

LA-UR-21-22063

Accepted Manuscript

Performance evaluation of pulse shape discrimination capable organic scintillators for space applications

Pinilla-Orjuela, Maria Isabel

Mesick, Katherine Elizabeth

Bloser, Peter Forbes

Tutt, James Robert

Provided by the author(s) and the Los Alamos National Laboratory (2023-05-03).

To be published in: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

DOI to publisher's version: 10.1016/j.nima.2023.168309

Permalink to record:

<https://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-21-22063>

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Journal Pre-proof

Performance evaluation of pulse shape discrimination capable organic scintillators for space applications

M.I. Pinilla-Orjuela, K.E. Mesick, P.F. Bloser, J.R. Tutt

PII: S0168-9002(23)00299-1

DOI: <https://doi.org/10.1016/j.nima.2023.168309>

Reference: NIMA 168309

To appear in: *Nuclear Inst. and Methods in Physics Research, A*

Received date: 22 March 2021

Revised date: 29 March 2023

Accepted date: 13 April 2023

Please cite this article as: M.I. Pinilla-Orjuela, K.E. Mesick, P.F. Bloser et al., Performance evaluation of pulse shape discrimination capable organic scintillators for space applications, *Nuclear Inst. and Methods in Physics Research, A* (2023), doi: <https://doi.org/10.1016/j.nima.2023.168309>.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Published by Elsevier B.V.

Performance Evaluation of Pulse Shape Discrimination Capable Organic Scintillators for Space Applications

M.I. Pinilla-Orjuela^a, K.E. Mesick^a, P.F. Blosier^a, J.R. Tutt^a

^a*Los Alamos National Laboratory, Los Alamos, NM 87545 USA*

Abstract

Scintillators with pulse-shape discrimination (PSD) capability are of great interest to many fields in the scientific community. The ability to discern a gamma ray from a neutron using PSD varies between different types of scintillator materials and dopants. A new generation of organic scintillator materials with PSD capability were studied to determine their radiation hardness to neutron and gamma-ray radiation. The PSD capability, average pulse shapes, and light output of four types of organic scintillator were characterized before and after neutron and gamma-ray irradiation. The main goal of this investigation is to study the effects of long-term irradiation that may be experienced in space applications on the light output and particle discriminating capabilities of each material. EJ-270, EJ-276, organic glass, and Stilbene were tested. Damage due to neutron irradiation (displacement damage) was not observed in any of the scintillators up to $2.56 \times 10^{11} \text{ n/cm}^2$, except for Stilbene which showed a small (12%) decrease in light output. All scintillators presented some light output reduction after gamma-ray irradiation (total ionizing dose), with reductions of 17% (EJ-276 and OGS), 32%

*Corresponding author

Email address: mpinilla@missouri.edu (M.I. Pinilla-Orjuela)

(EJ-270), and 42% (Stilbene) observed immediately after 100 kRad.

Keywords:

Organic scintillators, radiation damage, pulse-shape discrimination

1. Introduction

2 The next generation of organic scintillators for fast neutron detection
3 with pulse-shape discrimination (PSD) capability have recently been under
4 development [1, 2, 3, 4]. These scintillators are of interest to a wide range
5 of applications that benefit from fast neutron detection, including space-
6 based applications such as planetary science and space science measurements.
7 The PSD capability of these new organic scintillators provides a measure
8 to cleanly reject gamma-ray background that organic scintillators are also
9 sensitive to.

10 Some organic scintillators with PSD capability already exist. Stilbene
11 is well known and has excellent PSD ability, however, until recently the
12 availability of Stilbene has been limited and the cost of manufacturing large
13 volumes high. A new growth method for Stilbene was recently developed at
14 Lawrence Livermore National Laboratory (LLNL) [1], which opens the door
15 to easier scalability. In addition, Stilbene produced with the new growth
16 method showed 50% more light output than Stilbene produced using the
17 traditional growth method [1]. Liquid organic scintillators have been used
18 for decades and provide good PSD, however, are unfavorable for space appli-
19 cations due to the required size and their toxic and flammable nature.

20 Recently, several new options for PSD capable organic scintillators have
21 become available. In addition to the new Stilbene mentioned above, plastic

22 scintillators with PSD capability, both unloaded [2] and loaded with ^6Li [3] to
23 provide thermal neutron sensitivity, and PSD glass [4] have become available.

24 To our knowledge, none of these new organic scintillators with PSD ca-
25 pability have space heritage or have been subject to irradiation to assess
26 their tolerance to damage in relevant environments for space-based appli-
27 cations. Instruments in inter-planetary space or in Earth orbit are subject
28 to high fluences of energetic charged particles. In inter-planetary space and
29 Earth orbits outside the radiation belts, instruments are subject to $\sim 10^9$
30 protons/cm² over a 10 year mission lifetime from high-energy galactic cos-
31 mic rays (predominantly protons with an average energy of 100s of MeV).
32 Solar energetic proton events can also result in an additional $\sim 6 \times 10^{10}$
33 protons/cm² (>10 MeV protons) over the same duration. In low Earth orbit,
34 instruments may additionally be subject to trapped protons in the radiation
35 belts leading to higher proton flux, but these missions typically have a shorter
36 duration.

37 In this work we evaluate the performance of these newly developed or-
38 ganic scintillators with PSD capability after neutron irradiation, which pro-
39 vides information relevant to displacement damage (DD), and after gamma
40 irradiation, which provides information relevant to total ionizing dose (TID).
41 The resulting damage measurements can then inform use of the scintillators
42 in a variety of space environments where the damage type can vary signif-
43 icantly. The neutron fluences and doses were selected based on radiation
44 exposure to protons experienced in orbit, thus providing critical information
45 for assessing the future use of these scintillators for space missions. The lev-
46 els of irradiation may also be of interest to detector development for future

⁴⁷ beamline facilities (e.g. [5, 6]), radiation therapy dosimetry (e.g [7]), and
⁴⁸ other applications with intense radiation fields.

