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ABSTRACT

Our group pioneers the use of Quantum Machine Learning (QML) on High Energy Physics
analysis at LHC. We have successfully employed several QML classification algorithms in the
ttH (Higgs production in association with a top quark pair) and Higgs to two muons (Higgs
coupling to second generation fermions), two recent LHC flagship physics analysis, on
gate-model quantum computer simulators and hardware. The simulation studies have been
performed with the IBM Quantum Framework, Google Tensorflow Quantum Framework, and
Amazon Braket Framework, and we have achieved good classification performance that is
similar to the performances of the classical machine learning methods currently used in LHC
physics analyses, classical SVM, classical BDT, and classical deep neural network for example.
We have also performed our studies using IBM superconducting quantum computer hardware
and the performance is promising and is approaching the performance from IBM quantum
simulators. Moreover, we extend our studies to other QML areas such as quantum anomaly
detection and quantum generative adversarial, and some preliminary results have been obtained.
Also, we have overcome the challenges of intensive computing resources in the cases of large
qubits (25 qubits or more) and large numbers of events using NVIDIA cuQuantum with NERSC
Perlmutter HPC.

Our studies give an example that Quantum Machine Learning performs as well as its classical
counterpart for realistic High Energy Physics analysis datasets. Furthermore, our result on noisy
quantum hardware provides important validation for the result on noiseless quantum simulators.

SECTION 1: OUR MAJOR GOALS OF THE PROJECT

The ambitious HL-LHC program will require enormous computing resources in the next two
decades. New technologies are being sought after to replace the present computing infrastructure.
A burning question is whether quantum computers can solve the ever growing demand of



computing resources in High Energy Physics (HEP) in general and physics at LHC in particular.
Our goal was to explore and to demonstrate that Quantum Computing can be the new paradigm
for HEP data analysis (Proof of Principle).

The experimental programs of PI Wu at the LHC revolve around one major objective: discovery
of new physics. This requires the identification of rare signals in immense backgrounds. Using
machine learning algorithms greatly enhances our ability to achieve this objective. Our group in
the ATLAS/LHC is one of the groups which have pioneered the use of machine learning in high
profile physics analyses. We have used classical machine learning algorithms on the
measurement of Higgs coupling to top quark pairs (ttH). However, with a rapidly increasing
volume of data in the future HL-LHC program, applying Quantum Machine Learning methods
may well be a new direction to go.

Specifically, our goals of this project are:

(1) To Perform Research and Development of Quantum Machine Learning and Data Analysis
Techniques, with Qubit Platform, using IBM Quantum Computer Simulators and IBM Quantum
Computer Hardware, to enhance efficiency and analysis methods for HEP. Additionally, we
extend our studies to Google Tensorflow Quantum framework and Amazon Braket framework so
that we gain the ability to perform the data analysis with all possible resources.

(i1) To Enhance the Software Development of Quantum Machine Learning for HEP at the LHC
to provide Scalable Quantum Codes and Tools for Future HEP Analysis

SECTION 2: OUR ACCOMPLISHMENTS

We have assembled a team of HEP physicists, quantum physicists and computer scientists from
Wisconsin, CERN openlab, IBM Research Zurich, IBM T.J. Watson Research Center, Fermilab
Quantum Institute, and Computational Science Initiative of BNL. We have made promising
progress in application of Quantum Machine Learning algorithms with IBM Quantum Computer
Simulators and Quantum Computer Hardware to two LHC flagship physics channels: ttH (Higgs
production in association with a top quark pair) and Higgs to two muons (Higgs coupling to
second generation fermions).

2.1 Quantum Machine Learning Algorithms

The intersection between machine learning and quantum computing has been referred to as
Quantum Machine Learning. With the progress of quantum technologies, the application of
Quantum Machine Learning emerges as a possible powerful tool for data analysis in HEP in the
future. We have explored the following Quantum Machine Learning algorithms:



(a) Quantum Variational Classification

Following Nature 567 (2019) 209, we look into the quantum variational algorithm to classify
physics events of interest from background events. This quantum approach exploits the mapping
of input physics data to an exponentially large Hilbert quantum state space (feature map) to
enhance the ability to find an optimal classification solution. The quantum variational approach
is summarized in four main steps as shown in Figure 1, which is taken from the supplementary
information of the Nature publication.
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Figure 1. Sketch of the quantum variational algorithm with its steps: 1. Loading of the data by
means of the feature map; 2. Application of the variational circuit; 3. Read out of the final qubit
state, and 4. Assignment to the different classes.

