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TRANSPORT AND DYNAMICS IN TOROIDAL FUSION SYSTEMS

1.0 INTRODUCTION

Over the past two decades, large scale numerical simulation has played an
important role in fusion plasma research. Applications of these techniques to fluid
plasma models have led to an interpretation of sawtoothl and fishbone oscillations?
in tokamaks, the tokamak major disruption3, the tilting mode in field-reversed
configurations4, and to a fundamental understanding of the Reversed-field Pinch
dynamo®. These calculations were generally performed on spatial grids aligned with
fixed coordinate directions. As a result, these calculations were often carried out in
generic toroidal or cylindrical geometry.

Recently fusion has evolved from a research program to one that is
increasingly engineering based, and generic calculations based on simple geometries
have become less relevant. Important problems now involve the quantitative
prediction of flows and heat transport near limiters and divertors, which often have
complex geometry. These phenomena are driven by fluxes of particles and thermal
energy that arise from longer spatial scale motions in the plasma core. The core
dynamics may in turn be affected by the edge conditions through recycling fluxes.
To answer these practical questions, self consistent calculations that include
geometric details are required.

Theoretical issues are also affected by the details of the geometry. For
example, the poloidal plasma shape can greatly influence the linear stability
properties of a fusion plasma, and such calculations are now routinely performed
with the actual poloidal plasma geometry accurately represented. This is often
accomplished by employing a coordinate system based on the magnetic field lines,
whose geometry is fixed throughout the calculation. The resulting metric makes
the fluid equations quite complicated, but allows the coordinate system to naturally
fit the plasma shape.

Coordinate systems based on magnetic fields have several disadvantages in
fully nonlinear simulations because of the dynamical nature of the magnetic field.
Primary among these is the non uniqueness of the magnetic topology when finite
resistivity is included in the model. These coordinate systems also may become
singular at magnetic separatrices, which are essential features of modern tokamaks.

It is thus desirable for future simulations to employ a spatial representation
that can readily conform to the geometric details of the plasma and its surroundings,
and is independent of the magnetic structure. For accuracy, this representation
should also be capable of conforming to the dynamical evolution of short spatial
scale structures, such as current filaments and edge density gradients, that may
appear spontaneously and require finer spatial resolution than the surrounding
environment.

One candidate for a spatial representation with these features is an
unstructured, adaptive mesh. In such a mesh the mesh points are not constrained
to lie along constant coordinate directions. Instead, mesh points are placed on the
boundary to conform with the actual geometry of the problem, and distributed in
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space to maximize the accuracy of the calculation. Thus placed, the points are
connected with line elements that form the edges of triangles. These triangles are
the Eulerian control volumes that form the basis for the finite representation of the
appropriate fluid equations. In the logical data structure that describes the mesh,
mesh points (and associated triangles) can easily be added or deleted dynamically
based on pre-defined accuracy criteria. The spatial representation can thus adapt to
evolving spatial structures without the mesh distortion problems associated with
Lagrangian formulations.

Techniques based on unstructured, adaptive meshes have come to maturity
in computational fluid dynamics (CFD), where quantitative predictions in real
geometry have become essential in the design of aircraft and gas turbine engines®.
These methods are generally based the solution of a Riemann problem at each
triangle interface (edge) to determine the fluxes of energy, mass, and momentum?.
The simplest extension of the hydrodynamic model that is appropriate for the
description of magnetic fusion plasmas is magnetohydrodynamics (MHD).

In this document we describe an extension of these spatial gridding
techniques to an MHD model suitable for the description of the dynamics of toroidal
fusion devices. Since the dominant MHD modes in these devices have relatively
long toroidal wavelength, the toroidal coordinate is approximated with finite
Fourier series. The unstructured, triangular mesh is used to describe the details of
the poloidal geometry. The hydrodynamic variables are treated in a manner
analogous to that used in CFD. These quantities (mass, energy, and momentum) are
volume based densities that satisfy scalar or vector conservation laws. The
electromagnetic variables (the magnetic flux density B and the electric current
density J) are area based densities that satisfy pseudo-vector conservation laws, and
have no counterpart in fluid dynamics. These variables are also constrained to
remain solenoidal. These quantities are represented on the triangular mesh in a
new manner that is an extension of that used on rectangular, structured meshes.

In this work we have chosen to solve the primitive (instead of reduced) MHD
equations in order to make the resulting codes and techniques more generally
applicable to problems beyond the narrow scope of tokamak plasmas. The temporal
stiffness problems inherent in this description of tokamak dynamics that motivate
the reduced MHD model are addressed here with the semi-implicit method of time
integration8. Finally, we remark that, while the present work deals strictly with the
MHD equations, other volume based fluid descriptions, such as diffusive transport,
could easily be adapted to these techniques and coupled with the description of the
electromagnetic field presented here.

This document is organized as follows. In Section 2 we discuss the properties
of structured and unstructured meshes, and the data structures useful for describing
them. Issues related to the triangulation of an arbitrary set of points in a plane are
also discussed. In Section 3 we derive a finite volume approximation to the
resistive MHD equations suitable for use on an unstructured, triangular mesh in
toroidal geometry. Boundary conditions are discussed here. The specific MHD
model, and its implementation on the unstructured mesh, is discussed in Section 4.
In Section 5 we discuss methods of time integration, and describe our
implementation of semi-implicit and fully implicit algorithms. Examples of the
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application of the method are given in Section 6. Included are standard, two-
dimensional hydrodynamic and MHD shock problems, as well as applications of the
method to the equilibrium and stability of toroidal fusion plasmas in two and three
dimensions. Our initial results with mesh adaption are also described. The
summary and discussion are given in Section 7.

2.0 COMPUTATIONAL MESHES

The computational description of a continuous, time dependent system, such
as a magnetized plasma, has three components: a continuum model of the system
that describes the evolution of infinitesimally small volume elements for
infinitesimally small intervals of time; an approximation to the continuum model
that describes the evolution of finite sized volume elements for infinitesimally
small intervals of time; and, a description of how these finite sized volume
elements evolve over finite time intervals. In this work we have chosen resistive
magnetohydrodynamics as the continuum model. This will be described in
Section 3. The finite temporal description will be given in Section 5. Here, and in
Section 4, we will discuss finite methods of spatial representation.

2.1 Finite-dimensional Systems and Structured Meshes

Continuous systems described by partial differential equations respond to
differences between the state of the system at one spatial location and the state at
another spatial location that is only infinitesimally distant. The state of the system:
is defined on a continuum of points in the domain. In a finite analog of such a
system, the infinity of points in the continuum is replaced by a finite number of
discrete points, and infinitesimal distance is replaced by the finite distance between
neighboring points. For the purposes of computing the differences in the state of
the system between these points, near neighboring points can be thought of as being
linked together to form a mesh that covers the domain. The description of the
mesh consists of a list of the mesh points and their connectivity. The physical
relationships between the state of the system at one mesh point and that at all others
then defines a finite-dimensional set of nonlinear algebraic equations that are the
exact equations of motion for the finite system. The extent to which the dynamics of
this finite dimensional system approximate those of the continuum system
determines the accuracy and utility of the approximation.

A structured mesh is one in which a pre-defined logical structure (or order) is
assumed to exist. For example, in 2D Cartesian coordinates, a structured mesh
consists of a product of two sets of mesh arrays (the x and y coordinates), with
indices i and j, ordered by increasing coordinate value. Two indices are required to
identify a mesh point: point (i, j) has coordinates x(i), y(j). The mesh is structured
logically so that points (i + 1, j) and (i, j + 1) are adjacent to point (i, j). This logical
structure is assumed to hold for all points in the domain, and is implicitly used in
constructing the finite-dimensional algebraic equations that describe the dynamical
evolution of the finite system. Structured meshes form the familiar quadrilateral
grids commonly used in numerical methods. The boundary of the domain
naturally consists of curves of the form x = constant and y = constant. (An irregular
domain would be built up from unions of such meshes.) As neighboring points are
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logically connected in this way, adding and deleting points affects the indexing of all
points in the mesh.

2.2 Unstructured Meshes

In contrast to a structured mesh, an unstructured mesh is one that has no pre-
defined logical structure. An unstructured mesh consists of a set of arbitrarily
ordered points. A single mesh index suffices to identify a point. Point rj, having
coordinates x; and y;, and point i + 1, having coordinates x;;1 and y;;1, are not
necessarily adjacent.

Since there is no pre-defined logical structure, the mesh points are not
constrained to lie along any predetermined curves; they may be arbitrarily
distributed in the domain. Neighboring points are then connected by line elements
to form a mesh of triangles that covers the domain. The mesh points r; form the
vertices of the triangles, and the connecting lines form the triangle edges. (This
triangulation is not unique. This will be discussed in Section 2.4.) The mesh
consists of Ny vertices, N, edges, and Nj; triangles, with Ny < N5 < Ne.

