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Excited-state spectroscopy from the first Facility for Rare Isotope Beams (FRIB) experiment is
reported. A 24(2)-µs isomer was observed with the FRIB Decay Station initiator (FDSi) through
a cascade of 224- and 401-keV γ rays in coincidence with 32Na nuclei. This is the only known
microsecond isomer (1 µs ≤ T1/2 < 1 ms) in the region. This nucleus is at the heart of the N = 20

island of shape inversion and is at the crossroads of spherical shell-model, deformed shell-model, and
ab initio theories. It can be represented as the coupling of a proton hole and neutron particle to
32Mg, 32Mg+π−1

+ ν+1. This odd-odd coupling and isomer formation provides a sensitive measure
of the underlying shape degrees of freedom of 32Mg, where the onset of spherical-to-deformed shape
inversion begins with a low-lying deformed 2

+ state at 885 keV and a low-lying shape-coexisting
0
+

2 state at 1058 keV. We suggest two possible explanations for the 625-keV isomer in 32Na: a 6
−

spherical shape isomer that decays by E2 or a 0
+ deformed spin isomer that decays by M2. The

present results and calculations are most consistent with the latter, indicating that the low-lying
states are dominated by deformation.

The atomic nucleus is a self-organizing finite quan-
tum many-body system. Among the phenomena exhib-
ited by this system is deformation. Most nuclei are
quadrupole deformed but spherical nuclei can be found
along proton and/or neutron closed (magic) shells, e.g.,
2, 8, 20, 28, 50, 82, 126. In addition, many nuclei
manifest shape coexistence between the ground and ex-
cited states, e.g., from multi-particle, multi-hole (mp-
nh) cross-shell excitations with orbital-dependent pair-
ing and quadrupole-deformation correlation energies [1–
3]. Shape coexistence of a spherical or deformed ground

state with a deformed excited state has been observed.
However, shape coexistence where the ground state is de-
formed and the excited state is spherical has been more
elusive.

An example of shape coexistence is seen in the semi-
magic N = 20 isotonic chain. While doubly magic 40

20Ca20
has a spherical 0+1 ground state, excited 0+ states with
normal and super deformation exist at 3.4 and 5.2 MeV,
respectively [2, 4, 5]. Moving to semi-magic 38

18Ar20,
36
16S20,

and 34
14Si20, the excited 0+2 states progress from 3.4 to

2.7 MeV; the first-excited 2+1 states vary from 2.2 to
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3.3 MeV [6–8], consistent with spherical ground states.
Then at 32

12Mg20, a low first-excited 2+1 energy of 885 keV
is observed with a 0+2 state at 1058 keV, consistent with a
deformed ground state — despite the N = 20 closed neu-
tron shell. In fact, the spacing of the 0-2-4-6 rotational
sequence of the 32Mg ground band (885, 2322, 4095 keV)
is similar to the excited band (560, 1973, 3911 keV) in
38Ar, starting with the 3.4 MeV 0+2 state. This crossing
is known as the “island of inversion”, where the deformed
“intruder” configuration drops below the spherical one.
See Refs. [9–15] and Figs. 3, 44 and 45 of Ref. [3].

Shape inversion is now being recognized as a promi-
nent phenomenon for neutron-rich nuclei beyond the
N = 20 region. An open question remains as to whether
the excited spherical states are ever preserved after the
inversion and in the presence of a deformed ground state,
where large configuration mixing may dominate [16–22],
particularly near the crossing. For instance, it was pro-
posed in Refs. [18, 20] that strong mixing of three 0+

configurations (two deformed, 2p-2h and 4p-4h, and one
spherical, 0p-0h) was required to explain (t,p)32Mg data
[16], implying an overall structure dominated by defor-
mation. Ref. [21] measured the lifetime and population
of the 0+2 state in a 34Si two-proton knockout reaction,
finding a large B(E2; 2+1 → 0+2 ), and low population of
the 0+2 state, indicating a reduction of 0p-0h character.
Interestingly, three-state mixing was also required to ex-
plain the weak 0+3 → 0+1 E0 decay of 40Ca [5].

