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Abstract—1In this article, we propose an optimal joint
optimization—estimation architecture for distribution networks,
which jointly solves the optimal power flow (OPF) problem
and static state estimation (SE) problem through an online
gradient-based feedback algorithm. The main objective is to
enable a fast and timely interaction between the OPF deci-
sions and state estimators with limited sensor measurements.
First, convergence and optimality of the proposed algorithm
are analytically established. Then, the proposed gradient-based
algorithm is modified by introducing statistical information of
the inherent estimation and linearization errors for an improved
and robust performance of the online OPF decisions. Overall,
the proposed method eliminates the traditional separation of
operation and monitoring, where optimization and estimation
usually operate at distinct layers and different time scales. Hence,
it enables a computationally affordable, efficient, and robust
online operational framework for distribution networks under
time-varying settings.

Index Terms— Convergence and optimality analysis, distri-
bution networks, online optimization algorithms, operational
architecture, optimal power flow (OPF), power systems, state
estimation (SE).

I. INTRODUCTION

HE increasing integration of distributed energy resources
(DERs) is bringing about unprecedented changes to
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distribution networks. As a high penetration level of DERs
in distribution networks alters the traditional characters of
network states to fast and time-varying, an effective operation
of these networks requires the latest knowledge of network
states [1]. Moreover, while operation and monitoring infras-
tructure in distribution networks are not as widely deployed
as in transmission grids, they are considered to be important
enabler for an efficient integration of renewable resources.
To address the issue of fast-varying system states, we envision
a joint optimal power flow (OPF)-state estimation (SE) archi-
tecture that tightly interlinks the optimization and monitoring
layers in a fast time scale to continuously and systemically
regulate the outputs of DERs for operational targets.

The tasks of monitoring and optimization of the network
have been considered as two separate tasks, e.g., [2], [3], [4].
Prior works focused on real-time OPF methods for distribution
networks assume complete availability of network states to
implement various optimal operation targets [5], [6], [7], [8],
[9]. However, in practice, network states must be estimated
with a monitoring system subjected to noisy measurements.
To better fuse the real-time state information into OPF solvers,
the recently proposed OPF frameworks [10], [11], [12], [13],
[14], [15], [16] leverage the measurement feedback-based
online optimization methods to close the loop between the
physical measurement information and OPF solvers. These
designs take into account real-time data in the OPF decisions
to mitigate the effects of inherent disturbances and modeling
errors. However, it is not realistic to have real-time physical
measurements of system states at every point of a distribution
network due to the required communication needs, end-user
privacy concerns, and high costs. This calls for a joint design
to solve the real-time OPF tasks with an additional SE in
the loop, which enables OPF decisions to react to real-time
information from a limited number of deployed sensors.

In both transmission and distribution networks, the
optimization—estimation architecture, the supervisory control
and data acquisition (SCADA) system, has been developed and
implemented to monitor and control the electrical devices for
safe and reliable power delivery [17]. A variety of functions,
including voltage regulation, economic dispatch, automatic
generation control, and fault detection, can be achieved based
on a well-established communication network. However, the
current distribution management systems, where the opti-
mization and estimation tasks operate at distinct layers and
different time scales, might not be suitable for the future
distribution networks with an extensive penetration of DERs.
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In particular, the time scale and communication structure
required to collect all node-wise network states and to solve
the optimal dispatch problem may not be consistent with the
time-varying distribution-level dynamics. As the most of DERs
are connected to distribution networks, it is apparent that the
operators have to estimate and optimize the networks faster
than ever to cope with renewable variations and yet guarantee
system-level optimality. This requests to bypass the current
hierarchical setups for a fast control-estimation joint operation,
which will be more applicable and practical for an efficient and
reliable operation.

To tightly interlink the optimization and estimation tasks
in distribution networks, this article proposes an online
gradient-based algorithm to jointly solve the classic OPF and
the weighted least squares (WLSs) SE problem in parallel,
and we demonstrate its performance on the application of
voltage regulation in distribution networks. The proposed joint
OPF-SE framework allows us to generate optimal online
decisions for DERs by utilizing real-time sensor measure-
ments together with an online voltage magnitude estimator.
Our preliminary works [18], [19] proposed a general OPF
framework with SE feedback and studied its robustness and
convergence performance. The recent paper [20] studied the
interaction between the dynamic SE (i.e., Kalman Filter) and
the feedback-based optimization scheme for voltage regulation
in distribution networks. Here, we significantly extend our
previous works in several directions from the perspectives of
both power and control engineering:

1) Time Scales: One of the significant differences between
this submission and our previous works [18], [19] is that
the proposed OPF-SE scheme is posed in different time
scales. In our initial work, we solve the OPF problems
with SE in the loop by having one gradient update
of the OPF problem with the input of a fully solved
SE result. In this article, the time-varying OPF and SE
problems are posed in the same time scale and are jointly
solved in parallel. This is done by pursuing each step
of the OPF gradient update with only one SE gradient
update. This particular design allows online OPF deci-
sions to cope with fast-changing renewable variations
while ensuring computational affordability for practical
implementation. It also avoids that system changes that
occur during the process of the SE computations lead to
the incorporation of outdated SE information into the
OPF problem. To the best of our knowledge, this is
the first architecture for distribution networks solving
optimization and estimation problems concurrently with
a close and timely interaction between two layers, and
implemented in an online fashion.

2) Stochastic Reformulation: We leverage the linearized
ac power flow equations to formulate the OPF and
SE problem but have an SE feedback loop to trade
off between computational efficiency and feasibility.
Clearly, the noisy estimation results and power flow
linearization errors lead to possible voltage constraint
violations. We consider the SE and ac power flow
linearization errors in the feedback to reformulate the
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proposed joint OPF-SE in a stochastic way. Instead of
empirically tightening the operational constraints based
on the feedback noise as is done in [19], the statistical
information of the feedback noise is used to improve
the feasibility and robustness to uncertainties. Namely,
a sampling approach based on conditional value at
risk (CVaR) is applied to quantify the probability of
voltage constraint violation. Hence, the proposed online
OPF-SE architecture facilitates the close interaction
between optimal decisions and the statistical knowledge
of uncertainties in the SE feedback loop in distribution
networks.

3) Theoretical Studies: More extensive theoretical analyses
are presented in this article compared with our previous
works [18], [19]. First, convergence and optimality are
established for the proposed joint OPF-SE algorithm for
a particular time step in a static situation. Specifically,
we show that jointly solving OPF-SE problems is equiv-
alent to the results from a single optimization problem.
Second, due to the stochastic reformulation using CVaR,
the stochastic OPF-SE problem is not strongly convex
on all primal variables, which compromises the conver-
gence of the proposed algorithm. To overcome this chal-
lenge, the proposed primal-dual gradient-based approxi-
mation leverages Tikhonov regularization terms on both
primal and dual variables to facilitate convergence.
The optimality difference caused by the primal—dual
regularization terms is rigorously characterized. Third,
the online tracking performance and the convergence
analysis are included as well. Note that the proposed
framework and associated analysis results considerably
broaden the approaches in [12], [18], and [19] by estab-
lishing convergence and optimality under time-varying
conditions with limited state monitoring capabilities. It is
also worth to emphasize that we conduct a general error
analysis to bound the regularization errors caused by the
Tikhonov primal—dual regularization terms. The analysis
of regularization errors offers contribution over [21]
and [22], where the optimality difference caused only
by dual variable is characterized. In addition, the error
analysis is not only limited to the online joint OPF-SE
problem in this article, but also can apply to a general
multiuser optimization solved by primal-dual gradient
approaches with regularization [22].

The rest of this article is organized as follows. Section II
introduces the system model and proposes the joint OPF-SE
algorithm. Furthermore, convergence and optimality of the
algorithm are established. In Section III, a stochastic OPF-SE
framework is proposed and solved with a regularized
primal-dual online gradient method. Section IV presents
numerical results, and Section V concludes this article.