With each triangle s we will associate a point rs. This point identifies the
location of the triangle in the domain. (Like the triangulation, the definition of rs is
not unique. This will be discussed in Sections 2.4 and 2.5.) It is also convenient to
define the edges of the triangles as directed line segments, or vectors l,-,j, connecting
point i with point j, i.e, 1;j = rj— r;. Every edge e thus has triangle s = L on the left,
and triangle s = R on the right. With each edge we also associate a unit tangent
vector t, =1./le, and a unit normal vector n, that points from the left side to the
right side. These mesh elements are sketched in Figure 2-1.

Figure 2-1. Triangle, edge, and vertex mesh elements.

An unstructured mesh is identified and manipulated by means of primary
and secondary data sets. The primary data set consists of a list of mesh elements.
Secondary data sets define the connectivity between the primary mesh elements.
For example, for 2D meshes the spatial representation consists of triangular
elements. The primary data set consists of a list of cells (trfiangles), their vertices,
and the edges connecting them. Additional data sets consist of cross-indexing
information that relate the elements of the primary set. For example, an edge-
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indexed array specifies the indices of the cells to the left and right of an edge. Other
cell-indexed arrays specify the indices of the three vertices and three edges of a cell.

Various tools and routines exist for generating and manipulating
unstructured triangular meshes. We have adapted several subroutines used in 2-D
hydrodynamics codes? for use in magnetohydrodynamics. These routines interface
with unstructured meshes generated by the SMART codel0. The SMART code runs
interactively on a MACII, and generates files that can be read as input. We have
used SMART to generate unstructured meshes for fusion applications. An example
of zoning for the poloidal cross-section of the D-III-D experiment is shown in
Figure 2-2. Detail of the zoning in the region near the divertor is shown in
Figure 2-3.

VAVAYA
r}.u'Aqs;J:
#E?A‘Aﬁ‘
O ATAYL

Figure 2-2. An example of an unstructured mesh describing the geometry of the D-III-D
experiment.

AT

Figure 2-3. Details of the zoning in the divertor region of D-III-D-(the bottom portion
of Figure 2-2).
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2.3 Primary and Dual Meshes

Computational meshes, both structured and unstructured, are used not only
to describe geometric regions, but also to define differential operators. For the latter
purpose, it is useful to introduce the concept of primary and dual meshes. For a
structured mesh, these are often referred to as staggered meshes. Some variables are
defined on the primary mesh, and others on the dual, or staggered, mesh. An
example of a 2-dimensional staggered mesh is shown in Figure 2-4. These meshes
have been used very successfully in MHD simulationll.

The concept of primary and dual meshes can be extended to triangular
meshes. In this case the primary mesh consists of the triangulation of arbitrarily
placed points in the plane. The mesh points are the vertices of the triangles. The
dual mesh consists of polygons that surround each vertex. The vertices of the dual
polygons can be chosen in several ways. Two choices will be discussed below.
When taken together, the primary triangular mesh and the dual polygon mesh are
the generalization of structured, staggered meshes. An example of a triangular
mesh and its polygon dual are sketched in Figure 2-5.

Figure 2-4, Structured, staggered (dual) Figure 2-5. Triangular (primary) and polygon
meshes. (dual) meshes.

24 Delaunay Triangles and Voronoi Polygons

A set of points in a plane can be connected to form triangular cells that cover
the plane. The connectivity of the resulting mesh is not unique. One triangulation
that has several desirable properties is the Delaunay triangulation. This is described
below.

Consider a set of points P arbitrarily distributed in the plane. A Voronoi
polygon is defined as the boundary of the region surrounding a point P; within
which all points in the plane are closer to P; than to any other member of the set P.
The mesh consisting of all the Voronoi polygons of the set P is called the Voronoi
(or Dirichlet) tessellation of the plane. The Delaunay triangles form a mesh that is
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dual to the Voronoi polygons. It is formed by connecting points whose Voronoi
polygons share a common side.

The Voronoi/Delaunay mesh has several interesting and desirable properties.
Some of thesel? are stated here without proof.

1. A Delaunay triangulation of a set P is unique.

2. The vertices of the Voronoi polygons (these points are not members of the
set P) are the circumcenters of the Delaunay triangles (i.e., a Voronoi
vertex is the center of a circle passing through the three vertices of a
Delaunay triangle.)

3. The sides of the Voronoi polygons are perpendicular bisectors of the sides
of the Delaunay triangles. (These dual meshes are orthogonal.)

4. The Delaunay triangulation maximizes the minimum angle of the
triangulation; i.e.,, of all triangulations of the set P the Delaunay triangles
are the closest to being equiangular, on average. A Delaunay triangulation
is said to be acute if the interior angles of all triangles are acute. (In
general, the Delaunay triangulation of an arbitrarily distributed set P is not
acute.)

5. An edge formed by joining a point P; to its nearest neighbor is an edge of a
Delaunay triangle.

6. In an acute Delaunay triangulation, the vertices of the Voronoi polygons
are always interior to their corresponding Delaunay triangles.

As we will discuss in Section 4, Properties 3, 5, and 6 make acute Delaunay
triangles very desirable for defining discrete approximations to differential
operators. Several algorithms exist for constructing the Delaunay triangulation of
the set of points P.

Unfortunately, acute triangulations are not guaranteed for arbitrarily
distributed points. When the triangulation is not acute, the Voronoi vertices are no
longer interior to their corresponding Delaunay triangles. This makes the use of
this dual mesh undesirable. Because of this, we use a slightly different dual mesh.

2.5 The Barycenter, or Centroid, Dual Mesh

Because of Properties 4 and 5 of Section 2.4 we use a Delaunay triangulation
for the primary mesh. However, instead of Voronoi polygons we use a dual mesh
whose vertices are the centroids, or barycenters, of each triangle. If the coordinates
of the triangle vertices (the points P) are ry, the coordinates of the vertices of the
dual mesh are given by

W | =

(tp1+xp+x3), s = 1,2,..., Ng 2.1)

1‘s=

where N is the number of triangles and the r;; are the thrée vertices of triangle s.
This dual mesh has the property that the vertices of the polygons are always interior
to their corresponding triangles. It has the undesirable property that the edges of the
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dual meshes are no longer orthogonal. This complicates the calculation of some
dependent variables, as will be discussed in Section 4.

2.6 The Third (Toroidal) Dimension

Our goal is to describe magnetohydrodynamics in toroidal fusion systems.
The geometry of these systems is symmetric about an axis, and is best described in
cylindrical (r,¢,z) coordinates. We use the unstructured Delaunay triangular mesh
and the barycenter dual mesh dual to approximate the geometry in the poloidal (r, z)
plane. Since the angular (¢) coordinate is periodic, and since the dominant MHD
motions in a tokamak are long wavelength in this direction, we have chosen a
pseudospectral description using Fast Fourier Transforms (FFTs) for this coordinate.
The toroidal mesh is thus structured, with a uniform mesh spacing A¢ = 27/ Ny,
where Ny is the number of toroidal mesh points; Ny must be a power of 2.

The three-dimensional control volume is sketched in Figure 2-6. The
elemental volume is AV = rsA¢dAas, where Aag is the planar area of triangle s and 7
is the radius of the triangle centroid. The Pappus-Guldinus Theorem guarantees
that this formula is exact.

Figure 2-6. Three-dimensional control volume.

2.7 Mesh Refinement

The use of an unstructured mesh allows for new triangles to be added, and
old ones deleted, in a relatively easy manner. New triangles are merely added to the
end of the list, and old triangles deleted and the list shortened. A new triangle is
added by introducing a new vertex at the centroid of a triangle to be refined. New
edges connect this vertex to the three vertices of the original triangle. The original
triangle is thus divided into three, and two new iriangles, three new edges, and one
vertex are added to the lists. The new edges may need to be swapped between the
new vertex and the opposing vertices of the three neighboring triangles. The
circumcenter test!3 is used to determine whether or not edge swapping is required.
The new triangulation is thus as acute as possible. The addition of a vertex and edge

8
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swapping are sketched in Figure 2-7. Triangle deletion is sketched in Figure 2-8.
The triangle centered densities can then be distributed over the new triangles in a
conservative manner.

Before adaption can occur a triangle must be identified for refinement or
coarsening. We have found a modified version of the classic interpolation estimate
originally developed for steady-state hydrodynamic computations!4 15 to be useful.
For each triangle s, we compute the normalized second derivative

552|v2us|
85|V Ug|+ el *

(2.2)

Eg

where & = Aasl/2, Us is any triangle-centered dependent variable, ¢ is a constant
between 0 and 1, and the overscore indicates an average over triangle s and its three
neighbors. (For three-dimensional problems, the maximum of Es over the toroidal
dimension is taken.) The quantity Es is dimensionless and bounded, so that it can be
used for a variety of problems and dependent variables. All triangles for which
Es > ER are refined, while all triangles for which Es < Ec are coarsened. Typically we

have used the values ¢=0.2, Eg =0.8 and Ec =0.2.
|

N

Original Grid

Grid after One Refinement and
One Reconnection

Second Reconnection

f Figure 2-7. Mesh refinement and edge swapping (froﬁ; Ref. 9)
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Constructing of New Cells Grid after Reconnection
and Relaxation

Figure 2-8. Mesh coarsening (from Ref. 9).

