LA-UR-23-23992

Approved for public release; distribution is unlimited.

Title: An evaluation of risks associated with relying on Fortran for mission
critical codes for the next 15 years

Author(s): Shipman, Galen M.
Randles, Timothy C.

Intended for: Report

Issued: 2023-05-03 (rev.2)

1% Los Alamos

1% Los Alamos NYSE

NATIONAL LABORATORY National Nuclear Security Administration

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.

An evaluation of risks associated
with relying on Fortran for mission
critical codes for the next 15 years

LA-UR-23-23992
April 18, 2023

1% Los Alamos

NATIONAL LABORATORY

EXECUTIVE SUMMARY

This document examines risks associated with relying on Fortran for codes critical to nuclear security into
the late 2030s. The study was requested by the LANL ASC program office to support its decisions. To
date, much of the discussion about the prospects for Fortran has tended to be informal and centered on
questions (such as, “will the language be around in 20 years”) that are impossible to answer with any
certainty. By focusing on estimates of the likelihood associated with different outcomes, rather than on
specific predictions, we hope to clarify points of disagreement within the community and strengthen the
analytic basis for reasoning about the future.

Our assessment for seven distinct risks associated with continued use of Fortran are that in the next fifteen
years:

1. Itis very likely that we will be unable to staff Fortran projects with top-rate computer scientists and
computer engineers.

2. There is an even chance that we will be unable to staff Fortran projects with top-rate computational
scientists and physicists.

3. There is an even chance continued maintenance of Fortran codes will lead to expensive human or
financial maintenance costs.

4. ltis very unlikely that codes that rely on Fortran will have poor performance on future CPU
technologies.

5. Itis likely that codes that rely on Fortran will have poor performance for GPU technologies.

6. lItis very likely that Fortran will preclude effective use of important advances in computing
technology.

7. There is an even chance that Fortran will inhibit introduction of new features or physics that can be
introduced with other languages.

Here we have followed the convention adopted by the Intelligence Community (ICD-203) for
probabilistic language.

almost no very unlikely | unlikely | even chance likely very likely | almost certain
chance
01-05% 05-20% 20-45% 45-55% 55-80% 80-85% 95-99%

A more complete description of the meaning of our judgments, along with supporting reasoning, is given
in the main document.

Our assessments lead us to the view that continued use of Fortran in our mission critical codes poses
unique challenges for LANL. While Fortran will continue to be supported at some level, particularly on
CPU-based systems, the outlook for advanced technology systems is dim. The ability to leverage broader
and more modern open-source technologies / frameworks is unlikely, increasing the cost of new physics
and feature development.

1% Los Alamos

NATIONAL LABORATORY

The vendor ecosystem of Fortran compilers is worrying. Intel and GCC communities have the most
robust Fortran compilers for modern Fortran (Fortran 2008) on CPU technologies but have less mature
support for GPU technologies. Nvidia has good support for GPU technologies but lacks support for
modern Fortran needed by LANL. Open-source efforts around an LLVM compiler for Fortran, known as
Flang, are inadequate to meet either requirement (robust support for modern Fortran and GPU
technologies). Complicating things further, there are competing Fortran technologies for GPUs including
standards such as OpenACC and OpenMP and vendor proprietary technologies such as Cuda Fortran.
While similar diversity exists for other languages (such as C++) there are no infrastructures for portability
like Raja and Kokkos for Fortran.

From the perspective of continued technological advancement, Fortran receives much less attention from
industry and academia relative to other languages. C++ and Python have numerous examples of advances
to support massive on-node parallelism at the language and library levels. Some of these advancements
have recently found their way into language standards with support from multiple proprietary and open-
source compilers. Experience over the past two decades has shown a much slower evolution of the
Fortran language and significant delays in supporting new language standards in compilers. From the
perspective of market demand, Fortran can be considered a niche or legacy technology. This is evident by
multiple metrics including language popularity analysis and number of job postings on major employment
websites.