⁴⁹ **2. Methods**

⁵⁰ Seven 2.54-cm right cylinder samples were obtained of four different types
⁵¹ of scintillators: unloaded PSD plastic (EJ-276, Eljen), ⁶Li-loaded PSD plas-
⁵² tic (EJ-270, Eljen), Stilbene (InRad Optics), and organic glass scintillator
⁵³ (OGS, provided by Sandia National Laboratory). The scintillator samples
⁵⁴ for each material numbered 1-7. Figure 1 shows one sample of each scintilla-
⁵⁵ tor type. Sample 1 was measured five times over the duration of experimental
⁵⁶ measurements to establish a performance baseline and determine experimen-
⁵⁷ tal uncertainty between measurements. Samples 2, 3, and 4 were irradiated
⁵⁸ with neutrons at the Los Alamos Neutron Science Center (LANSCE), while
⁵⁹ samples 5, 6, and 7 were irradiated with gamma rays at LANL's Radiation
⁶⁰ Instrument and Calibration Facility (RICF) Mark2b gamma cell irradiator.

⁶¹ All scintillator samples were wrapped in four layers of polytetrafluoroethy-
⁶² lene (PTFE) tape as uniformly as possible. They were then wrapped in
⁶³ electrical tape to maintain the integrity of the PTFE tape during handling
⁶⁴ and between measurements. The samples were coupled to 23 mm × 23 mm
⁶⁵ active area R11265U Hamamatsu photomultiplier tubes (PMTs) using opti-
⁶⁶ cal grease. Waveforms were collected using a CAEN v1761 digitizer with a
⁶⁷ sample rate of 4 GSamples/s. The EJ-276 and EJ-270 samples were biased
⁶⁸ to -700V , the Stilbene to -650V , and the OGS to -675V , to limit input
⁶⁹ pulse amplitude to $<1\text{V}$ as required by the digitizer.

⁷⁰ Each full set of characterization measurements consisted of 50,000 wave-

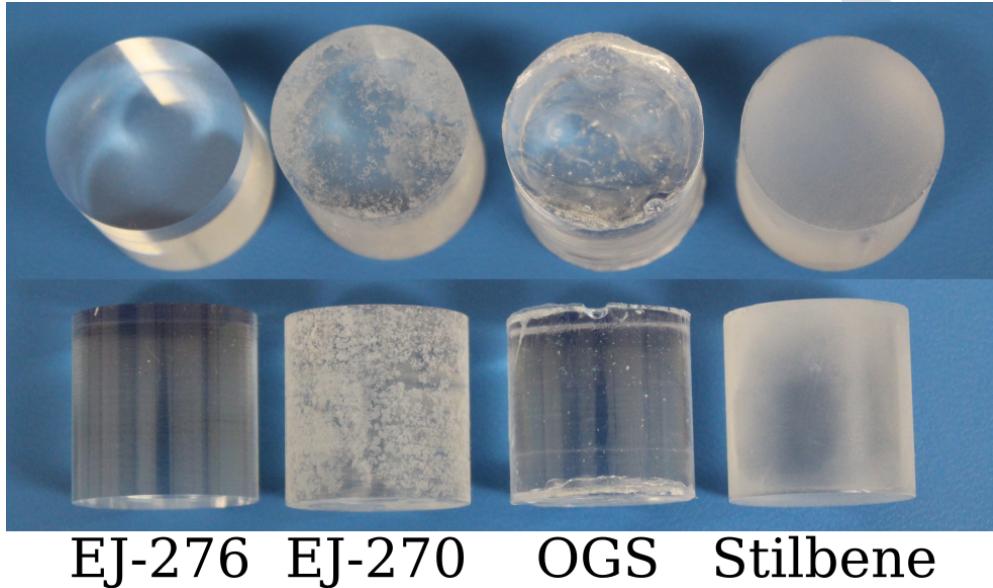


Figure 1: Picture of the four scintillator types obtained for this study.

71 forms collected from ^{137}Cs and ^{22}Na check sources to obtain Compton Edge
 72 locations from gamma-ray spectra (formed by integrating waveforms over an
 73 800 ns integration window) for energy calibration and 100,000 waveforms
 74 collected from a neutron source (^{252}Cf or PuBe). Particle discrimination is
 75 achieved by using PSD, which is enabled by different scintillation light de-
 76 cay times for neutrons and gamma rays. By integrating two regions of the
 77 scintillation light pulse, "head" (H) and "total" (T) regions, a PSD ratio is
 78 formed by $1 - H/T$. The figure of merit (FOM) describes the quality of PSD,
 79 and is defined in Eq. 1 [8, 9]:

$$FOM = \frac{\mu_n - \mu_\gamma}{FWHM_n + FWHM_\gamma}, \quad (1)$$

80 where μ is the centroid of the neutron and gamma-ray peaks in PSD and
 81 FWHM their full-width and half-maximum.

Sample	Time (hr)	>10 MeV Fluence (n/cm 2)
2	31.4	2.56×10^{11}
3	7.8	4.96×10^{10}
4	1.6	1.10×10^{10}

Table 1: Irradiation times and neutron fluences (>10 MeV) achieved for scintillator samples 2, 3, and 4.