Long-lived excited states (isomers) can be used as
sensitive probes of nuclear structures [23, 24], due in
part to the limited number of configuration combina-
tions that can result in isomerism. Isomers in the odd-
proton 32,34Al isotopes, which sit between Si and Mg,
have been used to probe the transitional region between
regular and inverted structures. While the Jπ = 4+,
T1/2 = 200(20) ns isomer in 32Al and its ground state can
be explained by purely spherical structures [25–27], the
Jπ = 1+, T1/2 = 26(1) ms isomer in 34Al seems to be a de-
formed ν2p-1h excitation with a ground state containing
a 50/50 admixture of spherical and deformed configura-
tions [28–33]. In the transitional region of the N = 28
island of inversion, 43S has a Jπ = 7/2−, T1/2 = 415(5) ns
isomer, initially thought to be spherical [34, 35], in co-
existence with a deformed ground state. However, the
isomer is now understood to be a weakly deformed ro-
tational band head [36], consistent with the suggestion
that the configurations are strongly mixed in the region
of the crossing [22]. These isomers have played decisive
roles in the structural interpretation of these transitional
regions.

Here we examine the odd-odd nucleus 32Na (Z = 11,
N = 21), which is one-proton hole and one-neutron par-
ticle outside of 32Mg — this is beyond the transitional
region and firmly within the island of inversion, where ex-
cited spherical states may be preserved due to the larger
energy spacing between deformed and spherical configu-
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FIG. 1. (a): γ-ray spectrum following implanted 32Na ions
(black), and γ-ray spectrum in coincidence with 401-keV γ

rays and following implanted 32Na ions (red). (b): γ-ray en-
ergy versus time difference of γ ray and 32Na implant.

rations. We report a new micro-second isomer in 32Na
with two potential explanations: one relating to a spher-
ical shape isomer that decays by E2 γ-ray emission, and
the other a deformed spin isomer that decays by M2 γ-
ray emission.

The present work follows from the first Facility for
Rare Isotope Beams (FRIB) experiment [37], with the
analysis expanded to excited-state spectroscopy. Details
of the experimental setup can be found in Ref. [37]. In
short, a primary beam of 172.3-MeV/u 48Ca at a power
of ∼1 kW was incident on a 9Be primary target. The
Advanced Rare Isotope Separator (ARIS) [38] selected a
cocktail beam, focused on 42Si, in which 32Na was present.
This cocktail beam was delivered to the FRIB Decay Sta-
tion initiator (FDSi) [39, 40], and each nucleus was identi-
fied on an event-by-event basis by the energy loss through
an upstream Si detector and the time-of-flight from the
ARIS separator. See Fig. 1 of Ref. [37] for a complete par-
ticle identification plot, which roughly spans N = 20−28.

An implantation detector made of yttrium orthosil-
icate (Y2SiO5, YSO) [41] was positioned at the center
of the FDSi discrete focal point. On the north side of
the beam line, a γ-ray detector array, DEcay Germa-
nium Array initiator (DEGAi), consisting of 11 HPGe
clover detectors and 15 fast-timing LaBr3 detectors, was
present. On the south side, the 88 modules of the NEu-
tron Xn Tracking array initiator (NEXTi) were arranged
in a double-layer arch, which is an expansion of the VAN-
DLE array to measure neutron time-of-flight with one-
meter flight paths [42, 43]. The results presented here fo-
cus on the YSO implant and HPGe DEGAi array, namely
γ-ray energies, and time differences between implanted
ions and subsequent γ rays.

The γ rays following implanted 32Na ions and the
time distribution between them, which expands to 150 µs,
are shown in Fig. 1. Two γ-ray peaks with equal
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FIG. 2. The γ-implant time distribution formed by the sum
of 224- and 401-keV γ gates. An exponential maximum-
likelihood fit is shown with the solid red line. The dashed
red line shows the background-subtracted baseline. (a) linear
scale and (b) logarithmic scale.

efficiency-corrected intensity are seen at 224 and 401 keV,
cf. Fig. 1(a)(black). Further, these two peaks are in coin-
cidence with each other, cf. Fig. 1(a)(red), and they show
exponential decay from the prompt x-ray/γ-ray flash,
which is shown as the black vertical line in Fig. 1(b),
induced by ion implantation at t = 0. Several room
background γ rays are also present before and after this
prompt flash, i.e. 239 keV from 212Bi and 352 keV from
214Bi. The data from negative γ-implant times can be
used for background subtraction.