As mesh refinement and coarsening are time consuming operations they are
not done every timestep. Mesh refinement is done after every Nr timesteps, and
coarsening is done after every N refinement steps. Values of NR from 5 to 20, and
Nc from 2 to 4, are typical. Examples of refinement and coarsening are given in
Section 6.

3.0 APPROXIMATION TO SPATIAL DIFFERENTIAL OPERATORS

31 The Resistive MHD Equations

In this work we solve the equations of resistive MHD. In a convenient
nondimensional form, they are

oA

5 = E (3.1)
E = —vxB+7J/S (3.2)

B = VxA (3.3)

10
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J] = VxB (3.4)

%"- = - V-T (3.5)

T = pvv—BB + %(p+32) I (3.6)
%—‘t’ == V+(pv) 6.7

gtﬁ = — V.F ' (3.8)

u = pr*+B% + ﬁ (3.9

F = (p’uz+-’%1 p) v+2 ExB 610

where y is the ratio of specific heats, u is the total energy density, F is the energy flux,
I is the unit tensor, and T is the Reynolds-Maxwell stress tensor. All other
quantities have their usual meanings. Following the experience of hydrodynamics,
we have chosen the conservation form of the equations.

3.2 The Finite Volume Approximation

We now proceed to define approximations on the triangular, unstructured
mesh to the differential operators that appear in the MHD equations. We use the
method of finite volumes as applied to the three-dimensional volume element
shown in Figure 2-6.

Consider the triangle in the poloidal (r, z) plane shown in Figure 3-1. We
define normal and tangent unit vectors n, and t, at each edge such that

ey = tyxm, \ (3.11)

where ey is the toroidal unit vector. (Note that ey points “into” the page.) The
normal and tangent unit vectors are given by . ‘

lp = Ar,e, + Azp e, = Alt, (3.12)

11
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Figure 3-1. Poloidal projection of control volume.

Az, e, —
n, = Melr—lr e (3.13)
and the area of the triangle is
1 1 1
Ay = —[l1x],| = = L xI3| = = [I3x]4] . 3.14
s 2'1 2| 2|2 3| 2'3 ll ( )

The unit normal vector n, points from the left side of edge e (triangle s = L,) to the
right side of edge e (triangle 5 = R,).

The finite volume method is used to obtain the approximations to the
differential operators. In this method differential operators are defined in terms of
their integral relations. We assume all functions are of the form

fro.28) = 3 f,(r,z,0em (3.15)
n

and then integrate the appropriate identity over the three-dimensional control
volume shown in Figure 2-6. (Since the toroidal representation is spectral and not
finite-difference, the limit of the resulting expressions as A¢ — 0 is taken.) This
technique assures that the same integral relationships are obeyed by the finite
difference approximations and their equivalent differential operators.

To obtain an approximation for the gradient of a scalar we substitute
Equation (3.15) into the integral identity

| vfav = § fnds, | (3.16)

12
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and use second order approximations to the volume and surface integrals to obtain

(Vf); =

ZreAlenefe hie s ’r—” fiep - (3.17)
S

Isfds Ts

The sum is taken over the three edges of triangle s, and the radius of edge e is

te = (rpe1l + rve2) /2, where rye1 and Tpe2 are the radial coordinates of the vertices
connected by edge e. The quantity f, is the simple average f, = (fre + fLe)/2, Where
the values fre and f1, are the values of f; in the triangles lying to the right (R,) and
left (L¢) of edge e.

Similarly, for the divergence of a vector we use the identity

[ V-Adv = § fn-AdS (3.18)
to obtain the approximation
2 in
(V-A), = Y rALn,-A, + — A¢5 ; (3.19)
s84s ,q Ts

for the curl of a vector we use

| vxads = § t-Adl (3.20)
to obtain the approximation
1 in
(VxA) = YA (ro+ Agor —To- Ag—) + - A,-t,, (3.21)
1 3
(VxA)y = v > Agcl, . (3.22)
5 e=1

Here we have taken surface and line integrals over the faces of the control volume
and their respective bounding edges. To approximate the divergence of a tensor we
use

[ V-Tav = § fn-TdS (3.23)

to obtain

13
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1 3
Y78l [er(ne o), + egme-Te), +ex(ne o),

S S e=1

(v-1), =
(3.24)

B v ] -]

It is easy to verify from Equations (3.19), (3.21), and (3.22) that V -V x A =0 for
these finite operators. Solenoidal magnetic fields are thus assured. This is a direct
result of the use of consistent integral relations to obtain the finite approximations.

4.0 THE MHD EQUATIONS:
PLACEMENT OF THE VARIABLES ON THE MESH

4.1 Hydrodynamic Variables

The boundary of the poloidal computational region is formed by triangle
edges. As is the practice in computational fluid dynamics, we define the
momentum density pv, the energy u and the mass density p at the triangle centroids
rs. These quantities thus represent the momentum, energy, and mass per unit
volume in a triangular cell. (The quantities psAVs, (pv)sAVs, and usAV are the
total mass, momentum, and energy in cell s.) Velocities in a cell are given by
vs = (pv)s/ps. The rate of change of these quantities given by applying the
differential approximations defined in Section 3.2 to Equations (4.1-4.10). For
example, the rate of change of mass density in triangle s is given by

-%)ti = — Tsiﬂs greAlene'Fe + % g 4.1)
where
n,F, = p, vy 4.2)
is the poloidal mass flux across edge e, and
Fgg = Ps VUgs (4.3)

is the mass flux in the toroidal direction. The quantity v, is the normal component
of velocity at edge e, and is defined as

Upe = % ne-(vLe+vRe) . (44)

Expressions similar to Equations (4.1-4.3) hold for the momentum equation
(Eg. 3.5), and the energy equation (Eq. 3.8).
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The advective flux at an edge e is computed using the full donor cell method.
For example, the right hand side of Equation (4.2) is evaluated as

(Fre)ugy = PLe Vne s i Ty > 0 (4.52)

(Fne)adv = PRe Une , if Uy < 0 (4.5b)

where L¢and R, are the indices of the triangles to the left and right of edge e,
respectively. This method introduces numerical diffusion of order vy8s/2, where
8s~ Aagl/2, While this technique may be too diffusive for highly accurate shock
calculations, it is quite adequate to describe the relatively slow motions of interest in
tokamak dynamics. Problems involving strong shocks may require a higher order
treatment.

4.2 Electromagnetic Variables

The primary electromagnetic variable in this formulation is the vector
potential A. We define A, and A; at the friangles edges ¢, and Ay at the triangle
centroids s. Then Equations (3.21) and (3.22) define By, the component of B in the
poloidal plane normal to a triangle edge, and Bgs, the toroidal component of B at the
triangle centroid. (Note that (V- B)s;=0.)

The procedure described above defines only the component of B normal to
each edge. To uniquely determine the magnetic field we must also define another
independent component of B in the poloidal plane. This is done by integrating
Equation (3.20) over the surface of the dual polygon p,. that crosses an edge e, as
shown in Figure 4-1.

Polygon edge p,

Triangle edge e

Vi

- Figure 4-1. Triangle and polygon edges.
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The polygon edge has a unit normal vector nye and a unit tangent vector tye. This
defines Bype, the component of B normal to the polygon edge. The cylindrical
components of the poloidal field at a triangle edge are then given by

1
B = + (Brettpez ~ Bupetez) (4.6)
B =-1—(Bn-—Bn) 4.7)
ze A \-npelter ™ Enellper
where
A= ey- (nexnpe) # 0, 4.8)

from which the tangential component of B at edge ¢ is computed as
Bie = Bieller = Bty - (4.9)

Similar relationships hold for the current density J. (Note that if the mesh consists
of Delaunay triangles and Voronoi polygons the dual meshes are orthogonal and
this calculation is simplified.)

In light of Equation (3.1), we define the electric field E at the same spatial
locations as the vector potential A. The normal and tangential components of the
electric field at a triangle edge are given by

Ene = = TpeBio+Tpe B +Mne /S . (4.10)

Ete = = TpeBpe +Tpe Bye + M1/ S - 4.11)

The toroidal electric field at the triangle centroids is given by

Egs = — Vg By +0psBys+Mgs/S 4.12)

4.3 Averages and Interpolation

In the above formulas, an overscore indicates that an average should be
taken, or that interpolation be performed. Several types of interpolation are
required in the present algorithm. These are discussed in this section.

Interpolation from triangle centroids to edges is a simple average between
adjacent triangles: ’

16
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fo = %(fRe'*‘fLe)- (4.13)

Interpolation from vertices or edges to triangle centroids is also a simple
average. For functions defined on vertices

Zs = % (fvl ’*‘va'*'fvS) ’ 4.14)

and for functions defined at edges

fs = ‘él‘ (fel +fe2 +fe3) ’ (4.15)

where v1, v2, v3, and el, €2, e3 are the three vertices and edges of triangle s,
respectively.