82 *2.1. Neutron Irradiation*

83 Neutron irradiation was used to study the effect of displacement damage
 84 on the scintillators. The Irradiation of Chips Electronics (ICE II) is located
 85 on the 30° flight path at the Weapons Neutron Research Facility (WNR)
 86 inside the LANSCE complex. The neutron beam at ICE II has an energy
 87 profile comparable to the neutron spectrum produced in the atmosphere by
 88 cosmic rays (see Fig. 2) [10]. The high-intensity neutron flux allows for
 89 materials to be irradiated with high doses of radiation in a relatively short
 90 amount of time. Each scintillator sample set (EJ-270, EJ-276, OGS, and
 91 Stilbene) was placed along the beam path as seen in Fig. 3b. Sample sets 2,
 92 3, and 4 were irradiated to achieve the neutron fluences seen in Table 1 at an
 93 approximate rate of 1.8×10^6 n/cm 2 /s (>10 MeV). The integral flux rate of
 94 >1 MeV neutrons is about two times higher. The samples were placed with
 95 their optical collection surface towards the beam exit window and sometimes
 96 multiple sample sets were irradiated simultaneously due to time constraints.
 97 Given the high energy of the ICE II neutron spectrum the neutrons largely
 98 pass through the scintillators, and we therefore expect uniform irradiation of
 99 all samples regardless of the detailed configuration.

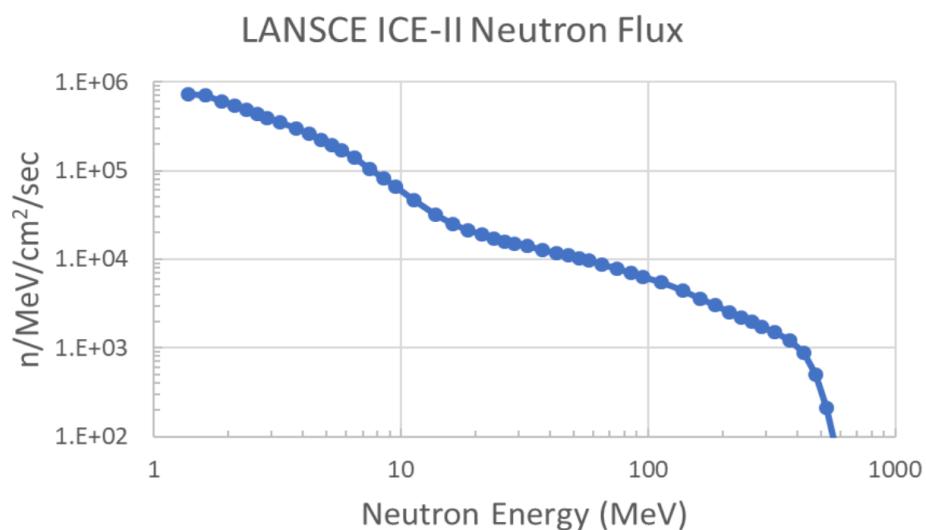


Figure 2: Neutron Spectrum for ICE-II flight path (30R) at LANSCE/WNR.

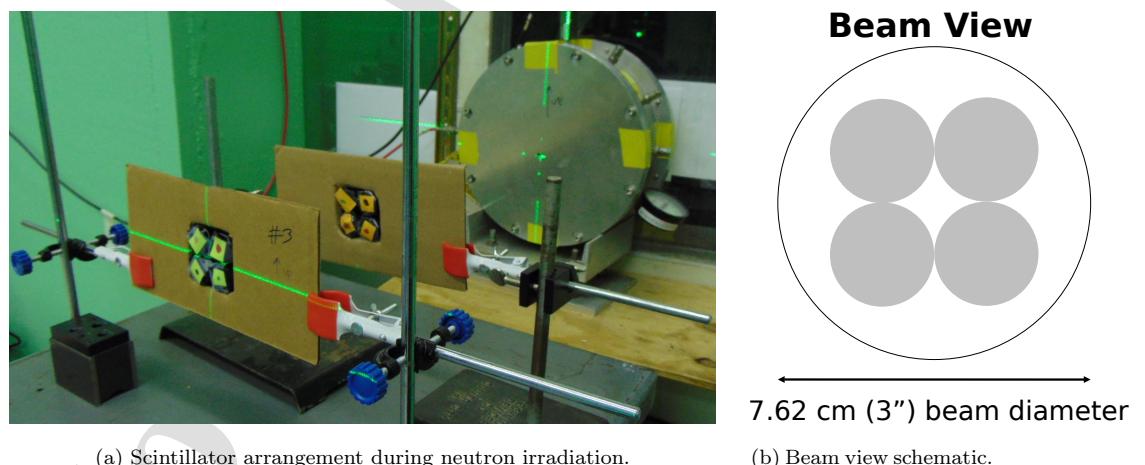


Figure 3: Experimental setup at LANSCE

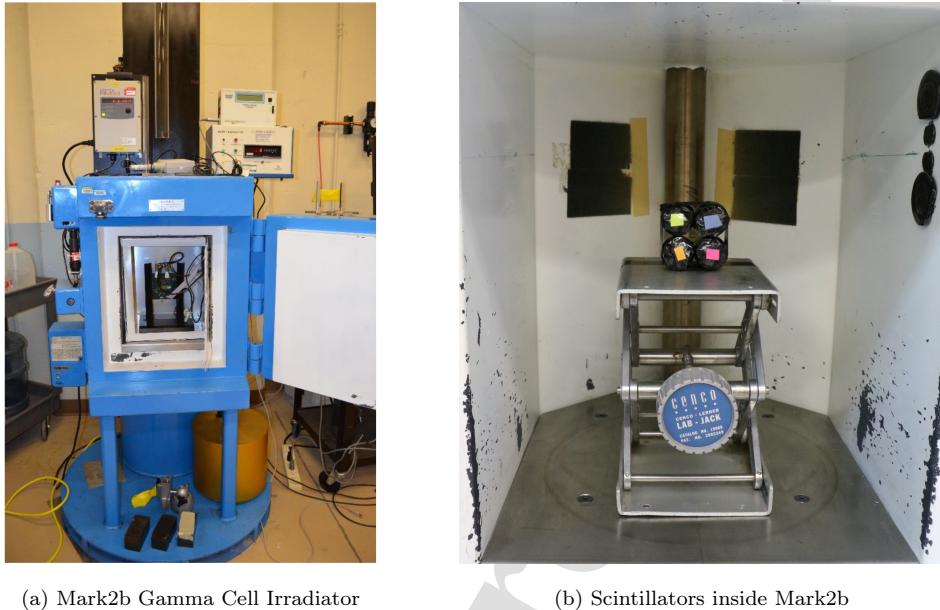


Figure 4: Experimental setup at TA-36.

