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This project was funded by the United States Department of Energy, National Energy
Technology Laboratory, in part, through a site support contract. Neither the United
States Government nor any agency thereof, nor any of their employees, nor the support
contractor, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or represents that ifs use
would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, frademark, manufacturer, or otherwise does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.
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o) 7T . 18 Why is this work important?
30 ' 16 Limiting environmental and community impact
and improving safety of offshore energy
14 operations and legacy infrastructure depends
26 {12 on forecasting and avoiding hazards.
L]
o 1
E 10 Issue/R&D Need
8228 ~ 18 . Technology that integrates big data and science-
! {6 based analytics for offshore hazards does not
exist.
I
4 Advanced analytics can offer near real-time
: 2 assessment of risks, intfegrate different hazard
| 3 types, and also forecast vulnerabilities.
0 , . .
-86 -82 (m) « Packaging analytics in a flexible smart tool
Longltude g GA improves accessibility and forecasting at multiple
scales.
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Motivation for Ardificial Intelligence/Machine Learning [N=|MTONAL
(Al/ML), Data-Driven Offshore Hazard Tools TLJREorR0R

Motivation
« Demand on offshore Exclusive

Economic Zone (EEZ) in the U.S. and S
around the world is increasing, with ;
offshore infrastructure expected to NV -
increase 50-70% by 2028. “’m
- Between 2004-2008, 181 structures j:::“ S,
and 1,673 wells in the Gulf of Mexico o N
were destroyed by five hurricanes. R, = °°‘, %:%9
S\ || [T RS v
« Climate change IS prOjeCTed to gﬁ&%ﬁ) \,{i‘é%?),;;‘(é&' %ﬁ%@;ﬁ*m Sustained Winds (mph
intensify extreme events, S '::,a i .y “T;mgmm Sy - sl

Carla (1961) @1 /| <
Andrew (1992 | Sustay (2008) ~ Charley (2004) 1 (Reoti%edl,  111-130 @ Category 3

increasing the frequency of major {lgmamans/ || [Smits” Siet2 }W%) s

Hazel (1953)— e (15500
/| Donna 1960
‘ Dolly 2008)  / Lauan (1085) i 3

tropical cyclones. et e Bl &SN ot @ caesons

irene (1990)\ \Irma(2017)
it )GeOf < (1998)
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Taylor EneI:gy oil platff)rm, _ - | [ Risk of oil spills may rise as climate
« Hazards related to the metocean, |destroyed in 2004 during Hurricane  * | | change creates more monster storms
|Va n, is Sti" Iea king in GUIf Hurricanes can lead to a destructive domino effect.
S e G fl O O r' O n d S U bs U rfo C e Mark Schleifstein, NOLA.com | The Times-Picayune JUL 1, 2013 - 5:05 PM % By Julia Jacobo

B 5min to read September 29, 2021, 7:05 AM + 9 min read

environments include seabed
instability, extreme
wind/wave/current events,
earthquakes, and hazardous

material SPl IIs. World's Largest:Offshore Converter
Station In Place

- Hazards are often interrelated. T T
Example: Hurricanes are offshore | &,
hazards and drivers of other hazards,
such as submarine landslides, that
can, in turn, cause an oil spill.

Jte crisis and how it can be stopped

lews’ chief meteorologist Ginger Zee on how climate change affects extreme weat... Read More
Ena Department of Wildlife and Fisheries via AP
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Ocean & Geohazard Analysis

Assessing offshore hazards often requires massive amounts
of data and length of fime to assess the entire system

« AIl/ML analytics can offer near real-time assessment of risks,
integrate different hazard types, and forecast vulnerabilities

- Selecting, training, and testing of Al/ML algorithms is key to
an effective Al/ML-informed workflow

* Packaging analytics in a flexible smart software tool
improves accessibility and forecasting at multiple scales

. U.S. DEPARTMENT OF
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Ocean and Geohazard Analysis Smart Tool Workflow N=]|NATIONAL
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& L
’ 4
Choose Select hazards Select data Advanced risk
offshore region je==p for risk | &analyses === jnalytics and
of interest assessment probabilstic spatial visualization