For interpolation from triangle centroids to vertices, we use a pseudo-
Laplacian weighted averagel6. In this approach, the interpolated value of a function
at vertex v is given by the weighted average

Z(l +wg)fer

’

b = Srwy

’

s

(4.16)

where the prime (s’) indicates that the sums are taken over all triangles sharing
vertex v, and not over all triangles Nj.

We require that the weights ws be as small as possible, and that the
interpolation be exact for linear functions. We can then determine the ws by
minimizing the functional

Flws) = Y w? 4.17)
SI
subject to the constraints
L, = Y (1+wy)ty-n) =0, (4.18a)
sl
L = (1+wy)(ry-1) = 0, (4.18b)

’

S

where (ry, zy) and (75, z5) are the coordinates of the vertex and the centroids. The
result is that

17
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ws = AAr+ Az, , (4.19)

where Ars = rs — 1y, Azs = 25 — zp, and A, and A are Lagrange multipliers given by

2, = Rede= Rl (4.20)
Il _Irgz
Ay = Relrz = Relyy 4.21)
Iyl "'Irzz
R, = Y Ay, 4.22)
sl
R, = ZAZS' , (4.23)
sl
L, = (o), (4.24)
sl
I, = Z(Azs’)2 p (4.25)
SI
I, = Y Arghzy . (4.26)
sl

Equations (4.13-4.16) are first order accurate, i.e., they are exact for linear
functions. (Equatfons (4.14) and (4.15) are just special cases of Equation (4.16)). The
use of higher order interpolation methods, especially in place of Equation (4.13), can
be shown to lead to a non-Hermitian formulation and resulting unphysical
behavior.

A complication is that neither Equations (4.13) and (4.15), nor Equations (4.14)
and (4.16), are exact inverses of each other. Thus, for example, interpolation from
centroids to vertices using Equation (4.16), followed directly by interpolation from
vertices to centroids using Equation (4.14), introduces errors. Heuristically, these
errors do not seem critical to the results obtained with the algorithm, but their affect
on problems in parameter regimes other than those studied in the present work
cannot be assessed.

18
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44 Boundary Conditions

Since the computational boundary consists of triangle edges, the mass density
in triangles adjacent to the boundary is completely determined by the normal
velocity vpe at the boundary. The momentum density and energy density also
require that the normal component of the magnetic field, By, and the total pressure,
p + B2, be specified. For a non-porous, perfectly conducting wall, the appropriate
boundary conditions are Bye = vy = 0, and (p + B2), = (p + B2); (no normal pressure
gradient.) Implementation of boundary conditions is aided by introducing ghost
triangles that lie outside the boundary and are reflections of interior triangles that
contain a boundary edge. For the electromagnetic variables it is sufficient to specify
the electric field tangent to the boundary. Thus, for a perfectly conducting wall,
Ete = Ege= 0, where E 4 is the average of the toroidal electric field in a boundary cell
and its reflected ghost cell. Note that Ay, and hence Ep., is not required to
determine B in a boundary triangle.

Boundary conditions corresponding to r =0, to applied tangential or toroidal
electric fields, and to “simple” inflow (specified upstream pressure and density, zero
normal derivative of velocity) and outflow (zero normal derivative of pressure,
density, and velocity) have also been implemented.

5.0 TIMEINTEGRATION

As is appropriate for sound and Alfvén waves, the time integration
algorithm uses an explicit leapfrog method with predictor-corrector steps to stabilize
the nonlinear advective terms. The velocity and momentum are defined at time #.
The energy density, mass density and vector potential are defined at time #"+1/2. The
time step can be arbitrarily large; the semi-implicit method?8 is used to remove the
CFL time-step restriction. Artificial viscosity is treated fully implicitly.

The time advance proceeds by means of operator splitting, i.e.,

a L, - 1)
%t liotal ot explicit ot semi-implicit ot lviscous
or,
U -u"
;= Fexplicit (5.2a)
U*’(- U*
T AF = Fsemi—implicit (5.2b)
prl g™
“‘—'""“—“‘A ; = Fyiscous (5.20)
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where U is the state-vector describing the system, and Fexplicit, Fsemi-implicit, and
Fuiscous represent the explicit (wave-like and advective), semi-implicit, and viscous
terms that appear on the right-hand side of the equations. Details of these methods
are given in the following sections.

5.1 Explicit Advance

Wave-like and advective terms are advanced explicitly with At chosen for
accuracy and computational convenience rather than numerical stability. The
explicit part of the algorithm is:

*_ n-—l/2
i i = — V-(pov)*1/2 (53)
At
Tl+1/2__ n—l/2 1 n
* 2
e RTin = - V:[(pwv)" - (BB)"] - >V (p+5?) (5.4)
J* =VxB" (5.5)
¥ _an
A -A = vn+1/2xBn (5.6)
At
B*=VxA* (5.7)
ntl_an
A7 -A = v"+1/2xB*—n]” /S (5.8)
At
p*=p” _ _ v.[n ntl/2
=V (p v1/2) (5.9)
1 n
pi-pt o n+1/2
E=f - v (p*v ) (5.10)
* __ n
u uoo_ V-L pn Vn+1/2 (5.11)
At v-1
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o & B
gl o _ /2 gl g (5.13)

u"”lA-t-u" - V,{[(pvz)"”/ 2, ;1_3 p*]vn+1/2 + 9 En+1xBn+1} (5.14)
7 = (1) [um_ ( pvz)"“/ 2 (BZ)"+1] (5.15)

Total mass, momentum, and magnetic flux are exactly conserved. Because
the pressure, magnetic field, mass density, and momentum are defined at different
time levels, the sum of the kinetic, magnetic, and internal energies is exactly
conserved in the limit At - 0, independent of spatial discretization. (The volume
integral of the quantity u is exactly conserved independent of At.) The predictor-
corrector steps introduce an additional diffusion of order vAt/2 that can exceed the
diffusion from the donor cell fluxes when the time step exceeds the explicit CFL
stability limit.

5.2 Semi-Implicit and Implicit Solutions

We use the semi-implicit method8 to remove the CFL time step restriction
for numerical stability associated with the explicit advance described in Section 5.1.
This restriction is of the form CAt/d< 1, where C is the characteristic speed for the
propagation of normal modes (Alfvén or sound waves) and & is a measure of the
linear size of a zone (here proportional to the square root of the triangle area). With
the use of the semi-implicit method the algorithm becomes numerically stable at
arbitrary At so that the time step can be chosen for reasons of accuracy or
computational convenience rather than numerical stability. This is especially
important for tokamak simulations where the time scales set by the normal modes
differ by a factor of order (R/a)2. The time step remains limited by the advective CFL
stability condition VAt/§ <1, where V is the local flow speed. This is not a
significant restriction when V/C << 1, as is the case for many fusion applications.
When V/C =1, as is the case for shocks, the algorithm becomes explicit. This
restriction can thus be viewed as an accuracy condition.

In this work we use a simple vector Laplacian semi-implicit operatorll. This
term is added to and subtracted from the right-hand-side of the momentum
equation at the new and old time levels. The semi-implicit advance is

(1-0atV?) (pv)" = (pv)' — otV (v}, (5.16)

where « is the semi-implicit coefficient given by
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2
o = 20 A —-1| for At > Atcp , (5.17)
kmaxAt [\ AtcrL
a = 0 for At < Afcp , (5.18)

where (pv)" is the value of momentum obtained from the explicit advance
(Eq. (5.4)), kmax ~ 1/ & is the largest wave-number resolved on the mesh, AtcpL is the
maximum time step allowed by the CFL restriction for normal modes, and o is a
constant 2 1.

The time step is completed with the implicit viscous advance
(1-vatv?) (pv)™! = (ov)" . (5.19)

where vis a (possibly spatially dependent) artificial viscosity coefficient.

The vector Laplacian operator appearing in Equations (5.16) and (5.19)
requires the definition of the scalar Laplacian. This is accomplished by the
successive application of the gradient and divergence operators defined in Equations
(3.17) and (3.19). When combined with the boundary condition

(Vg = (Vg » (5.20)

where the subscripts G and B represent values in ghost and boundary triangles,
respectively, the resulting operator is self-adjoint. =

Since the mesh is unstructured, the N5 x Nsmatrices corresponding to the
operators appearing in Equations (5.14) and (5.17) are not banded but are sparse. An
example of the structure pattern for a case with 320 triangles is shown in Figure 5-1.

Figure 5-1. Matrix structure for the Laplacian operator on an unstructured mesh.
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Matrix inversion is performed with a conjugate gradient (CG) algorithm with
diagonal preconditioningl?. Since this method is iterative, the full Ns x N never
needs to be stored. Good convergence properties have been found even with
relatively large time steps.

At this time the resistivity is treated explicitly. Since /S << 1 we have not
found this to be computationally restrictive.

6.0 APPLICATIONS

The algorithm described above has been applied to several nonlinear test
problems, both two- and three-dimensional. The code based on the algorithm is
called TRIM, for TRIangular MHD. The application of TRIM to these test problems
is described in the following sections.

