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ACCObeam:

Acoustic Collimated Beam
Precise, inexpensive monitoring of fractured rack. concrete. and metal
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Apply acoustic sensors

to measure moisture
‘content of feedstoci
inreal-time

Integrage sensors an

(ristian Pantea,
Dipen Sinha, and
Vamshi Chillara

 Collimated. powerful beam
enhances image resolution

 Low-frequency beam for
deep penelration

« Inexpensive and simple to
produce

 Applications range from
wellbore safety to biomedical
imaging
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Minimize biorefinery
downtime and reduce
operating costs

Enhance the
commercial viability
of blorefineries



Our research - Applied Acoustics
Building and Sustaining Capa'b, lities

Development of instrumentation, methods and senso s with a focus on difficult and

challenging conditions (high pressure, high temperature,

:
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rrosive media, radiation, etc.)
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Acoustics

Acoustics = the branch of physics concerned with the properties of sound (Wikipedia)

Acoustics = the science that deals with the production, control, transmission, reception, and
effects of sound (Merriam-Webster)

Infrasound Audible Sound
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20 Hz 200 Hz 2 kHz

1.7m 17 cm
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Acoustics

Audio range: 20 Hz - 20 kHz
Musical notes: | Note E A D G B E

e.g. guitar |Frequency (Hz) |82 110 147 196 247 330
Voice - speech: 85 - 155 Hz (male) 165 - 255 Hz (female) 250 - 300 Hz (child)
Piano: 27 Hz—4.2 KHz
Voice — singers: 65 Hz (deep bass voice) 1.3 kHz (soprano)

* female high-pitched scream: 3 kHz

Whistling: 2-4 kHz

A good sound system: 35 Hz-22 kHz

My hearing range: 30 Hz - 15 kHz

<
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Applications of Acoustic Techniques

Acoustics — typical experimental arrangement:

Sample:
& any form (solid, liquid, or gas)
2 Transmitter/Receiver:

¢

piezoelectric transducer

Two main experimental approaches:

Excitation Ist

signal buffer rod .
echo specimen

@Ry  ¢ho

* Time-domain measurements
- Pulse - Echo / / -
- Pitch - Catch
- Transmit - Receive

* Frequency domain measurements
- Resonant Ultrasound Spectroscopy
- Swept-Frequency Acoustic Interferometry
"0 - Acoustic Resonance Spectroscopy

Amplitude (mV)
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Applications of Acoustic Techniques

Excitation
xcitati Ist

signal buffer rod .
eche  Specimen

BRy o 5
buffer rod

S
HE

What one measures:
* Time of Flight
* Resonances

v

What one can determine:
Elastic properties of materials:

1000
800

600

* Bulk Modulus
e Shear Modulus
*  Young’s Modulus C ,

* Anisotropy CE T
* Poisson ratio

* Acoustical Nonlinear Parameter 8

* Higher-Order Elastic Moduli

* Sound Attenuation

* Viscosity

* Density

Amplitude (mV)

400 1

200




Applications of Acoustic Techniques

Observe mechanical resonances of objects to extract

ehysical properties of fluids angl elastic properties of materials
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Standing Waves and Resonances

in a Fluid medium inside a cavity:

Resonance occurs

when:
d=n.(\/2)

n=1, 2, 3...
A=wavelength

Sl

Resonance
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Resonance occurs when the forward sound wave and the r=//=ci=c/ wave meet exactly in
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How can fluid properties be determined using swept
frequency and acoustic interferences?

Input signal
Sound speed = 2dAf
Sound absorption ~ 6f
Af | A f=frequency spacing
«— System respcg/;)se 5t =peak width
—>|l— There can be hundreds of such
JU  resonance peaks in a typical spectrum

Swept Frequency Acoustic Interferometry (SFAI)




SFAI

Physical Parameters That Can Be Determined Using SFAI:

« Sound speed /Bulk Modulus/Density

 Sound attenuation Viscous drag, thermal effects, scattering

« Molecular Relaxation [
* Density . g

N Rotation Vibration

* Viscosity

i ] ] Sound speed varies with pressure
* Acoustic Nonlinearity in liquids and solids.

"3 Liquids, gases, mixtures, emulsions, suspension, efc.
=



Noninvasive ldentification of CW Agents

155-mm Artillery Shell

SFAIl Measurements of CW Agent
Physical Properties

Portable SFAI
Instrument

14



Slide 15

ACCObeam

Proposed Approach:
Detect defects
using a low-frequency, collimated beam.