Notation: The set of real numbers is denoted by R, and
the set of nonnegative numbers is denoted by R, . The set of
complex numbers is denoted by C. We use |-| to denote the
absolute value of a number or the cardinality of a set. Given
amatrix A € R™" AT denotes its transpose. We write
A > 0 (A > 0) to denote that A is positive semidefinite
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(definite). For x € R, the function [x]; is defined as
[x]+ := max{0,x}. For a given column vector x € R”,
we define [[x[; = 2 |x], and ||x]> := (x "x)"/2. Finally,
V. f(x) returns the gradient vector of f(x) with respect to
x e R".

II. MODELING AND PRIMARY PROBLEMS SETUP
A. Network Modeling

Consider a distribution network modeled by a directed and
connected graph G(Ny, £), where Ny = N U {0} is the
set of all “buses” or “nodes” with the substation node 0 and
N = {1,...,N}. The set £ CN x N collects “links” or
“lines” for all (i, j) € £. Let V;, € C denote the line-
to-ground voltage at node i € A at time ¢, where the
voltage magnitude is given by v;, := |Vi,|. Let p;;, € R
and ¢;, € R denote the active and reactive power injections
of the DER at node i € A for all + > 0. We denote X, as
the feasible set of the active and reactive power p;, and ¢;, at
node i € N for all r > 0. For a photovoltaic (PV) inverter-
based DER, the feasible set &, is constructed by the solar
energy availability. For other DERs, such as energy storage
systems, small-scale diesel generators, and variable frequency
drives, the set X, can be appropriately modeled to include
their physical capacity limits; see [11]. Note that the set &,
is convex, closed, and bounded for alli € A over time ¢t > 0.
For future development, weuse X; (= &), x,..., X Xy, to
denote the Cartesian product of the feasible sets of all DERs.

The relationships among the voltage, current, and net loads
in a distribution network are described by the nonlinear
power flow equations (e.g., based on the DistFlow model) as
follows:

Pii=—pii+ D Pus+trily, (la)
k(jik)eE
Qij,t = —qj: + Z ij,t ‘I'xijgizj,z (1b)
k:(j:k)e&
vi, = v, = 2(r P+ %1 Qi) + (r +x5) 65, (1e)
2 2 2
v, tgz]r = Pij,t + Qij.t (1d)

where P;;, € R and Q;;;, € R are the real and reactive
power flows on line (i, j) at time . We use k : (j : k) € £
to indicate all the distribution lines (j, k) € £ connected to
bus j. The impedance of line (i, j) € & is r;; + jx;;. The
squared magnitude of the current on line (i, j) € £ at time ¢
is defined by ¢7, 4« € Ry. For convenience, we define vectors
v, = [vi,, .. UN,r]T e RV, p: = [piss--., PN,z]T e RV,
and q; = [‘Il,t, cees fIN,t]T e RV,

To formulate a computationally tractable convex optimiza-
tion problem, we linearize the relationship between voltage
magnitudes and nodal power injections as follows:

v:(Pr, q:) = Rp; + Xq; + vp 2

where the parameters R € RV*V, X € RV*V  and vy € RV
can be attained from various linearization methods, e.g., [13],
[23], [24]. For the rest of this article, we consider the volt-
age magnitude projection v,(-) as a fixed linearization with
time-invariant matrices R and X for simplicity, although it is

straightforward to extend these two matrices to time-varying
linearized models. With the model above, we formulate a
time-varying OPF problem for voltage regulation and a static
WLS voltage estimation problem at each given time ¢ > 0.
An online gradient algorithm with feedback is developed to
solve these two optimization problems in parallel.

B. Joint OPF-SE via Primal-Dual Gradient Feedback

For the application of real-time voltage regulation, we intro-
duce a time-varying OPF problem and a WLS-based SE
problem to attain optimal set points of DERs at given time
t > 0. In Sections II-C and II-D, we first give the formu-
lations for the OPF and the SE problems. Then, a primal-
dual gradient algorithm is proposed to utilize the SE results
in the OPF solution at each iteration. We next prove the
convergence of the proposed algorithm by showing that the
equilibrium point of the proposed algorithm is equivalent
to the saddle-point dynamics of a single OPF-SE synthesis
optimization formulation.

1) OPF Problem: Consider a time-varying OPF problem
(P}) for voltage regulation

(P}) min C(u) (3a)

u,
subject to  r(v,(u,)) <0 (3b)
u, € X, (3¢0)
where u, = [p/.q 1" € R? denotes the
power set points of DERs at time ¢. The voltage
constraints are given in a compact form, such that
r(v,(u)) = [(v,(u) — v™)T, (v — v, (u))"]" e R?.

The voltage constraint in (3b) utilizes the linearized ac power
flow (2), where the lower and upper limits are denoted by
vt ¢ RV and v ¢ RV, respectively. The set points of
DERs at time ¢ are subjected to the convex and compact
feasible set X;,. The OPF function COPF(:) : R*™ — R is
a generic time-varying cost objective at time step ¢, capturing
the costs of the system operator, e.g., the costs of deviations
of the power flow into the substation from its reference values
and/or the costs of power production by DERs, including
generation costs, ramping costs, the renewable curtailment
penalty, the auxiliary service expense, and the reactive power
compensation.

2) Motivation for Involving SE: Problem (P}) is typically
solved, assuming that all network voltages {v,} and set points
{u,} of DERs are available in real time. However, there is
generally a lack of reliable measurements and timely commu-
nications in practical distribution networks, hindering effective
implementation of conventional OPF approaches, which usu-
ally assume the availability of all system states. Therefore,
a major challenge for solving (P}) lies in gathering real-time
system state information, such as net loads and voltages that
can be integrated into an OPF solver. Although the system
states of a distribution network are not fully measurable in
practice, the distribution network can be fully observable by
a well-posed SE problem with pseudo-measurements for all
nodal injections and a limited number of voltage measure-
ments [25]. Hence, we will tackle this challenge by fusing the
time-varying SE problem (P?) with the OPF problem (P}).
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Remark 1 (Pseudo-Measurements): Due to the lack of
real-time measurements and the stochastic nature of power
nodal injections in distribution system SE, the nodal power
injections are measured by their nominal load pattern (i.e.,
the real value plus zero-mean random deviations), so-called
pseudo-measurement, whose information is derived from the
past records of load behaviors [25]. As shown in Lemma 1,
having pseudo-measurements of power injections contributes
to establishing full observability of the static SE problem.
In principle, we can instead use the real-time values of
power injections, which, however, requires an efficient and fast
communication structure and a sufficient monitoring system
having sensors at all nodes. This requirement currently can-
not be satisfied in a large-scale distribution network. Hence,
in this article, we use the historical data of all nodal power
injections as pseudo-measurements to trade off the accuracy
of estimation results and the cost of measurements, which has
been observed to be efficient in a static SE problem [26].

