76 MeV. Since both the
ground state and the first excited state have Jπ = 0+

and s- and p-wave neutron emission dominates at low
energies, the residual nucleus can only be reached from
low-spin states in the compound nucleus 91Zr∗. This sup-
pression of neutron emission from all but the lowest spin
states in 91Zr∗ is well known from earlier studies of neu-
tron capture reactions, and a dependence on parity is
observed as well [6, 28, 60].
As the excitation energy in 91Zr∗ increases, addi-

tional states in the residual nucleus become accessible
and the decay probabilities GCN

xn (Eex, J
π) for higher J

values take on non-zero values. In the region between
Eex = 15−20 MeV, the one-neutron emission probability
is essentially unity, because of the weakness of competing
decay channels.
In the energy region between 20 and 27 MeV, we

observe the transition from predominantly one-neutron
emission to two-neutron emission. We see significant de-
pendence of the branching ratio on the spins of the com-
pound nucleus for J ≥ 6.5, while there is much weaker
dependence for J ≤ 6.5. The decay probabilities are not
very sensitive to parity.
Figure 6 shows the analogous one- and two-neutron

emission probabilities for the decay of the rare-earth nu-
cleus 158Gd. Here, the dependence on spin is weaker
than in the Zr case, especially near the one-neutron sep-
aration energy of the compound nucleus. This is pri-
marily due to the significantly higher level density in the
gadolinium nuclei: While the first excited state in 90Zr
is at 1.76 MeV, there are 15 levels below 0.5 MeV in
157Gd. In general, the level densities in deformed nuclei
are much higher, and the sensitivity of the compound
nucleus decays to spin and parity is reduced. This is also
true at higher energies: The competition between one-
and two-neutron emission shows significant dependence
on the compound-nuclear spins, although the sensitivity
is not as strong as in the zirconium case. Figure 7 shows
the one- and two-neutron emission probabilities for the
239U nucleus. Like the gadolinium case discussed, the
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FIG. 5. Probabilities for neutron emission from the 91Zr∗

nucleus, as function of excitation energy, for various Jπ val-
ues of the compound nucleus. Both decay channels exhibit a
strong dependence on the spin of the compound nucleus. The
variance is seen to be greatest at the onset of one-neutron
emission, near Eex = Sn(91Zr) = 7.194 MeV.

uranium nuclei are deformed and have a much higher
level density than the zirconium nuclei: 238U has 16 lev-
els below 1 MeV. The transition from one-neutron to
two-neutron emission, which lies near the threshold for
second-chance fission, is also sensitive to the angular mo-
mentum population of the compound nucleus. Multiple
channels compete at all energies considered and no clear
plateaus for the probabilities emerge, unlike in the other
cases considered.

For all three cases discussed, we have observed that
there is enhanced sensitivity of the neutron emission
probabilities near the thresholds. It can therefore be ex-
pected that a failure to account for the spin-parity mis-
match in the analysis of surrogate reaction will result in
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FIG. 6. Probabilities for one-and two-neutron emission from
the 158Gd∗ nucleus, as function of excitation energy, for var-
ious Jπ values of the compound nucleus. The decay proba-
bilities for both channels are seen to depend on the angular-
momentum states populated in the compound nucleus, at the
onset of one-neutron emission near Eex = Sn(158Gd) = 7.937
MeV and in the transition region where the two-neutron chan-
nel opens.

extracted (n, n′) and (n, 2n) cross sections that do not
reflect the true threshold behavior. This will be investi-
gated in more detail in the next subsection.

B. Impact of spin dependence of 1n and 2n decay
probabilities

In the previous section, we observed that the one- and
two-neutron decay probabilities show a significant de-
pendence on the spin of the compound nucleus and a
lesser dependence on parity. Here we study the impact
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FIG. 7. Probabilities for one-and two-neutron emission from
the 239U∗ nucleus, as function of excitation energy, for various
Jπ values of the compound nucleus. We observe a strong spin-
and parity-dependence of GCN

1n (Eex, J
π) near Eex = Sn(239U)

= 4.806 MeV, which lies just below the threshold for fission.

of this dependence on cross sections obtained under the
assumption of the validity of the Weisskopf-Ewing ap-
proximation. We use the schematic spin distributions
FCN
δ (Eex, J

π) discussed in Section III B 3. They are con-
veniently parameterized as discretized normal distribu-
tions with mean µ and variance σ2 = µ:

FCN
δ (Eex, J

π) ∝ N (m = µ, sd =
√
µ). (10)