1% Los Alamos

NATIONAL LABORATORY

Ability to Staff

We judge it is very likely that we will be unable to staff Fortran projects with top-rate computer scientists
and computer engineers, and that there is an even chance we will be unable to staff Fortran projects with
top-rate computational scientists and physicists.

o “Fortran is no longer widely taught to university students or valued as a useful skill by industry.
Consequently, adoption of new users has been stagnating, large scientific Fortran projects have
been migrating to other languages, and the communities of Fortran programmers remained
scattered and isolated.” [StateOfFortran2022]. Universities are increasingly using higher level
languages, such as Python, to teach computational science and engineering. Computer science
and computer engineering graduates are rarely if ever introduced to Fortran during their
coursework and are more likely to be introduced to C, C++, Python, and functional programming
such as Scheme.

o The broader job market has a significantly lower demand for Fortran developers. As of this
writing, 1,299 U.S.-based jobs posted to Indeed.com listed Fortran in their job description
compared to 47,919 listing C++ and 128,745 listing Python. From the perspective of hiring, it has
been difficult to hire and staff large-scale Fortran code bases with individuals with computer
science or computer engineering backgrounds. Computational science and physics students are
sometimes introduced to Fortran, largely using legacy codes to conduct their research.

e Many of the larger scale physics codes have migrated or been replaced by C++ codes and the use
of Python as an analysis language now dominates, which may change the composition of skills
moving forward.

It should be noted that training staff in the use of Fortran is not a major challenge if the staff member has
sufficient experience in another programming language. Attracting (and retaining) staff in these large
Fortran projects may prove more difficult. It is also possible that as the pool of Fortran developers
continues to decrease, the demand for this skill set on legacy code bases across the industry will remain
flat for quite some time, meaning increased competition for the relatively few developers with deep
Fortran expertise. This has the potential to further erode retention and our ability to compete on salary.

Contrasting
Reviewer Judgments

Contrasting Reviewer Judgments

Two reviewers disagreed with aspects of this judgment and wrote:
Two reviewers 1) Even though it is easy for staff to learn Fortran if they have
disagreed with aspects sufficient experience in another programming language, we find that
of this judgment, they usually don't/won't learn it at a very deep level because they don't
indicating that a see themselves being involved in that area of the code for a long
variety of other factors enough period of time to make it worth their time or see that as a
have greater impact on marketable enough skill set to learn at that deep level.
our ability to attract 2) While learning Fortran is not too difficult, few potential employees
top CS / CE talent. will be interested in it. Even if you tell them that you are willing to
train them and provide the time they will need to learn Fortran as a
cost of doing business, few people are interested in learning an arcane
skill with low marketability.

1% Los Alamos

NATIONAL LABORATORY

Cost of maintenance

We judge there is an even chance continued maintenance of Fortran codes will lead to expensive human
or financial maintenance costs.

e Compiler technology costs are significant for Fortran and are trending upwards. Estimates of tens of
millions of dollars have been discussed recently. Details on why this is the case are covered in the
next section.

o The cost to train staff in Fortran is more than likely a small overall cost; the much more significant
cost is the training of staff in our application structure (LAP and EAP in particular) where the
complexity of these codes can require many months or even years of training before staff are
conversant. This cost is not considered in our assessment because it is not so much a consequence of a
particular language as of the complexity of the application code.

¢ Funding of development of interfacing among languages is significant and time consuming and often
requires multiple full-time staff members to make sweeping changes across the code base to support
inter-operability.

The last consideration only applies if there are investments in language inter-operability or use of
advances in hardware technologies. Costs for just the maintenance of our existing codes is likely
comparable with that for other languages.

I Contrasting Reviewer Judgments I

One reviewer disagreed with this judgment and wrote:

We face a virtual certainty that continued maintenance of Fortran
codes will entail expensive human or financial maintenance costs.
Cost of the language infrastructure is part of the maintenance cost
and, as you mention, the cost for ensuring working Fortran
compilers is high. For C++ (and C and Python and others), industry
bears most of that cost and, at most, DOE needs to cover
optimizations for some very specific use cases. Further, once they
are implemented, they tend to be maintained as part of the language
infrastructure for which industry pays.

1% Los Alamos

NATIONAL LABORATORY

Ability to make use of advances in hardware

We judge it is very unlikely that codes that rely on Fortran will have poor performance on future CPU
technologies, it is likely that codes that rely on Fortran will have poor performance for GPUs, and it is
very likely that Fortran will preclude effective use of important advances in computing technology.

Fortran has historically provided a very high level of performance on CPU-based architectures. In
some cases, Fortran can be optimized more effectively than equivalent C or C++ code. This is
particularly true for serial and even data parallel / vectorized code.

Major technology provider’s compilers such as Intel (ifx) and Nvidia (nvfortran) are likely to
continue to provide high levels of performance in the future. Open-source compilers such as GCC’s
gfortran will likely continue to lag somewhat behind these vendor optimized compilers. The LLVM-
based Fortran compiler project, Flang, will likely lag even further behind GCC for the foreseeable
future.

In contrast to the case for CPUs, support for GPU technologies tends to significantly lag in support
for other languages (C/C++). Robust compiler technologies are necessary to make use of advances in
hardware technologies. The Frontier and El Capitan systems are two examples in which the Fortran
compiler technology has lagged significantly behind other compiler technologies (C / C++). Multiple
competing standards for Fortran-based GPU programming with varied levels of robustness and
support exist today (Fortran OpenMP Target offload and OpenACC). Neither of these technologies is
robustly supported on the AMD GPU (MI1250) today.

Efforts to fill this gap are ongoing. The Exascale Computing Project (ECP) is funding an open-source
Fortran compiler based on LLVM known as Flang, largely in recognition of the lack of robust Fortran
compilers for these systems. Other efforts include funding code sorcery (now Siemens) to develop
OpenMP target oftfload and OpenACC backends for the GCC/gfortran compilers. Both efforts are
largely reactionary, due to poor community and technology provider support for Fortran on advanced
technologies.

The level of funding required to continue supporting these efforts is not known. Estimates in the tens
of millions of dollars have been discussed. Even when a technology provider has an in-house Fortran
compiler team that supports advanced hardware, such as the case for the NVIDIA nvfortran compiler,
the lack of timely and robust support for “modern Fortran” has proven a major hurdle. As a specific
example, efforts to port XRAGE to the PGI Fortran compiler (now rebranded as the nvfortran
compiler) have been ongoing since April of 2019 and xRAGE is still unable to be built and run with
this compiler. It is important to note that nvfortran still does not support the Fortran 2008 standard, a
full 15 years after its ratification by the standards committee.

The ecosystem of tools, particularly for performance portability, is significantly lacking in Fortran.
Several performance portability infrastructures are currently available in the C++ ecosystem
including Kokkos (Sandia National Laboratory), RAJA/CHAI (Lawrence Livermore National
Laboratory), SYCL (Khronos Group), and OneAPI (Intel). Each of these infrastructures provides the
ability to describe iteration patterns over data, computational kernels to execute over the iteration, and
mechanisms for managing placement and describing data layout in a potentially heterogenous node
architecture. Furthermore, many of the concepts from these infrastructures are influencing the C++
language standard. C++17 has included parallel iterators and C++23 has included n-dimensional
arrays (mdspan). While Fortran does have efforts in language level parallelism, such as DO
CONCURRENT, implementations make no guarantee of parallelism and support for GPU parallelism
is limited to a single vendor specific compiler (nvfortran).