3) SE Problem: System states are a set of variables that can
determine the behavior of the entire system, i.e., the power
flow equations here. For a distribution system, either voltage
phasors of all nodes or nodal real and reactive power injections
for all nodes can be chosen as system states. Consider a
time-varying measurement model with the true system state
vector z, € R?" and the measurement vector y, € R™ at time
t. The measurement function is defined as h,(-) : R?M — R™.
The measurement noise & ,SE € R™ follows a normal probability
distribution with zero mean and covariance matrix X, € R"™*":

ye = hi(z) +&". )
Using W, := (XZ,)~! as the weighting matrix, a time-varying
WLS SE problem is formulated as follows:
. 1 LT ~
min E(Yt —h, (Zt)) W, (Yt —h, (Zz))
z;

where Z, denotes the estimation of the true state z,.
In this work, considering the optimal voltage regulation
problem (’P,l), we adopt voltage magnitude measurement at
selected nodes as the real-time measurement, together with
pseudo-measurement for all load nodes, and construct the
following WLS problem for SE:

(’Ptz) r~ni~nC,SE (i,, f',) (52)

Z,V;
subject to Vv, = v, (i,) (5b)
where Z, = [P/, q/]1" collects the estimated active
and reactive power injections for all nodes with
p: = [ﬁl,la'~'aﬁN,t]T € RY and q = [ql,zw--,QN,t]T €

RY, and the estimated voltage magnitudes are denoted by
Vi = [U1s,....0n," € RN. The objective function
C;SE = ZieM,)((ﬁiJ - ﬁi,z)z/z(gi{);)z) + Zie/\/lq((éi,r -
Gi? 1200+ Diepn ((is — :.0)7/2(0},)%) features
the weighted sum of all costs of measurements based on
their respective accuracy, where the sets M,, M,, and
M, contain the nodes with pseudo-measurements of the
active and reactive power injections, and voltage magnitude
measurements, respectively. The vectors p; := {p;;|Vi € M}
and q, = {g;,|Vi € M,} collect the pseudo-measurements
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of the loads, and v, := {0;,|Vi € M,} gathers the sensor
measurements of voltage magnitudes. The noisy voltage
magnitude measurements v;,Vi € M, are assumed to
be attained from voltage magnitude measurements with
relatively high accuracy. The pseudo-measurements of the
active power injections p;,, Vi € M, and the reactive power
injections §;,, Vi € M,, are attained from the historical data
assuming large variations. The standard deviations of the
measurement errors are denoted by /', o/,, and o”, for active
power, reactive power, and voltage magnitude, respectively.
We assume that measurement errors are independent. The
estimation variable Z; is subjected to a convex and compact
feasible set X;. Note that the states of a distribution network
are uniquely determined by (1) given z, at any time f¢.
We leverage the linearized ac power flow model (2) to
determine the voltage magnitude as v, = v,(z,).

Definition 1 (Full Observability [27], [28]): A  state-to-
output system y = h(z) is fully observable if z = 0 is the
only solution for h(z) = 0. This condition allows a unique
solution to (’P,Z).

Lemma 1 (Sufficient Condition for Full Observability [29]):

A sufficient condition for the distribution network G to be
fully observable by (P?) is M » = M, = N, where the
set A collects all nodes with power injections.
Note that the observability of the time-varying WLS SE prob-
lem should be distinguished from the observability of linear
dynamical systems. Here, we limit the definition of observabil-
ity to power system static SE problems [25]. For the rest of this
article, we assume to have pseudo-measurements of all power
injections to guarantee full observability. This setting is easy
to be satisfied in practice and has been effective to obtain high
accuracy estimation results in [26]. For more observability
analysis results, numerical studies, and discussions, we refer
the reader to our previous works [29]. Optimally deploying the
voltage sensors for accuracy improvement is out of the scope
of this article, but it is an interesting topic to investigate in
future work.

4) Joint OPF-SE Algorithm: To solve problems (P}), we
consider the regularized Lagrangian of (P})

L (u,, 1) = COPF(uy) + ] r(v, (u) — %nu,u% ©)

where u, € RV is the vector of Langrange multipliers
associated with constraint (3b). The Lagrangian (6) includes
a Tikhonov regularization term —(¢/2)||;L,||§ with a small
constant ¢ > 0. This regularization term facilitates the
convergence of the primal-dual algorithm to the solution of
the saddle-point problem

. ~OPF
max min £ u;, 7)
RN u ey ! ( ! ’Lt) (

which is an approximate optimal solution of the origi-
nal problem (P,l). The difference between the solutions
of the original problem and the regularized problem was
characterized in [22]. We first use the primal-dual gra-
dient method to solve the saddle-point problem (7) as
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the existing results [12], [30]

ut! = [uf - e(VuC[OPF(uf) + Var(v; (uf))Tuf)]X (8a)
it =g + e (e(9) — omr) Iy, (8b)
fff“ <— based on the voltage magnitude sensors (8c)

where the operator [-]x, projects onto the feasible region X,
and the operator [-]r, projects onto the nonnegative orthant.
This classic feedback-based gradient approach assumes that all
voltage magnitudes ¥, are measurable (8c) for dual updates at
every iteration (8b). However, in practice, this design, particu-
larly (8c), heavily depends on reliable real-time measurement
devices, which is not well deployed in the current distribution
networks. To tackle this challenge for iteratively solving (7)
in a fast time scale, we introduce an SE feedback loop,
as shown in (9¢). The gradient updates of the SE problem (P?)
timely feedback the estimates of voltage magnitudes vt(zf)
into dual updates in parallel with every OPF updates with a
limited number of sensor measurements. The proposed jointly
OPF-SE algorithm is shown as follows:

w = [uf - e (VuCO () + Var(vi(w) uf) ] Ow)
= [l e (r(vi(7)) — om) ]y, (Ob)
2 = 2f — eV, C5E (). (%)

Using (5b), we can rewrite the SE objective CtSE(z,, V;) in
(5a) as C3E(z,, v,(z,)), abbreviated as C>E(z,) in (9¢). In each
iteration k, the OPF commands—the primal variables—are
updated once on the end-user side (9a), and the dual vari-
ables are updated in (9b) based on the updated estimated
voltages v,(z'). Next, the SEs are updated on the operator
side (9¢). By this design, we iteratively connect optimization
and estimation tasks in a loop for every update, as illustrated
in Fig. 1. Key to this end is to notice that the iterative updates
(9¢) and feedback loop (9b) of state information enable the
OPF updates to have the timely tracking of the fast-changing
network states at every iteration. This point is particularly
important, because SE updates (9c) can be conceivably per-
formed at a fast time scale comparing to completely solve the
time-varying SE problem (P?), where the estimation results
might be suboptimal once the computation is complete due to
the network response from OPF iterative updates.

C. Convergence Analysis

We now show the convergence of the joint OPF-SE Algo-
rithm (9) under the following assumptions.

Assumption 1 (Slater’s Condition): For every t > 0, there
exists a strictly feasible point u, € X;, so that

r(v;(u;)) < 0.

The Slater’s condition here guarantees strong duality and the
feasibility of (’Ptl) given any particular time step ¢t > O.
This implies that the OPF problem (P}) is well posed with
proper prescribed voltage limits, which holds for a well-design
distribution network. Note that the refined Slater’s condition
is applied here for the above affine voltage constraints without
strict inequality.

Assumption 2: For every t > 0, the objective function

COPF(.) is continuously differentiable and strongly convex. Its
first-order derivative is bounded on the set X;.
Assumption 2 holds for the DERs with convex quadratic cost
functions in practice, so that their first-order derivatives are
naturally bounded in the feasible set &; due to the physical
limits. The primal-dual gradient updates (9) are rewritten as
follows:

][] S
00 Dl B B e NG
z, z V.G (z,) X, xR, xR
For convenience, we define the gradient operator
VuL,OPF (uz’ ILz)
Fi(u, o z) = | =V L (v, (z,), ;) (10)
Vz C;SE (Zt)

Lemma 2: The gradient operator F,(u,, i,, Z,) is strongly
monotone for all ¢ > 0.

Proof: See Appendix A. |
By Lemma 2, there exist some constants M > 0, such that for
any & = [u/,p/,2z/]" and & = [()", (u)", z)"]"

R T A A ~
(Fi(&) - F (&) (& —¢&)= Mg, —&[3 a1
In addition, the operator F;(-) is Lipschitz continuous with
some constants L > 0 under Assumption 2, such that for any
e, é; e X, x X; x Ry, we have

17 (&) — 72 (&)13 < L2 11& — &5 (12)
Given the results above, the convergence of (9) can be estab-
lished with a small enough step size for gradient updates.

Lemma 3: Suppose Assumptions 1 and 2 hold. For any step
size that satisfies

0<e<2M/L? (13)

the proposed primal-dual gradient algorithm (9) exponen-
tially converges to the unique saddle point (uj, u;) of the
saddle-point problem (7) and the unique optimal z; of the
static SE problem (P?) for any given time ¢ > 0.

Proof: The proof follows closely along the line of the
analysis in [18] and [30] by noting the strongly monotone (11)
and the Lipschitz continuity (12) properties of the operator
F:(-). In particular, the additionally parallel SE gradient update
V,CSE(zF) in (10) compared with previous operators in [18]
and [29] does not change the properties of Lipschitz continuity
and strong monotonicity. ]

Note that the convergence and optimality results of the
proposed joint OPF-SE algorithm in this section hold for
a particular time step in a static situation. In the following
section, we will explore its convergence performance under a
time-varying setting.

D. Optimality Analysis

We now take a new perspective to interpret the dynamics (9)
as a primal—dual algorithm to solve an optimization problem
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OPF Gradient Update tSE

w1 = fuf = (VL0 ) + Vartabyat )| | gkt | yht

) X t t
it = [uf + f(r("t(zf)) - <I5N§)
Ry
k+1 SE Gradient Update
vi(zy )
24 = ot - eV,OP(ah)

Fig. 1. Online joint optimization—estimation architecture in distribution networks.

that unifies OPF and SE. To be specific, the trajectory of (9)
approaches an optimal solution to the following problem:

(P}) min  CP")+ Cr@. vi(@)) (14a)
subject to  r(v;(u;)) <0 (14b)

vi(u) = v, () (14¢)

u € X, (14d)

The objective function of (P?) includes operational costs
COPF(.) of controllable DERs and the weighted square errors
C3E(.) for the SE. Assumptions 1 and 2 straightforwardly
hold for problem (’Pf). By including the additional equality
constraint v,(w;) = v(z), the optimal set points u, of DERs
are based on the estimation z, to satisfy the targeted voltage
regulation.

Theorem 1: At any given ¢t > 0, the dynamics (9) serve
as a primal—dual gradient algorithm to solve the saddle-point
problem of (P?) with Tikhonov regularization terms' on the
dual variables in the Lagrangian.

Proof: See Appendix B. (]
Theorem 1 demonstrates the optimality and convergence of
the proposed algorithm and provides a way in how to jointly
engineer the optimal dispatch and estimation layers as a single
optimization problem, which were conventionally separate.

III. STOCHASTIC OPTIMIZATION—ESTIMATION AND ITS
ONLINE IMPLEMENTATION

In this section, we modify the previous OPF-SE synthesis
(P?) to enhance it to a stochastic problem by incorporating
the noise from the voltage estimation and the linearization
errors of the ac power flow. We then develop a computationally
efficient online solution to the stochastic problem and analyze
its convergence and optimality.

A. Stochastic Optimization—Estimation

The modeling and estimation errors can degrade the per-
formance of feedback-based OPF solvers, sometimes even

I'The Tikhonov regularization terms facilitate the convergence performance
and ensure that the saddle-point problem is strongly convex on primal
variables and strongly concave on dual variables. Note that the equilibrium
of the dynamics (9) only approximately solves the original optimization
problem (’P,3) due to the additional regularization terms. The deviation of
the approximate solution from the optimal solution is quantified in [21].

produce infeasible solutions [18], [19]. To address this issue,
we extend (’Pf) to a stochastic problem to enable robust
decision-making. In the stochastic formulation, we express
the voltage profile as a combination of the linearized voltage
model and a random vector §, € R" to model the inherent
errors of the SE and the power flow linearization

~real

v[ = vt(uf) +El

where the probability distribution of &, is unknown, but it has
finite mean and covariance values for + > 0. Accordingly,
we change the voltage constraint (14b) to a stochastic version
by replacing v,(u,) with v,(u,) + &,

r(Vr(“t) + ’é,) <0.

We can now formulate a stochastic OPF-SE problem that
restricts the risk of voltage violation

(P) min  Ef [CP@)+CF@ vi@)] (15
subject to:  Pr{r(v,(u) +£,) <0 >1—8 (I5b)
vi(u) = v (2) (15¢)

u € &, (15d)

where the operator Pr{-} indicates a transformation of the
inequality constraint into a chance constraint. The set points
u, can be scheduled in a way that voltage limits are satisfied
with the prescribed probability 1 — S.

Remark 2 (Uncertainties Realization): There are a variety
of classic ways to reformulate the stochastic OPF-SE problem
(P} to obtain tractable subproblems that can be solved by
standard convex optimization solvers. These include assuming
a specific functional form for the distribution (e.g., Gaussian)
of &, based on the statistical information of the historical
data and using constraint violation risk metrics, such as
those encoding value at risk (i.e., chance constraints), CVaR,
distributional robustness, and support robustness. In addition,
the linearization and estimation errors can also be sampled
by evaluating the residual between the measurement and
estimation results of the quantity of interests (e.g., voltage
magnitude). This provides an empirical distribution of &, with-
out a prescribed distribution assumption. Hence, the result is a
data-based reformulation of the stochastic OPF-SE problem.
Since we assume the time-varying stochastic OPF and SE
problems are well posed due to the Slater’s condition and full
observability, it is obvious that & is bounded for any t > O.
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The chance constraints for voltage regulation are approxi-
mated by leveraging the sample average of CVaR values [31],
[32]. Considering a random variable z € R and a scale
factor t € R,,, we have Pr(r™'z > 0) = Pr(z >
0) = E[I[O,w)(r’lz)], where 1j9 ~ is the indication function
over the set [0,00). The key step to develop a convex
approximation for Pr(z7'z > 0) = Pr(z > 0) is to
find a nonnegative nondecreasing convex generating function
() : R - R with ¥(z) > (@O = 1 for all
z > 0, which is called generating function that will generate
a family of convex approximation for the chance constraints
due to ¥ (t7'z) > 1(r~'z). Having the generating function
leads to Ey(r7'2) > E[pe(t'2)] = Priz = 0),
which is an upper bound on the chance constraint. Now,
replacing z with r(v(u) + §) without the time index yields
El[y(t 'r(v(w) + £)] = Prr(v(w) + &) > 0) for
all possible u and t > (. We observe that if there exists
7 > 0, such that tE[y(r7'r(v(w) + £))] < B, then
Pr(r(v(u) + &) > 0) < pB. This leads to a sufficient
condition inf,-o[zE[¥ (t7'r(v(u) + &))] — 8] < O for
Pr(r(v(u) + &) > 0) < B, which is a conservative
approximation of the chance constraint (15b).

Clearly, the above approximation depends on the choice of
the generating function ¥ (-), such as Markov: ¥ (z) = [1+
Zl+, Chebyshev: ¥ (z) := ([142z]4)?, Traditional Chebyshev:
¥(z) = (1 + z)?, and Chernoff/Berstein: ¥ (z) := e* [32].
From the point of view of a tighter approximation with
relative smaller value 1/ (z) than others, the Markov generating
function approximates the chance constraint in the form of

Tirlg[E[r(v(u) +H+1], - tﬂ] <0

which is related to the concept of CVaR. Quantifying both
the frequency and the expected severity of constraint vio-
lations, the CVaR serves a widely adopted risk measure
for optimization under uncertainties. Note that the Markov
generating function is nondecreasing and r(u, §) is convex
in u given any &, which implies that the above CVaR-based
chance constraint is convex in optimization variables.
Employing the linear model (2) and the voltage constraint
r(v,(u)) = [(vi() — V™), ™ — v@)']" < 0,
a sample averaging CVaR-based convex approximation of the
voltage constraint can be formulated as follows:

