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Fig. 2. ICP-OES data for the selective electrochemical capture and release of UO2?* from mixed-metal (Cs®,
Nd3*, Sm3*, Th*, UO2?*) aqueous solutions using the P°Cb/F°Cb?% system in DCE. (a-c) Average
concentrations (from triplicate runs) of each metal species initially (pre-X) and following post-X and back-X
using the following conditions and assuming 1.0 equiv of P°Cb?: (a) a non-buffered (pH = 2.6) aqueous mixed-
metal solution with ca. 1.25 equiv of each metal; (b) a NaOAc-buffered (pH = 5.2) aqueous mixed-metal
solution with ca. 1.25 equiv of each metal (*slightly lower for UO2?* due to saturation concentration); (c) a
NaOAc-buffered (pH = 5.2) aqueous mixed-metal solution with ca. 0.6 equiv of each metal. (d-f) Example
solid-state  molecular structures obtained by XRD studies of: (d) [[CoCp”2][Cs(*°Cb)]]2; (e)
[CoCp™2]2[Th(POCb)s], and; (f) [CoCp™2]2[UO2(P°Cb)] (for comparison).! [CoCp™2]* counter cations, phenyl
C-H linkages, co-crystallized solvent molecules, and all H atoms, except those in (d), are omitted for clarity.
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of the DCE phase and back-extraction of UO2?* to a fresh aqueous phase. The selective
capture and release of UO,?* was confirmed by combined ICP-OES (Fig. 2a-c) and NMR
spectral analyses of the aqueous and organic phases, respectively, against the newly
synthesized nido-carborane complexes, [[CoCp™2][Cs(PPCb)]]2, [CoCp~2]3[Nd(P°Cb)s],
[CoCp™2]3[SM(POCh)3], and [CoCp™2]2[ Th(P°Cb)3] (Fig. 2d-f).
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actinides using carborane-functionalized Fig. 3. a) Synthesized modified P°Cb species. b) CVs of
electrodes,” we report the cage-modified species with their reported peak cathodic
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metal capture. Films of P°Cb and

pyrene-substituted, "°Cb-Pyr, were prepared on glassy carbon and carbon fiber (CF)
electrodes demonstrated heterogeneous electrochemical behaviour that was enhanced by
the inclusion of single-walled carbon nanotubes (CNTs) (Fig. 4). Galvanostatically charged
CF|CNT|?°Cb and CF|CNT|P°Cb-Pyr electrodes selectively captured and released actinides
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(Th*", UO2?") from a mixed solutions
containing alkali (Cs*), lanthanide
(Nd®*, Sm®*) and actinide (Th*,
UO2%*) metal ions.

Statement of unexpended funds:

No unexpended funds are anticipated
at the end of the grant period.

CF|CNT|P°Ch-Pyr> CF|CNT[P°Cb-Pyr

References: Fig. 4. Assembly and charging scheme of CF|CNT|?°Cb-Pyr.
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