1% Los Alamos

NATIONAL LABORATORY

¢ Beyond GPUs, which may be viewed as commodity technologies as opposed to advanced
technologies, Fortran is likely to significantly lag in robust support. Coarse-grained reconfigurable
architectures including Data Flow processors and processing near / in memory will undoubtedly
support Python and C++ well before they support Fortran. In some cases, it is likely that DOE may be
the only proponent of Fortran on these advanced technologies.

The lack of robust support for GPU and other technologies may make certain platforms have very low

performance for Fortran codes or effectively lock out our Fortran codes from some vendors. Compilers
such as nvfortran will have support for Nvidia GPUs, other vendors such as AMD have relatively poor
support for their GPUs using Fortran. The trade space may increasingly become portability versus

performance.

I Contrasting Reviewer Judgments

One reviewer disagreed with aspects of this judgment
and wrote:

Your comments about performance of Fortran codes
on CPUs or GPUs are overly broad. First, the
performance on either processor type will likely
depend on the investment discussed in my first point.
If it is high enough, then neither processor type needs
to have poor performance for Fortran applications.
More importantly, the performance of Fortran codes
will heavily depend on the language features that they
use. We can likely support good performance on
either processor type for codes that largely restrict
themselves to Fortran 95, with use of only carefully
considered features of later versions of the standard
(e.g., the C interface stuff). Codes that insist on using
the latest Fortran standard (aggressively? anything
beyond the carefully selected features?) will require
that investment to be substantial.

| Contrasting Reviewer Judgments |

One reviewer disagreed with this judgment
and wrote:

This paper seems to project a feeling that we
have no control over the future of our
computing environment. LLNL specs systems
that are good for C++ and ignore Fortran,
because they made that switch twenty years
ago. The UK’s Archer2 system was spec’d to
run Fortran codes, because over 75% of their
cycles are Fortran. We could choose to invest
in computers and software environments that
are good for our codes and our mission. $10M
put towards getting [company name] to
improve their compiler is nothing compared
to the costs of replacing Fortran in our code
base.

Author note: LLNL has specified Fortran
support as an equal ‘tier one’ requirement
alongside C++ in all of their system
procurements and still has mission-critical
functionality written in Fortran.

1% Los Alamos

NATIONAL LABORATORY

Inability to introduce new features or physics

We judge there is an even chance that Fortran will inhibit introduction of new features or physics that can
be introduced with other languages.

o For features and physics developed directly within an existing code base, the use of Fortran is
unlikely to cause challenges. For features and physics that can be realized through integration of
libraries, the use of Fortran will introduce some overheads, but these are likely to be relatively small
in scope (interfacing between Fortran and C++, for instance).

¢ In other areas, such as the ability to leverage robust frameworks developed by the community, the use
of Fortran will pose a greater challenge. Many of the scientific computing frameworks in use today
are written primarily in C++ [MFEM, FleCSI, Parthenon], adopting these frameworks in Fortran code
bases would prove extremely challenging and would likely negate any benefits.

Most recent computational science frameworks have been developed in C++, a trend that is likely to
continue, which will inhibit the adoption of modern techniques / methods without a custom rewrite or
adaptation to existing codes. This is the most likely impact: the inability to effectively leverage broader
community development projects.

1% Los Alamos

NATIONAL LABORATORY

References

[StateOfFortran2022] Kedward, Laurence J.; et al. “The state of fortran.” Computing in Science &
Engineering 24.2 (2022): 63-72.

[MFEM] mefm.org.

[ECP-status] https://confluence.exascaleproject.org/pages/viewpage.action?pageld=140935589.

[FleCSI] Bergen, Ben; et al. “FleCSI 2.0: The Flexible Computational Science Infrastructure Project.”
European Conference on Parallel Processing. Springer, Cham (2022).

[Parthenon Grete, Philipp; et al. “Parthenon—a performance portable block-structured adaptive mesh
refinement framework.” arXiv preprint arXiv:2202.12309 (2022).

1% Los Alamos

NATIONAL LABORATORY