1. Collimated beam for increased resolution

Conventional

low-frequency
transducer
beam profile
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Transducer

2. Low frequency for deeper penetration

Collimated
beam
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Slide 2

ACCObeam

« Generate collimated beam by exciting radial modes of
piezoelectric disk

« Clamp disk edges to focus energy into collimated beam

Traditional acoustic source
“piston mode”

Clamped piezoelectric disk

Radial mode 1

Radial mode 2

Radial mode 3

00



Slide 2

ACCObeam

« Generate collimated beam by exciting radial modes of
piezoelectric disk

« Clamp disk edges to focus energy into collimated beam

Traditional acoustic source
“piston mode”

Clamped piezoelectric disk

Radial mode 1

Radial mode 2

Radial mode 3




Slide 18 ACCObeam - Radial Modes Clamping

Beam profile in water for the 3™ radial mode RM-3

Traditional acoustic source Collimated beam Collimated beam

(unclamped) (clamped)
0.0 Q

L/W=3.5 ! L/W=1.3 l
-0.1 0.0 0.1 -0.1 0.0 0.1 -0.1 0.0

x [m] x [m] x [m]

0.6

L/W=17.5

0.1

« Collimated beam provides:

* Reduction in beam width — higher image resolution, more control over directivity

* Increased beam length — longer detection/communication range
Appl. Phys. Lett., vol. 110, issue 6, (2017), 064101
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ACCObeam

Schematic representation of the 3D Sound speed data'
imaging system: ) i

Low frequency \I\ﬂ L

Collimated beam jﬂ

(10-250 kHz)

Fluid-filled Fractures, 480 1; sclao soloo |a]uo zo'oo z;oo
borehole defects 350 TIME IN WICRDSECONDS
Receiver L 10 | ' W
array = G

£ 0
Rotating : ©
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60 80 100120140
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E
“ P — compressional wave R - pseudo-Rayleighwaves D - direct wave through fluid
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# from J.H. Rosenbaum, Geophysics,

vol. 39, no. 1, (1974), p. 14-32
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8650 a780 8300
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Clamped transducer and experiments

Lowering the imaging system in
a 4” wellbore

Drawing of front face of
clamped transducer

B0 mm

h — >
I e 52 mm 5
50 mm

| e

Fluid-filled
borehole

Receiver
array

Rotating
Acoustic
Transducer

Low frequency
Collimated beam
(10-250 kHz)

Fractures,
defects

Acoustic

X-axis (mm)

360 degree imaging No side-lobes

lllustration of beam
propagation in formation




ACCObeam - Acoustic Inversion and Imaging

Velocity model for the long-radius profile from acoustic inversion using (a) 29 kHz data, (b)
42.4 kHz data, (c) 58 kHz data, and (d) 111.85 kHz data.

Radius/cm Radius/cm
@ , 6 12 18 24 (b)

0 6 12 18 24

2750

2500

2250

2000

1750

1500




Acoustic weld defect detection

» Weld detection in dense materials (Ta) Weld line
challenging for radiography |
« Solution: scanning acoustic |

Subsurface defect

microscopy
5 mm
Optical microscopy of Acoustic microscopy of Ta
Ta plate Diam. | P'?‘[t? - Inclusions intentionally
SR Ad it .t ?% g introduced 180° apart

CCE max



3DHEAT (3 dimensional high explosive acoustic

Acoustics diagnosis of

Center temp. [°C]

160

140

temperature)

-

. =

thermal damage in Pentolite

Machine learning, CNN (convolutional neural network)
160

Training: 10 Nov 20 (~3750 samples)
Testing: 10 Nov 20

L L L L
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Shot time [min]

L
250
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Particles Manipulation

&



Concentration of Particles in a Tube

Sound field is turned and OFF.
Piezoelectric Transducer @ 1.5 MHz

Acoustic Flow Cytometer

Acoustic focusing cytometry

— Capillary
—

Piezoslectric
ultraaonic device

— Lazer 1 (vicokst)
s Lasar 2 (blus)

600 um capillary, Flow™ 200 uL/min
20 um polystyrene beads

Real Time Video

Biological cell analysis

Thermo Fisher Scientific



Acoustic Separation of Humidified Air

Acoustic Aerosol Concentration & Separation

Nodal
lines

-t <
EllipseThreelines

The video (real-time) shows the separation of mist from humidified air and concentrating
the mist acoustically inside a hollow cylinder using sound. Once the mist is concentrated,

It can be taken out of the system. Various types of implementation are possible and this
is simply a proof-of-concept to show what is possible with sound.



