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Abstract— In this article, we propose an optimal joint 
optimization–estimation architecture for distribution networks, 
which jointly solves the optimal power fow (OPF) problem 
and static state estimation (SE) problem through an online 
gradient-based feedback algorithm. The main objective is to 
enable a fast and timely interaction between the OPF deci-
sions and state estimators with limited sensor measurements. 
First, convergence and optimality of the proposed algorithm 
are analytically established. Then, the proposed gradient-based 
algorithm is modifed by introducing statistical information of 
the inherent estimation and linearization errors for an improved 
and robust performance of the online OPF decisions. Overall, 
the proposed method eliminates the traditional separation of 
operation and monitoring, where optimization and estimation 
usually operate at distinct layers and different time scales. Hence, 
it enables a computationally affordable, effcient, and robust 
online operational framework for distribution networks under 
time-varying settings. 

Index Terms— Convergence and optimality analysis, distri-
bution networks, online optimization algorithms, operational 
architecture, optimal power fow (OPF), power systems, state 
estimation (SE). 

I. INTRODUCTION 

THE increasing integration of distributed energy resources 
(DERs) is bringing about unprecedented changes to 
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distribution networks. As a high penetration level of DERs 
in distribution networks alters the traditional characters of 
network states to fast and time-varying, an effective operation 
of these networks requires the latest knowledge of network 
states [1]. Moreover, while operation and monitoring infras-
tructure in distribution networks are not as widely deployed 
as in transmission grids, they are considered to be important 
enabler for an effcient integration of renewable resources. 
To address the issue of fast-varying system states, we envision 
a joint optimal power fow (OPF)–state estimation (SE) archi-
tecture that tightly interlinks the optimization and monitoring 
layers in a fast time scale to continuously and systemically 
regulate the outputs of DERs for operational targets. 

The tasks of monitoring and optimization of the network 
have been considered as two separate tasks, e.g., [2], [3], [4]. 
Prior works focused on real-time OPF methods for distribution 
networks assume complete availability of network states to 
implement various optimal operation targets [5], [6], [7], [8], 
[9]. However, in practice, network states must be estimated 
with a monitoring system subjected to noisy measurements. 
To better fuse the real-time state information into OPF solvers, 
the recently proposed OPF frameworks [10], [11], [12], [13], 
[14], [15], [16] leverage the measurement feedback-based 
online optimization methods to close the loop between the 
physical measurement information and OPF solvers. These 
designs take into account real-time data in the OPF decisions 
to mitigate the effects of inherent disturbances and modeling 
errors. However, it is not realistic to have real-time physical 
measurements of system states at every point of a distribution 
network due to the required communication needs, end-user 
privacy concerns, and high costs. This calls for a joint design 
to solve the real-time OPF tasks with an additional SE in 
the loop, which enables OPF decisions to react to real-time 
information from a limited number of deployed sensors. 

In both transmission and distribution networks, the 
optimization–estimation architecture, the supervisory control 
and data acquisition (SCADA) system, has been developed and 
implemented to monitor and control the electrical devices for 
safe and reliable power delivery [17]. A variety of functions, 
including voltage regulation, economic dispatch, automatic 
generation control, and fault detection, can be achieved based 
on a well-established communication network. However, the 
current distribution management systems, where the opti-
mization and estimation tasks operate at distinct layers and 
different time scales, might not be suitable for the future 
distribution networks with an extensive penetration of DERs. 
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In particular, the time scale and communication structure 
required to collect all node-wise network states and to solve 
the optimal dispatch problem may not be consistent with the 
time-varying distribution-level dynamics. As the most of DERs 
are connected to distribution networks, it is apparent that the 
operators have to estimate and optimize the networks faster 
than ever to cope with renewable variations and yet guarantee 
system-level optimality. This requests to bypass the current 
hierarchical setups for a fast control-estimation joint operation, 
which will be more applicable and practical for an effcient and 
reliable operation. 

To tightly interlink the optimization and estimation tasks 
in distribution networks, this article proposes an online 
gradient-based algorithm to jointly solve the classic OPF and 
the weighted least squares (WLSs) SE problem in parallel, 
and we demonstrate its performance on the application of 
voltage regulation in distribution networks. The proposed joint 
OPF–SE framework allows us to generate optimal online 
decisions for DERs by utilizing real-time sensor measure-
ments together with an online voltage magnitude estimator. 
Our preliminary works [18], [19] proposed a general OPF 
framework with SE feedback and studied its robustness and 
convergence performance. The recent paper [20] studied the 
interaction between the dynamic SE (i.e., Kalman Filter) and 
the feedback-based optimization scheme for voltage regulation 
in distribution networks. Here, we signifcantly extend our 
previous works in several directions from the perspectives of 
both power and control engineering: 

1) Time Scales: One of the signifcant differences between 
this submission and our previous works [18], [19] is that 
the proposed OPF–SE scheme is posed in different time 
scales. In our initial work, we solve the OPF problems 
with SE in the loop by having one gradient update 
of the OPF problem with the input of a fully solved 
SE result. In this article, the time-varying OPF and SE 
problems are posed in the same time scale and are jointly 
solved in parallel. This is done by pursuing each step 
of the OPF gradient update with only one SE gradient 
update. This particular design allows online OPF deci-
sions to cope with fast-changing renewable variations 
while ensuring computational affordability for practical 
implementation. It also avoids that system changes that 
occur during the process of the SE computations lead to 
the incorporation of outdated SE information into the 
OPF problem. To the best of our knowledge, this is 
the frst architecture for distribution networks solving 
optimization and estimation problems concurrently with 
a close and timely interaction between two layers, and 
implemented in an online fashion. 

2) Stochastic Reformulation: We leverage the linearized 
ac power fow equations to formulate the OPF and 
SE problem but have an SE feedback loop to trade 
off between computational effciency and feasibility. 
Clearly, the noisy estimation results and power fow 
linearization errors lead to possible voltage constraint 
violations. We consider the SE and ac power fow 
linearization errors in the feedback to reformulate the 

proposed joint OPF–SE in a stochastic way. Instead of 
empirically tightening the operational constraints based 
on the feedback noise as is done in [19], the statistical 
information of the feedback noise is used to improve 
the feasibility and robustness to uncertainties. Namely, 
a sampling approach based on conditional value at 
risk (CVaR) is applied to quantify the probability of 
voltage constraint violation. Hence, the proposed online 
OPF–SE architecture facilitates the close interaction 
between optimal decisions and the statistical knowledge 
of uncertainties in the SE feedback loop in distribution 
networks. 

3) Theoretical Studies: More extensive theoretical analyses 
are presented in this article compared with our previous 
works [18], [19]. First, convergence and optimality are 
established for the proposed joint OPF–SE algorithm for 
a particular time step in a static situation. Specifcally, 
we show that jointly solving OPF–SE problems is equiv-
alent to the results from a single optimization problem. 
Second, due to the stochastic reformulation using CVaR, 
the stochastic OPF–SE problem is not strongly convex 
on all primal variables, which compromises the conver-
gence of the proposed algorithm. To overcome this chal-
lenge, the proposed primal–dual gradient-based approxi-
mation leverages Tikhonov regularization terms on both 
primal and dual variables to facilitate convergence. 
The optimality difference caused by the primal–dual 
regularization terms is rigorously characterized. Third, 
the online tracking performance and the convergence 
analysis are included as well. Note that the proposed 
framework and associated analysis results considerably 
broaden the approaches in [12], [18], and [19] by estab-
lishing convergence and optimality under time-varying 
conditions with limited state monitoring capabilities. It is 
also worth to emphasize that we conduct a general error 
analysis to bound the regularization errors caused by the 
Tikhonov primal–dual regularization terms. The analysis 
of regularization errors offers contribution over [21] 
and [22], where the optimality difference caused only 
by dual variable is characterized. In addition, the error 
analysis is not only limited to the online joint OPF–SE 
problem in this article, but also can apply to a general 
multiuser optimization solved by primal–dual gradient 
approaches with regularization [22]. 

The rest of this article is organized as follows. Section II 
introduces the system model and proposes the joint OPF–SE 
algorithm. Furthermore, convergence and optimality of the 
algorithm are established. In Section III, a stochastic OPF–SE 
framework is proposed and solved with a regularized 
primal–dual online gradient method. Section IV presents 
numerical results, and Section V concludes this article. 

Notation: The set of real numbers is denoted by R, and 
the set of nonnegative numbers is denoted by R+. The set of 
complex numbers is denoted by C. We use |·| to denote the 
absolute value of a number or the cardinality of a set. Given 
a matrix A ∈ Rn×m , A⊤ denotes its transpose. We write 
A ⪰ 0 (A ≻ 0) to denote that A is positive semidefnite 
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(defnite). For x ∈ R, the function [x]+ is defned as 
[x]+ := max{0, x}. For a given column vector x ∈ Rn ,P 

⊤we defne ∥x∥1 := i |xi |, and ∥x∥2 := (x x)1/2. Finally, 
∇x f (x) returns the gradient vector of f (x) with respect to 
x ∈ Rn . 

