

IER 297: TEX-HEU Baselines Benchmark

IER 532: TEX-Hf Update

2023 NCSP Technical Program Review

Jesse Norris

Lawrence Livermore National Laboratory

February 22, 2023

Overview

TEX-HEU

1. Uncertainties and Simplification Biases
2. Benchmark Model k_{eff} and C/E

TEX-HEU BASELINE ASSEMBLIES: HIGHLY ENRICHED URANIUM PLATES WITH POLYETHYLENE MODERATOR AND POLYETHYLENE REFLECTOR

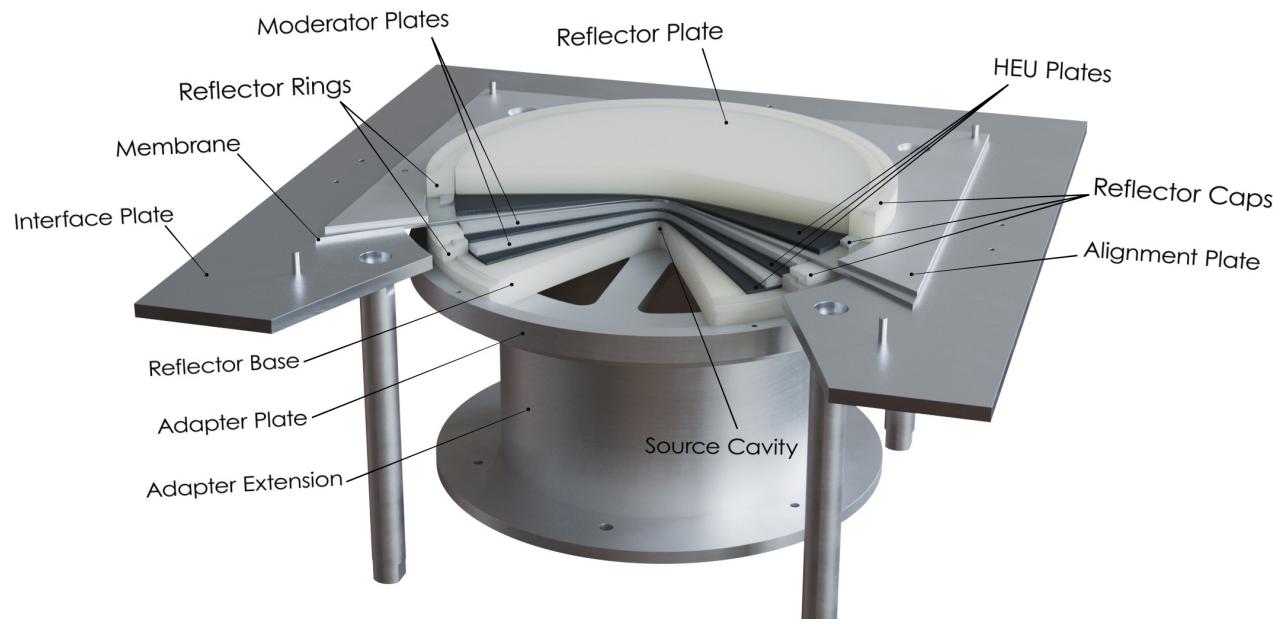
Evaluators

Jesse Norris
Ruby Araj
Lawrence Livermore National Laboratory

Internal Reviewers

David Heinrichs
Catherine Percher
Lawrence Livermore National Laboratory

Independent Reviewer


Michael Zerkle
Naval Nuclear Laboratory

TEX-Hf

1. TEX-Hf Design
2. Experimental Measurements

TEX-HEU Design

- Highly enriched (93+) uranium (HEU) fuel with polyethylene moderator and reflector
- Multiple thicknesses of the polyethylene moderator plates to vary the neutron energy spectrum from thermal to fast

Simplification and Bias Results

- Model simplifications include:
 - HEU and polyethylene impurity removal
 - Comet and experiment room removal
 - Temperature correction to 20°C

