

LA-UR-23-24415

Approved for public release; distribution is unlimited.

Title: El Capitan hackathon, April 2023: LANL code team outbriefs

Author(s): Pietarila Graham, Anna Mataleena; Haack, Jeffrey Robert; Lakshmiranganatha, Sumathi; Pietarila Graham, Jonathan David; Pritchard, Howard Porter Jr.; Lee, Theresa Joyce; Henderson, Thomas Gerard Lowe; Hart, Nathan Henry; Saller, Thomas; Ferenbaugh, Charles Roger; Mauney, Christopher Michael; Fogerty, Shane Patrick

Intended for: Report

Issued: 2023-04-26

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA00001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

El Capitan hackathon, April 2023: LANL code team outbriefs

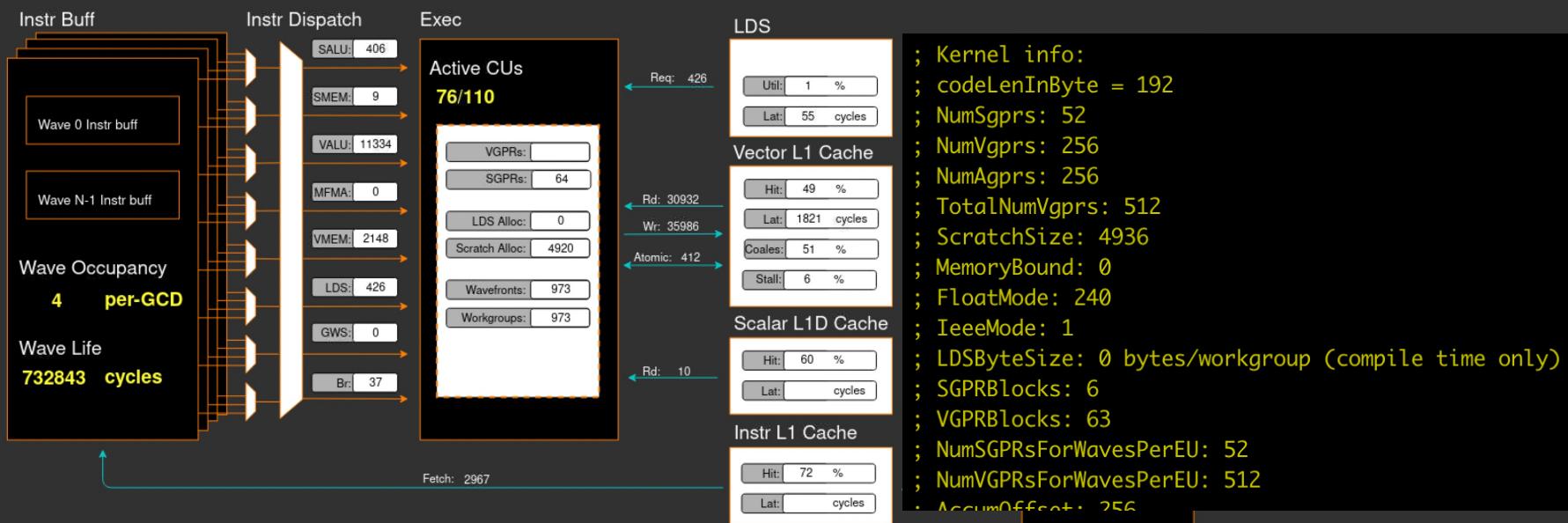
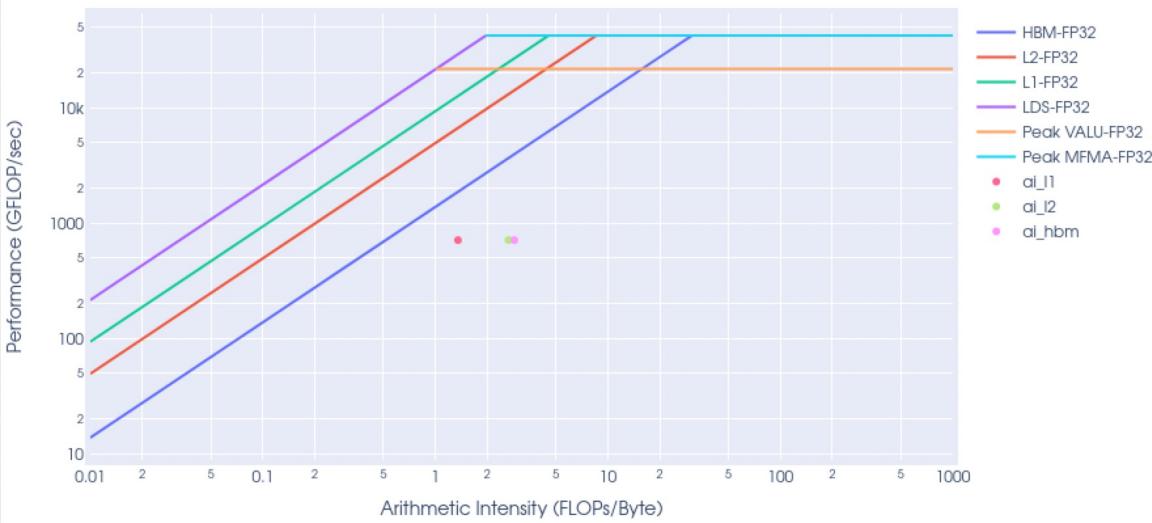
Anna Pietarila Graham