6.1 The Hydrodynamic Shock Tube Problem

A standard problem for testing hydrodynamic algorithms has been defined by
Sod18. The initial conditions consist of two fluids with different uniform properties
separated by a membrane. The fluid to the left of the membrane has pressure p and
density pr equal to 1. The fluid to the right of the membrane has pr = 0.1, and
pr = 0.125. The initial velocity is zero and the ratio of specific heats is y = 1.4 (air).
The magnetic field is zero. These conditions are sketched in Figure 6-1.

At t = 0 the membrane is ruptured and the fluid reacts dynamically. This
Riemann problem is one of the few fully nonlinear problems that has a known
analytic solution?, and is therefore valuable for testing numerical algorithms. The
solution consists of an expansion wave traveling to the left, and a shock wave and a
contact discontinuity traveling to the right, all with known velocities.

We have applied the TRIM algorithm to this problem. The time integration
is explicit and the artificial viscosity v is set to zero. While this test problem is one-
dimensional, the triangular grid in TRIM requires that a two-dimensional problem
be solved. The mesh is shown in Figure 6-2. It contains 1250 triangles. In this
figure, the initial membrane is horizontal, and centered at z=0.5. As the solution
proceeds in time no spatial variation develops in the direction parallel to the
membrane. The solution thus remains one-dimensional, even with the two-
dimensional algorithm. The analytic solution at ¢ = 0.1 is shown in Figure 6-3a-c.

AR ARATRARANR]
L S RN
oA T YA N A WA T W T WA Y
L RN NN
AT T T YL T T Y WY
LA N IR
A TATA N T N N U Tk YA Y
LA I IR I I SIS
AATATTA T T T T YA Y Y
SN NN
A TT T T TN Y W Y Y
LA A IS4
LAY T N N T W N W U Y Y
LA IR I SIS
ATFRTATATA T TN Y Y Y Y
LA I IR
ST N N T Y N W Yk W
LI RN NN NN
AR TR

AN AN A A AN

0 L 0.5 R 1

Figure 6-1. Initial conditions for hydrodynamic shock tube problem.
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Figure 6-2. Mesh for hydrodynamic shock tube problem, with superimposed contours.
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. Figure 6-3(a-c). Analytic solution to the hydrodynamfc shock problem.

The results of TRIM with the mesh shown in Figure 6-2 is shown in
Figure 6-4(a-c) at ¢ = 0.1. The magnitude of the pressure and velocity in the region
between the shock and the expansion fan are quite accurate. (Note the because of
the normalization the pressure in TRIM appears to be twice the pressure in the
analytic solution.) As is anticipated, the numerical diffusion introduced by the first-
order upwind treatment of the interface fluxes has resulted in a considerable
smoothing of the discontinuities. This is especially noticeable in the density. The
contact discontinuity, which is an interface séparating regions of different density
but equal pressure and velocity, has been considerably smeared out. This structure
is particularly difficult to treat numerically. In contrast with a shock, there are no
nonlinear processes that continue to generate a contact discontinuity in opposition
to numerical diffusion; it is merely an interface between two states of different
density. The effect of any diffusion in the algorithm is felt most strongly here.
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Figure 6-4(a-f). Comparison of numerical solutions without (a-c) and with (d-f)
dynamic mesh adaption.

One solution to the problem of numerical diffusion is to employ a higher
order approximation to the interface fluxes. Another solution is to use a low order
method but to reduce the diffusion by adaptively refining the mesh in the regions
near the discontinuities. We have applied the mesh refinement techniques
described in Section 2.7 to this problem. For this problem we used the mass density
p as the dependent variable in the refinement criterion, Eq. (2.2), with £ = 0.2,
Er=0.8 and Ec =0.2. Both refinement and coarsening were done every 50
timesteps. The initial mesh is shown in Figure 6-5a. This mesh has been refined in
order to initially capture the pressure and density discontinuities. The adaptively
refined mesh at ¢ = 0.1 is shown in Figure 6-5b. The algorithm has adapted the mesh
to the dynamically evolving shock, contact discontinuity and expansion front. The
initial mesh had 7777 triangles, and the dynamically evolving mesh contained up to
34415 triangles. In Figure 6-4(a-f) we compare the solution at t = 0.1 with and
without adaption. All features are sharper with dynamic mesh refinement than
without.

We emphasize that problems involving strong shocks are uncommon in
fusion plasmas, so that low-order methods are sufficient for these applications.
Nonetheless, it is desirable to develop an algorithm that is more universally
applicable to a variety of problems. The control of unwanted numerical diffusion
will be the goal of some of our future efforts.
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Figure 6-5. (a) Initial mesh for dynamic adaption; (b) Dynamically adapted mesh at
t=0.1.

6.2 The Magnetohydrodynamic Shock Tube Problem

The hydrodynamic shock tube solution described in the pervious section has
been extended to MHD by Brio and Wul®. The thermodynamic properties of the left
and right states are the same is in the purely hydrodynamic case. A uniform
magnetic field By is imposed in the direction (x) perpendicular to the membrane.
The component of the magnetic field By parallel to the membrane is discontinuous
at the membrane, with ByL=1 and Byr =-1. The membrane is thus a current sheet
in the z-direction. The magnetic configuration is sketched in Figure 6-6.

MNMNNMNNNNNNNNN A A AAAAAAASL
\\\\\\\\\1\\\\\//4/4/4//4/(/4//4/
NNNNNNNNNNN A A AAAA AL ASA
NNNNNNNNNNNAAAAAAAALANA
NNNNNNNNNNNAAAAAAAAALSA
NNNNNNNNNNNAAAAAAAALALSA
NNNNNNNNNNN A A AAAAAAALL
NNMNNNNNNNNNYNN A A AAAAALAALAASA
MNNMNNNNNNNNNYNNA A AAAALAAAAAA
NNNNNNNNNNNAAAAAAAAAASA
MNNNNNNNNNNNN A A AAAAAAAAA
NNNNNNNNNNNA A AAAAASLAASA

Figure 6-6. Initial magnetic field vectors for the MHD shock tube problem.
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The dynamics after the membrane is ruptured are much more complex than
in the purely hydrodynamic case; we refer the reader to Ref. 19 for details. In
- Figure 6-7 we present our two-dimensional solution of this problem. This can be
compared with the more finely resolved one-dimensional solution of Brio and
Wul®. We find that most of the details of the Brio-Wu solufion are reproduced in
our results, although the effect of the low-order diffusion is again apparent,
especially near the contact discontinuity. We have also repeated the calculation
with the component of magnetic field parallel to the membrane rotated by #/2, and
find identical results for this polarization.

We have also applied mesh refinement and coarsening to the MHD shock
tube problem. The refinement and coarsening criteria are the same as described in
Section 6.1. Figure 6-8 shows a comparison of the mass density p with and without
dynamic mesh adaption. Finer structure is observed when dynamic mesh
refinement is implemented. However, the contact discontinuity is still poorly
resolved due to the low order calculation of the interface fluxes,

PRESSURE DENSITY

Figure 6-7.  Numerical solution of the MHD shock tube problem. This can be
compared with the solution given in Ref. 19.
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NO ADAPTION DYNAMIC ADAPTION

Figure 6-8. Comparison of the results for the MHD shock tube problem without and
with dynamic mesh adaption.

6.3 Toroidal Equilibria

To be useful for magnetic fusion applications the TRIM algorithm must be
able to describe force balance in low aspect ratio toroidal systems. Force balance is
given by solutions to the Grad-Shafranov equation

Vy 1 .dP _dF
Ay =2V o S L p=
14 r r2 2T dl,'/ dW

(6.1)
where y(r,z) =rAy is the poloidal flux, and the pressure P(y) and the toroidal flux
function F(y) = 7By are arbitrary functions of y. An analytic solution has been given
by Solov’ev20. With

4 1+x2
P(y) = 2 2 (y-1) 6.2)
2b
Fiy) = 2 Q-2 + C ©.3)
&K

the poloidal flux and toroidal field are

2,42\ .2 2_4\?
y(r,z) = eiz I +:2) i b 41) 6.4)

+ O®) ' 6.5)
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where £ =a/R is the inverse aspect ratio, k is the elongation, b is a diamagnetic
factor, and C is a normalization constant that determines the strength of the
vacuum toroidal field. Contours of y and P with x =1 and b = 0 are shown in
Figure 6-9. Since b = 0, this equilibrium has no poloidal current (Jy = J; = 0).

A typical unstructured mesh for this problem with Ng = 1658 is shown in
Figure 6-10. The outer boundary corresponds to y = 1. When Equations (6.2), (6.4),
and (6.5) are introduced onto this mesh, the right hand side of Equation (3.5) (the
momentum equation) is a small number of the order of the truncation error of the
finite volume approximation: there are unbalanced forces to this order. This force
imbalance excites Alfvén and sound waves. In Figure 6-11 we plot the kinetic
energy of these oscillations versus time for two values of the viscosity. The
viscosity effectively removes these modes and the system finds a neighboring state

of forces balance on the unstructured mesh.
POLOIDAL FLUX

PRESSURE

?

Figure 6-9.

Contours of poloidal flux and pressure for the Solov’ev toroidal

equilibrium.
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Figure 6-11. Kinetic energy versus time during relaxation of the Solov’ev equilibrium.

The averaging procedures described in Section 4.3 introduce diffusion in the
magnetic energy due to the velocity averages used in Ohm's law. In Figure 6-12 we
plot the magnetic energy as a function of time for cases with and without viscosity.
The lower velocity in the viscous case causes the magnetic damping to decrease.
This damping is also affected by the number of triangles in the mesh, Nj, as
illustrated in Figure 6-13 for cases with three different values of Ns. This damping
rate is summarized in Figure 6-14. We see that the numerical damping rate is
approximately linear in & » (Aag)1/2.

1658 TRIANGLES
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Figure 6-12. Magnetic energy versus time during relaxation of the Solov’ev equilibrium.
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Figure 6-13. Magnetic energy versus time during relaxation of the Solov'ev equilibrium
for three different meshes.
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Figure 6-14. Numerical damping rate versus number of triangles.

6.4 Nonlinear Evolution of Toroidal Instabilities

One of the standard applications of MHD to fusion plasmas is the linear
growth and nonlinear saturation of instabilities. These instabilities can occur
because toroidal equilibria of the type described in Section 6.3 are not necessarily
minimum energy states, even though they are extrema of the energy. Equilibria
that are local maxima of the energy are unstable, with small deviations from the
initial state growing exponentially in time. Determining the stability of equilibria is
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an important problem in the design of a fusion experiment. Even stable equilibria
can be driven unstable by diffusive processes®.

It is to be emphasized that algorithms of the type described in this paper are
not the most efficient or accurate way of computing linear stability. Specialized
algorithms that find the eigenvalues of the linearized MHD operator are better
suited to this problem2l. Nonetheless, linear stability problems are among the few
three-dimensional toroidal problems with known solutions (generally obtained
with the specialized algorithms?1), and are therefore valuable benchmarks for
nonlinear, time-dependent algorithms. Physically, linearly unstable MHD modes
are of interest only if they impart some observable, and hence finite and nonlinear,
perturbation to the physical system. The details of the nonlinear evolution of
linearly unstable modes requires that algorithms of the present type be employed.

6.4.1 Solov’ev Equilibrium

Linear Stability and Comparison with Previous Results

The linear stability of the Solov’ev equilibrium described in Section 6.3 to
large-scale MHD modes has been extensively studied using specialized eigenvalue
techniques22. We have developed a “linearized” modification of the TRIM
algorithm to study the linear stability of this equilibrium. This modification is
possible because of the pseudospectral representation. In these calculations the
initial conditions consist of the axisymmetric (n = 0) equilibrium, such as
Equations (6.4) and (6.5), along with very low amplitude random noise in the
velocity field of a single n = ng > 0 toroidal mode. All other toroidal modes are set to
zero initially. The calculation then proceeds as described in Section 5, except that
after each time step the amplitudes of all modes with n = ng are reset to zero, and
the n = 0 (equilibrium) component is restored to its initial value. This effectively
disables any nonlinear or quasilinear mode couplings and affords a good
approximation to the solution of the linearized equations. The magnetic and
kinetic energies of an unstable mode will grow exponentially with time as exp (2yt),
allowing the growth rate (eigenvalue) y to be calculated. The self-similar spatial
structure of the growing mode defines the eigenvector.

For purposes of comparison it is useful to enumerate the differences between
the normalizations of the MHD equations used in TRIM and in the previous
work?2. In Ref. 22 the magnetic field was measured in units of By, the toroidal field
on axis, and time was measured in units of

R4
Ty = 40 3 7P ) 6.6)

¢0

The quantity gq is the safety factor on axis
KBy ’

$0
= , 6.7
q0 2% (6.7)
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where ¥s is the (dimensional) value of the poloidal flux at the plasma edge, « is the
elongation (see Section 6.3), and a the minor radius.

In the present formulation (TRIM), distance is measured in units of the
major radius R and the magnetic field is normalized so that s, the
(nondimensional) poloidal flux at the plasma edge, is unity. Thus the magnetic
field is measured in units of

By =¥, /R?, (6.8)

where R is the major radius. Time is measured in units of

% =R___J§;% . 69)

In this normalization, the safety factor g9 becomes

4 = %mz , (6.10)

where £=a/R is the inverse aspect ratio, and C is the normalized value of the
toroidal magnetic field on axis (see Section 6.3).

The normalized growth rates in the two formulations are therefore related by

B 2
(r24) = qo—-(r70)="~(rvo) - (6.11)
0

Equation (6.11) can be used to compare the results obtained with TRIM with the
those of Ref. 22.

The Solov’ev equilibrium can be completely parameterized in terms of the
three nondimensional constants & (the inverse aspect ratio), « (the elongation), and
go (the safety factor on axis). In Ref. 22, values of yrs were obtained over a range of
go for values of e=1/3, and x=1 and 2. Here we have primarily focused our
attention on the cases with g¢ = 0.5, which exhibit robust instability to ideal MHD
modes for these values of ¢ and k. Special cases with gp =0 and gg = 0.8 will also be
described. Also, we have used a boundary condition that corresponds to a perfectly
conducting boundary placed at the plasma edge. Thus, only internal (rigid
boundary) modes are considered.

The growth rate, or eigenvalue, obtained with any finite representation
depends not only on the properties of the axisymmetric equilibrium, but also on
numerical parameters that may characterize the algorithm, such as time step,
number of spatial zones, artificial viscosity, and resistivity. A precise determination
of the growth rate requires that convergence studies be performed to calculate the
growth rate in the limit of vanishing time step, viscosity, and resistivity, and
increasingly large numbers of spatial zones. Here we have performed such a
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convergence study only for the two cases £=1/3, ng=2, g0=0.5, and k=1 and 2.
Quantitative comparisons should be made for these cases only. The growth rates
obtained for all other parameters should be viewed as imprecise.

The linear stability results for the Solov’ev equilibrium are summarized in
Table I. In this table, column 5 contains y7p, the normalized growth rate obtained
with TRIM, column 6 contains yza, the TRIM growth rate normalized as in Ref. 22
(see Eq. 6.11), and column 7 contains the converged growth rate from Ref. 22. (An
asterisk in column 5 indicates that the result is not converged.) The relevant
comparison is between columns 6 and 7.

For the converged cases (g9 =0.5, np=2, k=1 and 2), the growth rates
determined from TRIM are about 20% lower than those of Ref. 22, and are
consistently lower for the non-converged cases. A quantitative result for the case
with g9 =0, x =1, is not given in Ref. 22, where this mode is identified as “an m =0
mode and not a kink”.

The eigenfunctions (spatial structure) for the cases ng =2, 3 and 4, g0 = 0.5, and
k =1 are shown in Figures 6-15-6-17. In each figure, velocity vectors of the real part
of the poloidal velocity (vy, v), and contours of the imaginary part of the toroidal
velocity (vg), for mode ng are shown. For the ng =2 mode, the poloidal structure is
dominantly m =1, while for the ng =4 mode, the poloidal structure is dominantly
m = 2. This is consistent with the value g9 = 0.5, and in agreement with the results
of Ref. 22. The eigenfunction for the case ng=2, g9 =0, x =1 is shown in Figure 6-18. . .
It is easy to see the dominant m = 0 interchange structure of this mode.

TABLEL
SOLOV'EV EQUILIBRIUM
Linear Stability Results

R/a K 90 ng 770 YT4 714 (Ref. 22)
3 1 0 2 0.6 0.03° | (not given)
3 1 0.5 2 2.2 0.122 0.158
3 1 0.5 3 1.0* 0.1* 0.17
3 1 0.5 4 1.56" 0.09* 0.22
3 2 0.5 2 2.0 0.22 0.28
3 2 0.5 3 1.9% 0.21% 0.35
3 2 0.8 1 0.1* 0.011% 0.11

"Result not converged.
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Figure 6-15. Linear eigenfunction for the Figure 6-16. Linear eigenfunction for the n =3
n =2 mode in the Solov’ev equilibrium with mode in the Solov'ev equilibrium with «=1,
k=1,40=05 R/a=3. Velocity vectors go=0.5,R/a=3.

display the real part of the poloidal

velocity (v,,v;), contours display the

imaginary part of the toroidal velocity (vg).
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Figure 6-17. Linear eigenfunction for the n =4 Figure 6-18. Linear eigenfunction for the 1 =2

mode in the Solov’ev equilibrium with =1, mode in the Solov'ev equilibrium with =1,
90=05, R/a=3. 90 =0, R/a=3. Note the m =0 interchange
structure.