II. MODELING AND PRIMARY PROBLEMS SETUP 

A. Network Modeling 

Consider a distribution network modeled by a directed and 
connected graph G(N0, E), where N0 := N ∪ {0} is the 
set of all “buses” or “nodes” with the substation node 0 and 
N := {1, . . . , N }. The set E ⊂ N × N collects “links” or 
“lines” for all (i, j) ∈ E . Let Vi,t ∈ C denote the line-
to-ground voltage at node i ∈ N at time t , where the 
voltage magnitude is given by vi,t := |Vi,t |. Let pi,t ∈ R 
and qi,t ∈ R denote the active and reactive power injections 
of the DER at node i ∈ N for all t > 0. We denote Xi,t as 
the feasible set of the active and reactive power pi,t and qi,t at 
node i ∈ N for all t > 0. For a photovoltaic (PV) inverter-
based DER, the feasible set Xi,t is constructed by the solar 
energy availability. For other DERs, such as energy storage 
systems, small-scale diesel generators, and variable frequency 

For future development, we use Xt := X1,t × , . . . , × XN ,t to 
denote the Cartesian product of the feasible sets of all DERs. 

The relationships among the voltage, current, and net loads 
in a distribution network are described by the nonlinear 
power fow equations (e.g., based on the DistFlow model) as 
follows: X 

2Pi j,t = −p j,t + Pjk,t + ri j ℓi j,t (1a) 
k:( j :k)∈EX 

2Qi j,t = −q j,t + Q jk,t + xi j ℓi j,t (1b) 
k:( j :k)∈E� � � �2 2 2 2 2 v j,t = vi,t − 2 ri j Pi j,t + xi j Qi j,t + ri j + xi j ℓi j,t (1c) 

2 2 P2 vi,t ℓi j,t = i j,t + Qi j 
2 
,t (1d) 

where Pi j,t ∈ R and Qi j,t ∈ R are the real and reactive 
power fows on line (i, j) at time t . We use k : ( j : k) ∈ E 
to indicate all the distribution lines ( j, k) ∈ E connected to 
bus j . The impedance of line (i, j) ∈ E is ri j + jxi j . The 

straightforward to extend these two matrices to time-varying 
linearized models. With the model above, we formulate a 
time-varying OPF problem for voltage regulation and a static 
WLS voltage estimation problem at each given time t > 0. 
An online gradient algorithm with feedback is developed to 
solve these two optimization problems in parallel. 

B. Joint OPF–SE via Primal–Dual Gradient Feedback 

For the application of real-time voltage regulation, we intro-
duce a time-varying OPF problem and a WLS-based SE 
problem to attain optimal set points of DERs at given time 
t > 0. In Sections II-C and II-D, we frst give the formu-
lations for the OPF and the SE problems. Then, a primal– 
dual gradient algorithm is proposed to utilize the SE results 
in the OPF solution at each iteration. We next prove the 
convergence of the proposed algorithm by showing that the 
equilibrium point of the proposed algorithm is equivalent 
to the saddle-point dynamics of a single OPF–SE synthesis 
optimization formulation. 

1) OPF Problem: Consider a time-varying OPF problem 
1P( t 

t 

) for voltage regulation � � 
P1 COPFmin (ut ) (3a)t 

drives, the set Xi,t can be appropriately modeled to include 
their physical capacity limits; see [11]. Note that the set Xi,t 

ut 

subject to r(vt (ut )) ≤ 0 (3b) 

is convex, closed, and bounded for all i ∈ N over time t > 0. ut ∈ Xt (3c) 

t 

R2Nwhere := [p⊤ , q⊤]⊤ 
∈ denotes theut t t 

power set points of DERs at time t . The voltage 
constraints are given in a compact form, such that 
r(vt (ut )) := [(vt (ut ) − vmax)⊤, (vmin 

− vt (ut ))
⊤
]
⊤ 
∈ R2N . 

The voltage constraint in (3b) utilizes the linearized ac power 
fow (2), where the lower and upper limits are denoted by 
vmin and vmax

∈ RN 
∈ RN , respectively. The set points of 

DERs at time t are subjected to the convex and compact 
feasible set Xt . The OPF function Ct 

OPF(·) : R2N 
→ R is 

a generic time-varying cost objective at time step t , capturing 
the costs of the system operator, e.g., the costs of deviations 
of the power fow into the substation from its reference values 
and/or the costs of power production by DERs, including 
generation costs, ramping costs, the renewable curtailment 
penalty, the auxiliary service expense, and the reactive power 
compensation. 

2) Motivation for Involving SE: Problem (P1) is typically 
solved, assuming that all network voltages {vt } and set points

squared magnitude of the current on line (i, j) ∈ E at time t 

t 

{ut } of DERs are available in real time. However, there is 
is defned by ℓ2 

i j,t ∈ R+. For convenience, we defne vectors generally a lack of reliable measurements and timely commu-
vt := [v1,t , . . . , vN ,t ]

⊤ 
∈ RN , pt := [ p1,t , . . . , pN ,t ]

⊤ 
∈ RN , nications in practical distribution networks, hindering effective 

and qt := [q1,t , . . . , qN ,t ]
⊤ 
∈ RN . implementation of conventional OPF approaches, which usu-

To formulate a computationally tractable convex optimiza- ally assume the availability of all system states. Therefore, 
a major challenge for solving (P1tion problem, we linearize the relationship between voltage ) lies in gathering real-time 

magnitudes and nodal power injections as follows: system state information, such as net loads and voltages that 

vt (pt , qt ) = Rpt + Xqt + v0 (2) 

where the parameters R ∈ RN×N , X ∈ RN×N , and v0 ∈ RN 

can be attained from various linearization methods, e.g., [13], 
[23], [24]. For the rest of this article, we consider the volt-
age magnitude projection vt (·) as a fxed linearization with 
time-invariant matrices R and X for simplicity, although it is tt 

can be integrated into an OPF solver. Although the system 
states of a distribution network are not fully measurable in 
practice, the distribution network can be fully observable by 
a well-posed SE problem with pseudo-measurements for all 
nodal injections and a limited number of voltage measure-
ments [25]. Hence, we will tackle this challenge by fusing the 
time-varying SE problem (P2) with the OPF problem (P1). 
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Remark 1 (Pseudo-Measurements): Due to the lack of 
real-time measurements and the stochastic nature of power 
nodal injections in distribution system SE, the nodal power 
injections are measured by their nominal load pattern (i.e., 
the real value plus zero-mean random deviations), so-called 
pseudo-measurement, whose information is derived from the 
past records of load behaviors [25]. As shown in Lemma 1, 
having pseudo-measurements of power injections contributes 
to establishing full observability of the static SE problem. 
In principle, we can instead use the real-time values of 
power injections, which, however, requires an effcient and fast 
communication structure and a suffcient monitoring system 
having sensors at all nodes. This requirement currently can-
not be satisfed in a large-scale distribution network. Hence, 
in this article, we use the historical data of all nodal power 
injections as pseudo-measurements to trade off the accuracy 
of estimation results and the cost of measurements, which has 
been observed to be effcient in a static SE problem [26]. 

3) SE Problem: System states are a set of variables that can 
determine the behavior of the entire system, i.e., the power 

of the loads, and v̂t := {v̂i,t |∀i ∈ Mv } gathers the sensor 
measurements of voltage magnitudes. The noisy voltage 
magnitude measurements v̂i , ∀i ∈ Mv are assumed to 
be attained from voltage magnitude measurements with 
relatively high accuracy. The pseudo-measurements of the 
active power injections p̂i,t , ∀i ∈ Mp, and the reactive power 
injections q̂ i,t , ∀i ∈ Mq , are attained from the historical data 
assuming large variations. The standard deviations of the 
measurement errors are denoted by σ i,t , and σv for active i

p 
,t , σ q i,t 

power, reactive power, and voltage magnitude, respectively. 
We assume that measurement errors are independent. The 
estimation variable z̃t is subjected to a convex and compact 
feasible set Xt . Note that the states of a distribution network 
are uniquely determined by (1) given zt at any time t . 
We leverage the linearized ac power fow model (2) to 

t 

determine the voltage magnitude as ṽt = vt (zt ). 
Defnition 1 (Full Observability [27], [28]): A state-to-

output system y = h(z) is fully observable if z = 0 is the 
only solution for h(z) = 0. This condition allows a unique 
solution to (P2). 

t 

fow equations here. For a distribution system, either voltage Lemma 1 (Suffcient Condition for Full Observability [29]): 
phasors of all nodes or nodal real and reactive power injections A suffcient condition for the distribution network G to be 

fully observable by (P2for all nodes can be chosen as system states. Consider a ) is Mp = Mq = NL, where the 
time-varying measurement model with the true system state 
vector zt ∈ R2N and the measurement vector yt ∈ Rm at time 
t . The measurement function is defned as ht (·) : R2N 

→ Rm . 
SEThe measurement noise ξ ∈ Rm follows a normal probability t 

distribution with zero mean and covariance matrix 6t ∈ Rm×m : 
SEyt = ht (zt ) + ξ . (4)t 

Using Wt := (6t )
−1 as the weighting matrix, a time-varying 

WLS SE problem is formulated as follows: 

1� � ��⊤ � � �� 
min yt − ht z̃t Wt yt − ht z̃t 

z̃t 2 

where z̃t denotes the estimation of the true state zt . 
In this work, considering the optimal voltage regulation 
problem (P1 

t ), we adopt voltage magnitude measurement at 
selected nodes as the real-time measurement, together with 

t 

t 

set NL collects all nodes with power injections. 
Note that the observability of the time-varying WLS SE prob-
lem should be distinguished from the observability of linear 
dynamical systems. Here, we limit the defnition of observabil-
ity to power system static SE problems [25]. For the rest of this 
article, we assume to have pseudo-measurements of all power 
injections to guarantee full observability. This setting is easy 
to be satisfed in practice and has been effective to obtain high 
accuracy estimation results in [26]. For more observability 
analysis results, numerical studies, and discussions, we refer 
the reader to our previous works [29]. Optimally deploying the 
voltage sensors for accuracy improvement is out of the scope 
of this article, but it is an interesting topic to investigate in 
future work. 