Capsaicin: Jeffrey Haack

FleCSI: Sumathi Lakshmiranganatha, Jonathan Pietarila Graham

Pagosa: Howard Pritchard, Theresa Lee, Thomas Henderson

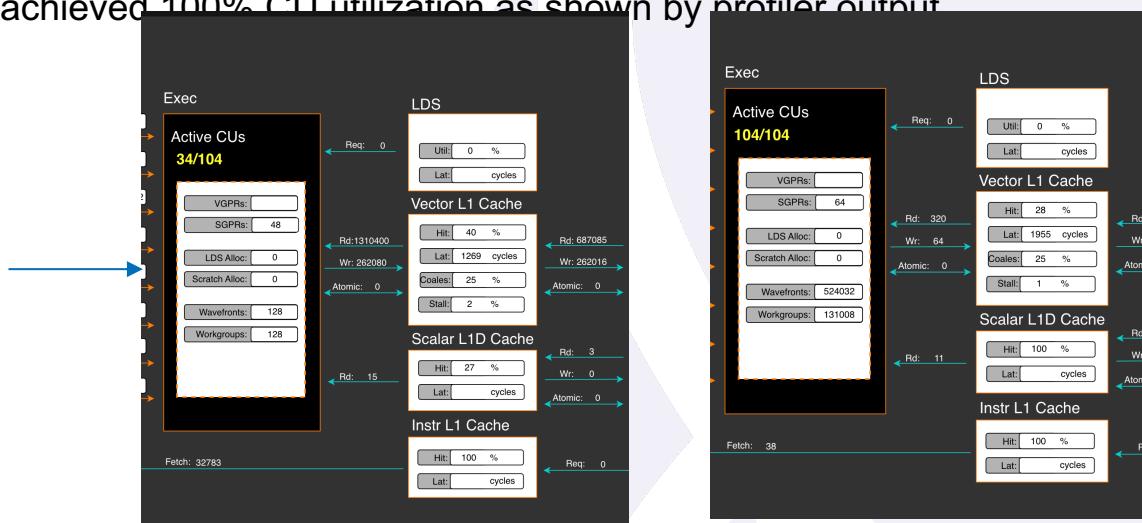
Partisan: Nathan Hart, Thomas Saller



xRage: Charles Ferenbaugh, Christopher Mauney, Shane Fogerty

El Cap COE Hackathon: Capsaicin

- Goals:
 - What did you plan to do?
 - Make sure hip-enabled branch can still build with newer env changes from upstream
 - We would like to work through an AMD optimization report for 3D sweep kernel
 - Get a sense of comparison with V100 results (though these mostly 2D)
- Accomplishments:
 - Ran omniperf for differently sized problems
 - Got rooflines
 - Learned to ‘translate’ lingo from omniperf results, related to findings from V100s
 - Experimented with launch bounds, tinkering with memory footprint
- Blockers encountered:
 - Omniperf a little slow for large sized problem. Or I could just size problems better.
- Lessons Learned:
 - We might want kernel fission not kernel fusion for performance in 3D
 - And it might help in 2D too?
- To Be Improved: Anything that could be improved for future hackathon events
 - It would have been helpful if we had widescreen monitors in the room
 - (this was already in the template, but still true!)