To classify the signal and dominant background processes for the ttH analysis and H — pt+u—
analysis, we employ the quantum variational classifier with 10 qubits on the ibmq
QasmSimulator. For 10 qubits, using ttH analysis dataset (100 events) and H — p+u— analysis
dataset (100 events), Quantum Variational Classifier on IBM simulator (red) performs similarly
with classical BDT (green) and classical SVM (blue).
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Figure 2: The ROC curves (as a benchmark in the plane of background rejection versus signal
efficiency) of the quantum variational classifier method on the ibmq QasmSimulator (red), the
classical SVM (Support Vector Machine) (blue), and the BDT (Boosted Decision Tree) (green)
for (a) the ttH analysis and (b) the H — p+p— analysis. In each analysis, the classifiers are



constructed using ten independent datasets, each consisting of 100 events for training and 100
events for testing. All classifiers are trained with the same 10 variables processed with the PCA
(Principal Component Analysis) method.

In Figure 2, 10 qubits are employed on the quantum computer simulator. To visualize the
discrimination power of each algorithm, the testing events of the ten datasets are combined to
make the ROC curves. We observe that the quantum variational classifier method on the ibmq
QasmSimulator performs similarly to the classical SVM and the BDT for both the ttH analysis
and the H — p+p— analysis.

We also employ the quantum variational algorithm with 10 qubits on the IBM quantum computer
hardware ‘ibmq boeblingen’ and ‘ibmq paris’. ‘ibmq boeblingen’ is a 20-qubit quantum
processor and ‘ibmq_paris’ is a 27-qubit quantum processor. Both are based on superconducting
electronic circuits. Due to current limitation of the access time to the quantum processors, the
quantum variational classifier algorithm is only applied to one of the ten datasets for each
physics analysis. We pick the dataset whose simulator AUC (Area Under the Curve) is closest to
the average simulator AUC of the ten datasets. We made a major effort to make sure that the
circuit, optimizer, and error mitigation configuration on the hardware is kept the same as for the
simulator jobs.
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Figure 3: The ROC curves of the quantum variational classifier method with the IBM quantum
computer hardware (red) and with the ibmq QasmSimulator (blue) for (a) the ttH analysis (using
‘ibmq_boeblingen’) and (b) the H — p+pu— analysis (using ‘ibmq_paris’).

For each physics analysis, one dataset consisting of 100 events for training and 100 events for
testing is utilized to construct the classifiers. This dataset is one of the ten datasets used in figure
3. All classifiers are trained with the same 10 variables processed with the PCA method. In this
study, 10 qubits are employed on the quantum computer hardware and the quantum computer
simulator. To visualize the discrimination power of both the quantum simulator and quantum
hardware, the testing events of the dataset are used to make the ROC curves. We observe that, for



the quantum variational classifier method, the quantum simulator and quantum hardware results
appear to be in good agreement.

The result of this study, as shown in Figure 2 and 3, has been published in 2021 J. Phys. G:
Nucl. Part. Phys. 48 125003.

(b) Quantum Support Vector Machine (QSVM) Kernel Estimation

The support vector machine (SVM) is one of the most commonly used supervised machine
learning algorithms for data classification. Following the same paper: Nature 567 (2019) 209, we
propose to look for new mapping of the classical Support Vector Machine (SVM) approach into
a quantum algorithm in which the feature map is evaluated in the Hilbert space of the N-qubit
system. A quantum version of the SVM with a quantum kernel estimator leverages the quantum
state space as a feature space to efficiently compute kernel entries. This algorithm maps the
classical data event non-linearly to a quantum state of N qubits by applying a quantum feature
map circuit U o) to the initial state. It then calculates the kernel entry for data events based on

the inner product of their quantum states. The calculated kernel matrix will be used to optimize a
hyperplane that separates signal events from background events.
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Figure 4: (a) Quantum circuit for evaluating the kernel entry for data events X, and x; used in our

study. H is a Hadamard gate and U¢( 5 is a unitary operator that encodes data from a classical

X.

event in its parameters. (b) Quantum circuit of the unitary operator U¢( - . It is constituted by
X.

single-qubit rotation gates (A, B and A’ ), as well as two-qubit CNOT entangling gates.