100 *2.2. Gamma-ray Irradiation*

101 Scintillator samples 5, 6, and 7 were placed inside a Mark2b Gamma
 102 Cell Irradiator (see Fig. 4a) containing a \sim 3800 Ci ^{137}Cs source to assess
 103 the radiation hardness against total ionizing dose to the scintillators. Sam-
 104 ple 5 received a dose of 100 kRad, sample 6 received 10 kRad, and sample 7
 105 originally received 1 kRad; however, after seeing no effect with a 1 kRad
 106 dose, sample 7 was placed back in the chamber and received a total dose
 107 of 50 kRad. Simulations performed of the Mark2b chamber setup showed
 108 nearly uniform energy deposition throughout all of the sample volumes.

¹⁰⁹ **3. Results**

¹¹⁰ *3.1. Initial Characterization*

¹¹¹ Slight differences in manufacturing can change the light output and PSD
¹¹² capability of a detector. Therefore, we performed an initial characteriza-
¹¹³ tion on all seven detector samples to understand the uniformity of their
¹¹⁴ performance. The Compton edge (CE) locations versus channel number for
¹¹⁵ the 511 keV (²²Na, CE 340.67 keV), 667 keV (¹³⁷Cs, CE 477.34 keV), and
¹¹⁶ 1.27 MeV (²²Na, CE 1061.71 keV) gamma-ray lines were compared to calcu-
¹¹⁷ late the light output variance of the samples. For the purposes of calibra-
¹¹⁸ tion, the Compton Edge was defined as 50% of the Compton plateau [11],
¹¹⁹ as determined by a fit using a Gaussian-broadened step function. In addi-
¹²⁰ tion, sample 1 of each scintillator type was measured five times to determine
¹²¹ our measurement uncertainty. The results for the four scintillator types are
¹²² shown in Table 2. With the exception of OGS, the sample-to-sample light
¹²³ output variation was observed to be larger than our assessed measurement
¹²⁴ uncertainty. A comparison of the relative light yield of the four scintillators
¹²⁵ at 478 keVee (¹³⁷Cs CE) pulled from literature is shown in Table 3.

	EJ-270	EJ-276	OGS	Stilbene
Sample 1 (5 Meas.)	3.79%	3.69%	3.66%	3.26%
Samples 1-7	7.5%	5.0%	3.4%	13.2%

Table 2: Sample light output variance and measurement uncertainty.

¹²⁵
¹²⁶ To test the uniformity of PSD performance among the samples, a ²⁵²Cf
¹²⁷ source was used to take combined neutron and gamma-ray data. Average

Scintillator	Relative 478 keVee LY
EJ-276	1.00 [12]
EJ-270	0.56 [13]
OGS	1.86 [14]
Stilbene	1.51 [14]

Table 3: Relative light yield (LY) of the four scintillator types.

128 gamma-ray and neutron waveforms for each detector are shown in Fig. 5.
 129 The average waveforms were obtained from events over the full energy range
 130 by normalizing each individual waveform to its integral. Figure 6 shows the
 131 waveform comparison between the scintillators, with OGS showing the fastest
 132 decay for both neutrons and gamma rays. Due to the rapid decay of the
 133 gamma-ray waveform compared to the neutron waveform, we can calculate a
 134 PSD number based on the integral of the beginning of the waveform (head,
 135 H) to the total integral (T). The head and total integration windows, shown
 136 in Table 4, were optimized for each detector to maximize FOM (Eq. 1). This
 137 definition of a PSD value yields higher values for neutrons and lower values
 138 for gamma rays. Examples of the PSD versus calibrated electron-equivalent
 139 energy (ee) are shown for Sample 1 of each scintillator type in Fig. 7. Due
 140 to the presence of ${}^6\text{Li}$, EJ-270 is also sensitive to thermal neutrons through
 141 the neutron capture reaction ${}^6\text{Li}(\text{n},\alpha)\text{T}$; this can be seen in Fig. 7 as a “hot
 142 spot” between 200 and 400 keVee. The average thermal neutron waveform
 143 for EJ-270 can be seen in Fig. 5.

144 Equation 1 was then used to calculate the FOM for each detector every
 145 200 keVee up to 1 MeVee; note that EJ-270 did not provide good enough sep-

	EJ-270	EJ-276	OGS	Stilbene
Head (ns)	19	18	12	19
Total (ns)	300	400	200	250

Table 4: Integration windows used for PSD values.