N,
1 - 2 s | = = —
N E [V,(ll,)—dex‘FS}+Tt]+_'ft,3§0 Vs € &
5 os=1

=

[vmin —vi(u,) — & +E]+ -1, <0 Vsek
1

=) -

s

where vectors T, € RY,z, € R" are the CVaR auxiliary
variables [31]. Given N; samples E; := {55}?1:“1 of ran-
dom variable &, at time ¢, the expectation of the left-hand
side of (15b) is obtained via sample averaging. The sample
average approximation (SAA) methods with a modest num-
ber of samples have been shown to be effective in many
applications [33], [34]. An approximation of (15b) for an
arbitrary distribution can be accommodated in the time-varying

optimization—estimation synthesis problem as follows:

(P7)  min  CP"(u)+CF@.vi(z)  (16)

subject to: g, (v,(u,), 7,) <0 (16b)

vi(u,) = v, (z) (16¢)

u € X, (16d)

where g (v,(w,), 7,) = [gz(vt(ut)a?I)T»gt(vt(ut)»l;)—r]—r €
R¥, 7, == [¢],7/1" e R¥, and

g (v;(w), T;)
| X

= D [viw) —v™ + & +7,], - 7.8
S os=1

g (vi(u), z,)
N,

1 <« .
= ﬁ Z[len —v,(u) — 1,:; +It]+ — 1,,3.
S s=1

Assumption 3 (Slater’s Condition): There exist a set of fea-

sible inputs u, € & and a set of auxiliary variables 7, € R,
such that g,(u;, t,) <0 for all # > 0.
Similar to Assumption 1, the Slater’s condition above ensures
strong duality and the feasibility of the well-posed stochastic
joint OPF-SE problem (P?) for a well-designed distribution
network with high penetration of renewables.

B. Regularization Errors Analysis

Let £, (w,, z,, 7, A;) be the Lagrangian of (’Pts), where A; €
RiN denotes the Lagrange multiplier associated with voltage
constraint (16c¢), i.e.,

Li(u;, 2, T4, A)

= Co" () + CPF(z,, vi () + A, g (wy, T)). (17)

The optimal dual variables lie in a compact set due to the
compact set A; and the Slater’s condition in Assumption 3
for all + > 0. The Lagrangian (17) is not strongly convex in
the CVaR auxiliary variable 7, and not strongly concave in the
dual variable A,. To attain a better convergence performance of
the gradient approach under time-varying settings, we consider
the regularized Lagrangian

‘Cq),v,t(uta Z, Ty Ay)

¢
2
with small constants v > 0 and ¢ > 0 in the Tikhonov regular-
ization terms. The regularized Lagrangian (18) is now strictly
convex in all primal variables (u;, z;, 7;) and strictly concave
in the dual variable A,. The key advantage of the regularized
Lagrangian is that it can leverage a gradient approach to attain
an approximate solution of (’P,5 ) with improved convergence
properties within an online implementation. To simplify nota-
tion, we define n := (¢, v). We consider the following saddle-
point problem:

v
=£,<ut,z,,rt,x,)+znrtu%— 1A 113 (18)

min
u e,
z,€X, 7T, €RW

max

»Cn,t(ut, Zi, Ty Ay)
A eRY

19)
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and let (w;,,z;,, 7, A,,) denote the unique saddle point
of (19) at time ¢. In general, the solutions to (’Pf) and (19)
are different due to the regularization terms. This difference
can be bounded as shown later. We first state the following
assumption.

Assumption 4 (Lipschitz Property): Define
x, = [,z ,7]]" and fi(x) = C%(x,) +
CtSE(x,) + (v/2)||r,||§. There exist positive constants G y and
G, such that the gradient of the convex and differentiable
function Vy f,(x,) and any subgradient of the piecewise linear

constraints Vg (X;) € dxg;(X;) are bounded by

IVsfix)ll2 < Gr,  IVxg (X)) < Gy

for all x, € X, x R2V and r > 0.

The constant Gy exists if Assumption 2 holds, and
the piecewise function g,(-) in X, implies the existence
of the constant G,. Let xF := [(w)",@Z)", @H']"
be an optimal solution to problem (P%), and
X;,, = [(u;,t)-r, (z;’t)T, (r;,t)-r]T be the unique primal
optimal of the regularized problem (19).

Theorem 2 (Regularization Error): For all ¢t > 0, the dif-

ference between x; and x; , is bounded by

*

1]

_X:,t”%
26, + G )Y ¢
f v, 1 * *
< S )+Z(uxv,,||%—||xn,,n%) (20)

Cc

where A7, and A, , are dual optimal solutions of (19) for
¢ = O0andv > 0,and ¢ > Oand v > O, respectively.
Proof: See Appendix C. ]
By Slater’s condition, the dual optimal sets A, , and A, , of
(19) are nonempty for ¢ = 0 and v > 0, and ¢ > O and
v > 0, respectively. In what follows, letA}, € A,;and};, €
A, ; be arbitrary but fixed dual optimal solutions for (19). The
bound in (20) is jointly dependent on the Lipschitz properties
(G, Gg) of the objective f(x) = fX) + (v/2)||1'||§ and
the constraint g,(x,), as well as the growth property of the
objective function f(x) defined by the constant ¢ > 0.

C. Online Joint OPF-SE Algorithm

In this section, we present an online solution to the
time-varying stochastic OPF-SE synthesis problem (P7),
which enables the DERs to respond timely to variations in
system states. In particular, we propose an online primal—dual
gradient-based algorithm to solve the regularized stochastic
OPF-SE problem (19). The DER dispatch decisions and
voltage estimators are iteratively updated in real time toward
an approximate solution to the time-varying problem (P?).
The gradient updates are presented in detail as follows:

eVul, (0, z,7,1) u"’hz”"i| (21a)
X,

un,t+1 - ur;,t -
Tn.uxn.r

Tyi4+1 = |:Tr],t -

Aprv1 = [)wz,r + e(g, (Vr (z,],,), r,,,,) - ¢)"Iaf)]R+

eV Ly (n,z,7,1) unvhzw:| (21b)
Ry

Tr].r:kn,r

(21c)
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Algorithm 1 Online Joint OPF-SE Algorithm

Require: [SO] Initialize the DER dispatch set-points and es-
timation variables {u,. 0,2y 0}, CVaR auxiliary variables
Ty,0 and dual variables A, o.

1: whilet=0:7T do

2: [S1] Network operator collects the voltage magni-
tude measurements ?;:,Vi € M,, the load pseudo-
measurements p; ;, Vi € M, and G; ¢, Vi € M.

3: [S2] Network operator updates the estimation variables
(22d).

4: [S3] Network operator utilizes the estimation feedback
v¢ = v¢(2y,+) to update the dual variables (22c).

5: [S4] Network operator transmits the dual variables A;
to end-users.

6: [S5] End-users update the dispatch decisions (22a) and
the CVaR auxiliary variables (22b).

7: end while

Zyit) =Zys — €V Ly (W2, T,R) g, (21d)
e
where € > 0 is a constant step size.
For the time-varying case at hand, the online

optimization—estimation Algorithm 1 is able to capture
the voltage trajectories due to the variability of underlying
network states (i.e., renewables generation and loads). Before
analyzing the convergence of Algorithm 1, we introduce
additional assumptions to limit the difference between the
optimization solutions of consecutive time instants.

Assumption 5: For allt > 0, there exist constants o, > O,
o, > 0, and o; > 0 to bound the primal optimizer of (19)
at two consecutive time steps, i.e., ||“;,z+1 — u’,;y,llz < Ou
”Z:’;_H _Zf],tHZ < 0z, and ”T:;,t_;_] - T:,ZHZ < 0.

Assumption 6: The difference between constraints (16b) at
the optimal solutions of two consecutive time steps is bounded
by constant oz > 0 for all t > 0, i.e.,

< o,

gr+1 (Vf+] (u;,l-&-l)’ T:,t-&-]) - gf(vf(u;z)ﬂ T:yz) ) g

gz+1(Vt+l(Z;k],;+1)v T;,H—l) - gY(VI(Z;k],t)v T;,t) . = Og.

Assumptions 5 and 6 define the variability of the primal
variables and constraint space of the time-varying saddle-
point problem (19). Such variability can also be defined with

respect to dual variables, i.e., ||}J,’;.H_1 — X;’tﬂ < o
[35]. Define €}, := [(u; )", (z )", (z; )7, A5 )T]T, and

ey, — €1l Oe, for some o, > 0. The variability
bounds in Assumptions 5 and 6 are closely related to the
time-varying PV and load inputs, which always exist due to the
DERs and loads physical capacity. For an online implementa-
tion with a relatively small time interval (in seconds) between
two consecutive control commands, such variability is small
due to gradually ramping PV and load inputs. For convenience
in further analysis, we define a time-varying operator

I, : {u, 7, 4,2,
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Vu‘cn,t(u, Z,71, X)|u,7_,,z,,_,,r,,_,,l,7,,
Vtﬁn,t(u’ 71, x)'u,,(,,zn,,.rﬂ,,,x,,,,

—(g; (Vt (Zw)’ Tnyl) - ¢’)~m)
vzﬁrz,r(u7 Z,7T, )‘)|u,,_,,zn,,,t,,,,,l

— (22)

0.t

which is utilized to compute the gradients in the time-varying
updates (21) as follows:

€1 = [ — Ennvt(e”»f)]X,XR+xR'
Lemma 4: Given Assumptions 2 and 3, the operator (22)

is strongly monotone and Lipschitz continuous; i.e., there are
constants M > 0 and L > 0, such that

(T, (e) — T, () (e —¢) > Mlle—€3  (23)
ITL, () — T, (€) 13 < LPlle— €[5 (24)
for any feasible e and €.
Lemma 5: 1If the step size € satisfies
0<e<2M/L? (25)

then Algorithm 1 converges to the unique saddle point of (19).
Proof:  Note that the objective function in (P?)
CO%(u,) + C3E(z, v,(z,)) is convex quadratic, and the asso-
ciated constraint function g;(v;(u,), T,) is piecewise linear,
which implies that the saddle-point problem (19) with regu-
larizers is strongly convex on all primal variables and strongly
concave on all dual variables. This leads to the strongly
monotone and Lipschitz continuous properties of the gradient
operator (22). Similar to Lemma 3, the step-size criteria for
the convergence of algorithm can be easily established by
following the analysis procedure in our existing works [18],
[30]. ]
To conclude, the convergence and online tracking perfor-
mance of Algorithm 1 are provided next.

Theorem 3 (Convergence Analysis): Given any step size
0 < € < 2M /Zz, the distance between the sequence
{e,} generated by Algorithm 1 and the unique saddle point
e, , of the time-varying problem (19) is bounded as follows:

lim sup e,, — e:J , = Gﬁ —. (26)
f=ee V1 —2eM+ €212
Proof: See Appendix D. ]

Equation (26) gives the maximum difference between the
online optimization—estimation trajectories generated by Algo-
rithm 1 and the optimizer of the time-varying stochastic
OPF-SE problem (P?). This bound depends on the variability
of two consecutive time-varying problems (i.e., o.) and a
“small enough” step size €. As demonstrated in the numerical
studies, in Section IV, this difference between two consecutive
time steps is small if we run the online updates in a fast
time scale (i.e., 1 s). In addition, the “small enough” step
size € is trivial to decide by trial and error, as typically done
in distributed optimization [36]. Overall, Theorems 2 and 3
verify the optimality and convergence of the proposed online
algorithm with respect to the time-varying stochastic OPF-SE
problem (’P,S). These two bounds also illustrate the trade-offs
between the convergence performance and optimality due to
the regularization and online implementation.

28 27 ) . " 0—0

[
hn

23

.
2 16 15 12 |13

Fig. 2. IEEE 37-node distribution network. The boxes indicate the nodes
with PV generation. The locations of voltage sensors (i.e., i = 6,7, and 23)
are color coded in red.

IV. NUMERICAL RESULTS

A modified IEEE-37 node test feeder is used to demonstrate
our proposed online joint optimization—estimation architecture.
Fig. 2 gives the modified network as a single-phase equivalent
with high penetration of distributed PV systems. The line
impedance, shunt admittance, and locations of active and
reactive loads are derived from the dataset [37]. We deploy
the proposed online OPF-SE synthesis algorithm, specifically,
to mitigate the overvoltage when the PV availability exceeds
the consumption. There are 18 PV systems located at nodes 4,
7, 13, 17, 20, 22, 23, 26, 28, 29, 30, 31, 32, 33, 34, 35,
and 36, and their availability power is proportional to the real
irradiance data with 1-s granularity in [38]. The load profiles
are replaced by the real measurements with 1-s resolution from
feeders in Anatolia, CA, during the week of August 2012,
in [39]. The ratings of the inverters are all 200 kVA, except
for the inverters at nodes 3, 15, and 16, which are 340 kVA.

The real-time voltage trajectories of the system over four
days without voltage regulation are given in Fig. 3. The voltage
limits are set to 1.045 and 0.95 p.u. This particular network has
a significant overvoltage situation if no voltage regulation is
enforced. We implement the proposed online joint OPF-SE
Algorithm 1 to achieve the voltage regulation over time,
with the objective to minimize the amount of the real power
curtailment and the reactive power compensation from the
available PVs (i.e., COP(p,, @) = [prav — PrlI3 + 3llq:ll3).
For the inputs of the SE problem, the measurements within the
OPF-SE algorithm include the voltage magnitude measure-
ments at nodes 6, 7, and 24, as shown in Fig. 2, with the mea-
surement noise subjected to a Gaussian distribution with zero
mean and 1% standard deviation. In addition, we also include
the pseudo-measurements for all nodal injections (i.e., active
and reactive power) with significant noise (e.g., zero mean and
50% standard deviation of real values), which guarantees the
full observability of the SE problem. The voltage information
of the whole network is instantaneously fed back to the online
OPF gradients via dual variable updates every second based
on the online estimation results. The gradient step sizes are set
toaopr = 8 x 107*, ogg = 9 x 107*, andw; = 3 x 1073
for primal updates and appr = 5 x 1073 for dual updates.
The simulation takes 1.3030 x 10* s to perform the proposed
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Fig. 3. Uncontrolled overvoltage situation from 4:00 A.M. in day 1 to 8:00 P.M. in day 4.

online joint stochastic OPF-SE algorithm for 318 800 updates
(nearly four days) in 1-s resolution via the MATLAB interface
with MATPOWER [37] on a laptop with 16 GM of memory
and a 2.8-GHz Intel Core i7. One OPF-SE joint update takes
0.0412 s (on average) in computation time for every 1-s
update in practice. This also includes the time for solving
the nonlinear power flow via MATPOWER to simulate the
response of the distribution networks to the online DER
dispatch decisions.

Fig. 4 visualizes the online voltage regulation trajectories
regulated by the proposed online joint OPF-SE algorithm in
(21). In case of the stochastic OPF-SE, the curves for different
settings of the chance constraint satisfaction are given. In order
to prevent voltage from raising above 1.045 p.u., the online
OPF decisions must curtail excessive PV injections given
the online SE results over time. In Fig. 4(a), the voltage
trajectories slightly violate the upper bounds, which is because
the deterministic version does not take into account that
the voltage estimation and power flow linearization induce
errors. The proposed stochastic OPF-SE given in Algorithm 1
provides better robustness to errors from voltage estimation
and linearization. The number of samples within the dataset
Es is 100, generated by a Gaussian distribution with zero
mean and 1% standard deviation of the real voltage, which
includes the estimation noises and the deviation caused by
the linearization of the nonlinear power flow. In practice, the
dataset of these errors can be collected through the observation
and comparison between the historical records and estimation
results.

Fig. 4(b)—(d) illustrates the online voltage trajecto-
ries for varying chance constraint risk aversion (i.e.,
B = 0.10,0.05 and 0.01). The stochastic formulation
accounts for the errors and trade offs the CVaR of voltage
constraint violation and operational cost during the online
adjustment of PV injections. The conservativeness of the volt-
age regulation is controlled by adjusting 8. By explicitly using
the sampling data to take into account the inherent errors,
the voltage violation risk can be systematically assessed and
controlled. The curtailment decisions can be overconservative
when we require higher probability satisfaction for the voltage
constraints, as shown in Fig. 4(c) and (d). In general, it is
possible to prioritize the voltage regulation at certain buses
by adapting the corresponding risk aversion, which depends

on the risk preference of system operators and the accuracy
performance of the estimators. Note that the PV outputs in day
3 and day 4 have large fluctuations. The proposed online joint
OPF-SE algorithm, however, has superior robust performance
and provides fast tracking in response to these large variants
by generating timely optimization—estimation results. Hence,
the voltage regulation can be achieved in an online fashion
under a time-varying setting with large variations of PV
outputs.

We now compare our OPF-SE approach to an online
feedback-based OPF solver with the following: 1) perfect
information of all the voltage magnitudes [12] and 2) all
the raw measurements of voltage magnitudes, i.e., including
noise. The settings are the same as the online OPF-SE
algorithm except that the online OPF solver utilizes the
direct (or noisy) voltage measurements. As shown in Fig. 5,
incorporating full and perfect voltage feedback information
into the online OPF solver results in a better profile with
only very few violations compared with Fig. 4(a). However,
in practice, real-time voltage measurements are inherently
noisy. Hence, we subject the actual voltage magnitude values
to independent Gaussian distributions with zero mean and
1% standard deviation of their actual values. Fig. 6 gives
the results for the online feedback-based OPF algorithm with
raw voltage magnitude measurements. Due to the inherent
sensing noise, the online feedback OPF solver fails to resolve
the overvoltage situation in a fast-changing distribution net-
work. Clearly, having an unbiased WLS state estimator can
significantly reduce the uncertainties in the feedback loop
and promotes the feasibility of the online OPF solver. This
indicates that our proposed online OPF-SE algorithm having
available pseudo-measurements and a limited number of raw
voltage measurements has superior robust performance, com-
pared with the direct usage of all the raw measurements of
voltage magnitudes.

Overall, we conclude that the proposed online
optimization—estimation architecture is capable of achieving
online voltage regulation under a time-varying situation.
By introducing the stochastic modeling of inherent noises
within the feedback loop, the online regulation enables robust
performance with respect to the estimation/linearization
errors, which provides operators options to run the systems
under various risk aversion settings. The benefit of running
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Fig. 4. Comparison of voltage trajectories for various values of chance constraint risk aversion B. As these parameters decrease, more active power from
PVs is curtailed, leading to a lower risk of voltage constraints violation. (a) Voltage trajectories for a system controlled by the OPF-SE synthesis algorithm
w/o realization of SE and linearization errors, from 4:00 A.M. in day 1 to 8:00 P.M. in day 4. (b) Voltage trajectories for a system controlled by the OPF-SE
synthesis algorithm w/ realization of SE and linearization errors. The chance constraint parameter is set to 8 = 0.10 with a constraint satisfaction probability
of 90%, from 4:00 A.M. in day 1 to 8:00 P.M. in day 4. (c) Voltage trajectories for a system controlled by the OPF-SE synthesis algorithm w/ realization of
SE and linearization errors. The chance constraint parameter is set to § = 0.05 with constraint satisfaction probability of 95%, from 4:00 A.M. in day 1 to
8:00 P.M. in day 4. (d) Voltage trajectories for a system controlled by the OPF-SE synthesis algorithm with realization of SE and linearization errors. The
chance constraint parameter is set to 8 = 0.01 with constraint satisfaction probability of 99%, from 4:00 A.M. in day 1 to 8:00 P.M. in day 4.
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Fig. 5. Voltage trajectories for a system controlled by an online feedback-based OPF solver with perfect information of all voltage magnitudes.
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Fig. 6. Voltage trajectories for a system controlled by an online feedback-based OPF solver using raw measurements of all voltage magnitudes.
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optimal control-estimation synthesis has been shown from the r 0 0 —-H"[u
perspectives of robustness and computational efficiency. =| V.C¥@) [+]0 0 0 z. | +ag
0 H 0 I,

V. CONCLUSION

In this article, we provide an extensive theoreti-
cal analysis and numerical results of an online joint
optimization—estimation architecture for distribution networks.
An online implementation is proposed to solve a time-varying
OPF problem and a WLS SE problem in parallel with a large
penetration of renewable penetration. The online stochastic
framework explicitly considers the SE and ac power flow
linearization errors for robust performance. Convergence and
optimality of the proposed algorithm are analytically estab-
lished. The numerical results demonstrate the necessity and
success of bridging the traditional gap between optimization
and estimation layers in distribution networks, from the per-
spectives of computational efficiency, robustness, effective-
ness, and flexibility.

APPENDIX

A. Proof of Lemma 2

Proof: We decompose the gradient operator F;(-) in (10)
equivalently to

f}(utv Ky, Zt)

Vil 3

where H =[ R X —R —X], and a; denotes a constant
vector. Since the estimation feedback v¥(zF) = vF(ub)
always holds every gradient step, the gradient operator can
be rewritten by replacing v¥(z¢) by vk (uf)

Fi (“t, 109 zt)

VuCO% (u,) 0 0 -HT u
1

=| VuC¥@) [+]0 0 0 z, | + ag.
Vel 3. [H o o LA

Hok

This rewriting implies that the online dual update depends
on the online SE results instead of OPF decisions at every
iteration. The first term in the above decomposition is
strongly monotone, since each element is strongly convex in
(w;, p,, 2,;). We observe that the second linear operator with the
projection matrix s* is monotone if and only if the following
condition holds [40]:

00-H' 00-H"
00 0 [+]00 0O > 0.
HO 0 HO 0
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The above condition holds by the definition of positive
semidefinite matrix. In the end, the gradient operator JF;(-)
is strongly monotone due to a linear combination of a strong
monotone operator and a monotone operator, which concludes
the proof. (Il

B. Proof of Theorem 1

Proof: Introducing a Lagrangian multiplier A, € RV
for the constraint (14b), we have the following regularized
Lagrangian with the parameter ¢ > 0:

Zt(uts Zi, Ar)
)

= CP ) + G @, vi(2) + 4, 1V (W) = ZII .
(27
We have a saddle-point problem
max min _ L,(u;, z, A,). (28)

rMeER, weX, z,€eX;

Denoting (u},z, 1)) as a unique primal-dual optimizer of
(28) at time ¢, the optimality conditions of (28) are

;
(VaCO™ () = Var(vi () ") (o — ) 2 0w, € &,

(29a)

(r(vi(z)) — ¢r7) A7 =0 (29b)
AP >0 29¢)
(VCSE @, vi(@)) (2 —2) = 0 (29d)

which are equivalent to
* * OPF (% *\\ T, *

u = [ut — E(VuCt (uf) + Var(v; (u})) ;L,)]X (30a)
wi=[ni+e(e(vi(z)) — omi)]g, (30b)

7, =2 — eV,CF (2, v, (7). (30c)

The point (uf, A}, z) in (29) is a unique saddle point of
(28) if and only if the point (uf, uy,zy) in (30) is an
approximate solution of (P3), and the estimation feedback
Vf (uf) = Vv (zf) holds for all iterations in (9). This also
implies that the optimal voltage profiles are equivalent to the
estimation results, such that v,(u}) = v,(z;). In addition to
1 = A7, the existence and uniqueness of the saddle point
(i, A}, ,) of (28) then imply the equilibrium (u}, u}, z}) of
(9), which concludes the proof. O

C. Proof of Theorem 2

Proof: In this analysis, we omit the time-index subscript
t to simplify the notation. We relax ||x* — X:;,U”% into two
parts via the triangle inequality

2 2 2
Ix* = X3 < X" — X303 + Xt — X113 (31)

and characterize the upper bounds of the two terms on the
right-hand side of (31) as follows.

1) We first derive the bound of |x* — xj”%. Define
a vector to collect the subset of primal variables in
X := [u',z"]" and a compact objective expression of (16a)
as f (X) = COPF(X) + CSE(X). By viewing the regularized

Lagrangian £, in (18) as a result of a two-step regularization,
we first regularize the Lagrangian function (17) of the original
problem (P?) by adding an additional regularization term
(v /2)||T||% on the primal variable T with a constant v > 0,
ie.,

L.0x.2) = £ (%) +27800 + 3117l

and its corresponding saddle-point problem is given by

max min  L,(x, ). (32)
AeRY x€X x X' xRV
The saddle point (x}, 1)) of (32) follows the property of:
Lo(x5A) < L,(x5A) < L,(x,A%) vx, A (33)

Let x = x* in the second inequality of the preceding relation-
ship, and we obtain

F&) + () "glx) + S1Til3
< FE) + () g(x) + gnr*ng. (34)
With functions f(x*) = f@&) + (/2)|7*|} and
F&*) = fE&) + (v/2)]|T*|3, the above inequality becomes
Fx) + (1) ex) < Fay + (1) Tgx)  G35)
which then leads to
F(x) = fo < (1) g — () 'g(x)). (36)

Observe that the newly defined function f (-) is strongly
convex in all primal variables x for some ¢ > 0

F() = F(x) 2 Y f T () (6 = x7)

Combining (37) and (36), we obtain

C
+ 5 lIx —x*[3. 37)

% X, —x* ;
< Vi /() (& = x5) + (4) T (2(x") — g(x5).

Due to the convexity of g(-), we can write the second multi-
plication term over all j and add them up

g X; —x* i
< Vo /T (x*) (x" — x) +Zx” «8] (X) (x* —x})
= W)X -x)
2N
+ 2 M Vg () (X = x)) -
j=1
Employing the Cauchy-Schwarz inequality, the second

inequality above results in
C ok *112 F (¥ * *
§I|X — XI5 < IV f (X)ll21x* = X} 12

+ Z AL IVig) (x

2 lx* = x5 o
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Since the gradients/subgradients of f (-) and g(-) are bounded
in Assumption 4, this leads to

c 2
- xf—x*
2 Y 2
*
SGfX —

* * * *
X, ,F E A ,Ge X' —x, .
i

Next, we divide both sides of the above inequality by [|x} —
X*||, resulting in

c

> X, =X, <Gs+Gg A, ,
and attain
2(G 4G ||rt
X:—X* 25 ( f j” ”1) (38)
2) We now characterize the upper bound of |x, — xﬂ||%,

the second term on the right-hand side of (31). Consider
a regularized Lagrangian with regularization terms on both
primal and dual variables, i.e.,

- v o)
L,(x,0) = f®+1"gm) + EIITH% - Elllllg
where v > 0 and ¢ > 0. Its corresponding saddle-point

problem is

(39)

max min

L,(x,1).
AeR, xe X x X xRy

The saddle point (xj, Xf]) of (39) follows the property of:
£,(x5,4) < £, (x:

nAS) < Ly(x.A)) VXA

The left inequality leads to

T ¢ .2 ¢ .2
(-2 -5 0 i+ 2 A 20
where we set A = 1iJ. We now characterize the term
(X; — lj)Tg(X;’;). Leveraging the definition of convex function,

the upper bound of g;(x)) is given by

(40)

* * £\ T
gj (Xﬂ) =8 (Xv) + Vxg;j (Xv) (X'? - Xv)
T
< Vig; (Xn) (x, — xv).
The last inequality follows, because X} is a solution to the
saddle-point problem (32), such that g;(x;) < O for all j.

We then multiply both sides of (41) by lf” ; = 0 and sum
up over all j, which leads to

x,g(x;)
2N

= Z Viky,j - 8; (X
j=1

= YLy (x5, 45) " (x5 = x;) =

< —Vof(x) " (x} —x%)

where the second inequality is based on the first-order opti-
mality condition, i.e., VL, (X, X:)T(x; —x¥) <0.
On the other hand, we have

g;(x5) = g;(x}) + Vag; (x) " (x2 — x2).

(41)

D) (% —x;)

Vi (%) (x5~ x7)
(42)

(43)
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< 0 and summing

Multiplying both sides of (43) by —A; ;
up over all j lead to
-2 "g(x))

== Z A, ng Z AL - Vag)(x
= Z)‘v j Xg] (X: - X?])

vx‘cv(xv’ )‘3) (X —X )
o\ T [k
fo(xv) (x,7 - xv).
The first equality follows from the condition (X:)Tg(xj) =
which holds due to the complementary slackness condition of
(32). The second inequality is obtained from the first-order
optimality condition, i.e., VL, (X}, X’;)T(Xj — xz) <0.
Since the objective function f(-) is strongly convex with a
positive constant ¢

(%) (x; — x5)

Va (x1) (x0 — x;)

A

(44)

r FroN) T / ;2
(fo(x)—fo(x)) (x—x)fc X—X ,. 45)
Substituting (42) and (44) into (40) and employing (45) yield
* * ¢ * *
I} — x¢ 3 < Z(nxuné — IX2113)- (46)
Finally, substituting (38) and (46) into (31) leads to
Ix* — 13
2G,+ G )Y 4
f gliAylit #12 *12
< . ) + 5 (IAT1Z = 1A511)
which concludes the proof. ]

D. Proof of Theorem 3

Proof: We begin by investigating the distance
between the sequence f{e,;} = {w,., Ty Ayss 2y}
generated by (21) at time ¢ and the unique optimizer
{e;,tfl} = {u;kl, t;kl, X:J_l, z:’tfl} of the saddle-point
problem (19) at time + — 1. Based on the definition of
the time-varying gradient operator and the nonexpansivity
property of the project operator, we have

€ — e:,r—l 2
— €Il (e)-1) — €, ~|—61'[,,,,(e;’r_|)

Using the triangle inequality, we obtain

<
= er],l—l 2"

*
n,[—] ||2
2
€ 1lla+e ||Hn,t(en,l—1) - Hn,t(e;,z—l) lI2

—2¢(M,y (€p—1) — H,,,,(e;’t_l))T(e,,,,_l -, )
<ale -1 —e 4l 47)

“en.t —e€

=< ”en,r—l -

where @ = (1—2¢M + €2L2)"/2. The last inequality is due to
the strongly monotone and Lipschitz properties of IT, ;, shown
in (23) and (24). Now, we are ready to show the convergence
of the online gradient updates in (21). For ¢ > 0, the distance
between the sequence e, ; generated by the gradient updates
in (21) and the unique saddle point €, of the optimization
problem (19) is bounded by

t

€nr — e:,l = ”en,t - e;;,t + e:,tfl - e:,t71”2
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* * *
= ey — enﬁt—] 2 + er],t _en,t—l 2

£
o e — €, i1 ) + Oe.

The last inequality follows from (47) and the difference
between the optimization solutions of consecutive time
instants, as shown in Assumptions 5 and 6. We then recursively
implement the above inequality until ¢ = 0 resulting in

e —€, ,<a eog—e, T (I‘T"‘/)Ue. (48)
Choosing the step sizeas 0 < € < oM / L?) from Lemma 5
leadsto 0 < a < 1. Ast — oo, the term o' on the
right-hand side of (D) will vanish. Given such « and any initial
point e, o located in the feasible set Xj, we let the gradient
update (21) run over time as t — oo, and the difference is

bounded by

. Oe
lim sup e,, — €’ = — —
oo T 2 T e M + 212
which concludes the proof. |
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