® r g
S2GA

Ocean & Geohazard Analysis o Determine hazards Selecting, training, testing Al/ML
and hazard triggers is key to an effective workflow

to be analyzed : i .
|  |dentify datasets for diverse

o Default or custom
comparisons hazard analyses

* Develop analytical framework
for smart modeling

 Train and validate Al/ML
models

| andslide Feature Extents * Integrate metocean statistical

and probabilistic analyses




OGA Tool Hazard Components N=|NATONAL
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Hazard and/or Process Analysis Approach(s)

Landslide susceptibility GIS (risk-based)
Machine learning

* Analyses are
selected for

svitability of

predicting a given Landslide detection Convolutfional neural network

hazard or Turbidity current susceptibility — GIS interpolation

condition Al/ML spatial analysis

.. Wave height Synthetic storm events simulate future

* Each analysis is extreme events under climate change

deyeloped, Generalized extreme value

validated, and : .

orepped for Wind speed Generalized extreme value

integration into Current speed Generalized extireme value

OGA Tool Metocean Lagrangian Coherent Structures (CIIAM)

Loop current eddy shedding Self-organizing maps

s




Landslide Susceptibility

Two approaches for J
analyzing seafloor

landslide potential in the
GOM Choose layers

based on ROI

1. Risk-Based Approach

2. Machine Learning (ML)
Approach

.S. DEPARTMENT OF

o ~ | [ Select Region
! | - of Interest 2
L LoD

f;‘; .

\
/

v v
Landslide Conducive
Triggers Conditions
Fami e Hydrates +  Slope
-. |+ Faults «  Curvature
. 7. | Seeps +  Sediment Type
' “ | etc «  Geomorphology
S «  etc

3 - {Apply Risk Criteria
to each layer
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Split into training and validation
datasets

Train and validate models using

advanced analytical methods

Classify
summation score

Susceptibility Landslide

Output Landslide Predict] J ¥
Map }

Susceptibility




Landslide Susceptibility

Landslide Risk Factor

High

w1 Miles

[] Landslide

Two approaches for analyzing seafloor landslide
susceptibility in the GOM

1. Risk-based GIS Approach (above)
2. Machine Learning (ML) Approach (at right)
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Landslide Susceptibility

N: NATIONAL
== |[ENERGY

Utilizing the same input criteria
along with robust ML models to
predict landslide potential
« Gradient Boosting Classifier
(GBC)
« Artificial Neural Network
(ANN)
Improving accuracy using tuning
methods
 Hyperparameter random
search
« Dimensionality reduction
(SVD)

« Testing/validating models at

various spatial resolutions (250 m,
500 m, 1,000 m, 2,000 m, 4,000 m)

U.S. DEPARTMENT OF
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Accuracy evaluated against
validation dataset
GBC: 70.0%

ANN: 65.3%

Submitted to
Natural
Hazards for
publication

Dyer, A.S., Mark-Moser, M., Duran, R., Bauer,
J.R. (submitted) Submarine Landslide
Susceptibility in the Northern Gulf of Mexico.
Natural Hazards, Springer.




Nearshore Adaptation for Submarine Landslide —|NaTioNAL
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Taylor Energy oil platform, v soa0ow
. ) oL destroyed in 2004 during Hurricane  ~° oot s
« Landslides in the Mississippi River delta front Ivan, is still leaking in Gulf j=—
have been recognized to threaten offshore e
infrastructure since 1950s, primarily studied
in 1970s and 1980s.
* |In 2004, Hurricane Ivan caused a landslide that resulted in the {F -
longest lasting spill in U.S. history, with heavy oil sheens still - w
observed as late as 2019. J‘LW”
« Our effort leverages big data and ML approaches to assess risk in x g;\&
the region after developing a ML model in deeper waters where b A L.
the quality of data is favorable. B
« Nearshore submarine LSM considers shallow waters and effects of ';".f“"m“ -w&%mm&mpﬂ,% fd::,,, ,gvm
WQVES. T R

wnhmomd)mamlcdplh changes i nmudﬂowzonsﬁl’h e green lin n:pcscnls h 1-D transect in Fg mS

Obelcz et al., 2020
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Landslide Detection N=|Nanonat
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Using high-resolution seafloor images, develop  Model Design
a data-driven neural network model to identify  * The Fully

Prediction Mask Training Mask

the locations of submarine landslides Convolutional = sy 1
ResNet model %0 R 0
== INATIONAL WOS Used' O - -
'""'%Hé}}lir};f'&&}é}é}}r}éﬁ{{r}'fSKNSEJ{r{'o'}'efs}éidé;]'r%é'v;&'k'."""} ¥f EE‘EE%%S@ prebuilt network -
-------------- Prediction Mask available with 0 200 400 600 0 200 400 600
“-::‘\ Forward Propagation (example)

(by*hw ) LA - the PyTorch 00 02 04 06 08 10
E?E:x E ‘: er mework. Non-landslide Landslide Prediction
b, *h*w I ! Prediction Strength Strength
bshrw |5 'y *_c; = s | « The model 0 I

oh*w = c b !
oo | | S S S S S §> = performs
semantic
\ '/ Backward Fropagarion 1
P55 rcining Mask segmentation to i
create an output | 8 e
mOSk hlghhghhﬂg 0 200 400 €00 800 0 200 400 600 800
. ? S eee—
|Onds||des g|ven 0.0 02 04 06 08 10

an input image.

e




Landslide Detection Resulis =|thERay
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Submarlne Landslide Detectlon Using YOLO Algorlthm

& \
‘ve i-s; = A
= g@g&gw 50% — Confidence Level (%)
TLESERISS [ ]— Landslide Prediction rﬁ




Turbidity Current Hazard Modeling =|[ENERQY -

TL){Rscratory
« Turbidity currents are significant and
powerful offshore hazards N
« Core analysis accelerated using text & b
extraction can assist in locating potential o e A
turbidity currents ﬁo‘;’ o Se %
« Locations can be used to inform ML for @o a%g“. o I8 S
turbidity current susceptibility mapping and o 0 &é& 8% ©° o o L ®
forecasting ° 9% o %ﬁ °ow &
% °° qp, °° g
D .'00 o.' °. o ° R ...0 Total Score
turbidite e o &.o. o o ‘8.0 ° o. o ® |© g
e o ©Ce 0| 0
® oo .o.:.%o" o 3. " M3
.9‘& % o ° o ° 4
- o ° ° ® 5
e ) ° 6
“foram = :_:..:u. ”turbidit}’/ ) : ;
turbidites” | ' currents ] 100 200 400K ® 9
‘‘‘‘‘ e 10




Wave Modeling Development = |ENERQY

TL ks
- Creating synthetic a) EnEERre b b) NIRRT b
physics-based 30 - 16 30 N 16
tropical cyclone ‘ 14 14
eventsin 26 °Ti12 56 : 2142
;\:A?Tllaboro’rion with 3 |/ TR - 108 71110
Sk . IPY
«  Critical for risk » oy s ¥ ; :
projections in a (- - M, " . A
changing climate 18 Y e .
| | WI 0 | | I‘
-98 -94 -90 -86 82 (m) -98 -94 -90 -86 82 (m)

Longitude Longitude

U.S. DEPARTMENT OF




Self-Organizing Maps - An Unsupervised Neural N =|NATIONAL
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=3 ¢ Temporal pafterns
s from self-organizing
maps identifying
predictable
patterns in sea-
surface velocity.

el K |

F M A M J J A S o N D

LATITUDE
&

« These insights, in

: | combination with
m advanced analyses

_ — - of energy and

-90 -80 -70 -60 -50 -40 | s | information transfers

LONGITUDE in the ocean are
expected to
improve Loop

Current
predictability.

ENERG' _
R R R e —

1 2 3
SOM pattern




Loop Current Eddy Shedding N=[NTNAL
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MKE EKE Gamma 02-Jan-1994 ><1120' - SSH 02-Jan-1994 - Vortlclty 02-Jan- 1994

 The Loop Current (LC) and
associated eddies are
among the most intense
currents in the world

« They are a magjor concern
for offshore infrastructure.

* Predicting LC eddy
shedding has been
intractable so far.

« Insights from self-organizing
maps are leading to novel
analyses of Loop Current

; eddy shedding events

89 88 86 85 using oceanic energy

transfers.

01/02/94
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30°N
27°N
24°N

21°N

18°N
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Advanced Probability and Statistics =Ryt
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40 -

38 1

36 1

34 1

321

30 1

wind velocity (m/s)

28 1

26 1 1 1 I 1 1 I ® Measured
——GEV distribution

241

22 1
0 5 10 15 20 25 30 35 40 45 50
Return period (years)
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OGA Smart Tool Interface

&8 Ocean & Geohazard Analysis

File Help

Select Region Select Hazards

Analyses

Current Event
Earthquakes
Landslide Susceptibility

Wind Event

Run Hazard Analyses

Run Analyses

Analysis

0.100

Details

Month: January

Region Extents [ 741662.375, 1247007.75, 1115382, 25, 1427176.375]

Hazards: CIIAM {Hazmat Spill, Current Event, Earthauakes, Landslide Susceptibility, Wind Event

1.500 [] Smooth Data

2GA

Ocean & Geohazard Analysis

NATIONAL
ENERGY
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U.S. DEPARTMENT OF

. Ocean 8 Geohazard Analysis
File Help

SelectRegion  Select Hazards

[m] select al

Analysis

Hazards
[ CllAM (Hazmat Spill)
[#] Current Event
| Earthquakes
[] Landslide Detection

[] Wave Event
[ Wind Event

Hurricane

[ Select Al

ML Data Sources
[ Aspect
[ Basins
4 Canyons
[#] Channels
EA Curvature
[A Escarpments
[ Faults
[ Gas
| Hydrates
EA Mud Volcanoes
4] Pockmarks
B4 Rugesity
[A salt Diapirs
[ Sediment Accumulation Rate
[A Sediment Thickness
[ Sediment Type
[ Seeps
[ Slope

. Ocean & Geohazard Analysis
File Help

Select Region Select Hazards

Analyses 2

3

CIAM [Hazmat Spill) 8
Current Event “
2

L]

Earthquakes

Landslide Susceptibility

Run Hazard Analyses

Region Extents [ 741562.375, 1247007.75, 1115882.25, 1427176.375]

- O X
Analysis
Western -
+ data — Weibull e Weibull T
w
E
g L
L5
£
=
= L
]
w
01— - . ! . e v — T -
100 10! 102 10%
Return Period hd

Sampled Distributions: Weibul

Sample Intervals (years): 10, 15, 25

Sample Regions Western, Central

Hazards: CIIAM (Hazmat Spill), Current Event, Earthquakes, Landslide Susceptibility, Wind Event

Run Analyses




Next Steps for OGA Tool N=[HTonA
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« Integrating analyses for turbidity currents,
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IGA

)
y X<
Y
( N
\
\
~
[

y

nearshore submarine landslide susceptibility,
extreme waves and wind in a changing Ocean & Geohazard Analysis
climate, Loop Current predictability

Assembly of database containing metocean
and seabed datasets that feed OGA analyses

OGA Tool
available for
download
from EDX
upon request

Strategize conversion of OGA Tool to online-
accessible web application

Email: MacKenzie Mark-Moser
Mackenzie.mark-moser@netl.doe.gov




Collaboration and External Interest
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External CIAM Users

Country Research Institute. Study region Status
Spain ICM Marine Science Institute Spain. Mediterranean Publication in progress
India National Institute of Oceanography India Gulf of Bengal Publication in progress
Mexico Engineering & Coastal Processes UNAM Mexico Caribbean & Loop Current Publication in progress
Tropical Atlantic Gouveia et al (2021).
Brazil National Institute for Space Research Brazil https://www.nature.com/articles/s41
598-020-79386-9
S . Maslo, A., et al. (2020).
Mexico CICESE Ensenada Center fo.r SC|ent|f.|c Research and Higher Deep GOM https://doi.ore/10.1016/i. imareys. 201
Education, Mexico 9.103267
N . Gough, M. K,, et al . (2019).
Mexico CICESE Ensenada Center for SC|ent|f'|c Research and Higher NW GOM httos://dol.org/10.1175/JP0-D-17-
Education, Mexico
0207.1
pmted Na’gonal Oceanography Centre North Sea and Caribbean Preliminary results obtained
ngdom Marine Systems Modelling Group
Saudi Arabia Red Sea Modeling and Prediction Group KAUST Red Sea Prefiminary results obtained
Mexico Consortium for Sargassum forecasts (CICESE, UNAM, ECOSUR) Caribbean and GOM Preliminary results obtained
USA UNC at Chapel Hill Atlantic wind Preliminary results obtained

U.S. DEPARTMENT OF

) ENERGY
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BOEM

Bureau o Ocean Eneray Manacement

U.S.NAVAL

ESEARC
LABORATORY

Lloyd's

LQ Register

D=

CICESE.



https://www.nature.com/articles/s41598-020-79386-9
https://doi.org/10.1016/j.jmarsys.2019.103267
https://doi.org/10.1175/JPO-D-17-0207.1

Key Takeaways

""”’\ U.S. DEPARTMENT OF

Q)j ENERGY

Predicted Seafloor Landslide Potential
Low T | High

Variable Grid Method
Uncertainty determined using radial mean accuracy
BE] Grid cells with accuracy > 0.65

% Grid cells with accuracy > 0.45 O Feature map
extent

l:' Grid cells with accuracy > 0.28

More information at
https://edx.netl.doe.gov/offshore/

N: NATIONAL
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Advancing the current state of
knowledge, supporting offshore
activities, forecasting risks to
maintain environmental integrity
that may evolve with a changing
climate

Improved characterization of
metocean and seabed related
hazards will help to prevent
catastrophic incidents as human
and engineered systems
integrate with natural systems in
the offshore environment

2GA

Ocean & Geohazard Analysis

25




NETL
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VISIT US AT: www.NETL.DOE.gov
@NETL_DOE

@NETL_DOE

@NationalEnergyTechnologylLaboratory

Contacts

r.duran@theissresearch.org
MacKenzie.Mark-Moser@netl.doe.gov Eu. r
Jennifer.bauer@netl.doe.gov R

x{{%Offshore Offshore information available at === L
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Advanced Offshore Research Task 6 Timeline = |namoNAL
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Research Problem:

. Changes in the ocean environment (e.g., mudslides or burial from subsea currents, strong %
weather events or natural fluctuations) have been linked to billions of dollars of impacts.
Climate change is expected to intensify many of these problem:s.

27°N-

24°N

« These events can have a significant effect on the success and longevity of offshore 210
infrastructure, as well as affect safety and cost during exploration, production, and 18°N
storage activities.

Research Approach:

. Determine current state of knowledge regarding hazardous metocean and bathymetric
conditions, and data availability regarding these conditions and historic events.

. EY19-EY21: Evaluated if AI/ML models can be developed to better identify current
hazardous metocean and bathymetric conditions. Developed, trained, and tested Al/ML
models to identify conditions and forecast changes and vulnerabilities to offshore
infrastructure. Refined Smart Tool to host Al/ML models and develop user interface.
Developed forecasting and integrated selected hazard types into tool. Released desktop
version at end of EY.

—
o
g
(o]

o

. EY22: Refine analytical logic and smart tool functionalities through user testing and
development. Build metocean and seabed hazard database for release on EDX. Report
research in technical report or publication.

. EY23+: Strategize conversion of OGA Tool to online platform. Submit integrated seabed
hazard database for release to EDX. Continue to produce technical publication(s).

Benefit:

. Improved characterization of metocean and seabed related hazards in the offshore can
help prevent catastrophic incidents that impact the environment, coastal communities,
and their economies while supporting offshore energy and carbon storage efforts.

Ocean & Geohazard Anall

®e ¢ ¢ ¢ @ 06 0 0 ©
= O 00 N O U1 h W N O
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Offshore Unconventional FWP —\NATIONAL
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Task é: Infrastructure and Metocean Technology

Milestones
[ Number | Date .
EY21.6.1 06/2021 List summarizing identified improvements and enhancements for analytical logic and smart tool.
EY21.6.L 02/2022 Internal release of the Ocean & Geohazard Analysis tool, desktop version, to EDX.
EY21.6.M 03/2022 Evaluate TRL for smart tool and determine if additional development or enhancements are needed to obtain target TRL.
EY22.6.N 06/2022 List summarizing tool enhancements priorities identified by user testing on OGA Version 1.
EY22.6.0 09/2022 Draft manuscript(s) of individual smart tool model(s) or algorithm(s) completed
EY22.6.P 12/2022 List optimizations made to the Ocean & Geohazard Analysis tool.
EY22.6.Q 01/2023 Assemble metocean and seafloor database to support smart tool analysis.
EY22.6.R 06/2023 Strategize conversion of Ocean & Geohazard Analysis tool to online platform.
EY22.6.S 10/2023 Update integrated metocean and seabed hazard database for management review and approvals to release on EDX.
EY22.6.T 12/2023 Outline a technical report or additional publications.

Chart Key
TRL Score I G_O/NO-GO I Project . Milestone
Timeframe Completion

U.S. DEPARTMENT OF

/ENERGY




Landslide Susceptibility Results = MRy
TECHNOLOGY
ML Approach with Variable Grid Method TL
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* The Variable Grid Method (VGM)
(Bauer & Rose, 2015) utilized to
visualize spatial uncertainty.

* Smaller grid sizes indicate a higher
certainty of model predictions for that
region while larger grid sizes indicate
lower certainty.

UA_BM % LE Predicted Seafloor Landslide Potential 5 f‘
. @R“ D Low T ~ High C—IMiles jL
A 2 Variable Grid Method
- . inty determined using radial
M E.T ﬂgb Uncertainty determined using radial mean accuracy

m Grid cells with accuracy > 0.65

EH Grid cells with accuracy > 0.45 O Feature map

extent

|:| Grid cells with accuracy > 0.28

U.S. DEPARTMENT OF




Publications

Publications, Datasets & Presentations N=|NATIONAL
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Alec Dyer, Scott Pantaleone, MacKenzie Mark-Moser, Andrew Bean, Paige Morkner, Samuel Walker, Jennifer Bauer, Historic Submarine Landslides in the Northern Gulf of Mexico, 8/8/2022,
https://edx.netl.doe.gov/dataset/historic-submarine-landslides-in-the-northern-gulf-of-mexico, DOI: 10.18141/1879673
Duran, R., T. Nordam, M. Serra and C. Barker (2021). Horizontal fransport in oil-spill modeling. Book chapter in Marine Hydrocarbon Spill Assessments, Elsevier. hitps://arxiv.org/abs/2009.12954
Nordam T., J. Skancke, R. Duran and C. Barker (2021). Vertical tfransport in oil spill modeling. Book chapter in Marine Hydrocarbon Spill Assessments, Elsevier. https://arxiv.org/abs/2010.118%90
Nordam, T. & R. Duran (2020). Numerical integrators for Lagrangian oceanography. Geoscientific Model Development. hitps://gmd.copernicus.org/preprints/gmd-2020-154/.
Gouveia, M. B, R. Duran, J. A. Lorenzzetti, A. T. Assireu, R. Toste, L. P. de F. Assad and D. F. M. Gherardi (submitted, revision in progress, 2020). Persistent meanders and eddies lead to quasi-
steady Lagrangian transport patterns in a weak western boundary current. hitps://arxiv.org/abs/2008.07620
Zhang, R., P. Wingo, R. Duran, K. Rose, J. Bauer, R. Ghanem (2020). Environmental Economics and Uncertainty: Review and a Machine Learning Outlook. Oxford Encyclopedia of
Environmental Economics. https://doi.org/10.1093/acrefore/9780199389414.013.572.
Gough M. K., F. J. Beron-Vera, M. J. Olascoaga, J. Sheinbaum, J. Jouenno, R. Duran (2019). Persistent Lagrangian transport patterns in the northwestern Gulf of Mexico. J. Phys. Oceanogr., 49,
353-367, https://doi.org/10.1175/JPO-D-17-0207.1
Duran, R., F. J. Beron-Vera, M. J. Olascoaga (2018). Extracting quasi-steady Lagrangian transport patterns from the ocean circulation: An application to the Gulf of Mexico. Scientific Reports,
8(1), 5218. hitps://www.nature.com/articles/s41598-018-23121-y
Appendini C. M., P. Ruiz-Salcines and R. Duran (in preparation). Tropical cyclone waves under climate change in the Gulf of Mexico
Kurczyn, J. A., R. Duran, E. Beier, and A. J. Souza (2021). On the advection of upwelled water on the western Yucatan Shelf. Frontiers in Marine Science.
https://doi.org/10.22541/au.162126717.71153804/v 1

Dyer, AS., Mark-Moser, M., Duran, R., Bauer, J.R. (submitted) Submarine Landslide Susceptibility in the Northern Gulf of Mexico. Natural Hazards, Springer.
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