The distributions are cut off above J = 50 and nor-
malized to unity. For the even-even compound nucleus
158Gd∗, we consider the five distributions, µ = 1, 3, 5, 7, 9,
shown in Figure 4; for the odd nuclei 91Zr∗ and 239U∗ we
use µ = 1.5, 3.5, 5.5, 7.5, and 9.5.
Results for 90Zr(n, n′) and 90Zr(n, 2n) cross sections

obtained from a Weisskopf-Ewing analysis of the simu-
lated surrogate data are shown in Figure 8. As expected,
the threshold regions for both reactions are particularly
sensitive to spin effects. At the onset of inelastic scat-
tering, it is not possible to obtain a reliable (n, n′) cross
section; both shape and magnitude show a very large
variance. Different spin distributions give the same mag-
nitude of this cross section in the region of the plateau,
but there is again significant uncertainty in the region
where the two-neutron channel opens up.
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FIG. 8. Cross sections for (a) 90Zr(n, n′) and (b) 90Zr(n, 2n),
obtained from simulated surrogate data, using the Weisskopf-
Ewing assumption. The underlying schematic spin-parity dis-
tributions used are indicated in the legend. The shape of
the transition depends clearly on which simulated surrogate
data is used, with the cross sections varying by ±30% at
about En = 15 MeV. The 90Zr(n, 2n) cross section varies by
±4% near its maximum, which is located at about En = 20
MeV. For comparison, experimental data [61] for 90Zr(n, 2n)
is shown in panel (b). The only data for the inelastic scatter-
ing case is for scattering to an isomeric state.

Given the findings in the previous section, we expect
the situation to be better for the gadolinium case, shown
in Figure 9. While the 157Gd(n, n′) cross section near
the onset of inelastic scattering varies less than the anal-
ogous zirconium cross section, it is still quite unreli-
able. The value of the 157Gd(n, n′) cross section shows
no dependence on the simulated spin-parity distribution
in a region around En = 5 MeV. Not surprisingly, the
Weisskopf-Ewing approximation for different sets of sim-
ulated surrogate data yields results that are consistent
with each other in an energy regime where there is lit-
tle to no competition from other decay channels. The
maximum for the 157Gd(n, 2n) cross section occurs near
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En = 15 MeV, where the different sets of surrogate
data differ from each other by about 4%, which is an
uncertainty that is similar to the error bands obtained
from direct measurements. Overall, it appears that the
Weisskopf-Ewing approximation might provide a very
rough estimate of the (n, 2n) cross section of a rare earth
nucleus.
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FIG. 9. Cross sections for 157Gd(n, n′) and 157Gd(n, 2n),
obtained from simulated surrogate data, using the Weisskopf-
Ewing assumption and several schematic spin-parity distribu-
tions. In the energy region where the transition from one- to
two-neutron emission occurs, the cross sections exhibit greater
uncertainty, varying by ±57% for (n, n′) and ±13% for (n, 2n)
at En = 10 MeV. The maximum for (n, 2n) near En = 15
MeV, the variation is ±62% for (n, n′) and ±1% for (n, 2n).
For comparison, directly measured data [61] is shown for the
157Gd(n, 2n) cross section; no data are available for the in-
elastic cross section.

For the uranium case, shown in Figure 10, we observe a
further decrease in sensitivity to differences in spin. Even
so, the shape of the 238U(n, n′) cross section cannot be re-
liably extracted at low energies. With increasing energy,
the Weisskopf-Ewing approximation appears to become
more reliable. In fact, the 238U(n, 2n) cross section ob-
tained from the simulated data are in good agreement
with available directly-measured data. At energies above
18 MeV, however, where no data exists, we see devia-
tions from the ENDF evaluation[36]. We attribute this
to the neglect of pre-equilibrium contributions, which are
included in evaluations but neglected in standard WE
analysis.

Overall, we find that the Weisskopf-Ewing approxima-
tion can provide rough first estimates for the (n, 2n) cross
sections of nuclei with large level densities, such as rare

0.00

0.50

1.00

1.50

2.00

Cr
os

s s
ec

tio
n 

(b
)

(a) 238U(n, n′)

= 1
= 3
= 5
= 7
= 9

EXFOR

0 5 10 15 20 25
0.00

0.25

0.50

0.75

1.00

1.25

1.50

Cr
os

s s
ec

tio
n 

(b
)

(b) 238U(n, 2n) ENDF/B-VIII.0
EXFOR

0.0 0.2 0.4 0.6 0.8 1.0
En (MeV)

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 10. Cross sections for (a) 238U(n, n′) and (b)
238U(n, 2n), obtained from simulated surrogate data, using
the Weisskopf-Ewing assumption and several schematic spin-
parity distributions. The 238U(n, 2n) results agree reasonably
well with the existing data [61]. For the inelastic case, data
is only available data for low energies, where direct reaction
mechanisms are known to contribute.

earth and actinide nuclei, while the low-energy behavior
is much less reliable. Specifically, near thresholds there
is clearly increased sensitivity of the decay to the under-
lying spin-parity distribution in the compound nucleus.
As a result, the shape of the extracted cross sections do
not reproduce the true cross sections very well. Notably,
the Weisskopf-Ewing approximation fails at the onset of
one-neutron emission. This is in line with earlier findings
about the limitations of this approximation for neutron
capture cross sections.