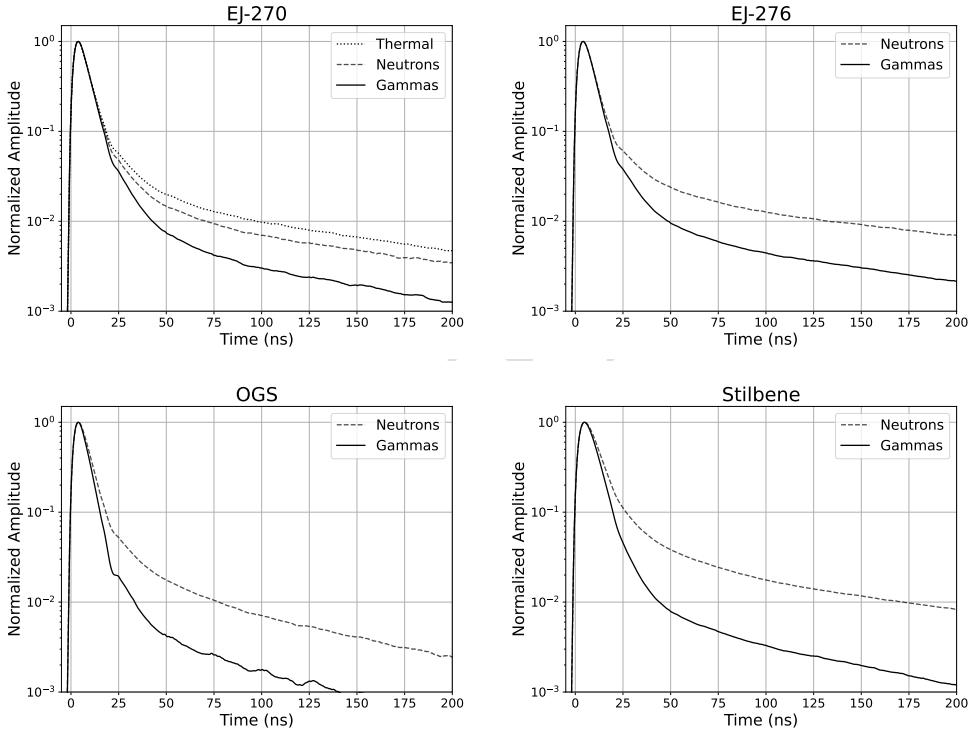


Figure 5: Example average waveforms for each scintillator prior to irradiation.

146 aration to calculate a FOM value at 200 keVee and has some contamination
 147 from thermal neutrons at 400 keVee. The FOM and variance averaged over
 148 all seven samples of each detector at various energies can be seen in Fig. 8
 149 and listed in Table 5. The uncertainties in this Table and later FOM results
 150 include the measurement uncertainty obtained from the five repeated mea-

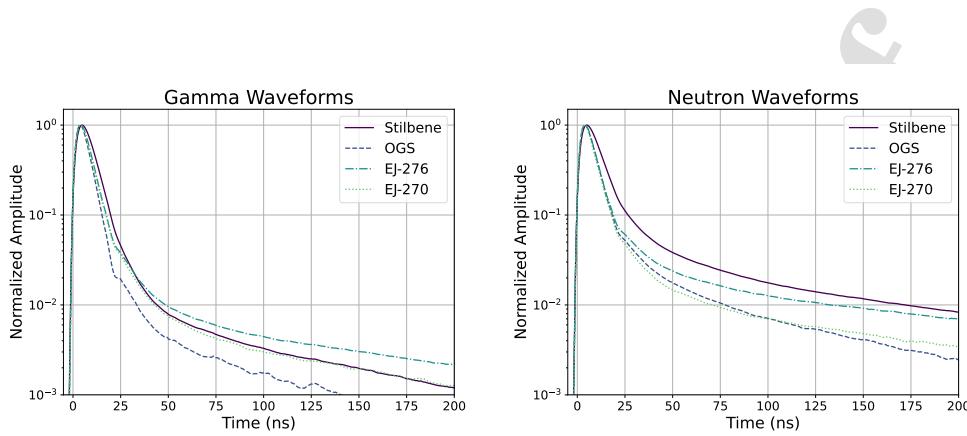


Figure 6: Comparison of average waveforms from the different scintillators.

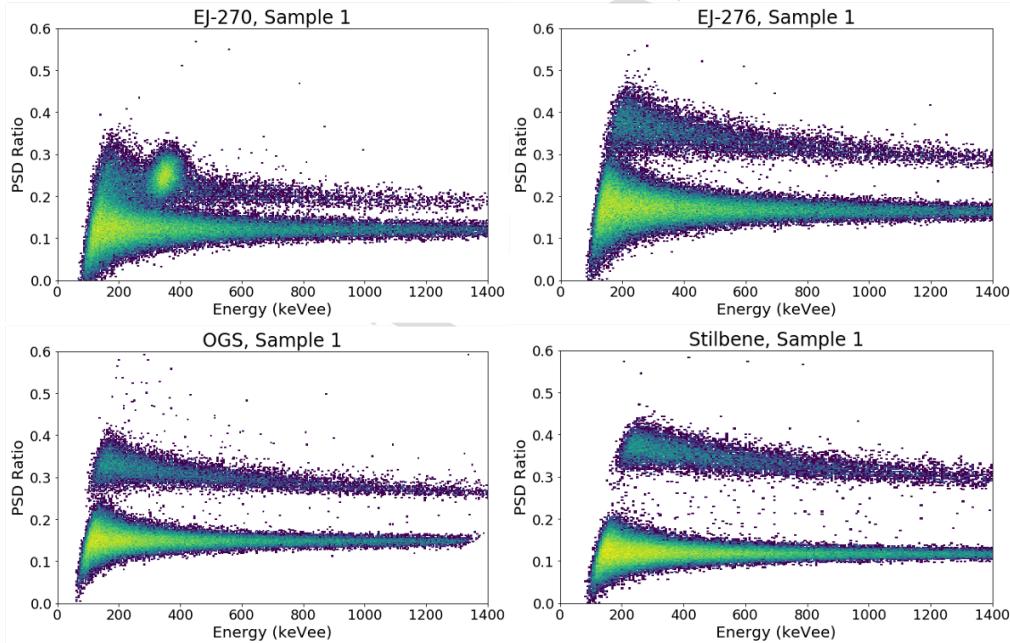


Figure 7: Example PSD plots for each scintillator prior to irradiation.

surements of sample 1 added in quadrature with fit uncertainties. Stilbene has the highest FOM, followed by OGS, EJ-276, and EJ-270.