$$\text{Bias}_i = k - k'_i$$

Unbiased model k and biased model k'_i due to a simplification in component i

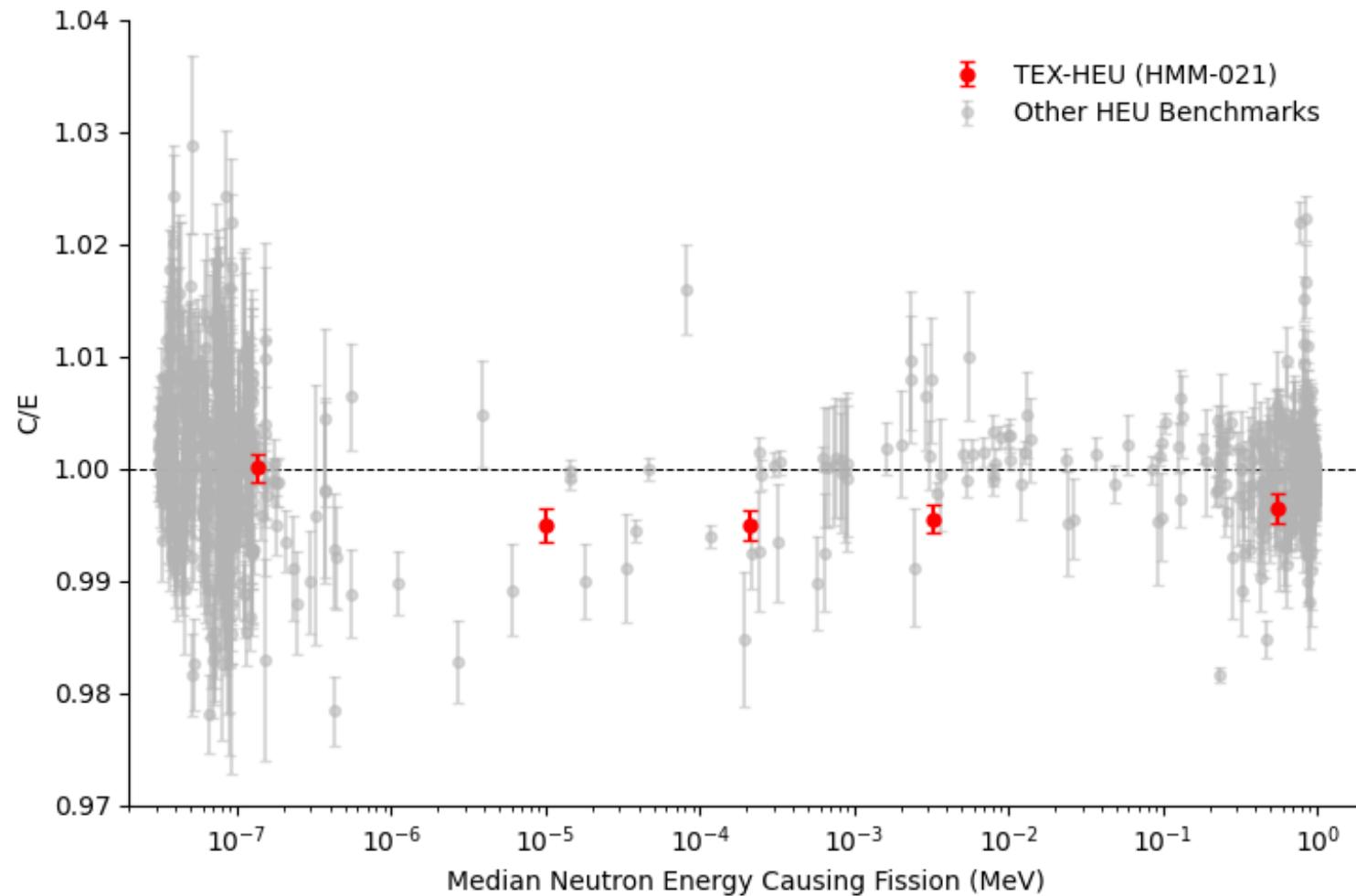
Simplification Bias Component	Standard Uncertainty in k_{eff} (pcm)				
	Case 1	Case 2	Case 3	Case 4	Case 5
HEU Impurities	-10	-3	-3	+7	0
Polyethylene Impurities	-3	-15	0	-12	-5
Comet & Room Removal	+214	+229	+204	+203	+159
Temperature Correction*	-74	-89	-92	-84	+222
Average Core Stacks (Simplified Model)	+21	-18	-11	-10	+67

*Preliminary pending review

Experimental and Benchmark Model k_{eff}

- The final benchmark model k_{eff} is based on the inferred experimental k_{eff} and the calculated model simplification biases

Case	Experimental $k_{\text{eff}} \pm 1\sigma$	Bias in $k_{\text{eff}} \pm 1\sigma$	Benchmark Model k_{eff}
1	1.00026 ± 0.00001	0.00127 ± 0.00013	0.99899 ± 0.00133
2	1.00038 ± 0.00002	0.00122 ± 0.00013	0.99916 ± 0.00128
3	1.00067 ± 0.00003	0.00115 ± 0.00013	0.99952 ± 0.00130
4	1.00112 ± 0.00004	0.00114 ± 0.00013	0.99998 ± 0.00150
5	1.00094 ± 0.00004	0.00376 ± 0.00013	0.99718 ± 0.00122