In addition, it should be stressed that we have focused
on the compound contributions to the (n, n′) and (n, 2n)
cross sections here. For inelastic scattering, it is well
known that direct (pre-equilibrium) mechanisms provide
significant additional contributions, which are not con-
sidered here. These contributions are known to affect
the spins populated in the target nucleus [62, 63] and
will exacerbate the deficiencies of the WE approxima-
tion. These have to be calculated separately and added
to the cross section, similar to what is done for the direct-
reaction component in an evaluation. Unfortunately, for
many nuclei there is little data available for neutron in-
elastic scattering, and the calculations are challenging,
so this reaction channel requires additional studies, both
experimentally and theoretically.
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V. OUTLOOK

We have investigated the potential use of the
Weisskopf-Ewing approximation for determining (n, n′)
and (n, 2n) cross sections from surrogate reaction data.
Earlier work for neutron-induced fission and radiative
neutron capture demonstrated that this approximation
yields reasonable approximations for the fission cross sec-
tions, but fails for capture, making it necessary to employ
more detailed theoretical modeling in the latter case.

We modeled the nuclear structure properties that de-
termine the decay of a compound nucleus via 1n and 2n
emission, as well as the combined effect of the nuclear
structure and the surrogate reaction mechanisms on the
cross-section results that one obtains from a Weisskopf-
Ewing analysis of the indirect data. We found that
the Weisskopf-Ewing approximation fails to give consis-
tent cross section shapes in the presence of a spin-parity
mismatch between the desired and surrogate reactions.
The outcomes are worse for nuclei with low level den-
sity, i.e. for lighter nuclei and for those in regions near
closed shells. While rough estimates for the cross sections
might be obtained for (n, 2n) reactions on well-deformed
rare-earth and actinide nuclei, we find that nuclei in the
mass-90 region are more sensitive to the effects of spin
and parity. Furthermore, inelastic neutron scattering
cross sections are found to be quite sensitive to angular-
momentum effects and thus require a detailed treatment
of the reaction mechanism, similar to that recently used
for extracting capture cross sections from surrogate data.

Suggestions to find a surrogate reaction that approxi-
mates the spin-parity distribution relevant to the desired
reaction are well-motivated, as the use of the Weisskopf-
Ewing approximation greatly simplifies surrogate appli-
cations. However, not enough is known about the angular
momentum and parity of the compound states that are
populated in a surrogate reaction to plan an appropri-
ate experiment. Recent work has demonstrated that the
surrogate reactions that produce a compound nucleus at
the high energies of interest involve higher-order reac-
tion mechanisms, which render inadequate the type of
simple angular-momentum estimates that are often used
in traditional nuclear structure studies. It is also not nec-
essarily true that a surrogate reaction produces spins in a
compound nucleus that are higher than those relevant to
neutron-induced reactions. This means that in order to
achieve cross section results with appropriate shapes and
errors less than about 30%, surrogate reaction data will
need to be combined with full modeling of the reaction
mechanism, as described in section II B.

In light of our findings that the Weisskopf-Ewing ap-
proximation is insufficient for determining (n, n′) and
(n, 2n) cross sections, we believe that further develop-
ment of surrogate reaction theory is important for ad-
dressing existing nuclear data needs. Inelastic scatter-
ing (n, n′) reactions in particular are poorly constrained
by direct measurement techniques. Alternative indirect
methods [64] do not address (n, n′) and (n, 2n) reac-

tions. Recent surrogate reaction applications to neu-
tron capture have demonstrated how to proceed to accu-
rately extract cross sections from surrogate data in sit-
uations where the Weisskopf-Ewing approximation fails
[14, 15, 25]. Given the limited utility of the Weisskopf-
Ewing approximation for neutron induced one- and two-
neutron emission reactions, we conclude that additional
developments are needed in order to describe the rele-
vant reaction mechanisms, such as those involved in the
(3He,3He′) scattering experiment described in Figure 1.
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Appendix A: Conditions of the Weisskopf-Ewing
limit

As discussed in Section II, if the decay probabilities
GCN

χ (Eex, J
π) are independent of spin and parity, or the

surrogate reaction produces a compound nucleus spin dis-
tribution which is very similar to that produced by the
neutron-induced reaction, the cross section for the de-
sired reaction can be obtained very simply as:

σn+A,χ(En) = σCN
n+A(Eex)P

CN
δχ (Eex), (A1)

where PCN
δχ (Eex) is the coincidence probability deter-

mined from the surrogate measurement.
The latter of these options, the ‘serendipitous’

or ‘matching’ condition requires that FCN
δ (Jπ) ≈

FCN
n+A(Eex, J

π) holds. A comparison of FCN
n+A(Eex, J

π)
for representative nuclei and energies Eex, shown in Fig-
ure 2 of this paper and in Figure 3 of Ref. [27], with re-
alistic surrogate spin-parity distributions, such as those
shown in Figure 3, indicates that it is difficult to identify
and carry out a surrogate reaction experiment that can
achieve this condition.
Here, we briefly review the conditions in which the

decay probabilities become approximately independent
of Jπ, i.e. GCN

χ (Eex, J
π)→ GCN

χ (Eex) (see also Refs. [31,
32]):
First, the energy of the compound nucleus has to be

sufficiently high, so that almost all channels into which
the nucleus can decay are dominated by integrals over
the level density. In that case, the denominator in Eq.
(2) does not include decays to discrete levels.
Second, correlations between the incident and outgoing

reaction channels, which can be formally accounted for
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by including width fluctuation corrections [65], have to be
negligible. These correlations enhance elastic scattering,
at the expense of the inelastic and reaction cross sections,
and are most prominent at the low energies relevant to
capture reactions. Width fluctuations are negligible if
the first condition (above) is satisfied.

Third, the transmission coefficients T J
χ′l′cj

′
χ
associated

with the available exit channels have to be independent of
the spin of the states reached in these channels. This con-
dition is sufficiently well satisfied since the dependence of
transmission coefficients on target spin is very weak and,
in fact, is ignored in many Hauser-Feshbach codes.

Fourth, the level densities ρjC in the available channels
have to be independent of parity and their dependence
on the spin of the relevant nuclei has to be of the form
ρjC ∝ (2jC + 1). While level densities are known to
depend on parity, that dependence becomes weaker with
increasing excitation energy and is often ignored in statis-
tical reaction calculations. In addition, many successful
applications use level densities that are parametrized in
a form that is factorized (for each parity) as:

ρjC (UC) = w(UC)
(2jC + 1)

2σ2
C

exp

(
−jC(jC + 1)

2σ2
C

)
,

(A2)

where w(UC) contains the energy dependence of the level
density and σC is the spin cut-off factor. At low energies
(Eex ≤ 3 MeV), typical values for σ2

C are 7-10 in the Zr
region and 12-16 in the Gd region [66]. As Eex increases
from a few MeV to about 20 MeV, σ2

C can increase by a
factor 4 or more for these mass regions [59]. If we then
assume that the spins populated in the residual nucleus
are small compared to the σC , the level density can be
written as

ρjC (UC) ≈
wC(UC)

2σ2
C

(2jC + 1). (A3)

When the above conditions are satisfied, the decay
probabilities from Eq. (2) take the form:

GCN
χ (Eex, J

π) =∑
lcjχjC

∫
T J
χlcjχ

wC(UC)(2jC + 1)dEχ∑
χ′l′cj

′
χj

′
C

∫
T J
χ′l′cj

′
χ
(Eχ′)wC′(U ′

C)(2j
′
C + 1)dEχ′

. (A4)

We can carry out the sum over jC if we use the triangle
rule |jχ − jc| < jC < |jχ + jc| to obtain the identity∑

jC

(2jC + 1) = (2jχ + 1)(2jc + 1).

and analogously for the jχ:∑
jχ

(2jχ + 1) = (2J + 1)(2lc + 1),

to obtain the spin-independent decay probabilities:

GCN
χ (Eex) = (A5)(∑

lc
(2lc + 1)Tχlc

) ∫
(2jc + 1)wC(UC)dEχ(∑

χ′l′c
(2lc + 1)Tχ′l′c

(Eχ′)
) ∫

(2j′c + 1)wC′(U ′
C)dEχ′

.

(A6)

In summary, in order for the GCN
χ (Eex, J

π) to become
independent of spin and parity, the energy Eex of the
compound nucleus must be high enough so that decays
to the continuum of residual nuclei dominate, and the re-
action must populate spins that are small relative to the
spin cutoff parameter. Since neutron-induced reactions
and surrogate reactions can produce different spin distri-
butions, it is possible that the conditions for the validity
of the Weisskopf-Ewing approximation are satisfied for
one type of reaction, but not the other.
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