To classify the signal and dominant background processes for the ttH analysis, we employ the
QSVM Kernel algorithm using up to 20 qubits on the gsim Simulator from the
StatevectorSimulator from the IBM Quantum framework. For comparison, we also performed
the same studies using the Google TensorFlow Quantum framework and the Local Simulator
from the Amazon Braket framework. As shown in Figure 5, with 15 qubits and 20000 events,
QSVM Kernel on simulator achieves similar performances with classical SVM and classical
BDT. Furthermore, the three quantum computer simulators, from the IBM framework, Google
framework, and Amazon framework, provide identical classification performances using the
QSVM-Kernel algorithm.
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Figure 5. ROC curves of various classifiers using the ttH analysis datasets of 20000 events and
15 input variables. Each curve represents results averaged over 60 statistically independent
datasets. (a) Overlays the results of the Quantum Kernel algorithm (on the gqsim Simulator from
the Google TensorFlow Quantum framework) (red), the classical SVM algorithm (blue) and the
classical BDT algorithm (green). (b) Overlays the QSVM-Kernel results on the qsim Simulator
from the Google TensorFlow Quantum framework (red), the StatevectorSimulator from the IBM
Quantum framework (blue) and the Local Simulator from the Amazon Braket framework
(green). Here the QSVM-Kernel classifiers employ 15 qubits on the quantum simulators.

We also studied the AUC for various classifiers as a function of the ttH analysis dataset size
(10000 to 50000 events) and as a function of the number of qubits — see Figure 6. We found that
the performance of the QSVM-Kernel algorithm is similar to that of the classical SVM algorithm
and classical BDT.
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Figure 6: (a) AUCs of the QSVM-Kernel algorithm as a function of the number of qubits (10 to
20 qubits). (b)The AUC for various classifiers as a function of the ttH analysis dataset size
(10000 to 50000 events). Both show the results of the QSVM-Kernel (on the gsim Simulator
from the Google TensorFlow Quantum framework), the classical SVM and the classical BDT.

After the studies using simulation of the ideal quantum simulators, we also apply the
QSVM-Kernel method to today’s noisy quantum computer hardware to assess its performance.
As shown in Figure 7, with small training samples of 100 events, the performance achieved by
the “ibmq paris” quantum computer hardware is promising and approaching the noiseless
quantum computer simulator.
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Figure 7: ROC curve with the “ibmq paris” quantum computer hardware and ROC curve with
the StatevectorSimulator from the IBM Quantum framework.

The result of this study, shown in Figure 5, 6 and 7, has been published in Phys. Rev.
Research 3 (2021), 033221.

(¢) Quantum Neural Network (QNN)

Quantum Neural Networks (QNNs) are a class of neural networks that perform computations on
quantum states. QNNs are constructed by mapping classical neural network architectures to



quantum circuits, with qubits acting as the neurons. The large latent space represented by the
qubits in QNNs may potentially lead to a better global minimum than the classical neurons in
classical NNs. To fit the Noisy Intermediate-Scale Quantum (NISQ) devices, hybrid QNNs of
three layers have been explored. Figure 8 (a) shows a comparison of the performance between
classical NN and quantum NN on the signal-background separation in the ttH analysis. Very
close performance is achieved with 15 qubits and 200K events, showing great potential of the
QNN. The use of hardware confirms the potency of QNN (b).
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Figure 8: (a) ROC of Quantum NN, classical NN, and BDT trained on 200K events. Comparable
performance is achieved with QNN showing good potential to QNN. (b) Performance of QNN
using quantum computers.