An isomeric half-life of T1/2 = 24(2) µs is determined
from a maximum-likelihood fit to the γ-implant time dis-
tribution, cf. Fig. 2, where gates on the 224- and 401-keV
γ rays were combined. Fig. 2(a) and (b) show the same
fit but on linear and logarithmic scales. The isomer con-
stituted 1.8(3)% of the total 32Na beam. The results
indicate a microsecond isomer in 32Na which decays by a
cascade of two γ rays to either the ground state or a long-
lived β-decaying state in 32Na. More details on the two
possibilities are given in the calculations below. No other
microsecond “beam” isomers were observed in the data
for nuclei spanning N = 20 − 28, cf. Fig. 1 of Ref. [37];
this is the only microsecond isomer (1 µs ≤ T1/2 < 1 ms)
currently known in the region.

The multipolarity of the depopulating transition
can be inferred using the measured γ-ray energies and
lifetime. E1 and M1 transitions would require unrea-
sonably hindered transition strengths, e.g., B(M1↓) <

∼
10−7 W.u., to obtain the observed 24(2) µs. Like-
wise, E3 and M3 transitions would require unreason-
ably enhanced transition strengths, e.g., B(E3↓) >

∼
500 W.u. which is a factor of 10 larger than the rec-
ommended upper limit for 5 ≤ A ≤ 44 [44, 45].
This leaves an E2 or M2 depopulating transition as
the most likely scenario with the following possibilities:
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FIG. 3. Schematic representation of (a) 6
− spherical shape

isomer and (b) 0
+ deformed spin isomer.

B(E2↓; 224 keV) = 0.0069(6) W.u., B(E2↓; 401 keV) =
0.00038(3) W.u., B(M2↓; 224 keV) = 0.23(2) W.u., or
B(M2↓; 401 keV) = 0.012(1) W.u.. We tentatively as-
sign the 224-keV γ ray as the depopulating transition of
the isomer, as this requires lower hindrance factors.

For low-lying configurations within the spherical
shell model, the odd proton occupies the πd5/2 orbital,
while the odd neutron occupies the νf7/2 orbital. The
coupling of these give a multiplet with Jπ = 1−...6−.
The most simple expectation is that the 1− and 6− mul-
tiplet members would be lowest in energy. However,
multi-particle interactions could perturb the expected
energy ordering of the multiplet states. For low-lying
configurations within the deformed shell model (Nilsson
model) [46, 47] at a deformation of ǫ2 ≈ +0.4 (adopted
from fitting the energies and E2 strengths of neighbor-
ing nuclei), the odd proton is expected to occupy the
π[211]3/2+ orbital, while the odd neutron should occupy
the ν[321]3/2− orbital. The coupling of these two orbitals
gives rise to two low-lying states: one with Jπ = 3− (par-
allel coupling), and a second with Jπ = 0− (anti-parallel
coupling). Both of these will have rotational states built
upon them. In addition, the neutron could be excited to
the nearby ν[202]3/2+ orbital, giving rise to a low-lying
Jπ = 0+ state. Based on these expected configurations,
two isomeric scenarios can be formed involving E2 and
M2 transitions, cf. Fig. 3.

A 6− spherical shape isomer — based on the πd5/2⊗
νf7/2 multiplet — would decay via a hindered E2 tran-
sition to the deformed 4− member of the K = 3− rota-
tional band. Thus, the spin sequence is 6− → 4− → 3−,
giving the two observed γ rays. The observed weak tran-
sition strength of B(E2↓) = 0.0069(6) W.u. is consis-
tent with shape coexistence: the spherical 6− state may
only decay to the deformed 4− state by weak mixing
between spherical and deformed 6− and 4− configura-
tions. A range of two-state mixing solutions reproduce
the observed transition strength, requiring mixing angles
of θ6 < 2◦ and θ4 < 10◦ for the 6− and 4− states, respec-
tively. This scenario would constitute shape coexistence
between a deformed ground state and spherical excited
state with minimal mixing of the configurations.
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FIG. 4. Comparison of calculated and proposed experimen-
tal level schemes. Deformed 0

−, 3−, and 0
+ band-heads are

present with associated rotational bands. The “mp-nh” lan-
guage refers to the number of neutron particles above and
neutron holes below the N = 20 shell closure, where mixing
of the cross-shell excitations is predicted.