El Cap COE Hackathon: Capsaicin


Empirical Roofline Analysis (FP32/FP64)

El Cap COE Hackathon: FleCSI

- Goals:
 - Profile the toy application (Poisson) and understand the profiler output
 - Improve performance on AMD GPUs with better cache and CUs utilization
 - Improve scaling results for multi-gpu runs
- Accomplishments:
 - Change the loop structure and used Kokkos MDRange to exploit more parallelism and achieved 100% CU utilization as shown by profiler output

Before –only outer loop parallelization

- Reduced the kernel execution time from 7s to 1s with the above modification on MI250
- Next steps to do...
 - Need to compare the results with NVIDIA GPU performance and FleCSI's mdiota view for collapsing the loop
 - Perform scaling studies with the changes
 - Use omnitrace

El Cap COE Hackathon: FleCSI

- Lessons Learned:
 - How to use omniperf on Tioga
 - Need to pass all the command line arguments as a script for omniperf on Tioga
- Blockers
 - Issues building spack packages with gcc 12.2.0 on Tioga
- To be improved
 - More documentation, tutorial examples..

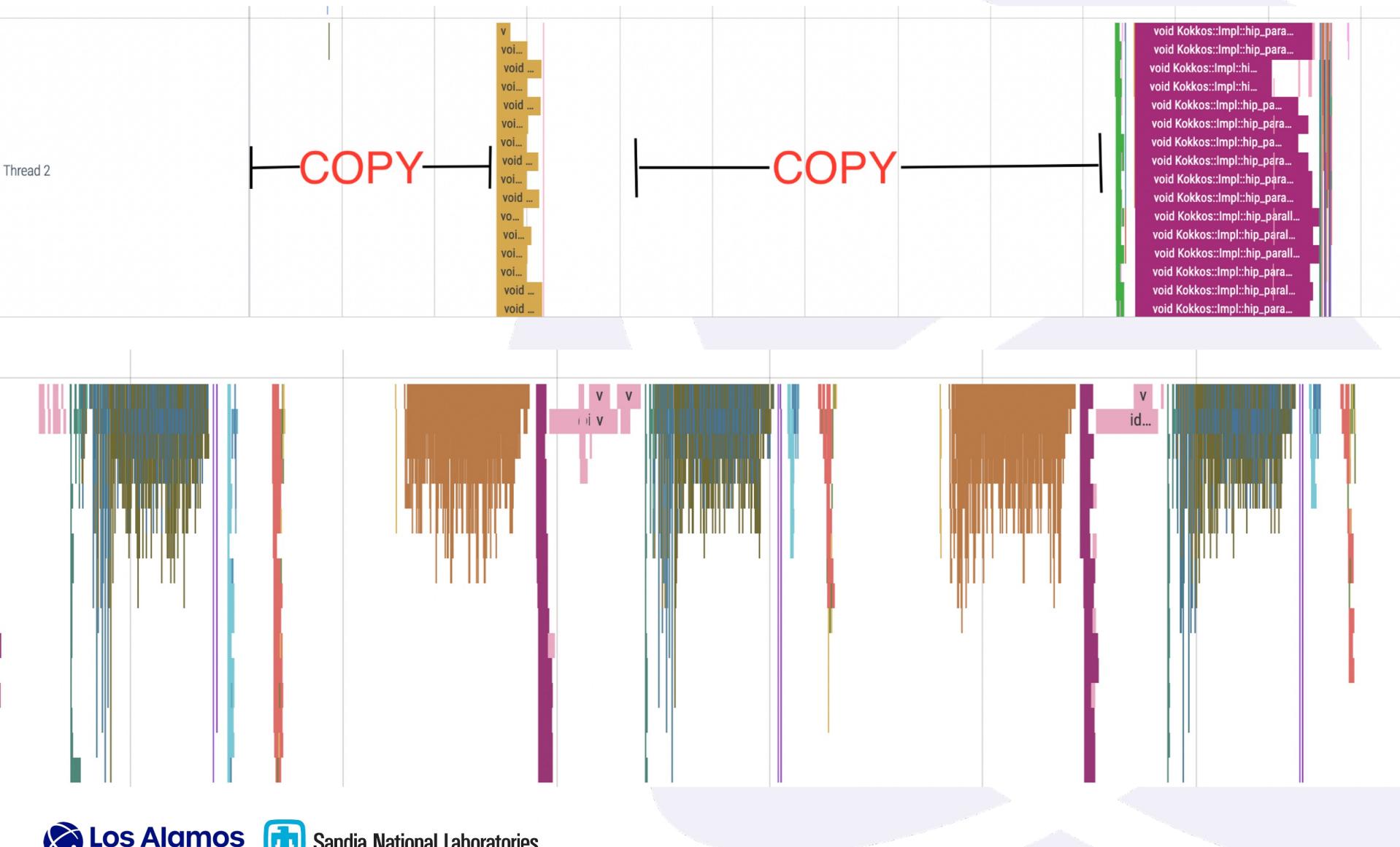
El Cap COE Hackathon: Pagosa

- Goals:
 - Use/get familiar with rocgdb, rocprof (rocm tools)
 - Run PERF_Shaped_Charge_25mat offload on 1 node with 1,2,4,8 ranks on rzvernal and rzansel
 - Run PERF_Shaped_Charge_25mat without offload on 1 node with 1,2,4,8 ranks on rzvernal
 - Compare results
 - Identify opportunities to improve offload performance
- Accomplishments:
 - Able to profile and trace with rocprof (indicates >95% of time step time spent in data movement to-from GPU)
 - Adding openmp data directives to prevent some transfers. Ran into known bug, workaround seems to work
 - Learned to set CRAY_ACC_DEBUG environment variables and look at the output
- Blockers encountered:
 - Did not get Perftools working
 - Hit a CCE compiler bug that prevented us from using !\$omp declare target
- Lessons Learned:
 - Rocom utilities may work better for us than Perf utilities
 - Avoid using !\$omp declare target for module variables for the time being
- To Be Improved
 - Better access to electrical outlets
- Wishlist
 - More time to work things out

El Cap COE Hackathon: PARTISN

- Goals:
 - Stand up CCE-driven HIP capabilities on EAS3
 - Begin a preliminary performance study between CCE-HIP, ROCm-HIP, and XL-CUDA
 - Get other team members started porting kernels
- Accomplishments:
 - CCE seems to be working
 - We've used omniperf to generate preliminary performance reports with CCE- and ROCm-driven HIP
 - A complete newbie to the porting process has ported 4 kernels from CUDA Fortran to CUDA C – next step is porting to HIP
- Blockers encountered:
 - Seeing run-to-run variability in our QAs – this was a known issue, but it may be making profiling difficult
 - Potential bug in profiling tool?
 - A deficiency in our build system that caused errors when using atomics with CUDA C was identified and fixed
- Lessons Learned:
 - It looks like we're integer instruction-bound (for the 2 kernels we analyzed) – not surprising given we are porting from Fortran where we utilize up to 5D arrays to a flat C implementation

El Cap COE Hackathon: PARTISN


- To Be Improved:
 - We had no issues with VPN or power cables, but the former did indirectly hamper us when working with vendors
 - WiFi issues aside, the location was nice for commuting to/from Los Alamos and Santa Fe
- Wishlist
 - None

El Cap COE Hackathon: xRage

- Goals:
 - Main: Initial performance analysis of current build + unsplit_triplepoint test
 - Secondary: Debugging on other test cases
 - Secondary: New build with upgraded CCE (14.0.3 -> 15.0.1), ROCM (5.2.3 -> 5.4.3)
- Accomplishments:
 - Ran rocprof/omniperf on a suite of test problems, using a selection of parallel run configs. (unsplit hydro is only part that is offloaded; tested simple unsplit inputs)
 - Made a full Spack buildout with upgraded config - working through build/run issues
- Blockers encountered:
 - Spack build issues for various compiler configs (documented for Srinath/HPE)
 - Data visualization/comparison (mostly network issues); omniperf crash for some benchmark runs (talked to AMD staff, seems a common issue).
- Lessons Learned:
 - COE-provided Spack configs may not work for us, or may need tweaking
 - Code is only partially on GPU, and what is there can be improved.
- To Be Improved: Anything that could be improved for future hackathon events
 - It would have been helpful if we had widescreen monitors in the room
 - Strong, reliable network connection

El Cap COE Hackathon: xRage

- Overview profile from rocprof, then zoomed in on the actual GPU computation