The result of this study, shown in Figure 8, has been presented in the International
conferences European Physics Society conference on High Energy Physics 2021 and
International Symposium on Lepton Photon Interactions at High Energies 2021 by PI Wu.

(d) Quantum Generative Adversarial Network (QGAN)

Quantum machine learning can be used to construct generative models. Our objective was to
develop a quantum version of the Generative Adversarial Network (QGAN) by replacing its
generator and/or discriminator neural networks with quantum neural networks. To achieve this,
we developed a quantum convolutional network layer that uses a quantum filter as its
fundamental building block. This quantum filter replaces the classical filter with a Parameterised
Quantum Circuit (PQC). The PQC scans local regions of an image, transforms classical pixel
values into quantum states, and processes them through the rest of the quantum convolutional
layers. We can train the quantum filters using gradient descent to optimize the parameters of the
quantum convolutional network.



Using the Quantum convolutional layer, we also successfully built a Quantum GAN. Figure 9
illustrates the output of the QGAN we developed, which was trained on the MNIST dataset to
generate images of the digit "3". After training for 100 iterations, the QGAN was able to produce
acceptable images of the digit “3”. Our findings suggest that Quantum Machine Learning can be
used to construct generative models.
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Figure 9: Performance of Quantum GAN trained using MNIST dataset. The QGAN consists of a
classical generator and a quantum discriminator. The left plot shows the loss values as a function
of training iterations and the right plot shows some examples of generated images of the digit
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(e) Quantum Anomaly Detection

Quantum anomaly detection is an emerging field in quantum computing that aims to detect
anomalies in complex data sets using quantum algorithms. Anomalies are often defined as data
points that deviate significantly from the expected behavior of the system. Detecting anomalies
can be critical in many applications, including cybersecurity, finance, and healthcare. Here we
studied a quantum autoencoder as an anomalous detector to “re-discover” the Higgs boson in the
LHC dataset.

We train a quantum autoencoder using the sideband data of the di-photon mass distribution, in
which the Higgs signal events are negligible. Results are shown in Figure 10. Upon completion
of the training process, the quantum autoencoder exhibits varied responses to different processes
as depicted in (a). In the anomalous region, defined by Ln(loss) > 5 (shown in red in (b)), a more
prominent peak of the Higgs boson signal emerges on the distribution of the di-photon invariant
mass (yy_m).



Quantum AE, 12 Variables, Training with data, MinMax Qouantum AE with MinMax, Ln(loss) cut at -5
0.0200
0.0175 Data [ Data loss=>-5
I w 0.0175 [ Data loss<-5
0.0150{ 1 ggH
I VBF 0.0150
_ 0.0125 =
& 0.0125
'E 0.0100 E
- ’ £ 0.0100
t c
§ 0.0075 2 0.0075
o ]
0.0050 0.0050
0.0025 0.0025
0.0000 0.0000
-12 -10 -8 -6 -4 -2 100 120 140 160 180 200 220 240
Ln(Loss) yy_m (GeV)
(a) (b)

Figure 10: Using a quantum autoencoder as an anomalous detector to “re-discover” the Higgs
boson. The quantum autoencoder is trained on the sideband data of the di-photon mass
distribution that do not contain Higgs signal events. After training, the quantum autoencoder
shows different responses on different processes in (a). In the anomalous region that is defined
with Ln(loss) > 5 (red), a more visible Higgs boson signal peak emerges (b).

2.2 Large Qubit Simulation with Distributed Training on NERSC Perlmutter HPC (GPUs)

The primary goal of LHC Quantum Machine Learning physics is to unite High Energy Physics
analysis techniques with cutting-edge quantum computing advances to explore quantum
advantages. We aim to show that Quantum Machine Learning can outperform classical machine
learning in classification power by exploiting a large number of qubits (25 qubits or more) and a
large number of events. To achieve this, we need a large amount of computational power to
perform quantum simulations.

With the QIS @ Perlmutter Award, we have access to the NERSC Perlmutter HPC system. We
have been communicating with the NVIDIA cuQuantum team. With their help, we managed to
run large qubit simulations (for example, 26 qubits) with distributed training techniques and
NVIDIA cuQuantum on Perlmutter GPUs. We are now able to use multiple nodes and multiple
GPUs on each node for the QNN training. Figure 11 shows the GPU Utilization rate (~60%) for
a QNN training with 26 qubits and 5000 events. In this study, Fifteen Perlmutter nodes were used
and each node has four NVIDIA A100 (Ampere) GPUs. We will investigate further the large
qubit simulation by increasing the GPU utilization rate and by improving the training time. We
will extend this study to the training of other Quantum Machine Learning models.
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Figure 11: GPU Utilization rate for QNN training with 26 qubits and 5000 events. Fifteen
Perlmutter nodes were used and each work node has four NVIDIA A100 (Ampere) GPUs.

SECTION 3: EDUCATION

Education is one of the primary missions of PI Sau Lan Wu. In the era of rapid advancement of
technological innovation, it is crucial to prepare our graduate students and young research
associates for their scientific and technical careers. Conducting research and development in the
area of Quantum Machine Learning will fulfill this goal, which is critically important to the
mission of education for the younger generation.

Sixty one graduate students have obtained their Ph.D. degrees under the supervision of PI Sau
Lan Wu, including 10 theses from the TASSO collaboration, 23 from the ALEPH collaboration,
9 from the BaBar collaboration, and 19 from the ATLAS collaboration. In all cases, PI Wu points
out the right research direction and creates a platform for her students to perform. Forty of her
former postdocs and graduate students are now faculty members in major U.S. universities and
worldwide. In addition, eighteen are permanent staff members at major High Energy Physics
laboratories. An interesting development is that high-energy physicists are entering the
workforce of well-known industries, providing successfully the functionality of technology
transfer. Having been well trained in the high technology environment of large international
physics collaborations, members of Wu’s group are eminently suited to provide this functionality
of technology transfer, always on the leading edge. Some of her former postdocs and former
graduate students hold challenging positions in industries. In the last several years, eight
graduate students have received PhD degrees from PI Sau Lan Wu; two of them was awarded the
prestigious Chamberlain Fellowship from Berkeley, one has joined Google, one is at Amazon,
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one is at Facebook, one is at Ernst & Young and one is at Accenture Entreprise (big data
sciences). The eighth former graduate student is a High Performance Computing Postdoctoral
Scholar at Berkeley.

Contribution to the Google Summer of Code Program

Under the umbrella of the ML4SCI organization, 4 of our group members have served as
mentors for the Google Summer of Code projects related to Quantum Machine Learning in 2020
and 2021. We helped the students in the projects to develop Quantum Machine Learning libraries
for High Energy Physics.

SECTION 4: IMPACT TO COMMUNITIES OF INTEREST

Results from this project are typically disseminated via refereed publications and conference
talks and proceedings. Our team has published two journal publications to summarize the
accomplishments: Phys. Rev. Research 3 (2021), 033221 and J. Phys. G: Nucl. Part. Phys. 48
(2021) 125003. Furthermore, postdoctoral research associate Wen Guan was invited to write a
review article on “Quantum Machine Learning in High Energy Physics” together with other
experts and this review article (2021 Mach. Learn.: Sci. Technol. 2 011003) has been published
in “Machine Learning: Science and Technology”.

On November 4, 2020, PI Sau Lan Wu was honored to be one of the two inaugural speakers of
the QuantHEP seminar — a platform open to scientists around the world, which aims to bring
the Quantum Computation and High-Energy Physics communities closer together, discuss
recent scientific work on the relations between the two communities, and sparking a strong
interest from CERN. The title of the presentation is “Application of Quantum Machine
Learning to HEP Analysis at LHC using Quantum Computer Simulators and Quantum
Computer Hardware”.

In addition, PI Sau Lan Wu was invited to write by Nature and has published a review article
for Nature Review Physics on “Challenges and opportunities in quantum machine learning
for high-energy physics”, Nature Rev. Phys. 4 (2022), 143—144.

Our team has published 4 journal publications in total related to Quantum Machine Learning and
has given 21 presentations in conferences and workshops including EPS-HEP (European
Physical Society Conference on High Energy Physics) 2019 and EPS-HEP 2021, and LP
(International Symposium on Lepton Photon Interactions at High Energies) 2019 and LP 2021,
ICHEP (International Conference on High Energy Physics) 2020 and QTech (Quantum
Technology International Conference) 2020.
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SECTION 5: PUBLICATIONS
PI Sau Lan Wu and our Wisconsin group are the leading authors of the following journal
publications and proceedings of the major international conferences:

1.

S. L. Wu, S. Yoo, “Challenges and opportunities in quantum machine learning for
high-energy physics”, Nature Rev. Phys. 4 (2022), 143-144 (Sau Lan Wu was the
corresponding author)

S. L. Wu et al., “Application of quantum machine learning using the quantum kernel
algorithm on high energy physics analysis at the LHC”, Phys. Rev. Research 3 (2021),
033221 (Sau Lan Wu was the corresponding author)

S. L. Wu et al., “Application of quantum machine learning using the quantum variational
classifier method to high energy physics analysis at the LHC on IBM quantum computer
simulator and hardware with 10 qubits™, 2021 J. Phys. G: Nucl. Part. Phys. 48 125003

W. Guan et al., “Quantum Machine Learning in High Energy Physics”, 2021 Mach.
Learn.: Sci. Technol. 2 011003

S. L. Wu et al., “Application of Quantum Artificial Intelligence / Machine Learning to
High Energy Physics Analyses at LHC Using Quantum Computer Simulators and
Quantum Computer Hardware”, Proceeding of “30th International Symposium on Lepton
Photon Interactions at High Energies (Lepton Photon 2021)”

S. L. Wu et al., “Application of Quantum Machine Learning to HEP Analysis at LHC
using Quantum Computer Simulators and Quantum Computer Hardware”. Proceedings of
“European Physical Society Conference for High Energy Physics (EPS-HEP) 2021”.

S. L. Wu et al., “Application of Quantum Machine Learning to High Energy Physics
Analysis at LHC using IBM Quantum Computer Simulators and IBM Quantum
Computer Hardware”. Proceedings of “40th International Conference on High Energy
Physics - ICHEP2020”

S. L. Wu et al,, “Application of Quantum Machine Learning to High Energy Physics
Analysis at LHC using IBM Quantum Computer Simulators and IBM Quantum
Computer Hardware”. Proceedings of "XXIX International Symposium on Lepton
Photon Interactions at High Energies (LeptonPhoton2019)"

S. L. Wu et al., “Application of Quantum Machine Learning to High Energy Physics
Analysis at LHC using IBM Quantum Computer Simulators and IBM Quantum
Computer Hardware”. Proceedings of "European Physical Society Conference on High
Energy Physics (EPS-HEP) 2019”

SECTION 6: CONFERENCE TALKS
We gave 21 conference talks in various international conferences in HEP or Quantum machine

learning fields.
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Speaker Talk title Conference Dates
Postdoc Appligation of Quantum Mach'ine Quanturp Technology Nov 4,
Learning to High Energy Physics International Conference 2020
Wen Guan .
Analysis at LHC 2020
Postdoc Applif:ation of Quantum Mach‘ine 4th ATLAS Machine Nov 15,
Wen Guan Learning to High Energy Physics Learning Workshop, Geneva, | 2019
Analysis at LHC using IBM Quantum | Switzerland
Computer Simulators and IBM
Quantum Computer Hardware
Postdoc Applying I'BM quan.tum'computmg to | CERN Graph Jun 19,
LHC physics analysis Higgs coupling | Net::work::shop, Geneva, 2019
Wen Guan .
to two top quarks Switzerland
Postdoc Appl‘ication on LHC High Energy 19th International Workshop Mar 10,
Physic data analysis with IBM on Advanced Computing and | 2019
Wen Guan . . . .
Quantum Computing Analysis Techniques in
Physics Research
Postdoc Application of IBM Quantum European Quantum Feb 20,
Wen Guan | Computing to LHC High Energy Technologies Conference 2019
Physics Data Analysis (EQTC19) in Grenoble,
France, the First International
Conference of the QT
Flagship(2019)
Postdoc Applying IBM Quantum Computing | CERN openlab Technical Jan 24,
Wen Guan | to LHC Physics Analysis of Workshop, CERN, Geneva, 2019
HiggsCoupling to Top Quarks Switzerland(2019)
Postdoc Preliminary Development on Quantum Computing for Nov 6,
Wen Guan | HEPData Analysis Using Quantum High EnergyPhysics 2018
Computing Based on IBM Qiskit workshop, CERN, Geneva,
Switzerland(2018)
Softyvare Application of Quantum Machine DPF 2021, Virtual July 14,
Engineer Learning using the Quantum Kernel Conference 2021
S.J. Sun Algorithm on High Energy Physics
Analysis at the LHC
Softyvare Application of Quantum Machine Quantum Technology Nov. 4,
Engineer Learning to HEP Analysis at LHC International Conference 2020
S.J. Sun using IBM Quantum Simulator and 2020
Quantum Hardware
Softyvare Application of Quantum Machine CERN openlab Technical Jan. 22,
Engineer Learning to High Energy Physics Workshop, Geneva, 2020
S.J. Sun Analysis at LHC using IBM Quantum | Switzerland
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Computer Simulators and IBM
Quantum Computer Hardware