A 0+ deformed spin isomer — based on the
π[211]3/2+ ⊗ ν[202]3/2+, Jπ = 0+ deformed band-head
— would decay via an M2 transition, with a non quenched
B(M2↓) ≈ 1 W.u., to the 2− rotational member of
the K = 0− band. Thus, the experimental value of
B(M2↓) = 0.23(2) W.u. indicates a hindrance factor of 5
for this scenario. The spin sequence in this case is 0+ →

2− → 0−. Alternatively, if the π[211]3/2+ ⊗ ν[321]3/2−,
Jπ = 3− state is near or below the 0− state, instead
of near or above the 2− state, we would observe the
0+ → 2− → 3− sequence instead. This 0+ isomer sce-
nario would imply that the low-lying states are domi-
nated by deformation with no clear remnants of the spher-
ical shape.

Several state-of-the-art calculations were run to
further access the isomer and experimental decay
scheme. The results are given in Fig. 4: (a) Large-
scale shell-model calculations “SDPF-U-MIX” in the
π(s1/2, d5/2, d3/2)ν(s1/2, d5/2, d3/2, f7/2, p3/2, p1/2, f5/2)
space with effective charges en = 0.46 and ep = 1.31 [48–
50]. The shell-model calculations used the ANTOINE
code [51] for diagonalization, allowing a maximum of
6 neutrons above N = 20. (b) Ab initio calculations
“VS-IMSRG” using the 1.8/2.0 (EM) interaction [52]
with the imsrg++ [53] code (see Refs. [54–59]). The
diagonalization was carried out using KSHELL [60], in
the π(s1/2, d5/2, d3/2)ν(s1/2, d5/2, d3/2, f7/2, p3/2, p1/2)
space with no truncation. Both “SDPF-U-MIX” and
“VS-IMSRG” calculations have had success explaining
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FIG. 5. Single-particle occupancies from Nilsson, SDPF-U-
MIX, and VS-IMSRG calculations: (a) Occupancies for the
0
+ state, (b): Occupancies for the 0− state, and (c) Difference

between occupancies of the 0
+ and 0

− states, highlighting
the strong νf7/2 → νd3/2 nature of the M2 transition. The
occupancies of the 2

− and 0
− states are near identical in all

three calculations, where the former is a rotation built upon
the latter.

nuclei in the region [18, 50, 59, 61]. Finally, (c) Two-
quasi-particles plus rotor calculations (Nilsson) in the
strong coupling limit [62, 63], where the rotational
energies were constrained with energy systematics of
the neighbouring 31,33Na, and the shift of the odd-spin
members was adjusted to yield a decay by two gamma
rays. The proposed experimental level scheme is given
in Fig. 4(d).

The calculations have similar features. First, all cal-
culations have low-lying deformed 0−, 3−, and 0+ band-
heads, with associated rotational structures higher in en-
ergy. Secondly, the B(M2) transition strengths are ap-
proximately correct as compared to B(M2; 0+ → 2−) =
0.23(2) W.u. for a 224-keV depopulating transition. Fi-
nally, near identical single-particle occupancies are real-
ized by all three theoretical frameworks, which are plot-
ted in Fig. 5 for the 0+ and 0− states and highlight the
underlying νf7/2 → νd3/2 nature of the M2 decay. The
emergence of the simplistic Nilsson scheme and its as-
sociated symmetries within the complex SDPF-U-MIX
and VS-IMSRG calculations is remarkable. The spher-
ical states, or those with dominant “ν1p-0h” configura-
tions, are predicted to be high in energy, > 2 MeV (not
plotted), according to the SDPF-U-MIX and VS-IMSRG
predictions. For the Nilsson results, the spherical states
are outside of the model space (i.e., they would require
manual insertion within a two-state mixing scheme and,
hence, have no predictive power).

In summary, a 24(2)-µs isomer in 32Na at the heart
of the N = 20 island of shape inversion was observed
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using the FDSi — a result of excited-state spectroscopy
from the first FRIB experiment. This is the only known
microsecond isomer (1 µs ≤ T1/2 < 1 ms) in the region.
The odd-odd spin coupling and isomer formation pro-
vides a sensitive measure of the underlying shape degrees
of freedom in a region where spherical-to-deformed shape
inversion occurs. Two explanations for the isomer are
given: a 6− spherical shape isomer that decays by E2 or a
0+ deformed spin isomer that decays by M2. The present
results and latest state-of-the-art calculations are most
consistent with the latter, signaling that the low-lying
states are dominated by deformation and that there are
no clear remnants of the spherical shape after the cross-
ing.
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