Results of Sample Calculations (C/E)

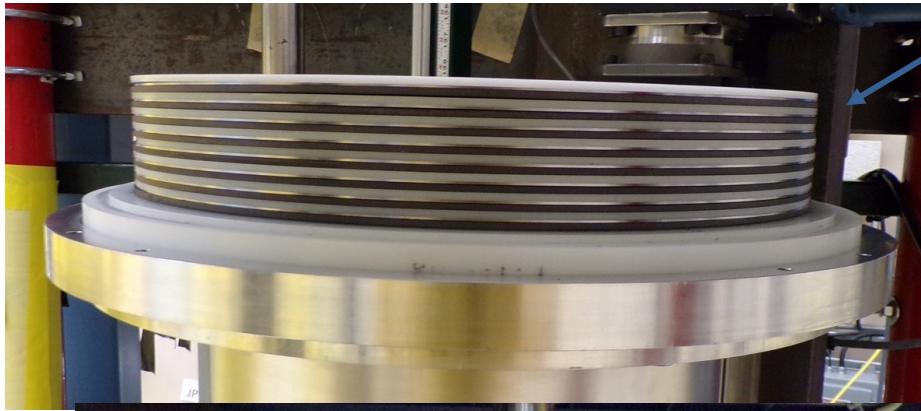
MCNP® 6.2.0 with Continuous Energy ENDF/B-VIII.0

- Calculated k_{eff} is slightly, but consistently, under-predicting the experimentally inferred k_{eff}

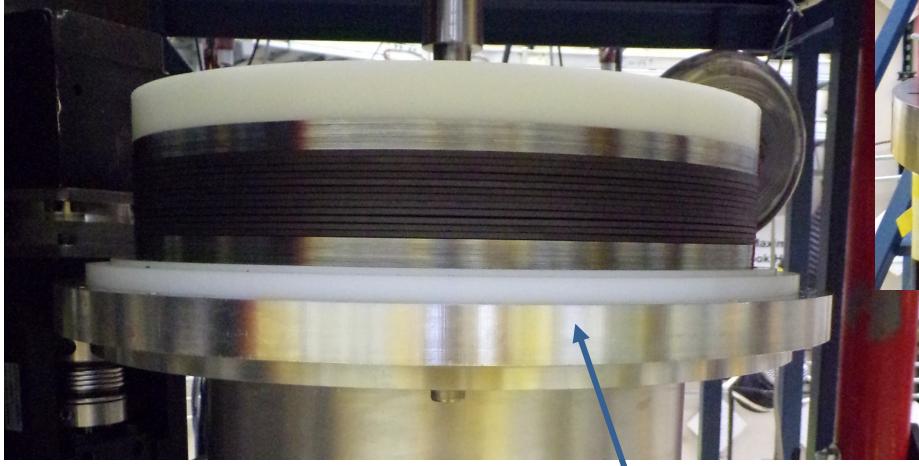
Case	Detailed Model	Simplified Model
1	0.99645 ± 0.00133	0.99645 ± 0.00133
2	0.99551 ± 0.00128	0.99552 ± 0.00128
3	0.99490 ± 0.00130	0.99490 ± 0.00130
4	0.99493 ± 0.00150	0.99494 ± 0.00150
5	1.00006 ± 0.00122	1.00006 ± 0.00122