Softyvare Application of Quantum Machine IBM Workshop: Quantum Oct. 30,
Engineer Learning to High Energy Physics Computing for chemistry 2019
S.J. Sun Analysis at LHC using IBM Quantum | .4 physics applications,

Computer Simulators and IBM Zurich. Switzerland

Quantum Computer Hardware ’
Grad. Application of Quantum Machine 29th International Aug 8,
Student A. | Learning to High Energy Physics Symposium on Lepton 2019
Wang Analysis at LHC using IBM Quantum | photon Interactions at High

Computer Simulators and IBM Energies, Toronto, CA

Quantum Computer Hardware
Grad. Application of Quantum Machine DPF 2019, Northeastern Aug 1,
Student A. | Learning to High Energy Physics University, USA 2019
Wang Analysis at LHC using IBM Quantum

Computer Simulators and IBM

Quantum Computer Hardware
PI Prof. Application of Quantum Machine 30th International Jan 12
S L. Wu Learning to HEP Analysis at LHC Symposium on Lepton 2022 ’

using Quantum Computer Simulators | pp, oton Interactions at High

and Quantum Computer Hardware: Energies, Manchester, UK

Challenges and Opportunities ’ ’
PI Prof. Application of quantum machine European Physics Society July 29
S.L. Wu learning to High Energy Physics Conference on High Energy | 2021 ’

analysis at LHC using Quantum Physics

Computer Simulators and Quantum

Computer Hardware
PI Prof. Application of quantum machine July 15
S L. Wu learning to High Energy Physics CERN TH Institute 2001 ’

analysis at LHC using Quantum Workshop “Perspectives on

Computer Simulators and Quantum Quantum Sensing and

Computer Hardware Computing for Particle

Physics”

PI Prof. Application of quantum machine “QuantHEP — Quantum Nov 4
S.L. Wu learning to High Energy Physics Computing Solutions for 2020 ’

analysis at LHC using Quantum
Computer Simulators and Quantum
Computer Hardware

High-Energy Physics”
Inaugural Seminar
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Postdoc C. | Application of quantum machine 40th international conference | jyjy 28,
Zhou learning to High Energy Physics on High Energy Physics, 2020
analysis at LHC using IBM Quantum | y;ital conference
Computer Simulators and Hardware
Postdoc C. | Application of quantum machine ATLAS Software & Feb 10,
Zhou learning to High Energy Physics Computing Week 2020
analysis at LHC using IBM Quantum
Computer Simulators and Hardware
Postdoc C. Application of quantum machine EPS-HEP 2019 July 12,
Zhou learning to High Energy Physics 2019
analysis at LHC using IBM Quantum
Computer Simulators and IBM
Quantum Computer Hardware
Postdoc Application of Quantum Machine XI International Conference | Sep 7,
R. Zhang Learning to HEP Analysis at LHC on New Frontiers in Physics | 2022

using Quantum Computer Simulators
and Quantum Computer Hardware —
Challenges and Opportunities

(ICNFP 2022)
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