The equilibrium for the case x =2, go = 0.5 is shown in Figure 6-19. Velocity
eigenfunctions for the cases x =2, o = 0.5, and np =2 and 3 are shown in Figures 6-20
and 6-21. The dominant poloidal mode structure is in agreement with that of
Ref. 22. Finally, in Figure 6-22 we display the velocity eigenfunction for the case
k=2,40=0.8, ng=1. The rigid m =1 displacement of the mode is in contrast with
the vortex structure displayed by the other unstable modes found here.
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POLOIDAL FLUX PRESSURE

Figure 6-19. Poloidal flux surfaces and pressure contours for the elongated Solov’ev
equilibrium x=2,40=0.5,R/a=3.

Figure 6-20. Linear eigen- Figure 6-21. Linear eigen- . Figure 6-22. Linear eigen-
function for the n =2 mode in function for the n =3 mode in function for the n =1 mode in
the Solov’ev equilibrium with the Solov’ev equilibrium the Solov’ev equilibrium
k=2,90=05,R/a=3. with k=2, 40=0.5, R/a=3. with k=2, g0=0.8, R/a=3.

Note the rigid m = 1
displacement of this mode.
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Effect of Time Step on Linear Growth Rate

As discussed in Section 5, TRIM uses the semi-implicit method8 to achieve
time steps in excess of that set by numerical stability constraints. As shown in
Ref. 11, the semi-implicit method reduces the characteristic frequency of a mode
with wave number & by a factor

o _ 1 6.12)

) N1+ ok2At ’

where o is the semi-implicit coefficient and wg is the frequency obtained by an
explicit calculation with At = AtcrL. Using Equation 5.17, this expression can be
rewritten as

o _ ! ) 6.13)

@ 2 2
1+o At -1 L
AtCI-‘L kmax

where o is a constant of order unity and kmax is the maximum value of k that can be
resolved on the grid. For unstable modes, the frequency o becomes the growth rate

Y-

For the case np=2, k=1, and g9 =0.5 (see Fig. 6-16), we have kmax = 164
(corresponding to 2090 triangles), k = 15 (corresponding to A, = Az = 2a = 0.6), and
o =1.5. This case was run with a small amount of artificial viscosity, v=104. In
Figure 6-23 we plot the ratio y/yg obtained from both TRIM and from Equation 6.13
as a function of At/AtcrL for this case. These results substantially confirm the effect
of the semi-implicit method on the growth rate. The discrepancy between the two
curves may be due to the artificial viscosity or other numerical damping inherent in
the algorithm.
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Figure 6-23. The effect of the semi-implicit method on the linear growth rate obtained
with TRIM for the case k=1, g0 =0.5, R/a =3, n =2, as a function of the time step
(in excess of the CFL limit).
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Nonlinear Results

The linear results described above were obtained by removing all nonlinear
interactions, freezing the n =0 component of the solution, and allowing only a
single mode with n =np to evolve. To obtain the full nonlinear dynamical
evolution of the unstable equilibrium, all modes with # >0 are initially perturbed,
all nonlinear interactions are restored, and the n =0 component is allowed to
evolve under the influence of unbalanced forces, resistivity, viscosity, and
nonlinear effects. Since these cases may involve large amplitude displacements and
considerable dynamics, larger values of resistivity and artificial viscosity are used
than in the strictly linear results. Typical values are S = 104 and v = 10-2. Total
toroidal flux is conserved.

In Figure 6-24 we plot the time evolution of the kinetic energy in the modes
1<n <5 (corresponding to 16 toroidal mesh points) for the case k=1, gg = 0.5,
R/a =3. The time step is such that At/AtcrL = 11.5. Because of the finite resistivity,
the total toroidal current decays and its profile peaks during the evolution, thus
altering the linear stability properties of the discharge. The n =2 mode is linearly
unstable, grows to finite amplitude, and saturates. The n =4 mode, which was
found to be linearly unstable by both TRIM and in Ref. 22, exhibits initial
exponential growth at approximately twice the rate of the n =2 mode. This, and the
delayed onset of the mode, implies that this mode is driven nonlinearly by the n =2
mode rather than by inherent linear instability. The change in the linear stability
properties of this mode may be due to the modification of the n =0 component by
resistive diffusion, but we have not verified this conjecture. Then=1and n =5
modes exhibit complete linear stability. The small amplitude increases at late time
in these modes is due to nonlinear spectral broadening from the saturation of the
n =2 mode. The =3 mode shows some small indication of linear instability late

10° g
: An =23
§ 10° //fd‘
2 i
2 e
gk .
E Ly yd
100 pobi. N
= }m n= 3
S0 Wb S S
Mefie ;
jn*im' I W =
10713 i n =1
0 5 10 15 20 25 30

Figure 6-24. Kinetic energy in the modes 1 < n <5 versus time for the nonlinear evolution
of the Solov'ev equilibrium with k=1, g0 =0.5, R/a = 3.
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in the calculation but prior to 7 =2 saturation. We cannot rule out nonlinear
spectral broadening as the cause of this increase.” In Figure 6-25 we plot contours of
the pressure in the saturated state at four different toroidal locations spanning one-
half of the torus. The predominantly n =2, m =1 helical displacement of the
plasma column is evident.

The same calculation has been performed for the case k=2, R/a =3, q0=0.5,
with 32 toroidal mesh points (corresponding to toroidal mode numbers 0 <7 < 10 |
after dealiasing). The magnetic energy in the modes 1<n <10 is shown in I
Figure 6-26. The modes 7 =2 and n = 3 exhibit robust linear instability. The n =4 '
mode also indicates initial linear instability, but makes a transition to being |
nonlinearly driven by the n =2 mode later in the calculation. The 7 = 1 andn =5
modes are driven by the nonlinear interaction of the n =2 and 7 = 3 modes, and the
n =6 mode is nonlinearly driven by the n =3 mode. All other modes appear to be
driven by nonlinear spectral broadening. The finite amplitude of all modes at the
end of the calculation probably indicates that more toroidal mesh points (modes) are
required for proper resolution of the nonlinear state. In Figure 6-27 we plot
contours of the pressure in the saturated state at four different toroidal locations
spanning one-half of the torus. Again, the helical displacement is topologically
m=1,n=2 dominant. ’

[P

7

j
‘ i
Figure 6-25. Pressure contours in the poloidal plane at four different toroidal locations

in the nonlinearly saturated state of the Solov'ev equilibrium with k=1, g9 = 0.5,
R/a=3.
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Figure 6-26. Magnetic energy in the modes 1 < n < 10 versus time for the nonlinear
evolution of the Solov’ev equilibrium with k=2, g9 =0.5, R/a = 3.

Figure 6-27. Pressure contours in the poloidal plane at four different toroidal locations
in the nonlinearly saturated state of the Solov’ev equilibrium with k=2, g9 = 0.5,
R/a=3.
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6.4.2 ITER Equilibrium

In Figure 6-28a,b we display poloidal flux and pressure contours for an
equilibrium that is representative of ITER, an international fusion test reactor that is
presently being designed?3. The outer boundary is the separatrix, or last closed flux
surface; it is intended that the plasma is confined within this surface. This
equilibrium has been constructed to be unstable to an internal kink mode with
toroidal mode number 7 =2. The safety factor profile is shown in Figure 6-29. The
linear instability has been computed with the GATO code?!, which directly solves
the resulting linear eigenvalue problem.

The unstructured mesh inside the separatrix with N5 = 5728 is shown in
Figure 6-30. The equilibrium is initialized to this mesh by cubic spline
interpolation, and the resulting force imbalance is resolved with viscous damping
as described in the Appendix. We have also found it useful to introduce spatially
dependent resistivity, with S = 106 near the magnetic axis and S = 104 near the
separatrix. Thus resistive flow is always present and true static equilibrium is not
achieved. The resistivity also causes the current to peak near the magnetic axis, thus
altering the safety factor profile.

After axisymmetric relaxation, three-dimensional modes are perturbed with
random noise at very low amplitude. For this calculation we use a toroidal mesh
with Ny =8 toroidal mesh points, so that three toroidal Fourier modes (n =0, 1, 2)
are included after dealiasing. This resolution is marginally acceptable for highly
accurate calculations, but will demonstrate the utility of the TRIM algorithm for this
problem.

FLUX PRESSURE

(b)
0.60- 0.60 -]
0.40- 0.40

0.20- 0.20 N
0.00- 0.00
-0.20 -0.20-]
-0.40- -0.40+

i 1 R i '

0.60 0.80 1.00 1.20

Figure 6-28(a,b). Contours of poloidal flux and pressure for an ITER equilibrium.

41




SAIC-95/1323:APPAT-170

1-4_llll L3R 2 L) FETT LELEE R LI L LI B 3

1.2

@
0.8: /:
cTO.GE // E

m4- A//’/// ]

I A A -y

0.2

1.8 5 ¢ Ll 1 1 .t 11 1.1 8 ¢ 1.1 1.1 lll!-

0
-80 -25 -20 -15 -10 -5 0
p

Figure 6-29. The safety factor g (y) for the ITER equilibrium.

TRIANGULATION INSIDE LAST CLOSED FLUX SURFACE

Figure 6-30. Unstructured mesh for the ITER equilibrium.