IPV - targeted excitation of lungs

Intrapulmonary percussive ventilation (IPV): Applies periodic bursts of
air/aerosolized medication down the trachea to improve air absorption and mucus

clearance
Currently, no good understanding of optimal parameters (frequency)

We simulate how frequency affects sound penetration in lung bronchi

0.001 kHz 1.54 kHz 7.44 kHz
(typical for IPV)

od/d



IPV - targeted excitation of lungs

Proof-of-principle: use vibrations to improve mucus
clearance from a channel




Acoustic Separation

Non-invasive mechanical separation of any two-phase system (e.g., liquid-liquid,
liquid-solid, gas-liquid, etc.,) using sound

Liquid-Liquid Solid-Liquid




Acoustic manipulation

Manipulation of gas bubbles, liquid droplets, and solid particles with
sound

MIERAL O!L




Underwater manipulation with sound




Applications in Additive
Manufacturing
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In situ Ultrasonic Monitoring of Additively Manufactured
Structures

Finite Element Modeling
* Tracked individual resonance peaks throughout the build process
* Build is of a 5 cm tall stainless steel hollow cylinder with an endcap
* At 3 cm, artificially changed elastic modulus of material (mimics residual stress)
* Observed resonance frequency shift from that of a “good” part (constant elastic modulus)
* Different resonance modes have different sensitivity to different changes in material properties
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Resonant Ultrasound Spectroscopy on Steel cubes

LANL RPRcode Ver. 6.0
Steel cube

free moduli are c11, c44
rho=7.071 gm/cc

Bulk Modulus= 1.3719

cll c33 cl2 c44 c66
2.29123 2.29123 0.91226 0.68948 0.68948
dl d2 d3

2.53600 2.54000 2.54100

LANL RPRcode Ver. 6.0
Steel Cube As Printed
rho= 7.901 gm/cc

Bulk Modulus= 1.4411

cll c33 cl2 c44 c66
2.78076 1.82324 1.21269 0.66531 0.78404
dl d2 d3

i@  2.54402 2.65699 2.50477 AM - TEXTURE!



In-Situ Ultrasound Grain Refinement in Electron Beam
Additive Manufacturing

Advanced Manufacturing Development - Exploring Electron Beam Additive Manufacturing
(EBAM) of metal parts with improved mechanical properties.

Monocrystal (BCC Fe) Polycrystal (Fe)
Fogge = 125 GPa E =210 GPa
P

o,

"Q Grain refinement in EBAM process —
- improved mechanical properties

35



In situ Ultrasonic Grain Refinement

The Problem

Advanced Manufacturing Development

~ Additive Manufacturing of complex shapes with
improved mechanical properties ~

» Electron Beam Additive Manufacturing (EBAM)
» Enables 3D printing metal, large, complex geometries
» High deposition rate — fast, cost-effective
» Drawback: large grains negatively impact material properties
and introduce residual stress

» Ultrasound grain refinement
» Demonstrated in welding processes
» Notin AM

Electron

source Electron

beam

Magnetic
lens

Large grains
through part height

36



In situ Ultrasonic Grain Refinement

The Approach
o Phase 1: Ti-64 Phase 2: Pure Ti
Integrate targeted Ultrasound excitation
with metal 3D printing in vacuum (EBAM) Structure: disk Structure: cylinder

EB

Feedstock Electron beam
Hor. vib.




No vibration

With vibration

In situ Ultrasonic Grain Refinement

The Successes

|EB

Phase I: Build disk radially, or
demonstrate grain reduction for
single frequency and amplitude

o Smaller grains
o Void reduction

New capability:

EB
Phase II: Build cylinder, evaluate vibration [ : IVert_ vib.

parameters
Ti

1 kHz

No vibration 4.7 um

* Best grain enhancement near f =1 kHz
* Increasing amplitudes lead to further grain
refinement

in-situ grain refinement in Additive Manufacturing of metals

38
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ACCObeam: 10

Acoustic Collimated Beam

Precise. inexpensive monitoring of fractured rock. concrete, and metal

Cristian Pantea,
Dipen Sinha, and
Vamshi Chillara

* Collimated, powerful beam
enhances image resolution

* Low-frequency beam for
teep penetration

* |nexpensive and simple to
produce

* Applications range from
wellbore safety to biomedical
imaging
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Apply acoustic sensors ; )

to measure moisture
content of feedstock
in real-time

“smart” chutes to
discard unacceptable
material
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Minimize biorefinery
downtime and reduce
operating costs

Enhance the
commercial viability
of biorefineries