4) Joint OPF–SE Algorithm: To solve problems (P1 

consider the regularized Lagrangian of (P1 
), we 

) 

t 

pseudo-measurement for all load nodes, and construct the 
following WLS problem for SE: � � φ 

LOPF 
= COPF ⊤� � � � t ut , µt t (ut ) + µt r(vt (ut )) − ∥µt ∥2

2 (6) 
P2 CSE 2min t z̃t , ṽt (5a) 

z̃t ,ṽt � � 
subject to ṽt = vt z̃t (5b) where µt ∈ R2N is the vector of Langrange multipliers 

where z̃t = [p̃⊤ , q̃⊤]⊤ collects the estimated active t t 
and reactive power injections for all nodes with 
p̃t := [ p̃1,t , . . . , p̃N ,t ]

⊤ 
∈ RN and q̃ t := [q̃1,t , . . . , q̃ N ,t ]⊤ 

∈ 
RN , and the estimated voltage magnitudes are denoted by 
ṽt := [ṽ1,t , . . . , ṽN ,t ]

⊤ 
∈ RN . The objective function 

Ct 
SE 
:= 

P 
i∈Mp 

(( p̂i,tP− p̃i,t )
2/2(σi

p 
,t )

2) + 
P 

i∈Mq 
((q̂ i,t − 

qq̃i,t )
2/2(σ )2) + ((v̂i,t − ṽi,t )

2/2(σ v )2) featuresi,t i∈Mv i,t 
the weighted sum of all costs of measurements based on 
their respective accuracy, where the sets Mp, Mq , and 
Mv contain the nodes with pseudo-measurements of the nal t 

associated with constraint (3b). The Lagrangian (6) includes 
a Tikhonov regularization term −(φ/2)∥µt ∥

2 with a small2 
constant φ > 0. This regularization term facilitates the 
convergence of the primal–dual algorithm to the solution of 
the saddle-point problem � � 

LOPFmax min ut , µt (7) 
µt ∈R2N ut ∈Xt

t 

which is an approximate optimal solution of the origi-
problem (P1 The difference between the solutions). 

active and reactive power injections, and voltage magnitude of the original problem and the regularized problem was 
measurements, respectively. The vectors p̂ t := { p̂i,t |∀i ∈ Mp} characterized in [22]. We frst use the primal–dual gra-
and q̂t := {q̂ i,t |∀i ∈ Mq } collect the pseudo-measurements dient method to solve the saddle-point problem (7) as 
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the existing results [12], [30]h � �i� � � � ��⊤k+1 k 
∇uCOPF k k ku = u − ϵ u +∇ur u µ (8a)t t t t vt t t Xt� � � � ��k+1 k k k µ = µ + ϵ r v̂ − φµ R+ 

(8b)t t t t 
k+1v̂ ←− based on the voltage magnitude sensors (8c)t 

where the operator [·]Xt projects onto the feasible region Xt , 
and the operator [·]R+ projects onto the nonnegative orthant. 
This classic feedback-based gradient approach assumes that all 
voltage magnitudes v̂t are measurable (8c) for dual updates at 
every iteration (8b). However, in practice, this design, particu-
larly (8c), heavily depends on reliable real-time measurement 
devices, which is not well deployed in the current distribution 
networks. To tackle this challenge for iteratively solving (7) 
in a fast time scale, we introduce an SE feedback loop, 
as shown in (9c). The gradient updates of the SE problem (P2)t 
timely feedback the estimates of voltage magnitudes vt(zk

t ) 
into dual updates in parallel with every OPF updates with a 
limited number of sensor measurements. The proposed jointly 
OPF–SE algorithm is shown as follows: h � �i� � � � ��⊤k+1 k 

∇uCOPF k k ku = u − ϵ u +∇ur vt u µ (9a)t t t t t t Xt� � � � �� ��k+1 k k k µ = µ + ϵ r vt z − φµ (9b)t t t t R+� �k+1 k 
− ϵ∇zCSE kz = z z . (9c)t t t t 

Using (5b), we can rewrite the SE objective CSE(zt , ṽt ) int 

updated once on the end-user side (9a), and the dual vari-
ables are updated in (9b) based on the updated estimated 
voltages vt (zk

t ). Next, the SEs are updated on the operator 

SE SE(5a) C abbreviated C in (9c). In each ( ( )) ( )z v z zas as,t t t t,t t 
iteration k the OPF commands—the primal variables—are , 

side (9c). By this design, iteratively optimizationconnectwe 

(9c) and feedback loop (9b) of information enable thestate 
OPF updates have the timely tracking of the fast-changing to 
network iteration. This point is particularlystates at every 

t 

and estimation tasks in a loop for every update, as illustrated 
in Fig. 1. Key to this end is to notice that the iterative updates 

important, because SE updates (9c) can be conceivably per-
formed at a fast time scale comparing to completely solve the 
time-varying SE problem (P2), where the estimation results 

Assumption 2: For every t > 0, the objective function 
COPF(·) is continuously differentiable and strongly convex. Itst 
frst-order derivative is bounded on the set Xt . 
Assumption 2 holds for the DERs with convex quadratic cost 
functions in practice, so that their frst-order derivatives are 
naturally bounded in the feasible set Xt due to the physical 
limits. The primal–dual gradient updates (9) are rewritten as 
follows:      � �  

uk+1 uk ∇uLOPF uk k 
t , µ 

k+1 k LOPF k 
t t t � � �t �µt 

 = µt 
 − ϵ−∇µ t vt� zt

k � , µt 
 . 

zk+1 zk 
∇zCSE zk 

t t t t Xt ×R+×R 

For convenience, we defne the gradient operator  � �  
∇uLOPF ut , µt� � t � � 
LOPFFt ut , µt , zt := −∇µ vt (zt ), µt 

. (10)t 
∇zCSE(zt )t 

Lemma 2: The gradient operator Ft (ut , µt , zt ) is strongly 
monotone for all t > 0. 

Proof: See Appendix A. □ 
By Lemma 2, there exist some constants Mb > 0, such that for 
any êt := [u⊤ , µt 

⊤ , z⊤]⊤ and êt 
′ 
:= [(ut 

′ )⊤, (µt 
′ )⊤, (z ′ t )⊤]⊤ 

t t � � � � ��⊤� �
′ ′ ′ Ft êt − Ft ê êt − ê ≥ Mb∥êt − ê ∥2

2 . (11)t t t 

In addition, the operator Ft (·) is Lipschitz continuous with 
some constants bL > 0 under Assumption 2, such that for any 

′ êt , êt ∈ Xt × Xt × R+, we have � � � �
′ ′ 

∥Ft êt − Ft ê ∥2
2 
≤ bL2

∥êt − êt ∥2
2 . (12)t 

Given the results above, the convergence of (9) can be estab-
lished with a small enough step size for gradient updates. 

Lemma 3: Suppose Assumptions 1 and 2 hold. For any step 
size that satisfes 

0 < ϵ < 2Mb/bL2 (13) 

the proposed primal–dual gradient algorithm (9) exponen-
∗tially converges to the unique saddle point (u ∗ 

t , µt ) of the 
saddle-point problem (7) and the unique optimal z ∗ of thet 

) for any given time t > 0.tstatic SE problem (P2 
might be suboptimal once the computation is complete due to 

Proof: the network response from OPF iterative updates. The proof follows closely along the line of the 

C. Convergence Analysis 

analysis in [18] and [30] by noting the strongly monotone (11) 
and the Lipschitz continuity (12) properties of the operator 
Ft (·). In particular, the additionally parallel SE gradient update 

t 

We now show the convergence of the joint OPF–SE Algo-
rithm (9) under the following assumptions. 

Assumption 1 (Slater’s Condition): For every t > 0, there 
exists a strictly feasible point ut ∈ Xt , so that 

r(vt (ut )) ≤ 0. 

