

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-JRNL-844531

Multi-element isotopic analysis of hot particles from Chernobyl

D. van Eerten, M. Raiwa, P. Hanemann, L. Leifermann, T. Weissenborn, W. Schulz, M. Weiss, D. Z. Shulaker, P. Boone, D. G. Willingham, K. Thomas, B. Sammis, B. H. Isselhardt, M. R. Savina, C. Walther

January 30, 2023

Journal of Hazardous Materials

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Multi-element isotopic analysis of hot particles from Chornobyl

Darcy van Eerten¹, Manuel Raiwa¹, Paul Hanemann¹, Laura Leifermann¹, Tobias Weissenborn¹, Wolfgang Schulz¹, Martin Weiß¹, Danielle Ziva Shulaker², Peter Boone², David Willingham², Keenan Thomas², Brian Sammis², Brett Isselhardt², Mike Savina², and Clemens Walther¹

¹Institut für Radioökologie und Strahlenschutz, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany.

²Chemical and Isotopic Signatures Group, Lawrence Livermore National Laboratory, Livermore, USA.

February 2023

1 Abstract

Microscopic fuel fragments, so-called “hot particles”, were released during the 1986 accident at the Chornobyl nuclear powerplant and continue to contaminate the exclusion zone in northern Ukraine. Isotopic analysis can provide vital information about sample origin, history and contamination of the environment, though it has been underutilized due to the destructive nature of most mass spectrometric techniques, and inability to remove isobaric interference. Recent developments have diversified the range of elements that can be investigated through resonance ionization mass spectrometry (RIMS), notably in the fission products. The purpose of this study is to demonstrate the application of multi-element analysis on hot particles as relates to their burnup, particle formation in the accident, and weathering. The particles were analysed with two RIMS instruments: resonant-laser secondary neutral mass spectrometry (rL-SNMS) at the Institute for Radiation Protection and Radioecology (IRS) in Hannover, Germany, and laser ionization of neutrals (LION) at Lawrence Livermore National Laboratory (LLNL) in Livermore, USA. Comparable results across instruments show a range of burnup dependent isotope ratios for U and Pu and Cs, characteristic of RBMK-type reactors. Results for Rb, Ba and Sr show the influence of the environment, retention of Cs in the particles and time passed since fuel discharge.

Keywords— RIMS, actinides, fission products, ultra-trace analysis

28

29 1 Introduction

Characterizing the hazards posed by nuclear material in the environment is important in both the immediate response to a contamination event and its subsequent long-term management. So-called “hot particles” are derived from nuclear material, typically in the size range of μm . Much of what we know about these particles is based on context; where and when the contamination took place. This work looks directly at individual hot particles from the perspective of the nuclear reactions that produced them, and investigates how rapid isotope ratio analysis can non-destructively answer questions relevant to radioecology and nuclear forensics.

41 Previous work has demonstrated how the resonant laser secondary neutral mass spectrometry (rL-SNMS) instrument in Hannover, Germany can measure isotope ratios in the actinides U, Pu and Am on hot particles from the Chornobyl Exclusion Zone (CEZ) [1, 2]. Here, this capability is extended to the fission products Cs, Rb, Sr and Ba by use of the laser ionization of neutrals (LION) instrument in Livermore, USA [3].

42 The 1986 accident at the Chornobyl nuclear powerplant (ChNPP) deposited a vast number of hot particles in the 30 km exclusion zone that remain there to this day [4, 5]. These particles are fuel fragments originating from the reactor core, and are composed of a large variety of stable and radioactive nuclides [6, 7]. They not only pose a radiological risk via inhalation [8], but will also weather and degrade over time, leaching radionuclides into the environment [7].

43 As noted by Konings et al., the material properties of emitted nuclear material will be affected on the microscale by reactor operation, and on the macro scale by the conditions of the accident scenario [9]. Kashparov and Salbu et al. have focused on the latter by categorizing particle morphology on the distinct phases of the accident: those physically ejected in the first explosions, and those highly chemically altered by the graphite fires in the following days. The most chemically stable are particles that fused with the zircalloy cladding at high temperatures, while chemically low stable particles were highly oxidized [10, 11, 7]. This work considers those attributes in relation to the reactor-derived isotopic composition of the individual particles, with emphasis on the fission products and how those were affected by the accident and subsequent weathering.

1.1 Hot Particle Analysis

Scanning (tunneling) electron microscopy SEM (or STEM), combined with density information provided by back-scattered electrons (BSE), are the primary methods of imaging hot particles and characterizing their surface morphology [12, 13, 7]. Energy dispersive X-ray spectroscopy (EDS) can be combined with these techniques to identify major components of a particle. This is how U-Zr fused particles can be identified in the CEZ [7], or U-Nb particles can be found in Dounreay [14]. In particles from Fukushima, highly concentrated Cs and other fissionogenic elements can be identified by EDS [12]. The sensitivity of EDS however is limited, which means minor elements such as Pu or even Cs can remain unidentified.

85 For a more sensitive and quantitative element map, micro
86 or nano X-ray fluorescence (XRF) can be used [13, 12].
87 Such methods are powerful tools for measuring very small or
88 heterogenous particles, but lack essential isotopic information.
89 For example, they cannot distinguish between natural and
90 enriched uranium.

91 Nuclear forensics has long used isotope ratios to determine
92 the origin and history of unknown nuclear material [15, 16, 17].
93 Actinide ratios serve as characteristic fingerprints of reactor
94 design and operation [18, 19], as do fission products [20, 21].
95 Measuring these ratios typically involves a tailored approach
96 for each element through a combination of radiometric and
97 mass spectrometric techniques, some of which are destructive.

98 Radiometric techniques such as gamma and alpha
99 spectrometry are non-destructive and regularly used to
100 determine isotope ratios on bulk samples such as fuel
101 pellets [22]. For microscopic particles, such analyses are
102 time-consuming and often limited to the highest activity
103 radioisotopes such as ^{137}Cs and ^{241}Am . Short-lived isotopes
104 such as ^{134}Cs (half-life 2.1 years) can only be measured
105 shortly after an accident [12]. Beta-only emitters such as ^{90}Sr
106 require long measurement times in combination with chemical
107 preparation [23], and has been measured in limited capacity
108 in hot particles [14].

109 Mass spectrometry enables ultra-trace analysis for both
110 active and inactive isotopes. Though highly sensitive,
111 inductively couple plasma (ICP-MS) requires the sacrifice
112 (dissolution) of a hot particle for analysis [13], and may require
113 extensive chemical preparation to remove environmental and
114 isobaric interference [21]. Secondary ion mass spectrometry
115 (SIMS), allows spatially resolved measurement of a solid
116 sample (less than EDS, but far more sensitive). Nano-SIMS
117 boasts higher spatial resolution [24], and large sector
118 SIMS instruments achieve higher mass resolution [12].
119 However, neither technique removes environmental or isobaric
120 interferences completely, as shown by Morooka et al. in
121 their analysis of $^{135}\text{Cs}/^{137}\text{Cs}$ isotope ratios in Fukushima
122 particles, which are hampered by ^{135}Ba and ^{137}Ba [12].
123 Hydride formation presents another challenge, which depends
124 on sample matrix and analysis method. As noted by Fallon
125 et al. in the analysis of a single enriched fuel particle,
126 $^{238}\text{U}^1\text{H}$ formed ca. 0.55 % of the ^{238}U , used to show the
127 insignificant interference on ^{235}U by $^{234}\text{U}^1\text{H}$ [24]. This is
128 however not insignificant when measuring the ^{236}U produced
129 through irradiation, or any of the $^{239,240,241,242}\text{Pu}$ isotopes. In
130 short, such techniques focus on one element or isotope ratio
131 at a time.

132 Resonant laser ionization adds the necessary selectivity,
133 targeting the electronic structure of a given element to
134 step-wise excite it beyond the ionization potential [25, 26, 27].
135 The technique removes the need for chemical preparation,
136 which allows for multiple analyses to take place on the same
137 sample. Resonance ionization mass spectrometry (RIMS)
138 requires only a suitable mass spectrometer, an efficient
139 excitation scheme per element [28], and the lasers to produce
140 the necessary wavelengths [29]. These requirements are not
141 trivial, making RIMS facilities rare in the world. Its true
142 strength lies in its range and speed, as advances in both laser
143 design and ionization schemes have broadened the scope of
144 elements that can be investigated.

145 The work presented here leverages the specializations of two
146 different RIMS instruments to investigate a diverse range of
147 isotopes in CEZ hot particles. Both the rL-SNMS facility
148 [30, 1] and the LION facility [31, 3] are non-destructive RIMS
149 techniques based on the principles of time-of-flight secondary

150 ion mass spectrometry (ToF-SIMS), making them suitable
151 for surface analysis. The secondary ion fraction is removed,
152 while the neutral fraction is ionized by the lasers. rL-SNMS
153 is spatially resolved, giving a direct analysis of the isotope
154 distribution on the surface of a sample. It can resonantly
155 investigate one element at a time, and non-resonantly measure
156 its oxides (as in [24]). LION is more sensitive, and can measure
157 multiple elements simultaneously. However, to explore the
158 applications of multi-element isotope ratio analysis one must
159 understand the origin of their production.

1.2 Isotope production pathways

160 ChNPP was an RBMK-type Soviet reactor operating on
161 low-enriched fuel with 2% ^{235}U [32, 33]. Though a total
162 inventory of radionuclides in the ChNPP core has been
163 estimated [34], the ratios vary considerably within the reactor
164 itself, as shown both in models [35, 36] and by experiments
165 [37, 38]. For every isotope, multiple production paths may
166 be possible, turning each ratio into a unique indicator of
167 radiation conditions. Within the reactor, these various ratios
168 are dependent on initial composition, neutron energy and
169 flux. Once out of the reactor, other factors become dominant,
170 namely chemical behaviour and time.

171 Even from a microscopic fuel particle, a surprisingly
172 comprehensive characterisation can be made by targeting a
173 range of isotopes, both in the actinides and fission products.
174 As fuel burns up, the isotopic composition changes, serving as
175 a characteristic fingerprint of the design and operation history
176 of the reactor [19, 17]. Burnup quantifies the energy produced
177 in the reactor normalized by its fuel load, typically expressed
178 in MWd/kgU. It scales with the number of fissions that have
179 occurred per unit mass of fuel. Burnup is therefore a proxy for
180 the neutron fluence that drives transuranic isotope production
181 and alters the composition of most fission products by neutron
182 capture after they are produced. By comparing isotope ratios
183 to burnup, we can assess the influences inside and outside the
184 reactor.

1.2.1 Actinides

185 $^{235}\text{U}/^{238}\text{U}$ decreases with burnup, due to fission or through
186 neutron capture to produce ^{236}U and ^{239}Pu respectively.
187 $^{236}\text{U}/^{238}\text{U}$, $^{240}\text{Pu}/^{239}\text{Pu}$, $^{241}\text{Pu}/^{239}\text{Pu}$ increase linearly with
188 burnup, while $^{242}\text{Pu}/^{239}\text{Pu}$ increases at an accelerated rate
189 [37]. The rate of increase can distinguish RBMKs from other
190 reactors such as WWERs (Soviet light water reactors), the
191 only type to operate in Ukraine today [39].

192 Extensive chemical separation is typically utilized to isolate
193 elements or isotopes of interest for analysis by radiometric or
194 mass spectrometry techniques [37]. Separating the isobars
195 $^{241}\text{Am}/^{241}\text{Pu}$ and $^{238}\text{Pu}/^{238}\text{U}$ are particularly challenging
196 [38]. The former is easily resolved with laser ionization, while
197 the latter is far more challenging due to its extremely low ratio
198 down to 10^{-6} [29, 1, 3].

199 ^{241}Am grows in over decades as ^{241}Pu decays, while ^{243}Am
200 is produced almost exclusively during reactor operation. This
201 presents an opportunity to observe the chemical behaviour
202 of both plutonium and americium through the weathering of
203 particles in the environment. If some plutonium, or recently
204 produced americium should leach out of the particle, this could
205 be reflected in lower $^{241}\text{Am}/^{243}\text{Am}$ ratios. This ratio in hot
206 particles was briefly explored in previous work by [1], but
207 did not show significant deviation from known RBMK ratios.
208 Following this line of reasoning however, we can target other

211 isotopes that are dependent on the chemical behaviour of their
212 precursors.

213 1.2.2 Fission Products

214 Fission produces a wide variety of isotopes. However,
215 ^{137}Cs and ^{90}Sr are particularly consequential for humans
216 and the environment [40, 23, 41]. These predominantly
217 neutron-rich fission products quickly beta-decay until they
218 reach a long-lived or stable isotope. On an elemental level,
219 the fission product decay chains go from $\text{I} \rightarrow \text{Xe} \rightarrow \text{Cs} \rightarrow \text{Ba}$,
220 and $\text{Br} \rightarrow \text{Kr} \rightarrow \text{Rb} \rightarrow \text{Sr}$. For nuclides that decay beyond
221 reactor operation, the decay products become sensitive to
222 the environment and time-frame. The accident at Chornobyl
223 is particularly interesting in two time frames: the sudden
224 cessation of reactor activity caused by the melt-down and
225 explosion, and the environmental factors in the decades since.
226

227 The variables that contribute to the isotope ratios (fission,
228 neutron capture, time) can be examined from first principles
229 by looking at independent and cumulative fission yields.
230 These depend on the fissioning isotope and neutron energy,
231 found in nuclear data libraries such as JEFF, JENDL, and
232 ENDF [42]. Such ratios can be more accurately modeled
233 by models such as web-KORIGEN++ [42], and subsequently
234 compared to literature data where available.

235 ^{138}Ba (stable) and ^{137}Cs (half-life 30 years) are directly
236 produced in the reactor at a similar rate, and have negligible
237 neutron absorption cross-sections. Aside from the decay of
238 ^{137}Cs , ^{137}Ba is also produced independently in the reactor, but
239 at only 1 % of the rate of ^{138}Ba . The stability of Cs in samples
240 exposed to weathering could be investigated by measuring the
241 $^{137}\text{Ba}/^{138}\text{Ba}$ ratio in comparison to the ideal case. Purely
242 via the thermal ^{235}U fission yields (in JEFF 3.3 [42]), with
243 no decay, a ratio between $^{137}\text{Cs}/^{138}\text{Ba}$ of $\frac{6.09}{6.68} = 0.91$ would
244 be expected. This increases with burnup as ^{239}Pu builds up
245 and contributes to fission. After 36 years of ^{137}Cs decay, this
246 will result in a range of $^{137}\text{Ba}/^{138}\text{Ba}$ ratios from 0.51 to 0.61
247 depending on burnup.

248 Modelling with webKORIGEN++, predicts a ratio of 0.56
249 for 10 MWd/kg and 0.58 for 16 MWd/kg, the range of
250 burnup found in the CEZ hot particles. As webKORIGEN++
251 does not have an RBMK reactor model, a boiling water
252 reactor (BWR) model was used, which estimates the ^{239}Pu
253 contribution to be higher than is likely in RBMKs [37]. As
254 shown by Robel et al. [20], a stable ratio $^{137}\text{Ba}/^{138}\text{Ba}$ of
255 0.53 ± 0.02 was measured on 33 year-old spent fuel samples
256 that had never been exposed to environmental conditions.
257 Ratios substantially below this range could therefore indicate
258 depletion of radiocesium, such that ingrowth of ^{137}Ba is slowed
259 or entirely stopped.

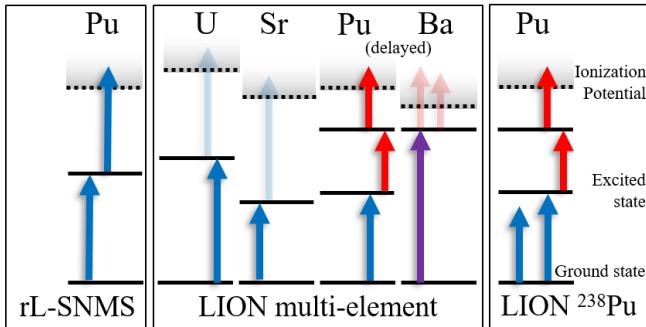
260 The ^{137}Cs contamination of Europe after the Chornobyl
261 accident [43] has driven the measurement of Cs ratios in
262 environmental samples to distinguish between contaminating
263 events such as nuclear weapons testing and the Fukushima
264 accident [21], or even between reactors in Fukushima [12]. The
265 production of stable ^{135}Cs is dependent on ^{135}I and ^{135}Xe ,
266 with half-lives of 6.6 and 9.1 hours respectively. ^{135}Xe
267 has an extremely large neutron capture cross-section of 2.7
268 Mb. With increased neutron flux, neutron capture into ^{136}Xe
269 is favoured over decay into ^{135}Cs , driving the large range in
270 $^{137}\text{Cs}/^{135}\text{Cs}$ ratios sensitive to start up and shut down of a
271 reactor [20]. In fuel irradiated for the same time, burnup
272 reflects the total neutron flux and energy, and $^{137}\text{Cs}/^{135}\text{Cs}$
273 increases as ^{135}Cs decreases [20].

274 The environmental factors affecting this intra-elemental
275 ratio should be minimal, as even the effects of the significant

276 power surge (only seconds in duration) before the reactor
277 meltdown will be small in comparison to two years of regular
278 reactor operation. However, the fission products would need
279 to remain captured in the particles to be measured, which
280 is not guaranteed due to the immense heat and pressure of
281 the meltdown and explosion. The noble gases Xe and Kr are
282 assumed in the literature to have escaped immediately during
283 the explosion [34]. However, it is possible that such gases can
284 remain trapped in spent nuclear fuel [44]. Iodine and Cs are
285 less volatile, but can also dissipate (see [43]), and only Cs has
286 multiple isotopes at long enough half-lives to measure today.
287

288 A change in isotope ratios from environmental factors
289 might be visible in Rb. A $^{85}\text{Rb}/^{87}\text{Rb}$ ratio of 0.41 would
290 be expected from thermal fission, which increases to 0.53
291 if all ^{85}Kr (half-life 10.8 years) were to have decayed fully.
292 However, measuring the extent of Kr retention in Chornobyl
293 hot particles would be challenging as both Rb isotopes are
294 naturally occurring.

295 If the range in $^{137}\text{Cs}/^{135}\text{Cs}$ ratios are characteristic of
296 major events [21], $^{90}\text{Sr}/^{88}\text{Sr}$ ratios can be used as a more
297 specific chronometer to calculate the time elapsed since fuel
298 discharge. ^{90}Sr has a similar half-life to ^{137}Cs of 29.8 years.
299 It is of particular concern to the environment as a chemical
300 homologue to calcium, thereby readily taken up in places
301 where calcium accumulates, such as in bones [45]. ^{88}Sr
302 and ^{90}Sr are both direct fission products, produced in near
303 equal ratio by both ^{235}U and ^{239}Pu , with very low neutron
304 absorption cross sections (0.024 b and 0.010 b respectively).
305 The ratio is therefore in theory minimally sensitive to burnup.
306 Assuming ^{90}Sr decays outside the reactor, this could serve as
307 a measure of time since fuel discharge, since both isotopes
308 behave chemically identically. The measured ratio m can be
309 compared to the estimated fission yield f_y , such that
310


$$311 \text{time} = \ln\left(\frac{^{90}\text{Sr}}{^{88}\text{Sr} f_y} \times \frac{^{88}\text{Sr}}{^{90}\text{Sr} m}\right) \times \frac{28.91}{\ln(2)}. \quad (1)$$

312 Using the above fission yields and 36 years since the
313 Chernobyl accident, we would expect a ratio for $^{90}\text{Sr}/^{88}\text{Sr}$
314 around 0.67. Using webKORIGEN++, a ratio of 0.69
315 is calculated, using slightly different fission yields in the
316 JEFF-2.2 library. This increase suggests that burnup may
317 contribute to the ratio in the form of neutron capture on the
318 short-lived ^{89}Sr (half-life 50.6 days), though its neutron cross
319 section is low (0.42 b). An estimate of time passed since
320 fuel discharge could therefore be made within the range of
321 two years, accounting for the variation in fission yields, and
322 assuming burnup is an insignificant factor. Measuring this
323 ratio on the Chornobyl particles, where the time of release
324 is very well known, could demonstrate whether this ratio is
325 useful as a time stamp of the event.

326 2 Methods

327 2.1 Hot Particles

328 Drill cores, pond sediments, and asphalt scrapings were
329 sampled in the CEZ in 2014 and 2017 [46]. The method
330 of isolation and extraction of the particles is described by
331 Leifermann et al. [46], but is briefly described here. After
332 sieving the sample, high density particles are separated from
333 the remaining sample using a high density polytungstate
334 solution. Particles are imaged and identified in a scanning
335 electron microscope (SEM) in backscatter mode to contrast
336 the particle from the surrounding matrix. Energy-dispersive
337 X-ray spectroscopy (EDS) is used to confirm the particle

Figure 1: Laser ionization schemes used in this work on *rL-SNMS* and *LION* to step-wise excite elements from the ground state to an autoionizing state beyond the ionization potential. Arrows indicate the laser wavelength and colour, transparent where lasers are being used in multiple schemes. The exact wavelengths for each step are given in the text where relevant or in the references [29, 48, 49]. For *rL-SNMS* two lasers were used. Six lasers were used in multi-element *LION*, with the *Pu* and *Ba* lasers delayed by one mass unit to remove interference by *U* and *Cs* respectively. Non-resonant ionization is used in the second steps for *U*, *Sr* and *Ba*. Four lasers were used for *LION* ^{238}Pu where the first step was blinked between resonant and non-resonant schemes.

334 contains U, and Zr if applicable. Particles are then attached
 335 onto tungsten needles using SemGlu (Kleindiek Nanotechnik).

336 The selection of eight particles covers a range of burnups,
337 morphologies and sampling location to study the impact on
338 fission product ratios. The particles were reimaged at LLNL
339 with an SEM (FEI, Inspect F model) at high vacuum with
340 5 kV current (Fig. 2). Gamma spectroscopy was performed
341 at LLNL in coaxial and planar geometry. PeakEasy software
342 [47] was used to determine the ratio between the count rate
343 in counts per second (cps) on ^{241}Am (59 keV) and ^{137}Cs (661
344 keV) on the coax detector.

2.2 rL-SNMS

The rL-SNMS instrument in Hannover has been previously described in work by Raiwa [1]. The instrument consists of a time-of-flight mass spectrometer (TOFSIMS.5 by IONTOF), five Z-pinched 10 kHz Ti:Sa lasers (following the Mainz design [29]) pumped by three 532 nm Nd:YAG lasers. Two of these lasers were utilized for this study. A Bi^+ ion gun is used to sputter the first atomic layers of a sample, ionizing a fraction of the resulting atoms and molecules. In RIMS, the ionized fraction is removed by an external bias at +500 V, after which the lasers irradiate the remaining neutral fraction. The target element is ionized, along with oxidized forms of uranium and rare earth elements. In this study, U isotope ratios were measured simultaneously with resonance Pu by the non-resonant U oxides. A standard Pu solution was measured to correct for instrumental mass fractionation. Rastering the ion gun over the sample allows for a spatially resolved elemental intensity map at a beam size down to 70 nm, with the resolution achieved depending on the total ion signal available [41, 2]. For isotopes on the order of 10^2 counts per sample, 126 x 126 pixel raster size is chosen to balance signal intensity with spatial resolution.

2.3 LION

Livermore's LION instrument is similar to the rL-SNMS, but has a custom-built ToF-MS instrument [31]. We used an Nd:YAG laser at 1064 nm to desorb atoms and molecules from the surface. Because Rb and Cs are readily vaporized, they were analyzed as secondary ions in which the signal was measured without resonantly ionizing the elements.

LION has six 1 kHz grating-tuned Ti:Sa lasers, pumped by three Nd:YLF lasers, with the possibility of lasing at fundamental, double, or triple frequency. Unlike the rL-SNMS, the lasers are not automated to switch between wavelengths. U, Sr, Pu and Ba were measured in the same spectrum, using a combination of ionization schemes (Fig. 1. Through use of a 200 ns delay, equivalent to 1 m/z [3], the U, Pu isobaric interference can be separated. Standards were measured to correct for isotopic mass fractionation.

239–242Pu can be measured directly. Rather, ^{238}Pu is quantified by measuring the non-resonant contribution to the m/z 238 peak in a manner used previously on a Chornobyl hot particle [2]. In this work, an extra laser was tuned to be slightly off-resonance with the first step in the Pu scheme (figure 1, 420.864 nm), and alternated with the resonant laser (420.764 nm) such that every other shot was off-resonance. The off-resonance spectrum represents all sources of background and allows a quantitative correction. Alternating the on- and off-resonance lasers ensures that drifts in signal level over time do not affect the result. While it is possible to do this in a two-step scheme [1, 50], a three-step scheme is more successful at suppressing ^{238}U [2, 3].

2.4 Correction for environmental contamination

Environmental exposure can introduce natural ^{88}Sr , ^{137}Ba , and ^{138}Ba . The extent of contamination can be calculated using the non-fission isotopes of Sr and Ba. The two most abundant non-fission isotopes are used to estimate the natural fraction and averaged. In the example of Sr, these isotopes are ^{86}Sr and ^{87}Sr such that the estimated $^{88}\text{Sr}_{\text{e}}$ can be calculated as

$$^{88}Sr_e = \frac{1}{2} \times \left(\frac{^{86}Sr_m}{^{86}R} + \frac{^{87}Sr_m}{^{87}R} \right) \quad (2)$$

where 4R is the ratio to ${}^{88}\text{Sr}$ as measured by isotopic standard, and ${}^{86}\text{Sr}_m$ and ${}^{87}\text{Sr}_m$ are the measured peaks. Errors are propagated by the sum of squares of relative errors on each measurement. The corrections for ${}^{137}\text{Ba}$ and ${}^{138}\text{Ba}$ are identical, using peaks on ${}^{135}\text{Ba}$ and ${}^{136}\text{Ba}$. The total ratio subtracts this estimated contaminant, and must then be corrected for the fractionation caused by the lasers. This is significant in barium due to odd-isotope enhancement caused by hyperfine splitting [51]. The final ratio for barium is then

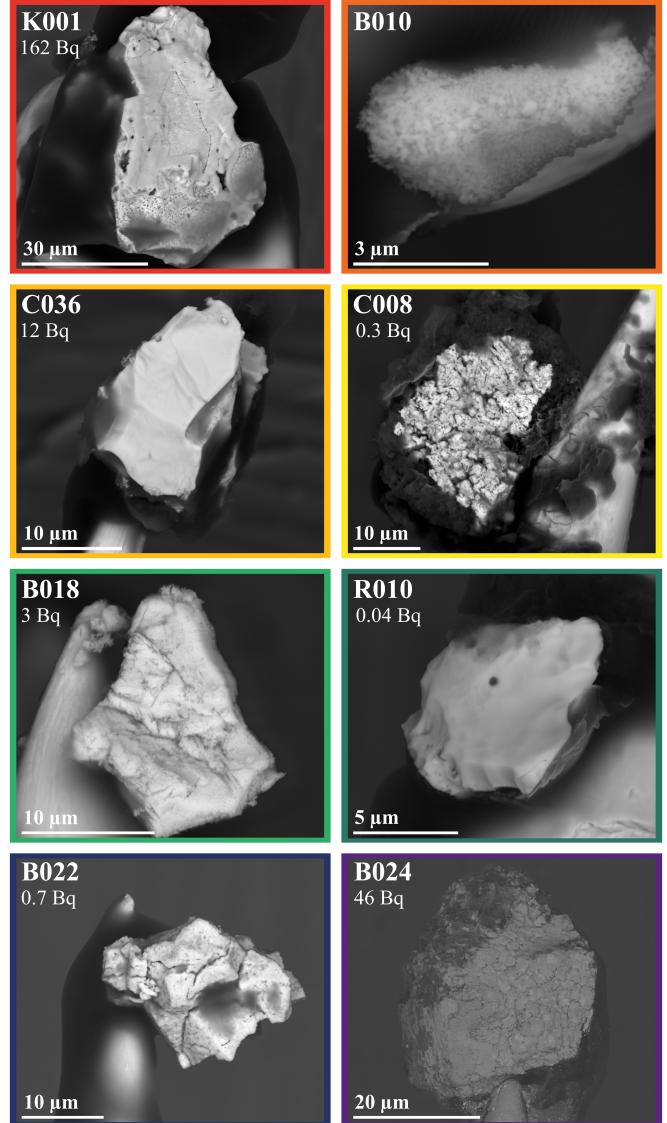
$$\frac{^{137}Ba}{^{138}Ba} = \frac{^{137}Ba_m - ^{137}Ba_e}{^{138}Ba_m - ^{138}Ba_e} \times \frac{K}{R}, \quad (3)$$

where K and R are the known ratio and standard measured ratios of $^{137}\text{Ba}/^{138}\text{Ba}$. Further information on error analysis can be found in the supplementary materials.

3 Results and Discussion

3.1 SEM

The BSE results from the particles in fig. 2 show the diverse range of morphologies represented in a small sample set,


421 ranging in activity from 10^{-1} - 10^2 Bq per particle. Following
 422 the categorization of Kashparov, the visual attributes of the
 423 particles could be indicative of their formation in the accident,
 424 and consequently relate to their rate of dissolution in the
 425 environment [7]. A full analysis of the reactivity with the
 426 environment would require a detailed analysis of the oxidation
 427 state, which requires X-ray spectroscopy techniques such as
 428 X-ray absorption near-edge structure (XANES), as studied
 429 for uranium in Dounreay particles [13] or extended X-ray
 430 absorption fine structure (EXAFS), as studied on Cs species
 431 in Fukushima [52]. Such analysis is beyond the scope of this
 432 study, however consideration of their morphology is a helpful
 433 classification tool for comparison with other studies [53, 46].

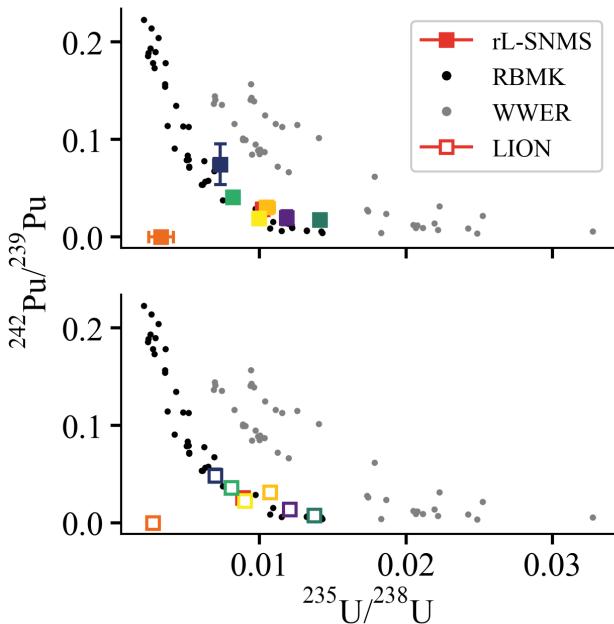
434 Kashparov's first category describes those which were
 435 ejected from the reactor during the explosion without
 436 significant chemical alteration or visual alteration to the UO_2
 437 fuel's ceramic structure, and consequently a low environmental
 438 dissolution rate. Particle C036 (light orange) shows a very
 439 smooth particle surface compared to other particles. B018
 440 (light green) shows a more laminated structure. B024 (violet)
 441 exhibits typical high burnup structure, characterized by the
 442 visible grain boundaries through which fission gases dissipate
 443 [9].

444 Kashparov's second category covers those highly oxidized
 445 by the high temperatures of the explosion and subsequent
 446 fires. C008 (yellow) and B022 (indigo) both showcase
 447 these highly porous forms. While B022 maintains a cubic
 448 structure, C008 has completely fractured, and is enveloped
 449 by organic material containing silicon (see supplementary for
 450 EDS results). Kashparov et al. identify these as the most
 451 susceptible to dissolution in the environment, though it should
 452 be noted that they were sampled long after their estimated
 453 dissolution half-life of 1-7 years [10]. B010 (bright orange)
 454 could also be featured in this category, as it has a similar
 455 aggregate form, though resolution is poor due to its small
 456 size and low conductivity. Though U is clearly identified in
 457 the EDS spectrum (see supplementary), no ^{137}Cs or ^{241}Am
 458 activity could be measured.

459 The final category concerns U-Zr particles, where the fuel
 460 has fused with the zircaloy cladding at high temperature, and
 461 should be the most stable in the environment. K001 (red) and
 462 R010 (dark green) are identified as containing Zr through EDS
 463 (see supplementary). K001 is the largest particle, and has a
 464 structure that varies between smooth and porous. As shown in
 465 fig. 7, the Zr is located only on the smooth parts, whereas the
 466 uranium is present in both smooth and porous parts. R010,
 467 one of the smallest particles, is smooth and contains Zr all
 468 over.

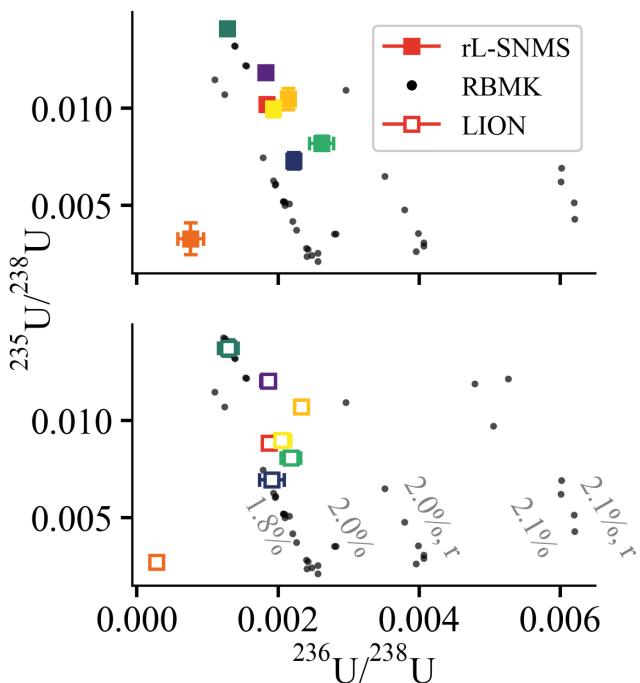
469 As maintained by Kashparov et al. [7], such surface
 470 analysis should be indicative of the chemical behaviour of
 471 the particles in the environment [7]. However, as pointed
 472 out by Konings et al., higher burnup will damage fuel
 473 structure through the diffusion of fission gases, which are
 474 released at lower temperatures with oxidized fuel [9]. Uranium
 475 isotope ratios will indicate the burnup of the particle, as
 476 will Cs ratios. Plutonium isotope ratios relate the particle
 477 specifically to RBMK type reactors. $^{137}\text{Ba}/^{138}\text{Ba}$ ratios will
 478 show to what degree Cs has diffused out of the particle,
 479 and while $^{85}\text{Rb}/^{87}\text{Rb}$ could show the retention of Kr fission
 480 gases, in these particles it will indicate the degree to which
 481 environmentally-derived Rb has covered the surface of the
 482 particle. Finally, $^{90}\text{Sr}/^{88}\text{Sr}$ as a function of burnup should not
 483 significantly change, allowing for an estimation of the time
 484 passed since particles were released from the reactor.

485 **Figure 2:** Back scattered electron (BSE) images of eight
 486 particles from the CEZ, extracted via methods developed by
 487 Weiss and Leifermann [46], and labeled by origin (B: Pripyat,
 488 K: Kopachi, C: Cooling Pond, R: Red Forest). The total ^{137}Cs
 489 + ^{241}Am activity is given in Bq. For the rest of this paper,
 490 data points are colour coded to the specific particle.


3.2 Actinides

491 Figure 3 compares measured actinide isotope ratios to known
 492 signatures from reactors. WWER and RBMK reactors
 493 operated in the former Soviet Union and largely continue to
 494 operate [34]. Both reactor types used fuels of varying ^{235}U
 495 enrichment, with WWERs at higher enrichment (e.g. 3.3, 3.6,
 496 4.4 %) than RBMKs (e.g. 1.8, 2.0, 2.09 %). The particles
 497 measured by both rL-SNMS and LION align well with the
 498 known ratios for RBMK reactors, with the exception of B010,
 499 which does not contain plutonium.

500 Figure 3 shows that B010 is depleted uranium (DU),
 501 a by-product of the enrichment process with a $^{235}\text{U}/^{238}\text{U}$
 502 ratio lower than natural uranium (0.007). However, it also
 503 contains measurable amounts of ^{236}U (Fig. 4), implying it
 504 derives from a reactor. This is consistent with Soviet-era
 505 fuel reprocessing, where U in spent fuel was separated and
 506 re-enriched [37, 54]. Because the B010 particle is the first DU


3.2.1 Capabilities of rL-SNMS and LION

An estimation of the initial fuel enrichment can be made by analysing ^{235}U vs ^{236}U , shown in figure 4. Previously published work shows that the fuel used in ChNPP was enriched to 2% [32], which was increased in later years to 2.4 % to increase safety [33]. Variations in $^{236}\text{U}/^{235}\text{U}$ can indicate fluctuations in neutron flux or energy at the microscopic level that may not have been captured in the gram-scale samples measured by Makarova et al. [37]. It should also be noted that sharp increases in burnup at the rim of a fuel pellet can result in significant variation in isotopic composition at the micrometer scale [3] [55].

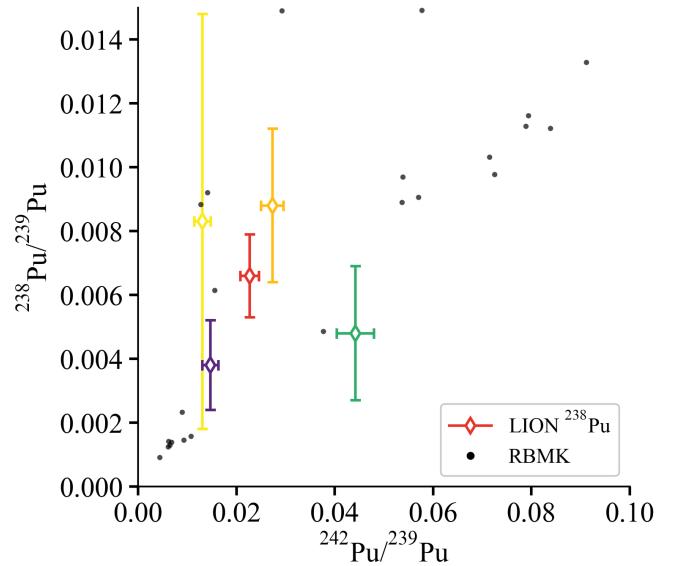


Figure 3: Four-isotope plot showing the range in U and Pu isotope ratios depending on burnup. Ratios are compared to literature data on RBMK-type (black) and WWER-type (grey) reactors [37].

particle reported in the CEZ, more of these particles would have to be analyzed to confirm whether this derives from ChNPP or from other civilian uses of DU.

Figure 4: Three-isotope plot for ^{235}U and ^{236}U normalized to ^{238}U . Ratios are compared to literature data on RBMK fuel assemblies [37] at known initial enrichment (noted in %). Some assemblies were made of recycled fuel (noted 'r'), enriched in ^{236}U .

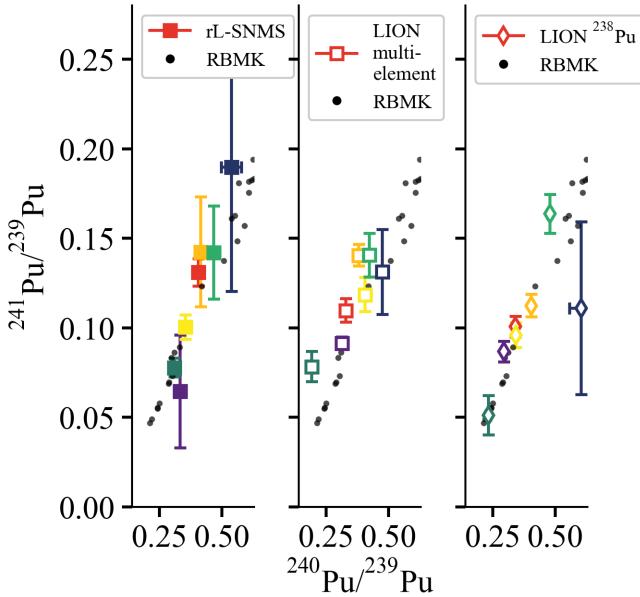


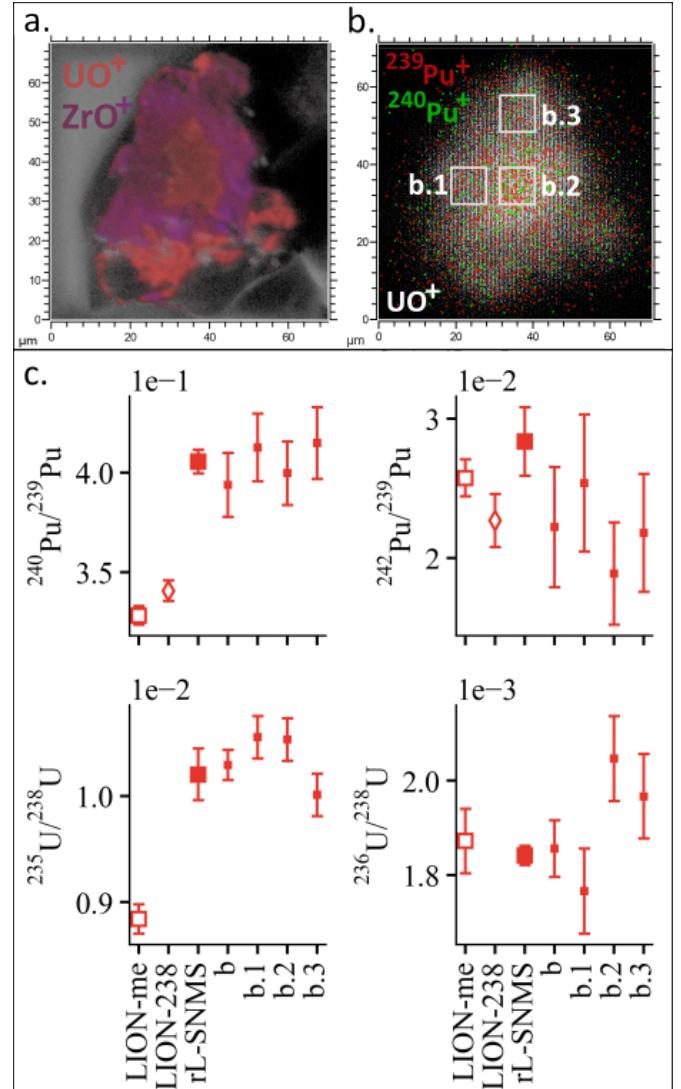
Figure 5: Three-isotope plot for ^{238}Pu and ^{242}Pu normalized to ^{239}Pu compared to literature values for RBMKs as in earlier figures [37]. Two particles were not measurable above the limit of detection.

As discussed in section 2.3, multi-element analysis does not sufficiently suppress ^{238}U interference on ^{238}Pu , as the non-resonant U signal is larger than the resonant Pu. The non-resonant signal can be subtracted by interleaving on- and off-resonance lasers every other shot (section 2.3). The $^{238}\text{Pu}/^{239}\text{Pu}$ ratio (Fig. 5) is an order of magnitude below that of ^{242}Pu , translating to extremely low signal and subsequently large errors, such that two particles (B022, R010) had errors over 100 % and are not shown. As previously noted in the literature [37], there should be an increasing trend with burnup, with significant variation possible [55], [3]. Though three of the five particles (C008, C036, K001) appear to deviate from the linear trend seen in Makarova, the data are within uncertainty of the previously published data and therefore cannot confidently say whether the samples derive from material that was subject to abnormal neutron conditions.

Reducing the uncertainty requires long and stable measurements of the particles, for which the mounting method is not suitable. Analysis length of the particles were limited because the desorption laser heated the glue attaching the particle to the needle, resulting in the loss of four particles (B022, B018, C008, R010).

Figure 6 shows deviations between the $^{240}\text{Pu}/^{239}\text{Pu}$ measured by rL-SNMS and LION. For the two U-Zr particles in particular, K001 (red) and R010 (dark green), the

Figure 6: Comparison of results from rL-SNMS, multi-element LION and ^{238}Pu blinked LION for the ratios $^{241}\text{Pu}/^{239}\text{Pu}$ and $^{240}\text{Pu}/^{239}\text{Pu}$, with literature values for RBMKs [37]. All $^{241}\text{Pu}/^{239}\text{Pu}$ data is decay-corrected to the date of the Chernobyl accident, 26th April 1986.


$^{240}\text{Pu}/^{239}\text{Pu}$ values are notably higher when measured by rL-SNMS than by LION. We hypothesized that a compound may be overlapping at 240 m/z in the rL-SNMS, deriving from the zirconium area. Subsequent spatially resolved analyses by rL-SNMS targeted ^{240}Pu in the clearly identifiable regions with high and low Zr in K001. Results are shown in figure 7.

The first measurement in figure 7a was made in fast imaging mode, which increases the spatial resolution at the cost of signal intensity, but allows for a detailed map of the surface of the particle. Zirconium-rich areas form a hollow triangle shape on the particle, revealing a porous core of UO^+ in the middle and at the bottom edge. Fig. 7b shows that the resonant ^{240}Pu is not correlated to the Zr areas. The isotope ratios seen in figure 7c demonstrate the reproducibility of the rL-SNMS measurements.

The measured $^{242}\text{Pu}/^{239}\text{Pu}$ and $^{236}\text{U}/^{238}\text{U}$ by rL-SNMS and LION are consistent within uncertainty (Fig. 7c). However, $^{240}\text{Pu}/^{239}\text{Pu}$ and $^{235}\text{U}/^{238}\text{U}$ values are measured higher in rL-SNMS than with LION, and are uncorrelated to the surface Zr content (Fig. 7b). A further statistical analysis comparing the performance of rL-SNMS and LION is found in the supplementary material. The noted discrepancies between $^{240}\text{Pu}/^{239}\text{Pu}$ and $^{235}\text{U}/^{238}\text{U}$ are not large enough to change the assessment of particle origin, evident by figure 3.

3.3 Fission Products

The fission products give insight into the environmental history of each individual particle since the accident, shown in Fig. 8. The $^{235}\text{U}/^{238}\text{U}$ ratio is used as a burnup monitor, where the lowest ratio has the highest burnup (particle B022). Measurement of Cs and Rb by SIMS on the LION could not be performed on K001 and R010 (U-Zr particles) due to poor quality spectra derived from interfering compounds. Measurements of Ba in B022, and $^{137}\text{Cs}/^{135}\text{Cs}$ in R010 were below the limit of detection and are not shown.

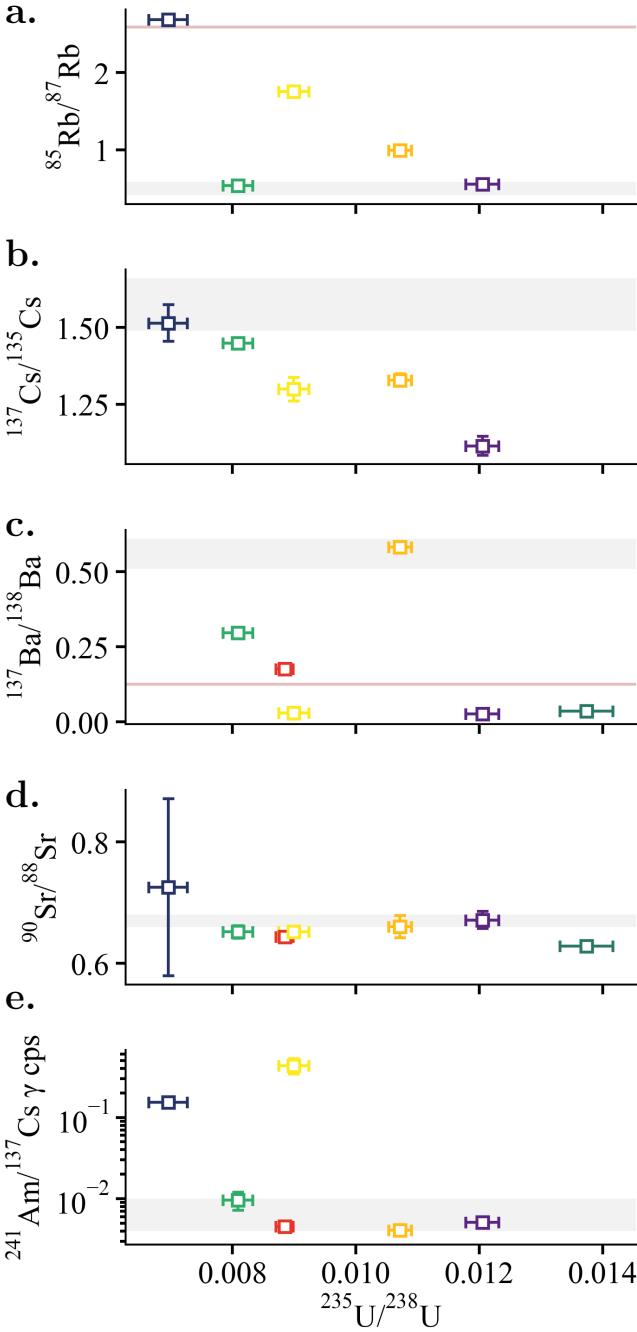


Figure 7: a. Secondary ion fast imaging of K001, showing the concentration of UO^+ and ZrO^+ on the particle, overlaid on top of the total secondary ion image. b. rL-SNMS measurement of K001 resonant on plutonium, showing $^{239}\text{Pu}^+$ (red) $^{240}\text{Pu}^+$ (green) overlaid on UO^+ (white). Three $10\text{ }\mu\text{m}$ regions of interest (b.1, b.2, b.3) are selected to assess the isotope ratios in areas rich in Zr (b.1, b.3) versus without (b.2). c. Isotope ratios measured with the three methods in this work, and additional measurements done with rL-SNMS on the full particle (b), Zr-rich areas (b.1, b.3), and the center (b.2).

3.3.1 Rb and Cs

The ratio predicted by web-KORIGEN++ (section 1.2.2) for $^{85}\text{Rb}/^{87}\text{Rb}$ derived from a thermal fission is in the range 0.41 to 0.53 (grey band in fig. 8a), where higher ratios would indicate more ^{85}Kr retention in the particle by completely decaying to ^{85}Rb . Only $^{85}\text{Rb}/^{87}\text{Rb}$ measured in particles B024 and B018 lie in this expected range, but at the high values of 0.55 ± 0.02 and 0.54 ± 0.01 respectively. We cannot correct for contamination with natural Rb (pink line) as both isotopes are naturally occurring, and therefore cannot interpret Kr retention in the particles. With the exception of B018, higher burnup particles show more environmentally-derived Rb.

The $^{137}\text{Cs}/^{135}\text{Cs}$ ratios in fig. 8b show an increasing trend with burnup, reflecting the local irradiation conditions of the

Figure 8: Fission products as a function of $^{235}\text{U}/^{238}\text{U}$. Isotope ratios measured in LION via SIMS (Cs, Rb) and RIMS (Ba, Sr, corrected for contamination of naturally occurring isotopes, though Rb is not). Ratios are not date-corrected, but as measured in May 2022. Gamma spectrometry was done with a HPGe detector in coax geometry, comparing count rates at the 59.5 keV ^{241}Am peak and ^{137}Cs 661.7 keV peak. The naturally occurring ratios for Rb and Ba are indicated with a brown line. Estimated ranges, either from literature or in modelling, as described in the text, are in grey.

591 fuel [20]. These ratios are significantly lower than the data
 592 previously reported for bulk soil samples from the CEZ [21]
 593 (dated to May 2022, shown in the grey band in figure 8), which
 594 likely represent an average across the reactor. This distinction
 595 may be particularly relevant if applied to Fukushima particles,
 596 where ambiguity remains as to whether particles were formed

near the fuel, or in the volatile gases in the reactor [12, 21].

3.3.2 Sr, Ba, and gamma

The $^{90}\text{Sr}/^{88}\text{Sr}$ ratios in fig. 8c have an average ratio of 0.66 ± 0.02 (measured in May 2022) showing little variation with burnup within uncertainty. Using equation 2, this would indicate of 37 ± 1 years have passed since the particles were released from the reactor. The actual time of 36 years would result in a higher ratio (0.67 ± 0.01 shown in grey in figure 8). While the time passed since Chernobyl is well known, this ratio could act as a time stamp in cases where it is not. Such a method could be useful in categorizing particles of multiple independent releases, like the particles at Dounreay which were released into the environment over many years from different reactors [14].

The chemical behaviour of Cs has been measured in two ways. The $^{137}\text{Ba}/^{138}\text{Ba}$ ratio in fig. 8c shows a direct loss of Cs by the absence of ^{137}Ba accumulated outside the reactor. Comparison of $^{241}\text{Am}/^{137}\text{Cs}$ γ activity as shown in fig. 8e is a common measurement made by gamma spectrometry [14], presuming the chemical stability of parent nuclide ^{241}Pu , and the linear concentration increase of both nuclides with burnup (shown in fig. 6 for ^{241}Pu and in fig. 8 for ^{137}Cs).

After correction for environmentally-derived natural Ba (see supplementary), only C036 fully retains Cs in the particle, matching the expected reactor-derived ratio plus the ^{137}Cs decayed over 36 years (grey band fig. 8d). This is surprising as it is a cooling pond particle, indicating no leaching of any kind occurred when it was likely submerged for many years. Particles C008, B024 and R010 fall below the natural ratio (pink line fig. 8d) towards 0.03, the modelled ratio of $^{137}\text{Ba}/^{138}\text{Ba}$ directly out of the reactor without decay of ^{137}Cs . B018 and K001 have partially retained Cs. The supposed chemical stability of the U-Zr particles does not appear to translate to Cs retention in K001 and R010, and neither does particle burnup. Surface features in fig. 2 on the C008, B024 and K001 particles show physical ways by which Cs could have diffused out of the particle via pores and fractures, in contrast to the smoothness of C036.

In previous work on hot particles from a larger dataset, $^{241}\text{Am}/^{137}\text{Cs}$ γ ratios were measured in CEZ hot particles to be in the range 0.04 to 0.01 (grey band fig. 8e), where deviations by orders of magnitude are attributed to leaching behaviour in the environment [46]. In this interpretation, B018, K001, C036 and B024 fall within the predicted range, while B022 and C008 clearly deviate and show leaching behaviour. While ^{137}Cs γ was not measured above the limit of detection for R010, ^{241}Am γ was, indicating Cs leaching.

The differing behaviour of B024 is peculiar, as it indicates depletion of Cs with respect to Ba, but not with respect to Am. This could point to different time points at which the Cs is lost. Cesium loss can be attributed to the reactor operation, the extreme heat of the reactor meltdown, and/or subsequent loss in the environment (suddenly or gradually). Both ratios should therefore be considered in further study of leaching mechanisms.

4 Conclusions

RIMS analysis of both actinide and fission products offers a comprehensive study of isotope ratios in single hot particles from the Chernobyl Exclusion Zone. While many techniques may be used to measure a single attribute of a particle, this work shows how a range of isotope ratios can be used

658 to answer different questions useful to radioecology and
659 nuclear forensics simultaneously. From the view of forensics,
660 the actinide isotopes tie the sample to a specific nuclear
661 reactor type, while Sr isotopes measure the time passed since
662 release from the reactor. For radioecology, fission product
663 isotopes can be measured alongside and distinguished from
664 environmentally-derived isotopes. These ratios are influenced
665 by fuel burnup, particle formation in the accident, and
666 weathering in the environment. The results showed that
667 unique isotope ratios can be measured for each particle, tied
668 specifically to RBMK-type reactors in the mid 1980s, and that
669 notable changes in the $^{137}\text{Ba}/^{138}\text{Ba}$ ratio indicate a range of
670 retention of Cs in the particles.

671 Visual markers related to both fuel burnup and particle
672 formation had more influence on Cs retention than burnup
673 alone or sampling environment. The cooling pond particle
674 C036 showed no leaching of Cs, making it the most
675 environmentally stable particle in this data set, as predicted
676 by its smooth surface. Highly porous structures as in particle
677 C008 showed depletion in Cs with respect to Ba and Am, and
678 B022 was leached with respect to Am. B024 and B018 showing
679 visible fractures and pores typical of burnup structure, are
680 significantly depleted of Cs compared to Ba, but not to Am.
681 R010 and K001, both U-Zr particles, are leached of Cs with
682 respect to Ba. R010 contains too little ^{137}Cs to be measured
683 by gamma spectrometry, and K001 does not show any leaching
684 behaviour with respect to Am. This suggests that a variety of
685 Cs leaching pathways are possible, including no leaching at all.
686 More particles will need to be analysed to establish a leaching
687 mechanism dependent on both particle structure, burnup and
688 environment.

689 Actinide ratios obtained by both rL-SNMS and LION
690 were within the expected ratios for RBMK reactors at low
691 to medium burnup. The most accurate and precise ratios
692 are obtained with LION using a resonant three-step laser
693 ionization scheme, with the addition of a fourth non-resonant
694 laser to correct for non-resonant ionization of non-target
695 elements. This is particularly important to measure the
696 very low-abundance ^{238}Pu , which must be separated from
697 the vastly dominant ^{238}U . The U-Zr particles K001 and R010
698 were distinguishable by lower than expected $^{240}\text{Pu}/^{239}\text{Pu}$ ratio
699 measured by LION. Spatial analysis in rL-SNMS indicates
700 that this is not caused by the presence of Zr or lack thereof,
701 though further analysis is needed to determine the relevance
702 of this discrepancy.

703 This work has demonstrated the versatile and flexible
704 capabilities of multi-element RIMS analysis on single hot
705 particles. Rather than a sacrificial final step, isotopic analysis
706 can be performed quickly and in first order, preserving
707 the particle for subsequent investigations such as leaching
708 [46]. The increasing relationship between $^{137}\text{Cs}/^{135}\text{Cs}$ and
709 burnup was observed, in a notably larger range than
710 previously reported in the literature for samples from the
711 CEZ. This highlights the need for single particle studies
712 alongside bulk environmental analysis. The development
713 of RIMS has diversified the range of elements that can be
714 investigated non-destructively through the study of isotopic
715 ratios, informed by their production pathways and sensitivity
716 to environmental factors.

717 5 Acknowledgements

718 This Marie Skłodowska-Curie Action (MSCA) Innovative
719 Training Network (ITN) receives funding from the European
720 Union's H2020 Framework Programme under grant

721 agreement no. 861198. Parts of this work was performed
722 under the auspices of the U.S. Department of Energy by
723 Lawrence Livermore National Laboratory under Contract
724 DE-AC52-07NA27344, and was partially supported by
725 the National Nuclear Security Agency Office of Defense
726 Nuclear Nonproliferation Research and Development.
727 LLNL-JRNL-844531. Additional thanks goes to Klaus Wendt
728 and his group at Johannes Gutenberg University in Mainz
729 for laser development and continued advice.

730 References

- [1] Raiwa, M., Büchner, S., Kneip, N., Weiß, M., Hanemann, P., Fraatz, P., Heller, M., Bosco, H., Weber, F., Wendt, K., and Walther, C. *Spectrochimica Acta - Part B Atomic Spectroscopy* **190** 4 (2022).
- [2] Bosco, H., Hamann, L., Kneip, N., Raiwa, M., Weiss, M., Wendt, K., and Walther, C. *Sci. Adv* **7** (2021).
- [3] Savina, M. R., Isselhardt, B. H., and Trappitsch, R. *Analytical Chemistry* **93**, 9505–9512 7 (2021).
- [4] Kuriny, V. D., Ivanov, Y. A., Kashparov, V. A., Loshchilov, N. A., Protsak, V. P., Yudin, E. B., Zhurba, M. A., and Parshakov, A. E. *Ann. Nucl. Energy* **20**, 415–420 (1993).
- [5] Kashparov, V., Levchuk, S., Zhurba, M., Protsak, V., Beresford, N. A., and Chaplow, J. S. *Earth System Science Data* **12**, 1861–1875 8 (2020).
- [6] Zheltonozhsky, V., Uck, K. M., and Bondarkov, M. *Journal of Environmental Radioactivity* **57**, 151–166 (2001).
- [7] Kashparov, V. A. *Pollution Research, v.10 Special*, 21–30 (2003).
- [8] Poudel, D., Avtandilashvili, M., Klumpp, J. A., Bertelli, L., and Tolmachev, S. Y. *Journal of Radiological Protection* **41**, 940–961 12 (2021).
- [9] Konings, R. J., Wiss, T., and Beneš, O. *Nature Materials* **14**, 247–252 (2015).
- [10] Kashparov, V. A., Ivanov, Y. A., Zvarisch, S. I., Protsak, V. P., Khomutinin, Y. V., Kurepin, A. D., and Pazukhin, E. M. *Nuclear Technology* **114**, 246–252 (1996).
- [11] Salbu, B., Krekling, T., and Oughton, D. H. *The Analyst* **123**, 843–849 (1998).
- [12] Morooka, K., Kurihara, E., Takehara, M., Takami, R., Fueda, K., Horie, K., Takehara, M., Yamasaki, S., Ohnuki, T., Grambow, B., Law, G. T., Ang, J. W., Bower, W. R., Parker, J., Ewing, R. C., and Utsunomiya, S. *Science of the Total Environment* **773** 6 (2021).
- [13] Byrnes, I., Lind, O. C., Hansen, E. L., Janssens, K., and Salbu, B. *Science of the Total Environment* **727** 7 (2020).
- [14] Particles Retrieval Advisory Group (Dounreay), S. E. P. A. S. (2012).
- [15] Kristo, M. J., Gaffney, A. M., Marks, N., Knight, K., Cassata, W. S., and Hutzell, I. D. *Annual Review of Earth and Planetary Sciences* **44**, 555–579 6 (2016).
- [16] Mayer, K., Wallenius, M., and Varga, Z. *Chemical Reviews* **113**, 884–900 2 (2013).
- [17] Betti, M., Tamborini, G., and Koch, L. *Analytical Chemistry* **71**, 2616–2622 (1999).

777 [18] Yamana, H., Yamamoto, T., and Moriyama, H. In *Plutonium in the environment - edited proceedings of the second invited international symposium*, Kudo, A., editor. Elsevier, (2001).

778 [19] Lantzos, I., Kouvalaki, C., and Nicolaou, G. *Progress in Nuclear Energy* **85**, 333–336 7 (2015).

781 [20] Robel, M., Isselhardt, B., Ramon, E., Hayes, A., Gaffney, A., Borg, L., Lindvall, R., Erickson, A., Carney, K., Battisti, T., Conant, A., Ade, B., Trellue, H., and Weber, C. *Journal of Environmental Radioactivity* **195**, 9–19 12 (2018).

788 [21] Zok, D., Blenke, T., Reinhard, S., Sprott, S., Kegler, F., Syrbe, L., Querfeld, R., Takagai, Y., Drozdov, V., Chyzhevskyi, I., Kirieiev, S., Schmidt, B., Adlassnig, W., Wallner, G., Dubchak, S., and Steinhauser, G. *Environmental Science and Technology* **55**, 4984–4991 4 (2021).

794 [22] Lakosi, L., Zsigrai, J., Kocsonya, A., Nguyen, T. C., Ramebäck, H., Parsons-Moss, T., Gharibyan, N., and Moody, K. *Journal of Radioanalytical and Nuclear Chemistry* **315**, 409–416 2 (2018).

798 [23] Querfeld, R., Schulz, W., Neubohn, J., and Steinhauser, G. *Journal of Radioanalytical and Nuclear Chemistry* **318**, 423–428 10 (2018).

801 [24] Fallon, C. M., Bower, W. R., Lyon, I. C., Livens, F. R., Thompson, P., Higginson, M., Collins, J., Heath, S. L., and Law, G. T. *ACS Omega* **5**, 296–303 1 (2020).

804 [25] Ambartsumian, R. V. and Letokhov, V. S. *Applied Optics* **11**, 354–358 (1972).

806 [26] Wendt, K., Trautmann, N., and Bushaw, B. A. *Nuclear Instruments and Methods in Physics Research B* **172**, 162–169 (2000).

809 [27] Savina, M. and Trappitsch, R. *Resonance Ionization Mass Spectrometry (RIMS): Fundamentals and Applications Including Secondary Neutral Mass Spectrometry*, 215–241. WILEY-VCH GmbH, 1 edition (2021).

814 [28] RILIS. <https://riliselements.web.cern.ch>.

815 [29] Kneip, N., Düllmann, C. E., Gadelshin, V., Heinke, R., Mokry, C., Raeder, S., Runke, J., Studer, D., Trautmann, N., Weber, F., and Wendt, K. *Hyperfine Interactions* **241** 12 (2020).

819 [30] Franzmann, M., Bosco, H., Walther, C., and Wendt, K. *International Journal of Mass Spectrometry* **423**, 27–32 12 (2017).

822 [31] Stephan, T., Trappitsch, R., Davis, A. M., Pellin, M. J., Rost, D., Savina, M. R., Yokochi, R., and Liu, N. *International Journal of Mass Spectrometry* **407**, 1–15 8 (2016).

826 [32] NRC, U. Technical report, US NRC, 1 (1987).

827 [33] IAEA. Technical report, IAEA, (1992).

828 [34] Devell, L., Guntay, S., and Powers, D. A. Technical report, OECD- NEA, 11 (1995).

830 [35] Šmaižys, A., Poškas, P., Narkunas, E., and Bartkus, G. *Nuclear Engineering and Design* **277**, 28–35 10 (2014).

832 [36] Plukiene, R., Plukis, A., Germanas, D., and Remeikis, V. *Lithuanian Journal of Physics* **49**, 461–469 (2009).

834 [37] Makarova, T. P., Bibichev, B. A., and Domkin, V. D. *Radiochemistry* **50**, 414–426 8 (2008).

38 [38] Desgranges, L., Pasquet, B., Valot, C., and Roure, I. *Journal of Nuclear Materials* **385**, 99–102 3 (2009).

39 [39] IAEA. <https://pris.iaea.org/pris/CountryStatistics/CountryDetails.aspx?current=UA>.

40 [40] Schulz, W., Gupta, D. K., Riebe, B., Steinhauser, G., and Walther, C. *Applied Geochemistry* **101**, 103–108 2 (2019).

41 [41] Mandel, M., Holtmann, L., Raiwa, M., Wunnenberg-Gust, A., Riebe, B., and Walther, C. *Journal of Hazardous Materials* **423** 2 (2022).

42 [42] Nucleonica. <https://nucleonica.com/ApplicationYieldsPlus.aspx>.

43 [43] Cort, M. D., Dubois, G., Fridman, S. D., Germanchuk, M. G., Izrael, Y. A., Janssens, A., Jones, A. R., Kelly, G. N., Kvasnikova, E. V., Matveenko, I., Nazarov, I. M., Pokumeiko, Y. M., Sitak, V. A., Stukin, E. D., Tabachny, L. Y., Tsaturov, Y. S., and Avdyushin, S. I. Technical report, European Commission, (1998).

44 [44] Willett, C. D., Kimmig, S. R., Cassata, W. S., Isselhardt, B. H., Liezers, M., Eiden, G. C., and Wacker, J. F. Technical report, LLNL, (2020).

45 [45] of Health, U. S. D. and Services, H. Technical report, Agency for Toxic Substances and Disease Registry, 4 (2004).

46 [46] Leifermann, L., Weiss, M., Chyzhevskyi, I., Dubchak, S., Fraatz, P., Hanemann, P., Raiwa, M., Schulz, W., Steinhauser, G., Weissenborn, T., and Walther, C. in press, (2023).

47 [47] PeakEasy. <https://peakeeasy.lanl.gov/Home/About>.

48 [48] Grüning, C., Huber, G., Klopp, P., Kratz, J. V., Kunz, P., Passler, G., Trautmann, N., Waldek, A., and Wendt, K. *International Journal of Mass Spectrometry* **235**, 171–178 7 (2004).

49 [49] Stephan, T., Trappitsch, R., Davis, A. M., Pellin, M. J., Rost, D., Savina, M. R., Jadhav, M., Kelly, C. H., Gyngard, F., Hoppe, P., and Dauphas, N. *Geochimica et Cosmochimica Acta* **221**, 109–126 1 (2018).

50 [50] Hanemann, P., Bister, S., Raiwa, M., Reinhard, S., van Eerten, D., and Walther, C. *Journal of Radioanalytical and Nuclear Chemistry* (2022).

51 [51] Bosco, H., Weiss, M., Raiwa, M., Walther, C., Kneip, N., and Wendt, K. *Hyperfine Interactions* **241** 12 (2020).

52 [52] Fan, Q., Yamaguchi, N., Tanaka, M., Tsukada, H., and Takahashi, Y. *Journal of Environmental Radioactivity* **138**, 92–100 8 (2014).

53 [53] Poliakova, T., Weiss, M., Trigub, A., Yapaskurt, V., Zheltonozhskaya, M., Vlasova, I., Walther, C., and Kalmykov, S. in review, (2023).

54 [54] Betti, M. *Journal of Environmental Radioactivity* **64**, 113–119 (2003).

55 [55] Hanson, S. K. and Pollington, A. D. *Journal of Analytical Atomic Spectrometry* **36**, 1018–1027 5 (2021).