The kinetic energy in the n =1 and #n = 2 modes are shown in Figure 6-31.
The n =2 mode is unstable, and the n = 1 mode is stable, in agreement with linear
calculations?23.

The linear eigenmode for the poloidal velocity is shown in Figure 6-32, where
the poloidal velocity vectors are shown at the eight toroidal locations included in
the calculation. The flow pattern has the clear counter-rotating vortex structure of
an internal kink mode with dominant poloidal mode number m = 1. This structure
is seen to rotate twice around the torus, as required by an n =2 mode.
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Figure 6-31. Kinetic energy versus time for the n =1 and n = 2 modes in the ITER
equilibrium.
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Figure 6-32. Poloidal velocity in the linear eigenmode at 8 different toroidal locations.

The instabilities computed here evolve on a fraction of the poloidal Alfvén
time, which is almost a factor of 10 longer than the toroidal Alfvén time. Purely
explicit methods require that the time step be taken at a fraction of the shortest time
scale. In the example computed here, we have used the semi-implicit method with
a time step 30 times that allowed by explicit numerical stability. Clearly, this method
is essential for computing tokamak instabilities with the primitive MHD equations.
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6.4.3 Resistive Instability in a Torus

The results presented in Sections 6.4.1 and 6.4.2 described ideal instabilities,
i.e.,, unstable normal modes of the ideal (infinitely conducting) MHD equations.
However, some of the most important instabilities in toroidal fusion devices exist
only in the presence of finite resistivity. As a result of these modes the magnetic
field configuration can change its topological properties, which are otherwise
invariant in ideal MHD. These resistive instabilities?4 have no counterpart in ideal
MHD, and grow on a time scale that is a hybrid of the Alfvén and resistive time
scales. The computation of these modes has been a primary focus of fusion
computations for over 20 years.

We have begun to apply TRIM to resistive instabilities in a torus. We have
studied the linear stability of a toroidal equilibrium whose stability properties are
well known?5. For this case, the poloidal cross section of the plasma is circular, and
the g-profile is given by

8 1/4
_1_(_/_>J 610

gir) = 2
(” (rea/70)°

where 7 is the minor radius (measured from the center of the circular poloidal cross
section), 52 is the radius of the g =2 surface, and rg is the width of the current
channel. We use 752 =0.7 and rg = 0.6, which corresponds to Run 1, Table I of Ref. 25.
The particular equilibrium has been supplied in numerical form26. In Ref. 25, the
Lundquist number at the g =2 surface was S =2 x 104. For our initial calculations,
we have used an enhanced resistivity that gives S = 103 at the g4 = 2 surface.

We perturb the initial equilibrium with random noise, and consider a linear
case with toroidal mode number n =1. We find an exponentially growing
instability with a growth rate of yz4, = 0.01 (where 745 is the poloidal Alfvén time).
This is to be compared with the result yza, = 0.017 of Ref. 25 with S=2x 104 The
effect of this resistive instability on the magnetic field topology is shown in
Figure 6-33, where we the successive intersections of four different magnetic field
lines with the poloidal plane (a Poincaré plot). The field line integration was
performed with the code TUBE27. The magnetic islands that characterize resistive
instabilities correspond topologically to a poloidal mode number m =2, in
agreement with Ref. 25.
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Figure 6-33. Intersection of four different field lines with the poloidal plane showing
the magnetic island that results from an unstable n =1 resistive instability. The
topologically m =2/n =1 structure is evident.

7.0 SUMMARY AND DISCUSSION

An algorithm for the solution of the time-dependent, primitive, resistive
MHD equations in three-dimensional toroidal geometry has been developed. The
algorithm uses an unstructured, triangular mesh in the poloidal plane, and a
structured, pseudospectral method based on FFTs in the toroidal coordinate. This
allows axisymmetric configurations with arbitrarily complex poloidal geometry to be
accurately represented. Boundaries in the poloidal plane need not correspond to
flux surfaces or be constrained by coordinate systems. The algorithm is fully
conservative and maintains both the magnetic field and current density as
solenoidal. Fluxes at cell interfaces are computed with a low-order upwind method.
The semi-implicit method is used for time integration.

A code based on the algorithm, TRIM, has been written and verified. The
code has been applied to four nonlinear test problems: a hydrodynamic shock tube;
an MHD shock tube; toroidal force balance; and, growth and saturation of toroidal
instabilities. For both the hydrodynamic and MHD shock tube problems, good
agreement with previous results has been obtained. The primary inaccuracy is due
to the numerical diffusion introduced by the low order fluxes. Mesh adaption and
refinement has been successfully applied to both the hydrodynamic and MHD cases.
Toroidal force balance has been computed by viscous damping of Alfvén and sound
waves. Linear growth and nonlinear saturation of three-dimensional kink modes
in two analytic equilibria, and in a highly elongated toroidal equilibrium
representative of the ITER design, has been computed. Converged linear growth
rates agree with previous linear stability calculations to within twenty percent. The
nonlinear evolution of these modes has shown nonlinear mode coupling and
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spectral broadening, and has demonstrated the utility of the semi-implicit method .
of time integration for these calculations. The linear growth of a resistive tearing
instability in toroidal geometry has also been calculated.

We view the work presented here as a first step toward the development of a
flexible, accurate algorithm for time-dependent MHD in arbitrary geometry. Several
issues have arisen in the course of our investigation that we believe require further
research. These are enumerated below.

The first issue concerns the most efficient and accurate use of the primary and
dual meshes, and the placement of dependent variables on them. In this work we
have used the Delaunay triangles as the primary control volume, and have chosen
to define all volume densities (momentum, mass, and energy) at their centroids.
All physical boundaries consist of triangle edges. We have made not made use of
the dual control volume elements consisting of the polygons centered at triangle
vertices with edges connecting triangle centroids. (The edges of these polygons are
used to define components of the magnetic field and current density.) With the
present scheme differential operators such as the gradient and the Laplacian acting
on triangle-centered densities couple more than nearest neighbor triangles. Our
experience with rectangular, structured meshes!! indicates that the use of staggered,
overlapping volume elements leads to the most compact, accurate, and physically
motivated algorithms. In those methods, the pressure and momentum are not
collocated as they are here, but are defined at the centers of the staggered primary
and dual meshes, respectively. We have not experienced any severe problems that
can be directly attributed to the non-compact formulation described in this paper,
but the present algorithm seems to require somewhat more artificial viscosity to
assure robustly stable computations than methods that use rectangular, structured
meshes. Our initial attempts to formulate an exactly equivalent method using
triangles and polygons has led to problems in consistently defining boundary edges
and applying boundary conditions.

The second issue concerns interpolation. In the present algorithm,
interpolation from centroids to vertices, vertices to centroids, centroids to edges,
edges to vertices, and vertices to edges are all required. The form of the
interpolation can affect the accuracy and stability of the calculation. As described in
Section 4.3, some of these interpolation schemes can become quite complicated and
can lead to coupling beyond nearest neighbors. We have not devised a method for
MHD using either rectangular or triangular meshes that does not require some
interpolation (or averaging) from one grid to another. Interpolation is required
during mesh refinement and coarsening. The number of interpolations per time
step is also affected by the choice of primary and dual meshes. The issues of accuracy
and required number of interpolations, and their affect on the performance of the
algorithm, must be better understood.

The third issue concerns the criteria used for dynamic refinement and
coarsening of the mesh. In Section 2.7 we presented a criterion for adding or
deleting triangles that was based on the normalized average Laplacian operator. For
the results presented in Section 6, we have used this criterion in conjunction with
the mass density. Other criteria, such as the normalized gradient of a variable or the
divergence of a flux, have been used in computational hydrodynamics®. Other
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problems may require still other criteria. For example, criteria based on current
density may be useful for magnetic reconnection problems. The proper criteria for
fusion MHD is yet to be determined.

The fourth issue concerns the structure of the mesh itself. As described in
Section 2.4, Delaunay triangles have many desirable properties. The algorithm is
most accurate for equilateral triangles, for then the centroid dual mesh and the
Voronoi dual mesh are equivalent. Deviations from equiangularity introduce
errors, and highly obtuse triangles can lead to spikes in high order derivatives, such
as current density. Mesh refinement can lead to large variations in triangle size and
shape over the mesh, even though the Delaunay triangulation maximizes
equiangularity in a global sense. These large variations can in turn affect the
diagonal dominance of the Laplacian operator and cause the conjugate gradient
algorithm to fail to converge. What is needed is a method for systematically
redistributing the vertices in the poloidal plane to assure that all triangles are at least
acute, and that variations in mesh size are smoothly distributed in space. Clearly
more fundamental work needs to be done in this area.

Finally, we have used low order approximations for the calculation of
interface fluxes. The accurate computation of these fluxes has occupied the
attention of computational hydrodynamicists for several years, and it has proven to
be a crucial issue in the accurate engineering application of these methods.
Improvements in these methods for MHD must eventually be addressed. However,
in light of the other fundamental issues discussed in this section, we do not feel that
this is a priority for fusion applications.
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