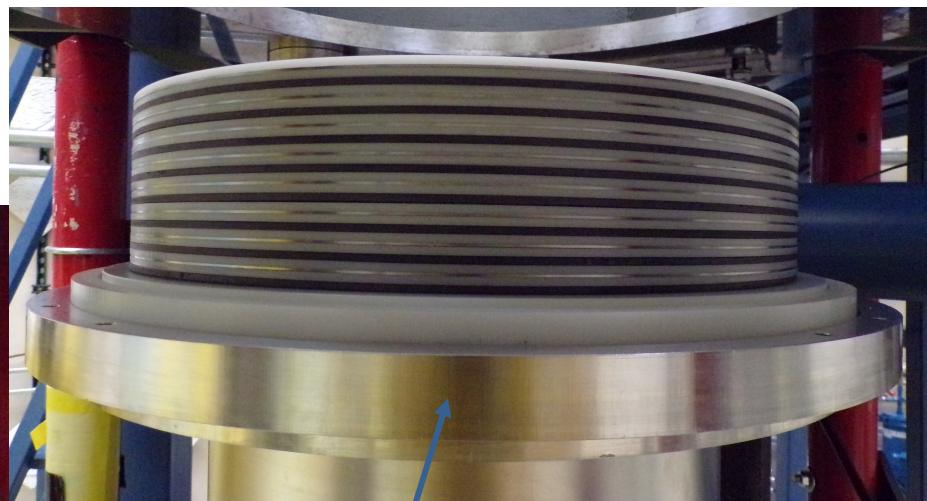
Comparison to HEU Benchmarks in ICSBEP

TEX-HEU Conclusions


- The intermediate and fast configuration models (Cases 1-4) consistently underpredict the experiments while the thermal configuration model (Case 5) is in good agreement
- The TEX-HEU Benchmark Evaluation (HMM-021) was accepted pending review and approval by a Subgroup of the ICSBEP TRG in 2021
 - TRG comments received in Q3 of FY22
 - All reviewer comments have now been addressed and the evaluation has been provided to a majority of the reviewers seeking their approval earlier this month
- The TEX-HEU Benchmark Evaluation will provide a baseline that can be compared against for all future experiments using the TEX-HEU design, including TEX-Hf

TEX-Hf Overview


- TEX-Hf is the first variation on TEX-HEU and incorporates Hafnium as a diluent material
- The goal of the TEX-Hf configurations is maximize the sensitivity in k_{eff} to the hafnium isotope cross sections
- The TEX-Hf configurations are neutronically similar to the TEX-HEU configurations and extend the design using new stacking variations


TEX-Hf Stacking Variations

Standard
Hafnium between HEU and HDPE

Bunched
Hafnium as a reflector

Sandwich
Hafnium between HDPE

TEX-Hf Measurements

- A total of seven experimental configurations were measured with four reproducibility measurements

Configuration	Benchmark Measurement		Reproducibility Measurement	
	Period (s)	Excess (¢)	Period (s)	Excess (¢)
0" Std.	59.2 ± 0.6	14.1 ± 0.1	71.9 ± 0.2	12.2 ± 0.0
1/8" Std.	64.8 ± 0.4	13.2 ± 0.1	-	-
1/4" Std.	25.4 ± 0.1	24.2 ± 0.5	25.2 ± 0.1	24.3 ± 0.3
1/2" Std.	122.9 ± 0.5	8.1 ± 0.1	-	-
1-1/2" Std.	84.5 ± 0.5	10.9 ± 0.0	74.9 ± 0.4	11.8 ± 0.2
1/4" Sand.	50.7 ± 0.2	15.7 ± 0.0	50.7 ± 0.2	15.7 ± 0.0
0" Bunch.	73.8 ± 0.0	12.0 ± 0.0	-	-

TEX-Hf Conclusions & Future Work

- The experiment campaign for TEX-Hf spanned seven weeks in August, September, and October of 2022
- Lessons learned from the TEX-HEU experiment campaign and benchmark evaluation were incorporated into TEX-Hf
- The Experiment Execution Report (CED-3b) is near completion with delivery planned for Q2 of FY23
- The Benchmark Evaluation (CED-4a) is planned for submission to ICSBEP in 2024

Acknowledgements

- This work was supported by the Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy
- Thanks to the TEX-HEU (IER-297) and TEX-Hf (IER-532) C_EdTs
 - Theresa Cutler (LANL), Michael Zerkle (NNL), William Marshall (ORNL), Joetta Goda (LANL), Catherine Percher (LLNL), and Mariya Brovchenko (IRSN)
- Thanks to the ICSBEP TRG and HMM-021 Subgroup for their continued review of the TEX-HEU Benchmark Evaluation
 - Michael Zerkle (NNL), David Heinrichs (LLNL), Catherine Percher (LLNL), and Jeffrey Favorite (LANL); and all participants of the 2021 ICSBEP TRG
- Thanks to Los Alamos National Laboratory's Advanced Nuclear Technology Group (NEN-2) and NCERC-FO for their work on and support of the TEX-Hf (IER-532) experiment campaign
 - Travis Grove, Theresa Cutler, Rene Sanchez, Kelsey Amundson, Nicholas Thompson, Jesson Hutchinson, Alex McSpadden, and Jessie Walker
- Thanks to Naval Reactors for providing the Hafnium plates used in the TEX-Hf (IER-532) experiment

**Lawrence Livermore
National Laboratory**

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC