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• Landfills to prevent the release of coal 
combustion products into the environment
• Contain contaminants such as As, B, Hg, Se, Sr, etc.

• Boron: Present in impoundment sites
• Primarily in the form of H3BO3 (acidic) or B(OH)4

-

(basic)

• Zeolites: can be synthesized from fly ash
• Have shown usefulness in removing contaminants
• Topological variability
• Tunable composition

• Which zeolite should be used for contaminant 
removal?

Impoundment Sites
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IZA Code Alternate Names PLD (Å) LCD (Å)
ANA Analcime 2.43 4.21
CHA Chabazite

Hershelite (Na-form)

K-chabazite (K-form)

3.72 7.37

FAU Faujasite

Zeolite X (Si/Al < 2)

Zeolite Y (Si/Al >= 2)

7.35 11.2

GIS Zeolite P1

NaP1

3.32 4.97

LTA Zeolite 4A

Zeolite 5A

Zeolite A

Linde Type A

4.21 11.05

LTF Linde Type F 7.5 (z-direction) 8.16
LTL Linde Type L

Perlialite

7.5 (z-direction) 10.01

PHI Phillipsite 3.69 5.40
SOD Sodalite 2.53 6.32



• Tetrahedral aluminosilicates
• 245 distinct experimentally-synthesized topologies

• Millions of hypothetical zeolites

• Composed of AlO4 and SiO4 tetrahedra
• Substitution of Al for Si leads to charge imbalance
• Extra-framework cations (Na+, K+, Ca2+, etc.) balance charge

• Cations are loosely bound, can be exchanged
• Cations are adsorption and catalytic sites
• Properties vary based on topology, composition, and Al distribution

• Uses for separations and catalysis
• Stable, inexpensive to produce
• Can be synthesized from coal fly ash
• High internal surface area for adsorption

Introduction

Zeolites

5

Si

O

Na

Al

Number of Cations Species of Cations Zeolite Structure 

(Topology)
Si/Al ratio Modified by cation exchange

Ex. Na, K, Ca, Mn(II), Fe(II)

Controls pore size, shape, 

and surface area

Zeolite 4A (Na-LTA)



1. Construct a collection of sorbent structures 

and sorption conditions 

2. Construct appropriate model potentials

3. Carry out computations to estimate sorption

in a representative subset of the sorbent 

structures

4. Use AI/ML techniques to exploit relationships 

to screen / design tailored sorbents for 

impoundments

Overall Strategy

Methodology
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Overall Strategy

Machine Learning for Materials Design
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Speed of 
Calculations

Level of 
Theory/Detail

• Machine Learning (ML):
• Accuracy depends on training set
• Can be used for screening or design
• Fastest of these three methods

• Classical Simulations (FFs):
• Molecular simulations
• Can study macroscopic properties
• Useful for screening

• Quantum Mechanical (QM) simulations: 
• Using density functional theory (DFT) as 

the QM method
• Accurate
• Based on first-principles calculations
• Cannot study macroscopic properties

Machine Learning 
(ML)

Classical 
(Force Field)

QM

(DFT)
Trains

Trains



• Framework symmetry:

• The framework symmetry controls 

geometrical features:

• Pore-limiting diameters

• Cavity diameter

• Accessible surface area

• Seven framework symmetries – zeolites with 

these symmetries have been synthesized 

from fly ash.

• An additional five symmetries were chosen 

because they are common frameworks.

• DDR, FER, MEL, MFI, TON   

• Expanded list of framework symmetries: 12

1. Construct a Collection of Sorbent Structures and Sorption Conditions

Methodology
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• Analytical function that describes interaction energies

• Function of distance between a pair of atoms(Rij)

• Total energy of system is the sum over the atomic pairs

• Example: Lennard-Jones potential (right)

• σ is related to average atomic size

• ε is related to depth of potential energy well

• Used with statistical mechanics to calculate 
thermodynamic properties

• Fast computation of energies means more configurations and 
better statistics

• Phase equilibrium, heats of adsorption, adsorption isotherms

• Often parametrized based on experimental data or 
QM calculations (DFT)

2. Construct Appropriate Model Potentials

Force Fields
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𝐸𝑖𝑗 𝑅𝑖𝑗 = 4ε𝑖𝑗
σ𝑖𝑗

𝑅𝑖𝑗
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• DFT optimization showed no chemical bonds broke during 

adsorption of H3BO3, H2O

• Can use classical force fields for adsorption

• Complete for Na+, K+, Ca2+, Mn2+, Fe2+

• Construct models to reproduce adsorption energies from DFT

2. Construct Appropriate Model Potentials

Fitting Adsorbate – Zeolite Interactions
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Generate 
Snapshots 
(NVT MC)

Calculate 
DFT Energy 

of 
Adsorption

Subtract 
Coulomb 
from DFT

Fit vdW 
Potential

(σ, ε) 

𝐸𝑖𝑗 𝑅𝑖𝑗 = 4ε𝑖𝑗
σ𝑖𝑗

𝑅𝑖𝑗

12

−
σ𝑖𝑗

𝑅𝑖𝑗

6

+
𝑞𝑖𝑞𝑗

𝑅𝑖𝑗

Na – H3BO3

Old Model
(Before this work)

Na – H3BO3

New Model
(This work)



• Adsorption from solution:
• Reference state is now boric acid in solution

• 𝑓𝐴 = ρ𝑘𝐵𝑇 𝑒
൘𝜇𝐴

∞

𝑘𝐵𝑇 𝑥𝐴

• 𝜇𝐴
∞ is the excess chemical potential of infinitely dilute solute in the solvent

• 𝑥𝐴 is mole fraction of solute

• Model predictions for Henry’s constant match Hazardous Substances Data Bank (HSDB)

• 𝐾𝐻 = 𝑥𝐴→0
𝑙𝑖𝑚

(
𝑓𝐴

𝑥𝐴
) = ρ𝑘𝐵𝑇𝑒𝑥𝑝(βμ𝐴

∞)

• Continuous Fractional Component Monte Carlo
• Designed for dense systems: Difficult to perform insertion moves without overlap

• Insertion of boric acid in hydrophilic zeolite

• Inserts a “fractional” molecule

• Scales intermolecular interactions by λ (0, 1]

• Allows other molecules to move with fractional molecule present

• Increases weight (λ) until full molecule is grown 

3. Carry out Computations to Estimate Sorption in Sorbent Structures

Adsorption Simulation Methods
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Rahbari, A., et al. "Recent advances in the continuous fractional component Monte Carlo methodology." Molecular Simulation 47.10-11 (2021): 804-823.

Xiong et al. Alcohol Adsorption onto Silicalite from Aqueous Solution Journal of Phys. Chem. C (2011)

KH (Pa*m3/mol) Source

Experimental 2.65*10-7 HSDB (NIH)

Sim (CFCMC-WI) 1.29*10-7 This work



• Results for 1 ppm H3BO3 solution

• Ca, Na-exchanged zeolites were top 
performers
• Largest charge (Ca)

• Most cations per unit cell (Na)

• Low Si/Al ratios performed best
• Most cations per unit cell

3. Carry out Computations to Estimate Sorption in Sorbent Structures

Initial Dataset (1 ppm)
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Atomic Property Weighted Radial Distribution Functions

• RDF analysis is a crystallographic technique sensitive to both short- and long-range structural correlations.

• The RDF is the interatomic separation histogram representing the weighted probability of finding a pair of 

atoms separated by a given distance.

• The RDFs can be weighted to fit the requirements of the chemical information to be represented, by 

introducing the atomic properties, Pi. 

• Electronegativity, polarizability, and van der Waals volume.

• Encoded RDFs for all IZA zeolites.

4. Use AI/ML Techniques to Exploit Relationships to Design Tailored Sorbents

Zeolite Structure Encoding (RDFs)
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Fernandez, M.; Trefiak, N. R.; Woo, T. K. Atomic Property Weighted Radial Distribution Functions Descriptors of Cation–Organic Frameworks for the Prediction of Gas Uptake Capacity. J. Phys. Chem. C 2013, 117 (27), 14095–14105. 



• ML Model requires:

• Descriptors:

• Crystal structure (topology)

• Composition (both zeolite and solution)

• Adsorption data:

• Little experimental data available (not enough for ML)

• Can predict adsorption using molecular simulations

• Accuracy depends on models and level of theory

• Can use molecular simulations to generate a large, robust training set

4. Use AI/ML Techniques to Exploit Relationships to Design Tailored Sorbents

Machine Learning Model
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𝑦 = 𝐹(𝑥1, 𝑥2, … , 𝑥𝑛)

Target Number of 

Cations

Species of Cations Zeolite Structure 

Encoding

Solution

Amount 

Adsorbed

Al/O Na/O Ca/O Mn/O Fe/O RDF_PC1 RDF_PC2 Boric Acid

Concentration



• Prediction: H3BO3 uptake from 1-20 ppm H3BO3 solution

• Features: 

• Stoichiometry (normalized by number of O atoms)

• Six principal components for weighted RDFs (weighted by 

charge, electronegativity)

• H3BO3 concentration in solution

• Model: Random Forest Regression

• Max depth = 10

• N trees = 200

• Tuned using gridsearchCV (5-fold)

• Conclusions:

• Good quality of fit

• Most important features: AlO (Si/Al ratio), CaO (cation type)

4. Use AI/ML Techniques to Exploit Relationships to Design Tailored Sorbents

ML Model
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• “Survival of the fittest”

• Optimization technique

• Genes: Features 

• Examples. Si/Al, Al/O, RDF_PC1

• Chromosome: Set of genes (a zeolite) 

• Example: Na-LTA with Si/Al = 1

• Population: Group of potential solutions

• Fitness function: Affects the probability of selection 

for “reproduction”

• Predicted H3BO3 uptake

• Crossover: Swapping a set of genes between two 

chromosomes and adding the offspring to the 

population

• Mutation: Altering the set of genes in an offspring

4. Use AI/ML Techniques to Exploit Relationships to Design Tailored Sorbents

Genetic Algorithms – Zeolite Optimization
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Gene Values Meaning

Topology [0 to Ntopologies]
Assigns structure 

encoding

AlO [0, 1] Si/Al ratio

NaO [0, 1] Na%

CaO [0, 1] Ca%

MnO [0, 1] Mn%

FeO [0, 1] Fe%



• Selected boron concentration data from Electric Power 
Research Institute (EPRI) report

• Designed tailored zeolites using GA optimization
• Case 1: Fly ash zeolite topologies, all Si/Al are valid

• Broader search

• Case 2: Fly ash zeolite topologies, minimum Si/Al based on literature search

• Searches zeolites that are “easier” to make

• CHA and LTA topologies are ideal for boric acid removal
• Si/Al = 1, partially Ca-exchanged

4. Use AI/ML Techniques to Exploit Relationships to Design Tailored Sorbents

Genetic Algorithms – Zeolite Optimization

17

Type Percentile
Concentration 

(mg/L)
Case

Loading 
(mol/kg)

Topology Si/Al Na (%) Ca (%) Mn (%) Fe (%)

BIT-Porewater 75 12.84
Case 1 2.5 CHA 1 42.82 49.98 2.29 4.92

Case 2 2.25 LTA 1 7.37 70.09 6.60 15.94

BIT-Contact Water 100 27.43
Case 1 2.5 CHA 1 49.27 46.25 3.24 1.24

Case 2 2.41 LTA 1 5.75 74.12 3.40 16.73

SUB-Contact Water 50 3.50
Case 1 2.5 CHA 1 29.47 68.49 0.39 1.66

Case 2 2.04 LTA 1 3.02 78.60 4.75 13.63



• Model enhancement

• Model pH effects

• Add additional contaminants to models (such as As, Hg, Ni, Se)

• Hg, Ni: ion-exchange

• As, Se: adsorption

Next Steps
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Questions?
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• Used models developed in December to predict water vapor adsorption isotherms

• Model parametrized by fitting to Density Functional Theory Energies (PBE-D2 to be specific)

• Compared two different potentials

• Buckingham: 𝐸𝑖𝑗 = 𝐴𝑖𝑗𝑒
−𝐵𝑖𝑗𝑅𝑖𝑗 −

𝐶𝑖𝑗

𝑅𝑖𝑗
6 +

𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑅𝑖𝑗

• Na-LTA (Si/Al = 1, top) and NaY (Si/Al = 2.45, bottom)

• Most important ranges are: 

• High pressure (similar to liquid water)

• Low pressure (water-zeolite interaction strength)

• Low pressures: Good agreement with D2FF

• Our Buckingham model predicts interaction energies between the zeolite and water

• This bodes well for our H3BO3 models because the fugacity of H3BO3 is very low for ppm-level 
concentrations

• High pressure (near saturation): Good agreement

• Similar to liquid water inside the pores

• Intermediate pressures: Decent to poor agreement for D2FF

• Shape of the isotherm does not completely match

• Likely caused by imperfections in SPC/E water model (non-polarizable, only three-point charges)

• Our Model (D2FF) seems sufficiently accurate for further use

• Note: Simulations (D2FF, red) performed without experimental input

• Fuchs FF (blue) was fit to Fuchs experimental data (NaY)

• Castillo FF (black) was fit to Castillo experimental data (black) 

2. Construct Appropriate Model Potentials (Validation)

Model Validation
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• Fit new models (when necessary) K interactions with zeolite framework (finished), H2O (finished), 
H3BO3 (finished, pictured)

2. Construct appropriate model potentials

Addition of K
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Atomic Pair Aij (K) Bij (Å
-1

) Cij (K*Å
6
) qM (-e) Source

K – Oz 6.23*10
7

3.43 2.29*10
6

0.990 Fang et al.

K – O (H2O) 3.50*10
6

2.55 0 0.990 This work

Atomic Pair εij (K) σij (Å) qM (-e)

K – O (H3BO3) 348 2.87 0.990