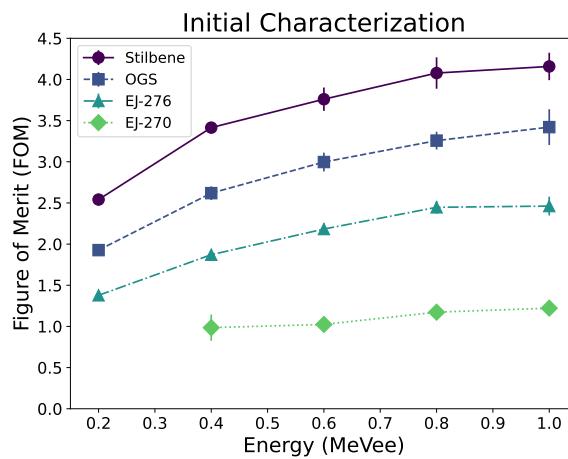


Figure 8: Figure of Merit - Initial characterization, averaged over 7 samples (lines for display purpose only)

FOM	EJ-270	EJ-276	OGS	Stilbene
200 keVee	N/A	1.37 ± 0.03	1.92 ± 0.03	2.54 ± 0.06
400 keVee	0.95 ± 0.16	1.87 ± 0.01	2.60 ± 0.09	3.42 ± 0.04
600 keVee	1.03 ± 0.04	2.18 ± 0.03	2.99 ± 0.10	3.80 ± 0.15
800 keVee	1.17 ± 0.02	2.43 ± 0.08	3.24 ± 0.10	4.10 ± 0.18
1 MeVee	1.24 ± 0.04	2.48 ± 0.11	3.44 ± 0.19	4.23 ± 0.22

Table 5: Average FOM and variance across the 7 samples.

153 *3.2. Neutron Irradiation Effect*

154 After irradiating samples 2, 3, and 4 to the neutron fluences shown in Ta-
 155 ble 1, they were characterized one more time to determine whether there was
 156 any degradation in light output, average waveforms, or FOM due to neutron
 157 radiation damage. Each of the samples was used to collect measurements
 158 using the ^{137}Cs , ^{22}Na , and PuBe sources. The location of the CE for the
 159 Cs and Na peaks were compared to their location in channel number prior
 160 to irradiation to quantify light output reduction. As seen in Fig. 9, there
 161 was no significant change in light output reduction except for Stilbene at
 162 the highest neutron fluence. The FOM at 1 MeVee is plotted against the
 163 neutron fluence received in Fig. 10. Regardless of the neutron dose received,
 164 the average waveforms and FOM were not significantly affected for any of
 165 the samples. It is also important to note that there were no physical changes
 166 (e.g. yellowing) observed in any of the samples after the neutron irradiation.

167 *3.3. Gamma-ray Irradiation Effect*

168 Samples 5, 6, and 7 were exposed to gamma-ray radiation using a ^{137}Cs
 169 source. Sample 5 was exposed to a TID of 100 kRad, sample 6 to 50 kRad,
 170 and sample 7 to 1 kRad and 50 kRad. Stilbene and EJ-270 showed yellowing
 171 of the material after the 50 and 100 kRad exposures (see Fig. 11), with
 172 Stilbene having the most noticeable difference before and after irradiation.
 173 EJ-276 showed very little yellowing at the highest exposure, while OGS did
 174 not show any yellowing of the material.

175 Similar to the procedure after the neutron irradiation, the samples were
 176 characterized with ^{137}Cs , ^{22}Na , and ^{252}Cf sources to determine the extent
 177 of radiation damage that had occurred. As expected from the qualitative

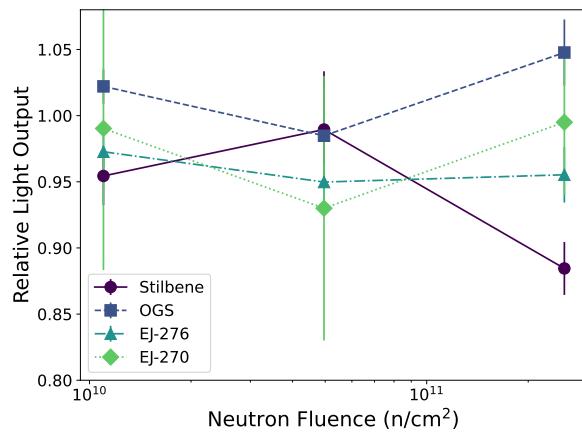


Figure 9: Light output after neutron irradiation, relative to pre-irradiation (lines for display purpose only).

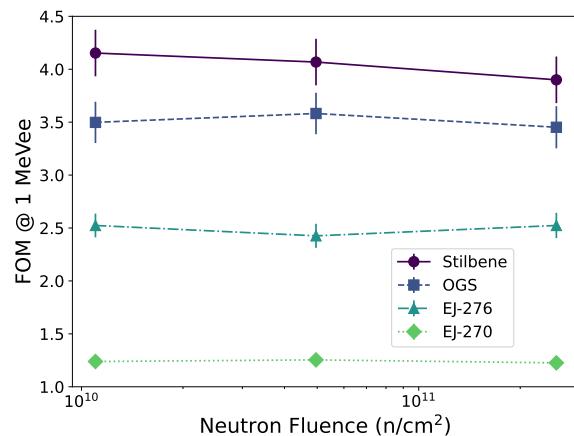


Figure 10: FOM after neutron irradiation (lines for display purpose only).

Figure 11: Scintillator samples before and after 100kRad irradiation; EJ-276 (top left), EJ-270 (top right), Stilbene (bottom left), OGS (bottom right).

178 observations of the materials post-irradiation, Stilbene presented with the
 179 highest reduction in light output at every exposure level as seen in Fig. 12.
 180 EJ-270 also had a linear degradation in light output versus dose received,
 181 and was the second most damaged material. EJ-276 followed a similar light
 182 output reduction as EJ-270 up to 50 kRad, where the damage plateaued and
 183 no further reduction in light output was observed at the 100 kRad exposure
 184 level. In contrast, OGS showed no light output degradation below 50 kRad,
 185 but experienced similar damage as EJ-276 at 100 kRad of exposure.