The Slater’s condition here guarantees strong duality and the 
feasibility of (P1 

∇zCSE(zk
t ) in (10) compared with previous operators in [18]t 

and [29] does not change the properties of Lipschitz continuity 
and strong monotonicity. □ 

Note that the convergence and optimality results of the 
proposed joint OPF–SE algorithm in this section hold for 
a particular time step in a static situation. In the following 
section, we will explore its convergence performance under a 

t 

) given any particular time step t > 0. time-varying setting. 
This implies that the OPF problem (P1) is well posed with 
proper prescribed voltage limits, which holds for a well-design 

D. Optimality Analysis distribution network. Note that the refned Slater’s condition 
is applied here for the above affne voltage constraints without We now take a new perspective to interpret the dynamics (9) 
strict inequality. as a primal–dual algorithm to solve an optimization problem 
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Fig. 1. Online joint optimization–estimation architecture in distribution networks. 

that unifes OPF and SE. To be specifc, the trajectory of (9) produce infeasible solutions [18], [19]. To address this issue, 
we 3extend P( t ) to a stochastic problem to enable robust approaches an optimal solution to the following problem: � � decision-making. In the stochastic formulation, we express 

P3 
t COPF(ut ) + CSEmin (zt , vt (zt )) (14a)t t the voltage profle as a combination of the linearized voltage ut ,zt ,vt 

model and a random vector ξ t ∈ RN to model the inherentsubject to r(vt (ut )) ≤ 0 (14b) 
errors of the SE and the power fow linearization vt (ut ) = vt (zt ) (14c) 

ṽ
real 

ut ∈ Xt . (14d) t = vt (ut ) + ξ t 

The objective function of (P3 
t

where the probability distribution of ξ t is unknown, but it has ) includes operational costs 
fnite mean and covariance values for t > 0. Accordingly, COPF 

t 

hold for problem (P3 
t 

(·) of controllable DERs and the weighted square errors 
we change the voltage constraint (14b) to a stochastic version CSE(·) for the SE. Assumptions 1 and 2 straightforwardly t by replacing vt (ut ) with vt (ut ) + ξ t� �). By including the additional equality 

t 

constraint vt (ut ) = v(zt ), the optimal set points ut of DERs r vt (ut ) + ξ t ≤ 0. 
are based on the estimation zt to satisfy the targeted voltage 

We can now formulate a stochastic OPF–SE problem thatregulation. 
restricts the risk of voltage violation Theorem 1: At any given t > 0, the dynamics (9) serve � � � � 

P4 COPF 

problem of (P3 
t 

EP 
ξ (ut ) + CSE 

tas a primal–dual gradient algorithm to solve the saddle-point min (zt , vt (zt )) (15a)t 
) with Tikhonov regularization terms1 ut ,zt ,vton the � � � 

subject to: Pr r vt (ut ) + ξ t ≤ 0 ≥ 1 − β (15b)dual variables in the Lagrangian. 
Proof: See Appendix B. □ vt (ut ) = vt (zt ) (15c) 

Theorem 1 demonstrates the optimality and convergence of 
the proposed algorithm and provides a way in how to jointly 
engineer the optimal dispatch and estimation layers as a single 
optimization problem, which were conventionally separate. 

III. STOCHASTIC OPTIMIZATION–ESTIMATION AND ITS 
ONLINE IMPLEMENTATION 

t 

In this section, we modify the previous OPF–SE synthesis 
(P3 t 

ut ∈ Xt (15d) 

where the operator Pr{·} indicates a transformation of the 
inequality constraint into a chance constraint. The set points 
ut can be scheduled in a way that voltage limits are satisfed 
with the prescribed probability 1 − β. 

Remark 2 (Uncertainties Realization): There are a variety 
of classic ways to reformulate the stochastic OPF–SE problem 
(P4) to obtain tractable subproblems that can be solved by 

) to enhance it to a stochastic problem by incorporating standard convex optimization solvers. These include assuming 

t 

the noise from the voltage estimation and the linearization 
errors of the ac power fow. We then develop a computationally 
effcient online solution to the stochastic problem and analyze 
its convergence and optimality. 

A. Stochastic Optimization–Estimation 

The modeling and estimation errors can degrade the per-
formance of feedback-based OPF solvers, sometimes even 

1The Tikhonov regularization terms facilitate the convergence performance 
and ensure that the saddle-point problem is strongly convex on primal 
variables and strongly concave on dual variables. Note that the equilibrium 
of the dynamics (9) only approximately solves the original optimization 
problem (P3) due to the additional regularization terms. The deviation of 

a specifc functional form for the distribution (e.g., Gaussian) 
of ξ t based on the statistical information of the historical 
data and using constraint violation risk metrics, such as 
those encoding value at risk (i.e., chance constraints), CVaR, 
distributional robustness, and support robustness. In addition, 
the linearization and estimation errors can also be sampled 
by evaluating the residual between the measurement and 
estimation results of the quantity of interests (e.g., voltage 
magnitude). This provides an empirical distribution of ξ t with-
out a prescribed distribution assumption. Hence, the result is a 
data-based reformulation of the stochastic OPF–SE problem. 
Since we assume the time-varying stochastic OPF and SE 
problems are well posed due to the Slater’s condition and full 

the approximate solution from the optimal solution is quantifed in [21]. observability, it is obvious that ξ is bounded for any t > 0. 
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The chance constraints for voltage regulation are approxi- optimization–estimation synthesis problem as follows: 
mated by leveraging the sample average of CVaR values [31], � � 

P5 COPF 
tt (ut ) + CSE 

tmin (zt , vt (zt )) (16a)[32]. Considering a random variable z ∈ R and a scale ut ,zt ,vt ,τ t 

factor τ ∈ R++, we have Pr(τ −1z ≥ 0) = Pr(z ≥ 
0) = E[1[0,∞)(τ −1z)], where 1[0,∞) is the indication function 
over the set [0, ∞). The key step to develop a convex 
approximation for Pr(τ −1z ≥ 0) = Pr(z ≥ 0) is to 
fnd a nonnegative nondecreasing convex generating function 
ψ(·) : R → R with ψ(z) > ψ(0) = 1 for all 
z > 0, which is called generating function that will generate 
a family of convex approximation for the chance constraints 
due to ψ(τ −1z) ≥ 1(τ −1z). Having the generating function 
leads to Eψ(τ −1z) ≥ E[1[0,∞)(τ −1z)] = Pr(z ≥ 0), 
which is an upper bound on the chance constraint. Now, 
replacing z with r(v(u) + ξ ) without the time index yields 
E[ψ(τ −1r(v(u) + ξ))] ≥ Pr(r(v(u) + ξ) > 0) for 
all possible u and τ > 0. We observe that if there exists 
τ > 0, such that τ E[ψ(τ −1r(v(u) + ξ))] ≤ τβ, then 
Pr(r(v(u) + ξ) > 0) ≤ β. This leads to a suffcient 
condition infτ>0[τ E[ψ(τ −1r(v(u) + ξ))] − τβ] ≤ 0 for 
Pr(r(v(u) + ξ) > 0) ≤ β, which is a conservative 
approximation of the chance constraint (15b). 

Clearly, the above approximation depends on the choice of 
the generating function ψ(·), such as Markov: ψ(z) := [1 + 
z]+, Chebyshev: ψ(z) := ([1+z]+)2, Traditional Chebyshev: 
ψ(z) := (1 + z)2, and Chernoff/Berstein: ψ(z) := ez [32]. 

subject to: gt (vt (ut ), τ t ) ≤ 0 (16b) 
vt (ut ) = vt (zt ) (16c) 
ut ∈ Xt (16d) 

where gt (vt (ut ), τ t ) := [gt (vt (ut ), τ t )⊤ , g (vt (ut ), τ t )
⊤
]
⊤ 
∈ 

t 
R2N 

:= [τ ⊤ , τ ]⊤ 
∈ R2N , and, τ t t t 

⊤

+ 

gt (vt (ut ), τ t ) 

t 

Ns1 X� � 
vt (ut ) − vmax 

+ ξ s= t + τ t − τ t β+ � Ns s=1� 
g vt (ut ), τ tt 

Ns1 X� �min 
− vt (ut ) − ξ s

= v + τ t − τ t β. Ns 
t + 

s=1 

Assumption 3 (Slater’s Condition): There exist a set of fea-
sible inputs ut ∈ Xt and a set of auxiliary variables τ t ∈ R+, 
such that gt (ut , τ t ) ≤ 0 for all t > 0. 
Similar to Assumption 1, the Slater’s condition above ensures 
strong duality and the feasibility of the well-posed stochastic 
joint OPF–SE problem (P5) for a well-designed distribution 
network with high penetration of renewables. 

t 

From the point of view of a tighter approximation with 
relative smaller value ψ(z) than others, the Markov generating B. Regularization Errors Analysis
function approximates the chance constraint in the form of 

Let Lt (ut , zt , τ t , λt ) be the Lagrangian of (P5), where λt ∈h i� � R2N 
+ denotes the Lagrange multiplier associated with voltage inf E r(v(u) + ξ) + τ − τβ ≤ 0

+τ>0 constraint (16c), i.e., 

which is related to the concept of CVaR. Quantifying both 
the frequency and the expected severity of constraint vio-
lations, the CVaR serves a widely adopted risk measure 
for optimization under uncertainties. Note that the Markov 
generating function is nondecreasing and r(u, ξ) is convex 
in u given any ξ , which implies that the above CVaR-based 
chance constraint is convex in optimization variables. 
Employing the linear model (2) and the voltage constraint 
r(vt (ut )) = [(vt (ut ) − vmax)⊤, (vmin 

− vt (ut ))
⊤
]
⊤ 
≤ 0, 

a sample averaging CVaR-based convex approximation of the 
voltage constraint can be formulated as follows: 

Ns1 X� � 
vt (ut ) − vmax 

+ ξ s 
t + τ t − τ t β ≤ 0 ∀s ∈ 4t+Ns s=1 

NsX� �min 
− vt (ut ) − ξ sv + τ t − τ t β ≤ 0 ∀s ∈ 4tt +Ns s=1 

where vectors τ t ∈ RN , τ t ∈ RN are the CVaR auxiliary 
variables [31]. Given Ns samples 4t := {ξ s

}
Ns of ran-t s=1 

dom variable ξ t at time t , the expectation of the left-hand 
side of (15b) is obtained via sample averaging. The sample 
average approximation (SAA) methods with a modest num-
ber of samples have been shown to be effective in many 
applications [33], [34]. An approximation of (15b) for an 
arbitrary distribution can be accommodated in the time-varying 

Lt (ut , zt , τ t , λt ) 

= COPF(ut ) + CSE ⊤(zt , vt (zt )) + λt gt (ut , τ t ). (17)t t 

The optimal dual variables lie in a compact set due to the 
compact set Xt and the Slater’s condition in Assumption 3 
for all t > 0. The Lagrangian (17) is not strongly convex in 
the CVaR auxiliary variable τ t and not strongly concave in the 
dual variable λt . To attain a better convergence performance of 
the gradient approach under time-varying settings, we consider 
the regularized Lagrangian 

Lφ,v,t (ut , zt , τ t , λt ) 

= Lt (ut , zt , τ t , λt ) + 
v 
∥τ t ∥

2 
2 − 

2 
φ 
∥λt ∥

2 
22 

(18) 

with small constants v > 0 and φ > 0 in the Tikhonov regular-
ization terms. The regularized Lagrangian (18) is now strictly 
convex in all primal variables (ut , zt , τ t ) and strictly concave 
in the dual variable λt . The key advantage of the regularized 
Lagrangian is that it can leverage a gradient approach to attain 
an approximate solution of (P5 

t ) with improved convergence 
properties within an online implementation. To simplify nota-
tion, we defne η := (φ, v). We consider the following saddle-
point problem: 

max min Lη,t (ut , zt , τ t , λt ) (19) 
λt ∈RN ut ∈Xt ,

+ 
zt ∈Xt ,τ t ∈R2N 

+ 
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and let (u ∗ 
η,t , z ∗ 

η,t , τ ∗ 
η,t , λη, 

∗ 
t ) denote the unique saddle point Algorithm 1 Online Joint OPF–SE Algorithm 

of (19) at time t . In general, the solutions to (P5 
t ) and (19) 

are different due to the regularization terms. This difference 
can be bounded as shown later. We frst state the following 
assumption. 

Assumption 4 (Lipschitz Property): Defne 
xt := [u⊤ , z⊤ , τ ⊤]⊤ and f̃ t (xt ) := COPF(xt ) +t t t t 
CSE(xt ) + (v/2)∥τ t ∥2

2. There exist positive constants G f andt 
Gg , such that the gradient of the convex and differentiable 
function ∇x f̃ t (xt ) and any subgradient of the piecewise linear 
constraints ∇xgt (xt ) ∈ ∂xgt (xt ) are bounded by 

∥∇x f̃ t (xt )∥2 ≤ G f , ∥∇xgt (xt )∥2 ≤ Gg 

for all xt ∈ Xt × R2N and t > 0.
+ 

The constant G f exists if Assumption 2 holds, and 
the piecewise function gt (·) in xt implies the existence 
of the constant Gg . Let x ∗ 

:= [(u ∗ 
t )
⊤, (zt 

∗ )⊤, (τ t 
∗ )⊤]⊤ 

t 
to problem (P5), andtbe an optimal solution 

xη, ∗ 
t := [(u ∗ 

η,t )
⊤, (zη, ∗ 

t )
⊤, (τ η, 

∗ 
t )
⊤
]
⊤ be the unique primal 

optimal of the regularized problem (19). 
Theorem 2 (Regularization Error): For all t > 0, the dif-

∗ ∗ference between and is bounded by x x 

∗ � �∥ ∥2 G G+ λ φf 1g 2 2
≤ ∥ ∥ − ∥ ∥ (20)+ λ λ2 

t 

t η,t 

∗ ∗
∥x − x ∥2 

t η,t 2 � �!2 
v,t ∗ ∗ 

v,t η,t 2c 2c 

where λ ∗ and λ ∗ are dual optimal solutions of (19) for v,t η,t 
φ = 0 and v > 0, and φ > 0 and v > 0, respectively. 

Proof: See Appendix C. □ 
By Slater’s condition, the dual optimal sets 3v,t and 3η,t of 
(19) are nonempty for φ = 0 and v > 0, and φ > 0 and 

∗ ∗ v > 0, respectively. In what follows, let λ ∈ 3v,t and λ ∈ v,t η,t 
3η,t be arbitrary but fxed dual optimal solutions for (19). The 
bound in (20) is jointly dependent on the Lipschitz properties 
(G f , Gg) of the objective f̃ (x) := f (x̃) + (v/2)∥τ ∥2

2 and 
the constraint gt (xt ), as well as the growth property of the 
objective function f̃ (x) defned by the constant c > 0. 

C. Online Joint OPF–SE Algorithm 

In this section, we present an online solution to the 
synthesis problem (P5time-varying stochastic OPF–SE 

zη,t+1 = zη,t − ϵ∇zLη,t (u, z, τ , λ) uη,t ,zη,t (21d) 
τ η,t ,λη,t 

where ϵ > 0 is a constant step size. 
For the time-varying case at hand, the online 
optimization–estimation Algorithm 1 is able to capture 
the voltage trajectories due to the variability of underlying 
network states (i.e., renewables generation and loads). Before 
analyzing the convergence of Algorithm 1, we introduce 
additional assumptions to limit the difference between the 
optimization solutions of consecutive time instants. 

Assumption 5: For all t > 0, there exist constants σu ≥ 0, 
σz ≥ 0, and στ ≥ 0 to bound the primal optimizer of (19) 
at two consecutive time steps, i.e., ∥u ∗ 

η,t+1 − u ∗ 
η,t ∥2 ≤ σu, 

∗
∥zη,t+1 − z ∗ 

η,t ∥2 ≤ σz, and ∥τ η, 
∗ 

t+1 − τ η, 
∗ 

t ∥2 ≤ στ . 
Assumption 6: The difference between constraints (16b) at 

the optimal solutions of two consecutive time steps is bounded 
by constant σg ≥ 0 for all t > 0, i.e., 

∗ ∗ ∗ ∗ gt+1(vt+1(uη,t+1), τ η,t+1) − gt (vt (uη,t ), τ η,t ) ≤ σg
1 

∗ ∗ ∗ ∗ gt+1(vt+1(zη,t+1), τ η,t+1) − gt (vt (zη,t ), τ η,t ) ≤ σg. 
1 

), 
Assumptions 5 and 6 defne the variability of the primalwhich enables the DERs to respond timely to variations in 
variables and constraint space of the time-varying saddle-system states. In particular, we propose an online primal–dual 
point problem (19). Such variability can also be defned with gradient-based algorithm to solve the regularized stochastic 
respect to dual variables, i.e., ∥λ ∗ − λ ∗ ∥ ≤ σλη,t+1 η,t 

t 

OPF–SE problem (19). The DER dispatch decisions and 

an approximate solution to the time-varying problem (P5 

[35]. Defne eη, ∗ 
t := [(uη, ∗ 

t )
⊤, (z ∗ 

η,t )
⊤, (τ η, 

∗ 
t )
⊤, (λη, 

∗ 
t )
⊤
]
⊤ , and 

η,t−1∥ σe, for some σe 0. The variability 
voltage estimators are iteratively updated in real time toward 

∥eη, ∗ 
t − e ∗ 

≤ ≥). 
bounds in Assumptions 5 and 6 are closely related to theThe gradient updates are presented in detail as follows: " # time-varying PV and load inputs, which always exist due to the 
DERs and loads physical capacity. For an online implementa-

uη,t+1 = uη,t − ϵ∇uLη,t (u, z, τ , λ) uη,t ,zη,t (21a) tion with a relatively small time interval (in seconds) between 
τ η,t ,λη,t" #Xt two consecutive control commands, such variability is small 

due to gradually ramping PV and load inputs. For convenience 
τ η,t+1 = τ η,t − ϵ∇τ Lη,t (u, z, τ , λ) uη,t ,zη,t (21b) 

in further analysis, we defne a time-varying operator 
τ η,t ,λη,t R+� � � � � � �� � 

λη,t+1 = λη,t + ϵ gt vt zη,t , τ η,t − φλη,t R+ 
(21c) 5η,t : uη, τ η, λη zη : 
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∇uLη,t (u, z, τ , λ)|uη,t ,zη,t ,τ η,t ,λη,t  

7−→ ∇τ L� η,�t (u�, z, τ�, λ)|u�η,t ,zη,t ,τ η,t ,λ�η,t  (22) − gt vt zη,t , τ η,t − φλη,t 
∇zLη,t (u, z, τ , λ)|uη,t ,zη,t ,τ η,t ,λη,t 

which is utilized to compute the gradients in the time-varying 
updates (21) as follows: � � �� 

eη,t+1 = eη,t − ϵ5η,t eη,t Xt ×R+×R. 

Lemma 4: Given Assumptions 2 and 3, the operator (22) 
is strongly monotone and Lipschitz continuous; i.e., there are 
constants Me > 0 and eL > 0, such that � � ��⊤� �

′ ′ 5η,t (e) − 5η,t e e − e ≥ Me∥e − e ′∥2
2 (23)� �

′ 
∥5η,t (e) − 5η,t e ∥2

2 
≤ eL2

∥e − e ′∥2 (24)2 

for any feasible e and e ′ . 
Lemma 5: If the step size ϵ satisfes 

0 < ϵ < 2Me/eL2 (25) 

then Algorithm 1 converges to the unique saddle point of (19). 
(P5 

tProof: Note that the objective function in 

t 

η,t of the time-varying problem (19) is bounded as follows: 

∗lim sup eη,t − e = p 
σe 

. (26)η,t 
1 − 2ϵ Me + ϵ2eL22t→∞ 

Proof: See Appendix D. □ 
Equation (26) gives the maximum difference between the 
online optimization–estimation trajectories generated by Algo-
rithm 1 and the optimizer of the time-varying stochastic 
OPF–SE problem (P5 

Fig. 2. IEEE 37-node distribution network. The boxes indicate the nodes 
with PV generation. The locations of voltage sensors (i.e., i = 6, 7, and 23) 
are color coded in red. 

IV. NUMERICAL RESULTS 

A modifed IEEE-37 node test feeder is used to demonstrate 
our proposed online joint optimization–estimation architecture. 
Fig. 2 gives the modifed network as a single-phase equivalent 

) with high penetration of distributed PV systems. The line 
COPF(ut ) + CSE(zt , vt (zt )) is convex quadratic, and the asso-t t 
ciated constraint function gt (vt (ut ), τ t ) is piecewise linear, 
which implies that the saddle-point problem (19) with regu-
larizers is strongly convex on all primal variables and strongly 
concave on all dual variables. This leads to the strongly 
monotone and Lipschitz continuous properties of the gradient 
operator (22). Similar to Lemma 3, the step-size criteria for 
the convergence of algorithm can be easily established by 
following the analysis procedure in our existing works [18], 
[30]. □ 

To conclude, the convergence and online tracking perfor-

impedance, shunt admittance, and locations of active and 
reactive loads are derived from the dataset [37]. We deploy 
the proposed online OPF–SE synthesis algorithm, specifcally, 
to mitigate the overvoltage when the PV availability exceeds 
the consumption. There are 18 PV systems located at nodes 4, 
7, 13, 17, 20, 22, 23, 26, 28, 29, 30, 31, 32, 33, 34, 35, 
and 36, and their availability power is proportional to the real 
irradiance data with 1-s granularity in [38]. The load profles 
are replaced by the real measurements with 1-s resolution from 
feeders in Anatolia, CA, during the week of August 2012, 
in [39]. The ratings of the inverters are all 200 kVA, except 

mance of Algorithm 1 are provided next. 
Theorem 3 (Convergence Analysis): Given any step size 

for the inverters at nodes 3, 15, and 16, which are 340 kVA. 

0 < ϵ < 2Me/eL2, the distance between the sequence 
The real-time voltage trajectories of the system over four 

{eη,t } generated by Algorithm 1 and the unique saddle point 
e ∗ 

days without voltage regulation are given in Fig. 3. The voltage 
limits are set to 1.045 and 0.95 p.u. This particular network has 
a signifcant overvoltage situation if no voltage regulation is 
enforced. We implement the proposed online joint OPF–SE 
Algorithm 1 to achieve the voltage regulation over time, 
with the objective to minimize the amount of the real power 
curtailment and the reactive power compensation from the 
available PVs (i.e., Ct 

OPF(pt , qt ) = ∥pt,av − pt ∥
2
2 + 3∥qt ∥2

2). 
For the inputs of the SE problem, the measurements within the 
OPF–SE algorithm include the voltage magnitude measure-

). This bound depends on the variability ments at nodes 6, 7, and 24, as shown in Fig. 2, with the mea-

t 

of two consecutive time-varying problems (i.e., σe) and a 
“small enough” step size ϵ. As demonstrated in the numerical 
studies, in Section IV, this difference between two consecutive 
time steps is small if we run the online updates in a fast 
time scale (i.e., 1 s). In addition, the “small enough” step 
size ϵ is trivial to decide by trial and error, as typically done 
in distributed optimization [36]. Overall, Theorems 2 and 3 
verify the optimality and convergence of the proposed online 
algorithm with respect to the time-varying stochastic OPF–SE 
problem (P5). These two bounds also illustrate the trade-offs 

surement noise subjected to a Gaussian distribution with zero 
mean and 1% standard deviation. In addition, we also include 
the pseudo-measurements for all nodal injections (i.e., active 
and reactive power) with signifcant noise (e.g., zero mean and 
50% standard deviation of real values), which guarantees the 
full observability of the SE problem. The voltage information 
of the whole network is instantaneously fed back to the online 
OPF gradients via dual variable updates every second based 
on the online estimation results. The gradient step sizes are set 
to αOPF = 8 × 10−4, αSE = 9 × 10−4, and ατ = 3 × 10−3 

between the convergence performance and optimality due to for primal updates and αOPF = 5 × 10−3 for dual updates. 
the regularization and online implementation. The simulation takes 1.3030 × 104 s to perform the proposed 
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Fig. 3. Uncontrolled overvoltage situation from 4:00 A.M. in day 1 to 8:00 P.M. in day 4. 

online joint stochastic OPF–SE algorithm for 318 800 updates 
(nearly four days) in 1-s resolution via the MATLAB interface 
with MATPOWER [37] on a laptop with 16 GM of memory 
and a 2.8-GHz Intel Core i7. One OPF–SE joint update takes 
0.0412 s (on average) in computation time for every 1-s 
update in practice. This also includes the time for solving 
the nonlinear power fow via MATPOWER to simulate the 
response of the distribution networks to the online DER 
dispatch decisions. 

Fig. 4 visualizes the online voltage regulation trajectories 
regulated by the proposed online joint OPF–SE algorithm in 
(21). In case of the stochastic OPF–SE, the curves for different 
settings of the chance constraint satisfaction are given. In order 
to prevent voltage from raising above 1.045 p.u., the online 
OPF decisions must curtail excessive PV injections given 
the online SE results over time. In Fig. 4(a), the voltage 
trajectories slightly violate the upper bounds, which is because 
the deterministic version does not take into account that 
the voltage estimation and power fow linearization induce 
errors. The proposed stochastic OPF–SE given in Algorithm 1 
provides better robustness to errors from voltage estimation 
and linearization. The number of samples within the dataset 
4s is 100, generated by a Gaussian distribution with zero 
mean and 1% standard deviation of the real voltage, which 
includes the estimation noises and the deviation caused by 
the linearization of the nonlinear power fow. In practice, the 
dataset of these errors can be collected through the observation 
and comparison between the historical records and estimation 
results. 

Fig. 4(b)–(d) illustrates the online voltage trajecto-
ries for varying chance constraint risk aversion (i.e., 
β = 0.10, 0.05 and 0.01). The stochastic formulation 
accounts for the errors and trade offs the CVaR of voltage 
constraint violation and operational cost during the online 
adjustment of PV injections. The conservativeness of the volt-
age regulation is controlled by adjusting β. By explicitly using 
the sampling data to take into account the inherent errors, 
the voltage violation risk can be systematically assessed and 
controlled. The curtailment decisions can be overconservative 
when we require higher probability satisfaction for the voltage 
constraints, as shown in Fig. 4(c) and (d). In general, it is 
possible to prioritize the voltage regulation at certain buses 
by adapting the corresponding risk aversion, which depends 

on the risk preference of system operators and the accuracy 
performance of the estimators. Note that the PV outputs in day 
3 and day 4 have large fuctuations. The proposed online joint 
OPF–SE algorithm, however, has superior robust performance 
and provides fast tracking in response to these large variants 
by generating timely optimization–estimation results. Hence, 
the voltage regulation can be achieved in an online fashion 
under a time-varying setting with large variations of PV 
outputs. 

We now compare our OPF–SE approach to an online 
feedback-based OPF solver with the following: 1) perfect 
information of all the voltage magnitudes [12] and 2) all 
the raw measurements of voltage magnitudes, i.e., including 
noise. The settings are the same as the online OPF–SE 
algorithm except that the online OPF solver utilizes the 
direct (or noisy) voltage measurements. As shown in Fig. 5, 
incorporating full and perfect voltage feedback information 
into the online OPF solver results in a better profle with 
only very few violations compared with Fig. 4(a). However, 
in practice, real-time voltage measurements are inherently 
noisy. Hence, we subject the actual voltage magnitude values 
to independent Gaussian distributions with zero mean and 
1% standard deviation of their actual values. Fig. 6 gives 
the results for the online feedback-based OPF algorithm with 
raw voltage magnitude measurements. Due to the inherent 
sensing noise, the online feedback OPF solver fails to resolve 
the overvoltage situation in a fast-changing distribution net-
work. Clearly, having an unbiased WLS state estimator can 
signifcantly reduce the uncertainties in the feedback loop 
and promotes the feasibility of the online OPF solver. This 
indicates that our proposed online OPF–SE algorithm having 
available pseudo-measurements and a limited number of raw 
voltage measurements has superior robust performance, com-
pared with the direct usage of all the raw measurements of 
voltage magnitudes. 

Overall, we conclude that the proposed online 
optimization–estimation architecture is capable of achieving 
online voltage regulation under a time-varying situation. 
By introducing the stochastic modeling of inherent noises 
within the feedback loop, the online regulation enables robust 
performance with respect to the estimation/linearization 
errors, which provides operators options to run the systems 
under various risk aversion settings. The beneft of running 
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Fig. 4. Comparison of voltage trajectories for various values of chance constraint risk aversion β. As these parameters decrease, more active power from 
PVs is curtailed, leading to a lower risk of voltage constraints violation. (a) Voltage trajectories for a system controlled by the OPF–SE synthesis algorithm 
w/o realization of SE and linearization errors, from 4:00 A.M. in day 1 to 8:00 P.M. in day 4. (b) Voltage trajectories for a system controlled by the OPF–SE 
synthesis algorithm w/ realization of SE and linearization errors. The chance constraint parameter is set to β = 0.10 with a constraint satisfaction probability 
of 90%, from 4:00 A.M. in day 1 to 8:00 P.M. in day 4. (c) Voltage trajectories for a system controlled by the OPF–SE synthesis algorithm w/ realization of 
SE and linearization errors. The chance constraint parameter is set to β = 0.05 with constraint satisfaction probability of 95%, from 4:00 A.M. in day 1 to 
8:00 P.M. in day 4. (d) Voltage trajectories for a system controlled by the OPF–SE synthesis algorithm with realization of SE and linearization errors. The 
chance constraint parameter is set to β = 0.01 with constraint satisfaction probability of 99%, from 4:00 A.M. in day 1 to 8:00 P.M. in day 4. 
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Fig. 5. Voltage trajectories for a system controlled by an online feedback-based OPF solver with perfect information of all voltage magnitudes. 

Fig. 6. Voltage trajectories for a system controlled by an online feedback-based OPF solver using raw measurements of all voltage magnitudes. 

optimal control-estimation synthesis has been shown from the 
perspectives of robustness and computational effciency. 

V. CONCLUSION 

In this article, we provide an extensive theoreti-
cal analysis and numerical results of an online joint 
optimization–estimation architecture for distribution networks. 
An online implementation is proposed to solve a time-varying 
OPF problem and a WLS SE problem in parallel with a large 
penetration of renewable penetration. The online stochastic 
framework explicitly considers the SE and ac power fow 
linearization errors for robust performance. Convergence and 
optimality of the proposed algorithm are analytically estab-
lished. The numerical results demonstrate the necessity and 
success of bridging the traditional gap between optimization 
and estimation layers in distribution networks, from the per-
spectives of computational effciency, robustness, effective-
ness, and fexibility. 

APPENDIX 

A. Proof of Lemma 2 

Proof: We decompose the gradient operator Ft (·) in (10) 
equivalently to � � 
Ft ut , µt , zt 

 
∇uCOPF(ut )    

t 0 0 −H⊤ ut 

= 
 ∇zCSE(zt ) 

 + 0 0 0  zt  + a0 t 

φ 0 H 0 µt
∇µ ∥µt ∥

2 
2 2 

where H = [ R X − R − X], and a0 denotes a constant 
vector. Since the estimation feedback vk

t (zt
k ) = vk

t (uk
t ) 

always holds every gradient step, the gradient operator can 
be rewritten by replacing vk

t (zk
t ) by vt

k(uk
t ) � � 

Ft ut , µt , zt   
∇uCOPF  (ut ) 0 0 −H⊤  

t    ut 

=  ∇zCt 
SE(zt )  +  0 0 0  zt  + a0.   

φ
∇µ ∥µt ∥2

2 . H 0 0. µt . 
2 | {z } 

∗∗ 

This rewriting implies that the online dual update depends 
on the online SE results instead of OPF decisions at every 
iteration. The frst term in the above decomposition is 
strongly monotone, since each element is strongly convex in 
(ut , µt , zt ). We observe that the second linear operator with the 
projection matrix ∗∗ is monotone if and only if the following 
condition holds [40]:  

0 0 −H⊤
  

0 0 −H⊤
⊤  0 0 0  +  0 0 0  ⪰ 0. 

H 0 0 H 0 0 
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The above condition holds by the defnition of positive 
semidefnite matrix. In the end, the gradient operator Ft (·) 
is strongly monotone due to a linear combination of a strong 
monotone operator and a monotone operator, which concludes 
the proof. □ 

B. Proof of Theorem 1 

Proof: Introducing a Lagrangian multiplier λt ∈ R2N 

for the constraint (14b), we have the following regularized 
Lagrangian with the parameter φ > 0: 

Let (ut , zt , λt ) 
φ 

= COPF(ut ) + CSE ⊤(zt , vt (zt )) + λt r(vt (ut )) − ∥λt ∥2
2 .t t 2 
(27) 

We have a saddle-point problem 

max min Let (ut , zt , λt ). (28) 
λt ∈R+ ut ∈Xt ,zt ∈Xt 

∗ ∗ ∗Denoting (ut , zt , λt ) as a unique primal–dual optimizer of 
(28) at time t , the optimality conditions of (28) are � � � � � ��⊤ 

�⊤� � 
∇uCOPF ∗ ∗ ∗ ∗ u −∇ur vt u µ ut − u ≥ 0 ut ∈ Xtt t t t t 

(29a)� � � �� �⊤∗ ∗ ∗ r vt z − φλ λ = 0 (29b)t t t 
∗ λ ≥ 0 (29c)t� �⊤� � 
∇zCSE ∗ (zt , vt (zt )) zt − z ≥ 0 (29d)t t 

which are equivalent to h � �i� � � � ��⊤∗ ∗
∇uCOPF ∗ ∗ ∗ u = u − ϵ u +∇ur vt u µ (30a)t t t t t t Xt� � � � �� ��

∗ ∗ ∗ ∗ µ = µ + ϵ r vt z − φµ R+ 
(30b)t t t t� � ��

∗ ∗
− ϵ∇zCSE ∗ ∗ z = z z z . (30c)t t t t , vt t 

The point (u ∗ 
t , λ ∗ 

t , zt 
∗ ) in (29) is a unique saddle point of 

∗(28) if and only if the point (u ∗ 
t , µt , z ∗ 

t ) in (30) is an 
approximate solution of (Pt 

3), and the estimation feedback 
vk

t (uk
t ) = vt (zt

k) holds for all iterations in (9). This also 
implies that the optimal voltage profles are equivalent to the 
estimation results, such that vt (u ∗ 

t ) = vt (zt 
∗ ). In addition to 

∗ ∗ µ = λt , the existence and uniqueness of the saddle pointt 
∗ (u ∗ 

t , λt 
∗ , z ∗ 

t ) of (28) then imply the equilibrium (u ∗ 
t , µt , z ∗ 

t ) of 
(9), which concludes the proof. □ 

C. Proof of Theorem 2 

Proof: In this analysis, we omit the time-index subscript 
∗ t to simplify the notation. We relax ∥x ∗ − x ∥2

2 into two φ,v 
parts via the triangle inequality 

Lagrangian Lη in (18) as a result of a two-step regularization, 
we frst regularize the Lagrangian function (17) of the original 
problem (Pt 

5) by adding an additional regularization term 
(v/2)∥τ ∥2

2 on the primal variable τ with a constant v > 0, 
i.e., � � 

⊤ v 
Lv(x, λ) = f x̃ + λ g(x) + ∥τ∥2 

22 

and its corresponding saddle-point problem is given by 

max min Lv(x, λ). (32) 
λ∈RN x∈X ×X ×R2N 

+ 

The saddle point (x ∗ , λ ∗ ) of (32) follows the property of: v v � � � � � �
∗ ∗ ∗ ∗ Lv x , λ ≤ Lv x , λ ≤ Lv x, λ ∀x, λ. (33)v v v v 

Let x = x ∗ in the second inequality of the preceding relation-
ship, and we obtain � � � �⊤ � � v

∗ ∗ ∗ ∗f x̃ + λ g x + ∥τ ∥2 
v v v v 22� � � �⊤ � � v

∗ ∗ ∗ ∗
∥

2
≤ f x̃ + λ g x + ∥τ 2. (34)v 2 

With functions f̃ (x ∗ ) := f (x̃∗ ) + (v/2)∥τ ∗∥2 and2 
f̃ (x ∗ ) := f (x̃∗ ) + (v/2)∥τ ∗∥2

2, the above inequality becomes v v v � � � �⊤ � � � �⊤f̃  x ∗ + λ ∗ g x ∗ ≤ f̃ (x ∗ ) + λ ∗ g(x ∗ ) (35)v v v v 

which then leads to � � � �⊤ � �⊤ � � 
f̃  x ∗ − f̃ (x ∗ ) ≤ λ ∗ g(x ∗ ) − λ ∗ g x ∗ . (36)v v v v 

Observe that the newly defned function f̃ (·) is strongly 
convex in all primal variables x for some c > 0 � � � � � �� � c

∗ ∗ ∗ ∗ ∗ ∗f̃  x − f̃  x ≥ ∇x f̃ ⊤ x x − x + ∥x − x ∗∥2
2 . (37)v v v2 

Combining (37) and (36), we obtain 

c 2∗ ∗ x v − x 22 � �� � � �⊤� � � � ��
∗ ∗ ∗ ∗ ∗

≤ ∇x f̃ ⊤ x x ∗ − x + λ g x − g x . v v v 

Due to the convexity of g(·), we can write the second multi-
plication term over all j and add them up 

c 2∗ ∗ x v − x 22 X� �� � 2N � �� �
∗ ∗ ∗ ⊤ ∗ ∗

≤ ∇x f̃ ⊤ x x ∗ − x v + λ j,v ∇xg j x x ∗ − x v 
j=1� �� �

∗ ∗
≤ ∇x f̃ ⊤ x x ∗ − x v 1 

2NX � �� �
∗ ⊤ ∗ ∗ 

+ λ j,v ∇xg j x x ∗ − x v .
1 

∗ ∗ ∗ ∗
∥x ∗ − x ∥2

2 ≤ ∥x ∗ − x ∥2
2 + ∥x − x ∥2 (31)η v v η 2 

and characterize the upper bounds of the two terms on the 
right-hand side of (31) as follows. 

1) We frst derive the bound of ∥x ∗ − x ∗∥2
2. Defne v 

a vector to collect the subset of primal variables in 
x̃ := [u⊤ , z⊤]⊤ and a compact objective expression of (16a) 

COPF(x̃) + CSE(˜as f (x̃) := x). By viewing the regularized 

j=1 

Employing the Cauchy–Schwarz inequality, the second 
inequality above results in 

c � �
∗ ∗ ∗

∥x − x ∗∥2
2 
≤ ∥∇x f̃  x ∥2∥x ∗ − x ∥2v v2 X 
∗ ∗ ∗ 

+ λ ∥∇xg j 
� 
x 
� 
∥2∥x ∗ − x ∥2.j,v v 

j 
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Since the gradients/subgradients of f̃ (·) and g(·) are bounded 
in Assumption 4, this leads to 

∗ ∗
c 

x v − x 2
22 X 

∗ ∗ ∗
≤ G f x ∗ − x v 2 + λ j,v Gg x ∗ − x v 2. 

j 

Next, we divide both sides of the above inequality by ∥x ∗ − v 
x ∗∥2 resulting in 

c 
∗ ∗ ∗ x − x ≤ G f + Gg λ v 2 v 12 

and attain 

≤ 
2(G f +Gg ∥λ ∗∥1)vx ∗ − x ∗ . (38)v 2 c 

2) We now characterize the upper bound of ∥xv − xη∥2
2, 

the second term on the right-hand side of (31). Consider 
a regularized Lagrangian with regularization terms on both 
primal and dual variables, i.e., 

⊤ v 
∥τ ∥2 φ 

∥λ∥2Lη(x, λ) = f (x̃) + λ g(x) + 2 − 22 2 
where v > 0 and φ > 0. Its corresponding saddle-point 
problem is 

max min Lη(x, λ). (39) 
λ∈R+ x∈X ×X ×R+ 

The saddle point (x ∗ 
η, λ ∗ ) of (39) follows the property of:η � � � � � �

∗ ∗ ∗ ∗ Lη xη, λ ≤ Lη xη, λ ≤ Lη x, λ ∀x, λ.η η 

The left inequality leads to � �⊤ � � φ 2 φ 2∗ ∗ ∗ ∗ ∗ λ − λ g x − λ + λ ≥ 0 (40)η v η η v 222 2 

where we set λ = λ ∗ . We now characterize the term v 
(λ ∗ − λ ∗ )⊤g(x ∗ ). Leveraging the defnition of convex function, η v η 
the upper bound of g j (x ∗ ) is given byη � � � � � �⊤� �

∗ ∗ ∗ g j x ≤ g j x +∇xg j x xη − xvη v v� �⊤� �
∗

≤ ∇xg j x xη − xv . (41)η 

The last inequality follows, because x ∗ is a solution to the v 
saddle-point problem (32), such that g j (x ∗ ) ≤ 0 for all j . v 
We then multiply both sides of (41) by λ ∗ 

η, j ≥ 0 and sum 
up over all j , which leads to � � 

λ⊤g x ∗ 
η η 

2NX � �⊤� �
∗ ∗ ∗

≤ ∇xλη, j · g j x x − xη η v 
j=1 � �⊤� � � �⊤� �

∗ ∗ ∗ ∗ ∗ ∗ ∗ 
= ∇xLη xη, λ x − x −∇x f̃  x x − xη η v η η v� �⊤� �

∗ ∗ ∗
≤ −∇x f̃  x x − x (42)η η v 

where the second inequality is based on the frst-order opti-
mality condition, i.e., ∇xLη(x ∗ 

η, λ ∗ )⊤(x ∗ − x ∗ ) ≤ 0.η η v 
On the other hand, we have � � � � � �⊤� �

∗ ∗ ∗ ∗ ∗ g j x ≥ g j x +∇xg j x x − x . (43)η v v η v 

Multiplying both sides of (43) by −λ ∗ 
v, j ≤ 0 and summing 

up over all j lead to � �
∗⊤ ∗

−λ g x v ηX � � X � �⊤� �
∗ ∗ ∗ ∗ ∗ ∗

≤ − λ v, j g j x v − λ v, j · ∇xg j x v xη − x v 
j jX � �⊤� �
∗ ∗ ∗ ∗ 

= λ v, j · ∇xg j x v x v − xη 
j � �⊤� � � �⊤� �

∗ ∗ ∗ ∗ ∗ ∗ ∗ 
= ∇xLv x , λ x − x −∇x f̃  x x − x v v v η v v η� �⊤� �

∗ ∗ ∗
≤ ∇x f̃  x x − x . (44)v η v 

The frst equality follows from the condition (λ ∗ )⊤g(x ∗ ) = 0,v v 
which holds due to the complementary slackness condition of 
(32). The second inequality is obtained from the frst-order 
optimality condition, i.e., ∇xLv(x ∗ , λ ∗ )⊤(x ∗ − x ∗ ) ≤ 0. v v v η 

Since the objective function f̃ (·) is strongly convex with a 
positive constant c � � ��⊤� � 2′ ′ ′ 

∇x f̃ (x) −∇x f̃  x x − x ≤ c x − x (45)2. 

Substituting (42) and (44) into (40) and employing (45) yield 
φ � �

∗ ∗ ∗ ∗
∥x − x ∥2

2 ≤ ∥λ ∥2
2 − ∥λ ∥2 . (46)v η v η 22c 

Finally, substituting (38) and (46) into (31) leads to 
∗

∥x ∗ − xη∥
2
2 � �!2 

2 G f + Gg∥λ ∗∥1 φ � � v ∗ ∗
≤ + ∥λ ∥2

2 
− ∥λ ∥2 

v η 2c 2c 

which concludes the proof. □ 

D. Proof of Theorem 3 

Proof: We begin by investigating the distance 
between the sequence {eη,t } := {uη,t , τ η,t , λη,t , zη,t }
generated by (21) at time t and the unique optimizer 
∗ ∗ ∗

{eη,t−1} := {uη,t−1, τ ∗ 
η,t−1, λη, 

∗ 
t−1, zη,t−1} of the saddle-point 

problem (19) at time t − 1. Based on the defnition of 
the time-varying gradient operator and the nonexpansivity 
property of the project operator, we have 

∗ eη,t − eη,t−1 2 � � � �
∗ ∗

≤ eη,t−1 − ϵ5η,t eη,t−1 − eη,t−1 + ϵ5η,t eη,t−1 .
2 

Using the triangle inequality, we obtain 
∗

∥eη,t − eη,t−1∥2 � � � �
∗ ∗

≤ ∥eη,t−1 − eη,t−1∥2 + ϵ2
∥5η,t eη,t−1 − 5η,t eη,t−1 ∥2 � � � � ��⊤� �

∗ ∗
− 2ϵ 5η,t eη,t−1 − 5η,t eη,t−1 eη,t−1 − eη,t−1 

∗
≤ α∥eη,t−1 − eη,t−1∥2 (47) 

where α = (1−2ϵ M̃ + ϵ2 L̃ 2)1/2. The last inequality is due to 
the strongly monotone and Lipschitz properties of 5η,t , shown 
in (23) and (24). Now, we are ready to show the convergence 
of the online gradient updates in (21). For t > 0, the distance 
between the sequence eη,t generated by the gradient updates 
in (21) and the unique saddle point e ∗ of the optimizationη,t 
problem (19) is bounded by 

∗ ∗ ∗ ∗ eη,t − eη,t = ∥eη,t − eη,t + eη,t−1 − eη,t−1∥22 
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∗ ∗ ∗
≤ eη,t − eη,t−1 + eη,t − eη,t−12 2 

∗
≤ α eη,t−1 − e + σe.η,t−1 2 

The last inequality follows from (47) and the difference 
between the optimization solutions of consecutive time 
instants, as shown in Assumptions 5 and 6. We then recursively 
implement the above inequality until t = 0 resulting in� � 

∗ ∗ 1−αt 
eη,t − eη,t ≤ αt eη,0 − eη,0 + σe. (48)

2 α2 

Choosing the step size as 0 < ϵ < (2Me/eL2) from Lemma 5 
leads to 0 < α < 1. As t → ∞, the term αt on the 
right-hand side of (D) will vanish. Given such α and any initial 
point eη,0 located in the feasible set X0, we let the gradient 
update (21) run over time as t → ∞, and the difference is 
bounded by 

∗lim sup eη,t − e = p 
σe 

η,t 
1 − 2ϵ Me + ϵ2eL22t→∞ 

which concludes the proof. □ 
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