186 The FOM of each sample was also calculated to determine whether the
 187 capability of each material to distinguish neutrons from gamma rays had
 188 been affected. The FOM at 1 MeVee versus dose received is shown in Fig. 13.
 189 Regardless of exposure, all the samples retained their PSD capability, with
 190 the exception of Stilbene which had a slight decrease in FOM after 10 kRad

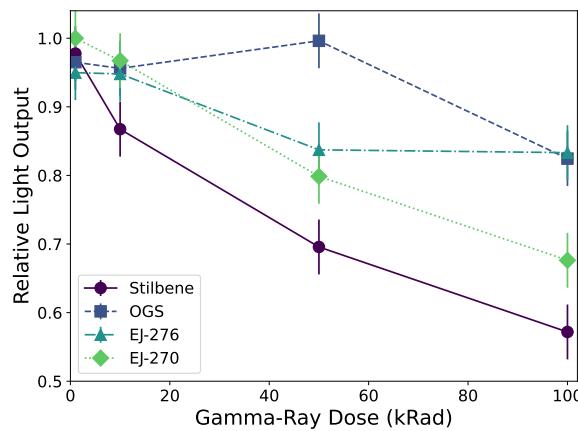


Figure 12: Light output after gamma-ray irradiation, relative to pre-irradiation (lines for display purpose only).

191 of exposure. The average waveforms were not significantly affected.

192 The samples that were exposed to 100 kRad were used to measure the
 193 gamma sources after 1 day, 2 days, and 1 week to determine whether the
 194 materials exhibited any annealing properties at room temperature. Stilbene
 195 showed very little improvement and slow recovery over time (time constant
 196 of 70 h), EJ-270 showed quick improvement in the first 24 hours with little to
 197 no recovery afterwards (time constant of 10 h), and EJ-276 and OGS (time
 198 constants of 24 and 26 h, respectively) showed similar improvement in light
 199 output when compared to their initial characterization (see Fig. 14).

200 **4. Conclusion**

201 The goal of this research was to characterize four organic scintillation
 202 detectors with PSD capability (EJ-270, EJ-276, OGS, and Stilbene), expose

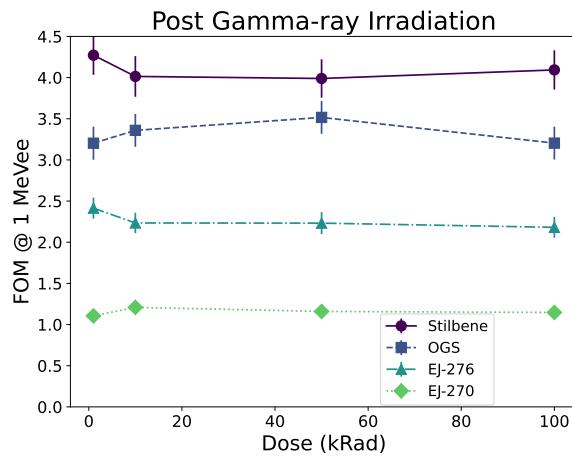


Figure 13: FOM after gamma-ray irradiation (lines for display purpose only).

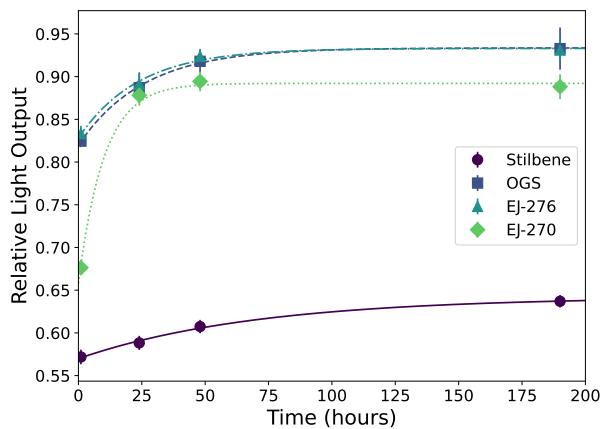


Figure 14: Annealing after 100 kRad gamma-ray irradiation.

203 different samples of each material to varying doses of neutron and gamma-
204 ray radiation, and measure performance of the scintillators after radiation.
205 Seven samples of each scintillation material were acquired. Samples 2, 3,
206 and 4, were irradiated using neutrons to fluences of 1.10×10^{10} , 4.96×10^{10} ,
207 and 2.96×10^{11} n/cm². Samples 5, 6, and 7 were exposed to gamma rays
208 in a Mark2b Gamma Cell Irradiator to doses equivalent to 1, 10, 50, and
209 100 kRad.

210 Samples 2, 3, and 4 were characterized after the neutron irradiation. No
211 significant change was observed in light output reduction, average waveforms,
212 or FOM for all the samples except for Stilbene, which showed marginal light
213 output reduction and FOM degradation (5-7%) at the highest neutron flu-
214 ence. Post neutron irradiation, none of the samples showed any differences
215 in coloration or visible damage.

216 After the gamma-ray irradiation, samples 5, 6, and 7 were characterized
217 to assess damage with total ionizing dose. Stilbene presented with yellowing
218 of the material, highest light output degradation, and least recovery over
219 time. EJ-270 showed yellowing of the material, second highest light output
220 degradation, yet quick recovery. EJ-276 showed little yellowing, no additional
221 damage >50 kRad, and quick recovery. OGS showed no yellowing, no dam-
222 age <50 kRad, similar light output reduction to EJ-276 at 100 kRad, and
223 similar recovery rate as EJ-276. The average waveforms and FOM were not
224 significantly affected, with the exception of Stilbene which showed a slight
225 decrease in FOM after 10 kRad.

226 The decrease in light output observed in the experiments described is
227 caused by radiation-induced damage in the scintillating materials. Ionizing

228 radiation, such as gamma rays, give rise to color centers by displacing elec-
229 trons which allow for new chemical bonds to form; Lima and Lameiras discuss
230 this effect in the context of gemstones [15]. Color center formation also gives
231 rise to absorption bands which reduce the light output of the scintillating
232 material [16]. The susceptibility of Stilbene to higher radiation damage after
233 exposure to gamma rays is likely due to a combination of effects, including
234 its crystalline structure, induced phosphorescence, and optical inhomogene-
235 ity [17]. In plastic scintillators, exposure to radiation can cause breaks and
236 cross-linking of the polymer chains that make up the material, also giving
237 rise to color centers which absorb scintillation light and ultimately reduce the
238 light output of the material [18]. The effect of radiation damage for different
239 dose rates on plastic scintillators without PSD capability is also discussed
240 in [19]. Our experimental findings highly correlate previous literature, al-
241 though dose-dependent radiation damage has not been previously compared
242 between Stilbene, PSD capable plastic, and PSD capable glass scintillators.

243 Organic glass scintillator with PSD capability is an intriguing option for
244 space applications due to its high PSD capability and tolerance to radiation
245 at the limits tested in this work. Stilbene still provides the best PSD per-
246 formance and remains a good option for low-radiation environments. EJ-276
247 is a good lower-cost option with reasonable PSD performance and radiation
248 tolerance.

249 5. Acknowledgements

250 This work was supported by the U.S. Department of Energy through the
251 Los Alamos National Laboratory and performed, in part, at the Los Alamos

252 Neutron Science Center (LANSCE). The authors would also like to acknowl-
253 edge Patrick Feng and Lucas Nguyen of Sandia National Laboratory for pro-
254 viding the organic glass scintillator samples, Steve Wender, Kranti Gunthoti,
255 and Jeff George for supporting the LANSCE measurements, and Charity
256 Roybal, Nick Wehmann, and Dave Seagraves for supporting the gamma cell
257 irradiation measurements.

258 **References**

259 [1] N. Zaitseva, et al., Scintillation Properties of Solution-Grown Trans-
260 Stilbene Single Crystals, Nuclear Instruments and Methods A 798
261 (2015).

262 [2] N. Zaitseva, et al., Plastic Scintillators with Efficient Neutron/Gamma
263 Pulse Shape Discrimination, Nuclear Instruments and Methods A 668
264 (2012).

265 [3] N. Zaitseva, et al., Pulse Shape Discrimination with Lithium-Containing
266 Organic Scintillators, Nuclear Instruments and Methods A 729 (2013).

267 [4] J. Carlson, et al., Taking Advantage of Disorder: Small-Molecule Or-
268 ganic Glasses for Radiation Detection and Particle Discrimination, Jour-
269 nal of American Chemical Society 139 (2017).

270 [5] Science requirements and detector concepts for the electron-ion collider:
271 Eic yellow report, Nuclear Physics A 1026 (2022) 122447.

272 [6] Y. N. Kharzheev, Radiation Hardness of Scintillation Detectors Based on

273 Organic Plastic Scintillators, Physics of Particles and Nuclei 50 (2019)
274 42–76.

275 [7] A. S. Beddar, Water equivalent plastic scintillation detectors in radiation
276 therapy, Radiation Protection Dosimetry 120 (1-4) (2006) 1–6.

277 [8] G. F. Knoll, Radiation Detection and Measurement, 4th Edition, Wiley,
278 2010.

279 [9] N. Tsoulfanidis, S. Landsberger, Measurement and Detection of Radia-
280 tion, 5th Edition, CRC Press, 2021.

281 [10] S. Wender, Los Alamos High-Energy Neutron Testing Handbook, Los
282 Alamos Natioanl Laboratory Rev A (LA-UR 19-30813) (2019).

283 [11] G. Dietze, H. Klein, Gamma-calibration of NE 213 scintillation counters,
284 Nuclear Instruments and Methods in Physics Research 193 (3) (1982)
285 549–556.

286 [12] Eljen Technology, Ej-276 datasheet, [https://eljentechnology.com/
287 products/plastic-scintillators/ej-276](https://eljentechnology.com/products/plastic-scintillators/ej-276).

288 [13] Eljen Technology, Ej-270 datasheet, Private Communication.

289 [14] J. S. Carlson, P. L. Feng, Melt-cast organic glasses as high-efficiency fast
290 neutron scintillators, Nuclear Instruments and Methods in Physics Re-
291 search Section A: Accelerators, Spectrometers, Detectors and Associated
292 Equipment 832 (2016) 152–157.

293 [15] G. Lima, F. Lameiras, Color Change of Gemstones by Exposure to
294 Gamma Rays, 2015 International Nuclear Atlantic Conference (2015).

295 [16] R. Zhu, Radiation Damage in Scintillating Crystals, Nuclear Instruments and Methods in Physics Research A 413 (1998) 297–311.

296

297 [17] V. Gorelik, A. Sokolovskaya, N. Chernega, V. Shcheglov, Stimulated
298 Two-Photon-Excited Luminescence in Stillbene Crystals, American Institute of Physics: Quantum Electron 23 (6) (1993) 505–507.

299

300 [18] Y. Kharzheev, Radiation Hardness of Scintillation Detectors Based on
301 Organic Plastic Scintillators and Optical Fibers, Physics of Particles and
302 Nuclei 50 (1) (2019) 42–76.

303

304 [19] V. Khachatryan, et. al., Dose Rate Effects in the Radiation Damage of
305 the Plastic Scintillators of the CMS Hadron Endcap Calorimeter, IOP Publishing for Sissa Medialab (2016).

306

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: