

1 **Perovskite CsPbBr_3 single-crystal detector operating at 10^{10}**
2 **photons/s/mm² for ultra-high flux X-ray detection**

3 Lei Pan^{1§}, Indra Raj Pandey^{1,2§}, Antonino Miceli^{3*}, Vladislav V. Klepov¹, Duck Young Chung²,
4 and Mercouri G. Kanatzidis^{1,2,4*}

5 ¹*Department of Chemistry, Northwestern University, Evanston, IL 60208, USA*

6 ²*Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA*

7 ³*X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA*

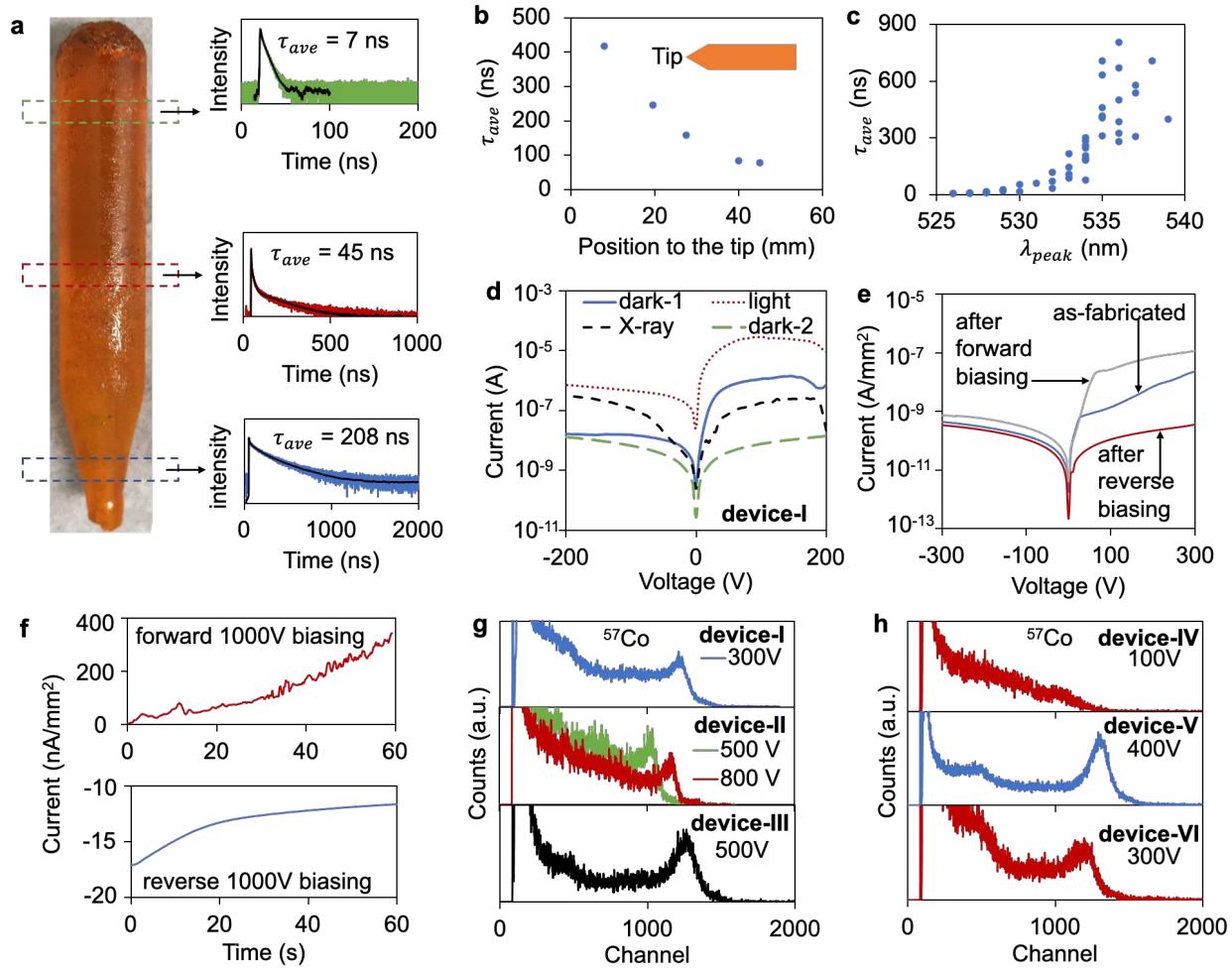
8 ⁴*Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208,
9 USA*

10 §equally contributed

11 *Correspondence to: m-kanatzidis@northwestern.edu, amiceli@anl.gov

12 **Abstract**

13 Semiconductors for detecting hard radiation are confronted with considerable problems when
14 operating at high photon fluxes. We report a perovskite CsPbBr_3 single-crystal detector capable of
15 operating at X-ray fluxes of up to 10^{10} photons/s/mm² with beam area ≤ 0.25 mm² at 58.61 keV
16 for current-mode X-ray detection. The spectrometer-grade CsPbBr_3 detectors show a gamma-ray
17 energy resolution of $\sim 7.5\%$ at 122 keV for ⁵⁷Co and dark current as low as 4.3 nA (0.5 nA/mm²)
18 at a reverse bias voltage of 200 V (118 V/mm). The detector was tested at X-ray energies of 8.2,
19 10, and 58.61 keV at a synchrotron light source under a reverse bias voltage of up to 1000 V (588
20 V/mm). Under a sufficiently high bias voltage and within several hundreds of seconds X-ray
21 exposure, good photocurrent linearity (goodness of fit $R^2 > 0.99$) and reproducibility were obtained
22 up to a flux of $\sim 10^{10}$ photons/s/mm² at beam area 0.25 mm² with Lower Limit of Detection of
23 $\sim 10^5$ photons/s/mm² and Charge Collection Efficiency of $\sim 100\%$ for 58.61 keV X-rays.
24 Accordingly, wide application of CsPbBr_3 detectors in high-flux X-ray detection is anticipated.


25 Introduction

26 Detectors for hard X-ray detection and imaging with high and ultra-high photon fluxes (ϕ_p) are
27 critical in various areas. Medical X-ray imaging requires $\phi_p > 10^7$ photons/s/mm² (abbreviated as
28 p/s/mm²)¹, while modern Computed Tomography (CT) system requires $\phi_p \sim 10^9$ p/s/mm².
29 Synchrotron X-rays can produce ultra-high flux of $\phi_p > 10^{10}$ p/s/mm², which can enable scientific
30 advancements in numerical fields (e.g., material characterization, biological imaging, battery
31 studies, and many others)²⁻⁵. In comparison, a laboratory X-ray tube typically can produce $\phi_p \sim$
32 10^4 - 10^8 p/s/mm²⁶, many orders of magnitude lower than synchrotron. Direct conversion
33 semiconductor X-ray detectors operating at room temperature are favored over scintillator-based
34 indirect conversion detectors because of their high detection efficiency and intrinsic spatial
35 resolution^{7,8}. Large synchrotron facilities need semiconductor hard X-ray detectors that can handle
36 the wide range of energies involved and the enormous fluxes required for imaging or spectroscopy
37 applications^{5,9}. The high fluxes of the hard X-rays, however, pose significant challenges on the
38 semiconductor detector. High-Z semiconductors are favored for a high detection efficiency, but
39 material polarization has remained a major issue. Polarization occurs because of excessive space-
40 charge buildup inside the semiconductor¹⁰⁻¹², which distorts the electric field and deteriorates
41 detector performance.

42 Generally, material polarization can be classified as bias-induced or radiation-induced^{13,14}. Ion
43 migration is a known contributing factor to bias-induced polarization, which occurs in some TlBr
44 detectors¹⁵. Deep defect levels can also lead to bias-induced polarization because of space charge
45 buildup under the influence of bias voltage¹², which is a prominent problem in some Schottky-
46 type CdTe detectors^{11,16}. Radiation-induced polarization is due to the trapping of radiation-
47 generated free charge carriers. It depends on X-ray flux, detector bias voltage, irradiation time,
48 detector thickness, and temperature, according to theoretical and experimental investigation^{10,17}.
49 A CdTe detector was shown to suffer from significant radiation-induced polarization at a flux of
50 $\sim 9 \times 10^{10}$ keV/s/mm²¹⁸. CdZnTe (CZT) detectors have also received lots of attention for high flux
51 X-ray detection^{19,20}, but CZT detectors also exhibit various degrees of radiation-induced
52 polarization depending on crystal quality^{6,21} (**Supplementary Table 1**). The most recently
53 developed high-flux CZT detectors can operate at $\phi_p \sim 10^8$ p/s/mm² for 120 kVp tungsten X-rays
54 tested at photon counting mode^{6,22}. Nevertheless, the high cost associated with material growth

55 problems (e.g., Te inclusions²³) continues to limit the wide application of CZT. Other materials,
56 such as mercuric iodide (HgI₂)²⁴ and gallium arsenide (GaAs)^{25,26}, have also been considered for
57 X-ray detection but with limited success. Perovskites have recently emerged as promising next-
58 generation semiconductor radiation detectors^{1,27,28}. Perovskite thin films can be solution-processed
59 for flat-panel X-ray imagers^{29,30}, and bulk single crystals (e.g., CsPbBr₃) can be grown from melt
60 or solution for gamma-ray spectroscopy^{31,32} and X-ray photon counting³³. Despite various widely
61 reported types of perovskite X-ray detectors³⁴, there have been no reports on performance under
62 ultra-high X-ray fluxes (e.g., $\phi_p > 10^8$ p/s/mm²). Such harsh high flux working conditions impose
63 stringent requirements on perovskite crystal quality, materials stability, and device fabrication.
64 These requirements include large perovskite single crystals with low defects and minimal ion
65 migration. In contrast, many perovskites exhibit prominent ion migration problems³⁵⁻³⁷.

66 Here, we report the performance of an all-inorganic perovskite CsPbBr₃ single-crystal detector
67 under synchrotron X-ray radiation with ultra-high fluxes from 5.8×10^6 to 1.9×10^{12} p/s/mm² at
68 beam area ≤ 0.25 mm² at X-ray energies of 8.2, 10, and 58.61 keV. CsPbBr₃ single-crystal ingots
69 were grown by the Bridgman growth method, and high-quality spectrometer-grade crystals were
70 selected and fabricated into detectors. The detectors had low and stable dark current, e.g., 4.3 nA
71 (0.5 nA/mm²) at a reverse voltage value (V_r) of 200 V (118 V/mm), which enables a superior
72 ability to detect weak X-rays (i.e., a small Lower Limit of Detection) and stable detector operation
73 up to at least V_r = 1000 V (588 V/mm). The excellent crystal quality and high reverse bias voltage
74 allowed a high charge collection efficiency (CCE) of $\sim 100\%$, leading to a measured X-ray
75 detection Sensitivity (S) that approximates the theoretical value. Under a sufficiently high bias
76 voltage and within several hundreds of seconds, a linear and reproducible photocurrent response
77 was obtained within a broad dynamic range from $\sim 10^6$ to $\sim 10^{10}$ photons/s/mm² at beam area 0.25
78 mm² for 58.61 keV X-ray. Besides, we further tested the performance of CsPbBr₃ detectors under
79 ultra-high fluxes up to the limit of the synchrotron facility, which could be taken as a proxy to
80 accelerated polarization testing that provides valuable clues to the detector's long-term stability
81 under lower flux applications. Our investigation demonstrates the promising performance of
82 CsPbBr₃ detector for high and ultra-high flux X-ray detection, which could lead to essential
83 scientific advancements of medical and biological imaging and various synchrotron-based X-ray
84 techniques.

85 **Results and Discussions**86 **Spectrometer-grade CsPbBr_3 single-crystal detectors**

87

88 **Fig. 1. CsPbBr_3 single-crystal detector quality screening.** **a.** CsPbBr_3 ingot (diameter 16 mm) and Time-
 89 resolved PL spectrum of CsPbBr_3 crystals. τ_{ave} is average PL decay lifetime at the peak emission
 90 wavelength λ_{peak} . **b.** a typical relationship between τ_{ave} and crystal location of an CsPbBr_3 ingot. **c.**
 91 statistical data of τ_{ave} vs λ_{peak} obtained from many crystals of different ingots. **d.** I-V curves of device I.
 92 I-V curve testing sequence was “dark-1” (measured in dark before X-ray irradiation), “light” (under
 93 ambient room light), “X-ray” (under constant X-ray irradiation of $3.2 \times 10^9 \text{ p/s/mm}^2$ at 8.2 keV), and “dark-
 94 2” (measured in dark right after X-ray irradiation). **e.** I-V curve of a CsPbBr_3 device measured after different
 95 biasing conditions. **f.** current as a function of time under constant biasing of forward and reverse 1000 V.
 96 **g.** **h.** ^{57}Co gamma-ray energy spectrum of as-fabricated CsPbBr_3 devices (shaping time: 10 μs ; spectrum
 97 acquisition time: 300 s).

98 Given the aforementioned polarization mechanism^{10,17}, perovskite crystals with lower defects are
 99 expected to suffer less polarization and hence exhibit better device performance. We use
 100 photoluminescence (PL) spectroscopy to screen the CsPbBr_3 crystal quality. The as-grown

101 CsPbBr₃ ingot was cleaved at different positions, and PL of the freshly cleaved surface was
102 measured (**Fig. 1a**). Time-resolved photoluminescence (TRPL) decay lifetime (τ_{ave}) has been
103 associated with defect density in perovskite materials and are widely used as a proxy for crystal
104 quality^{38,39}. Theoretically, higher defect density means more free carriers would recombine
105 through defect-assisted non-radiative (Shockley–Read–Hall) recombination, which results in
106 weaker radiative recombination detected by TRPL and hence a shorter τ_{ave} . In fact, it has been
107 frequently observed that lower defect density corresponds to a longer τ_{ave} in perovskite
108 materials^{40,41}. The CsPbBr₃ ingot has a PL lifetime τ_{ave} decreasing from the first-to-crystallize
109 bottom tip to the last-to-crystallize top (**Fig. 1b**), which indicates a lower number of defects in the
110 bottom. The CsPbBr₃ ingot quality gradient derives from varying impurity concentrations at
111 different locations, which is a feature of the Bridgman growth method. Interestingly, we found that
112 the steady-state PL emission peak wavelength λ_{peak} of the CsPbBr₃ crystal is correlated to the
113 TRPL decay lifetime. Statistically, longer τ_{ave} usually corresponds to longer λ_{peak} (**Fig. 1c**). While
114 the detailed mechanism behind the relationship between λ_{peak} and defects in CsPbBr₃ needs
115 further investigation, we can grow and faithfully select high quality CsPbBr₃ crystals, represented
116 by long τ_{ave} and λ_{peak} , for subsequent device fabrication and testing.

117 A high detector bias voltage is critical to mitigating radiation-induced polarization^{10,17}. However,
118 a high bias voltage could lead to large and unstable dark currents, which degrades the detector's
119 ability to detect weak X-ray signals.⁴² To maintain low dark current at a high bias voltage, we
120 fabricated Schottky diode CsPbBr₃ detectors with gold and gallium indium eutectic alloy (denoted
121 as GaIn) planar electrodes, i.e., Au/CsPbBr₃/GaIn. A Schottky/Ohmic contact is formed between
122 the p-type CsPbBr₃ and the low/high work function metal GaIn/Au^{43,44}. The direction of the electric
123 field at reverse bias is from GaIn to CsPbBr₃. For gamma-ray and X-ray detection, the GaIn
124 electrode side is irradiated. Given the limited penetration depth of X-rays (**Supplementary Fig.1**),
125 holes contribute more to the induced signal. Because the hole mobility lifetime product, $\mu_h \tau_h$,
126 exceeds the $\mu_e \tau_e$ of electrons in CsPbBr₃ (i.e., $\mu_h \tau_h \approx 1.3 \times 10^{-3} \text{ cm}^2/\text{V}$ vs $\mu_e \tau_e \approx 8.8 \times 10^{-4}$
127 cm^2/V , as previously reported^{32,45,46}), having holes contribute more to the signal can result in
128 higher CCE (**Supplementary Fig.1** shows the setup). We fabricated and tested 6 devices made of
129 CsPbBr₃ crystals with relatively long τ_{ave} and λ_{peak} from the high-quality parts of different ingots
130 with same growth parameters described in our previous work^{31,46}. (**Fig. 1a** shows the τ_{ave} of devices

131 I and II, **Supplementary Fig.2** shows the TRPL and PL emission spectra of the rest crystals,
132 **Supplementary Fig.3** shows device pictures, **Table 1** shows crystal thickness).

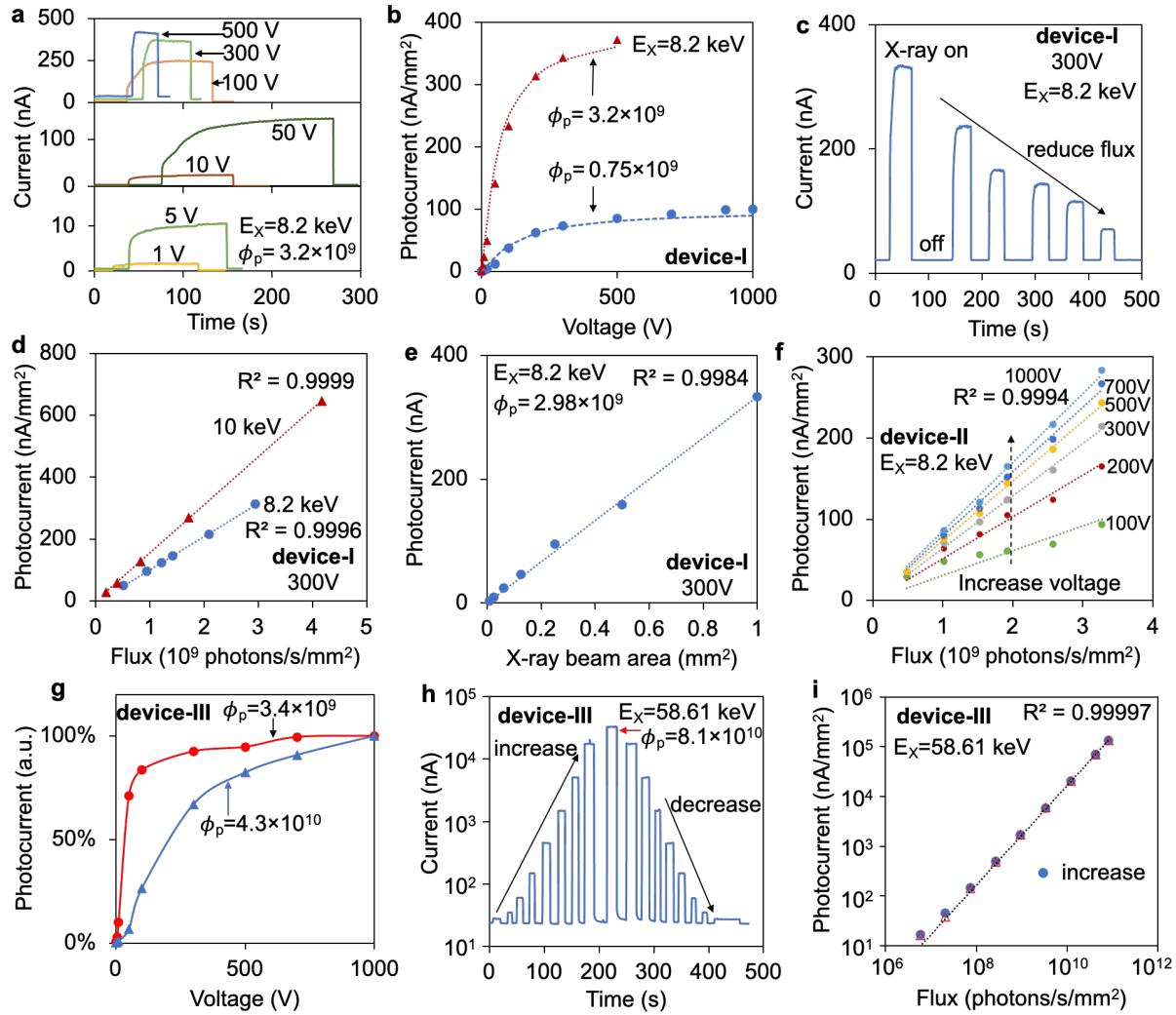
133 **Table 1.** CsPbBr₃ detector parameters relevant to crystal and device quality.

Device	τ_{ave} (ns)	λ_{peak} (nm)	d (mm)	J_{dark} (nA/mm ²) at -200 V	ER (%) at 122 keV
I	208	536	1.9	1.5	~12.1
II	45	528	1.7	0.7	~7.5
III	140	540	1.7	0.5	~9.8
IV	19	533	1.7	3.5	-
V	538	537	1.7	3.6	~9.3
VI	50	535	1.7	11.6	~13.1

134 τ_{ave} : average PL decay lifetime; λ_{peak} : PL emission peak wavelength; d: detector thickness; J_{dark} :
135 “dark-2” measured after irradiation; ER: energy resolution.

136 We measured the CsPbBr₃ detector I-V curve under different conditions: 1) in the dark, 2) under
137 ambient room light, 3) under X-ray irradiation, 4) dark after detector irradiation. These
138 measurements were performed sequentially in a single session. The voltage was swept from + 200
139 V to - 200 V and it took ~ 3 mins for each measurement (voltage step 5 V and ~ 2 s per current
140 point). The dark I-V curve of the as-fabricated device and I-V under light illumination (“dark-1”
141 and “light” in **Fig. 1d**) showed current-rectifying behavior due to the Schottky diode structure
142 (**Supplementary Fig.4** depicts the I-V curves of other devices with similar behavior). Yet, we
143 noticed some interesting results. As forward bias voltage ramps down from +200 V to 0V, the
144 forward current first increases and then decreases. Besides, the I-V curve measured under X-ray
145 irradiation and measured after X-ray irradiation in dark (“X-ray” and “dark-2” in **Fig. 1d**) became
146 symmetric. The abnormal I-V behavior may be due to either ion migration or charge trapping. To
147 confirm which factor dominates, we compared the dark I-V curves after different biasing
148 conditions. As shown in **Fig. 1e**, the initial I-V of a freshly fabricated device showed a typical
149 asymmetric diode behavior (voltage sweep from 0V to 300V, then from 0 V to -300V). During
150 reverse 1000 V biasing for 1 min, the dark current kept decreasing and approached a steady value
151 (**Fig. 1f**). After the reverse biasing, the I-V curve became symmetric with small leakage current at
152 both reverse and forward bias directions (**Fig. 1e**). The CsPbBr₃ detector was then forward biased
153 at 1000 V, and the initially small dark current gradually increased (**Fig. 1f**). Finally, the I-V curve
154 returned to asymmetric diode behavior after forward biasing (**Fig. 1e**). The I-V curve change under
155 different biasing conditions indicates ion migration in the CsPbBr₃ crystal, similar to results

156 reported elsewhere⁴⁷. The continuous increase of current under repetitive forward biasing at a fixed
157 X-ray flux further showed that charge trapping is not a major factor leading to the symmetric I-V
158 curve (see **Supplementary Fig.4**). In the latter scenario, we would expect the forward current to
159 decrease under X-ray irradiation. Ion migration occurs because of the presence of vacancy defects
160 and can account for the fact that crystals obtained from different batches can behave differently as
161 they may not contain identical numbers of defects or vacancies.


162 Regardless of the I-V curve change and ion migration, the CsPbBr₃ detectors work in reverse bias
163 mode. By preconditioning the CsPbBr₃ detectors with reverse biasing, the dark current can reach
164 a steady saturation value. A dark current, “dark-2” as low as 4.3 nA (0.5 nA/mm²) at reverse
165 voltage V_r = 200 V (118 V/mm), was achieved for the best device (device III). Different device
166 fabrication aspects (e.g., electrode contact and wire connection) contribute to the variation in the
167 dark current among all detectors (**Table 1**). High quality of both the CsPbBr₃ crystal and device
168 fabrication is critical for excellent gamma-ray and X-ray detection performance. Five of the six
169 devices can resolve the ⁵⁷Co 122 keV gamma-ray photopeak (Fig. 1g and Fig. 1h) with the best
170 energy resolution of ~7.5% (Table 1), demonstrating that the ion migration is not fatal to the
171 spectroscopy performance of the CsPbBr₃ detector.

172 **Linear and reproducible current response up to 10¹⁰ p/s/mm²**

173 We first tested the CsPbBr₃ detector under synchrotron X-rays with $\phi_p = 10^8 - 10^9$ p/s/mm² at
174 energy (Ex) values of 8.2 and 10 keV. A high bias voltage is critical to reducing radiation-induced
175 polarization^{10,17}, so we first tested detector responses at different bias voltages under a fixed photon
176 flux. At $\phi_p = 3.2 \times 10^9$ p/s/mm² and Ex = 8.2 keV, the current response of device I is shown in **Fig.**
177 **2a**. The long current response time of several hundred seconds (i.e., the time from the start of
178 current rising to stabilize) at low bias voltage (e.g. < 100 V) indicates significant radiation-induced
179 polarization. As the X-ray generated free carriers continue to fill the traps in the crystal, more
180 carriers are being collected, which leads to the slowly rising current. Contrarily, the response time
181 is significantly reduced to several seconds or shorter at higher bias voltage, e.g., less than 1 s at
182 1000 V (588 V/mm) (see **Supplementary Fig.5** for the fast response at 1000 V), which means less
183 radiation induced polarization. For comparison, we measured a spectrometer CZT detector whose
184 response time is smaller than 1 s at 200 V (108 V/mm) (see **Supplementary Fig.6**), comparable
185 to the CsPbBr₃ detector at high bias voltage. A short response time can enable a high frame rate,

186 important in imaging applications⁴⁸. A photodiode's response speed may be limited by the carrier
187 transit time or the RC time constant of the circuit⁴⁹. We estimate the transit-time-limited 3dB cutoff
188 frequency to be ~ 0.2 MHz for a CsPbBr₃ detector with thickness $d = 1.7$ mm at a bias voltage of
189 300 V, much smaller than the RC-limited 3dB cutoff frequency estimated to be \sim GHz order (see
190 **Supplementary Info** for estimation). Therefore, the CsPbBr₃ detector response speed is typically
191 limited by the charge carrier transit time instead of the RC effect. To increase the response speed,
192 the bias voltage should be increased to reduce the carrier transit time. However, high bias voltage
193 could result in large noise. Device surface passivation or guard ring structures may help to reduce
194 noise.

195 Besides, a higher bias voltage can also benefit a higher CCE. As can be seen in **Fig. 2b**, the
196 photocurrent density increases as a function of bias voltage and approaches saturation, which
197 means CCE is increased at higher bias voltage (**Supplementary Fig.5** depicts raw current response
198 at $\phi_p = 0.75 \times 10^9$ p/s/mm²). Usually, the Hecht equation can be used to fit the photocurrent vs
199 voltage data to estimate the charge carrier $\mu\tau$ product^{32,45,46}. However, since significant
200 polarization occurred at low bias voltage (e.g., < 100 V), the Hecht equation fitting would result
201 in $\mu\tau$ value with error. Hence, we did not perform such fitting. Despite the advantage of reduced
202 polarization, higher bias voltage could lead to large and unstable dark current (see **Supplementary**
203 **Fig.5** and **Supplementary Fig.7** for the unstable dark current of some devices). As a rule of a
204 thumb, the detector should be subjected to as high a bias voltage as possible without developing
205 unstable dark current or breakdown. Following this as a selection rule, we chose a relatively high
206 bias voltage of 300 V (158 V/mm) as the working voltage of device I and performed further testing.
207 As shown in **Fig. 2c**, the detector has a stable dark current and fast response to different X-ray
208 fluxes. The photocurrent density is linear at both $E_X = 8.2$ keV and $E_X = 10$ keV in flux range 10^8
209 – 10^9 p/s/mm² at beam area 1 mm² with goodness of fit $R^2 > 0.999$ (**Fig. 2d**) (**Supplementary**
210 **Fig.5** shows the raw current response at $E_X = 10$ keV). The photocurrent is also linear against X-
211 ray beam area at a fixed flux of $\phi_p = 2.98 \times 10^9$ p/s/mm² ($R^2 = 0.9984$) (**Fig. 2e**) (**Supplementary**
212 **Fig.5** shows the raw current response). Similarly for device II, the photocurrent density J vs. ϕ_p at
213 $E_X = 8.2$ keV showed good linearity at $V_r > 300$ V (**Fig. 2f**). At $V_r < 300$ V, the linearity is poor
214 because of the radiation induced polarization (**Supplementary Fig. 8** shows the raw current
215 response at different V_r and a fixed flux).

216

217 **Fig. 2. Current response of CsPbBr_3 devices to synchrotron X-ray.** E_{X} : X-ray energy; ϕ_p (p/s/mm^2): X-
 218 ray photon flux. R^2 : goodness of fit for the linear fitting. **a.** Current response of device I under different
 219 reverse bias voltage (V_r) at a fixed flux ($E_{\text{X}} = 8.2 \text{ keV}$, $\phi_p = 3.2 \times 10^9 \text{ p/s/mm}^2$, $A_{\text{beam}} = 1 \times 1 \text{ mm}^2$). **b.**
 220 photocurrent density J vs. V_r of device I at different flux ($E_{\text{X}} = 8.2 \text{ keV}$, $A_{\text{beam}} = 1 \times 1 \text{ mm}^2$). **c.** Device I
 221 current response to different ϕ_p in decreasing order ($A_{\text{beam}}=1 \times 1 \text{ mm}^2$). **d.** Device I J vs. ϕ_p at $E_{\text{X}} = 8.2$ and
 222 10 keV ($A_{\text{beam}} = 1 \times 1 \text{ mm}^2$). **e.** Device I photocurrent vs. X-ray beam area A_{beam} . **f.** J vs. ϕ_p of device II at
 223 different V_r ($A_{\text{beam}}=1 \times 1 \text{ mm}^2$). **g.** Current response of device III to different V_r under fixed ϕ_p values (A_{beam}
 224 = $0.2 \times 0.2 \text{ mm}^2$. Photocurrent normalized to that of 1000V to highlight the trend of current increasing). **h.**
 225 Current response of device III to different ϕ_p values ($A_{\text{beam}} = 0.5 \times 0.5 \text{ mm}^2$; $V_r = 1000 \text{ V}$). **i.** Device III
 226 photocurrent density obtained during increasing and decreasing flux shown in **h**.

227 After testing under softer X-rays of 8.2 and 10 keV, we tested under 58.61 keV X-rays that have a
 228 larger penetration depth. A broader photon flux of $\phi_p = 5.8 \times 10^6$ to $8.1 \times 10^{10} \text{ p/s/mm}^2$ were used.
 229 The current response at different applied V_r values under a fixed ϕ_p was first measured to
 230 determine working V_r values for different devices (see **Supplementary Fig.7**). The effect of bias

231 voltage on polarization was observed with the plot of photocurrent vs bias voltage for device III
232 (**Fig.2g**). At a lower flux $\phi_p = 3.4 \times 10^9$ p/s/mm², the photocurrent quickly increases and
233 approaches saturation. In comparison, at a higher flux $\phi_p = 4.3 \times 10^{10}$ p/s/mm², the photocurrent
234 was suppressed at a lower bias voltage region due to radiation-induced polarization. Different
235 devices may exhibit different photocurrent saturation behavior due to different extents of
236 polarization (see **Supplementary Fig.9** for photocurrent vs bias voltage for devices IV, V and VI).

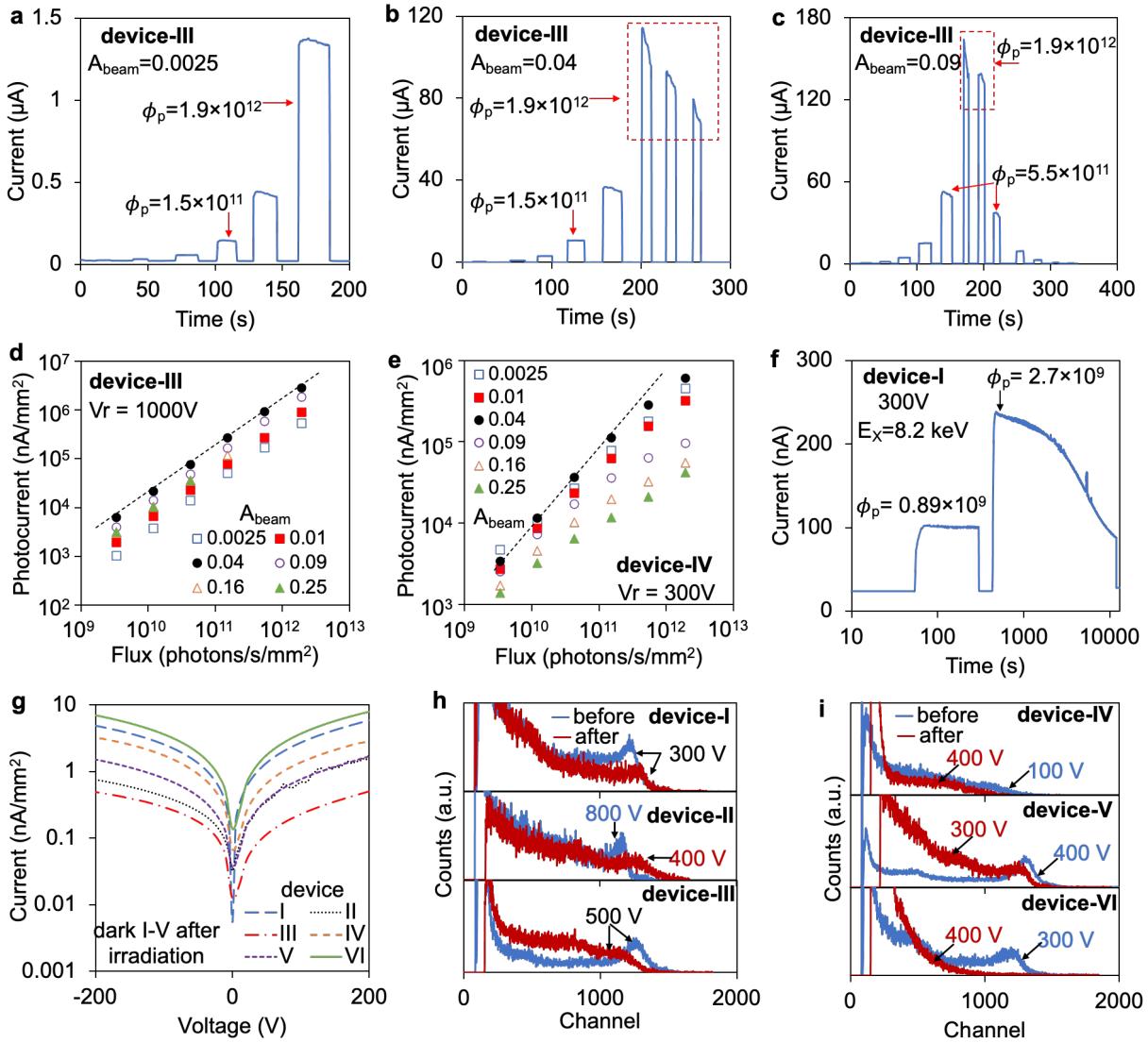
237 Based on the bias voltage selection rule mentioned above, the optimal working V_r value was
238 selected as 1000 V (588 V/mm) for device III and V, and 300 V (176 V/mm) for device IV and
239 VI. For device III with V_r = 1000 V, ϕ_p first increased from 5.8×10^6 to 8.1×10^{10} p/s/mm² and
240 then decreased back to 5.8×10^6 p/s/mm² with the same flux values (**Fig. 2h**). Stable dark and
241 signal currents were obtained for all fluxes over several hundreds of seconds, indicating negligible
242 radiation-induced polarization. Without polarization, the photocurrent obtained with increasing ϕ_p
243 agrees with that obtained from decreasing ϕ_p (**Fig. 2i**), indicating a good reproducibility of the
244 detector photocurrent at the same X-ray flux and a good linearity ($R^2 = 0.99997$). In addition,
245 devices IV and V also showed good current linearity in the ϕ_p range 5.8×10^6 – 3.4×10^9 p/s/mm²
246 (see **Supplementary Fig.10**). We note that the photocurrent magnitude may vary considerably
247 between different devices due to the different device testing and polarization history. In summary,
248 under sufficiently high bias voltage (e.g., 1000 V), the best-tested CsPbBr₃ detector (device III)
249 can be operated at ϕ_p as high as 8.1×10^{10} p/s/mm² at $E_X = 58.61$ keV and beam area 0.25 mm²
250 with good current stability, reproducibility, and linearity in a timescale of several hundreds of
251 seconds. In comparison, a CdTe detector shows significant radiation-induced polarization at an
252 energy flux of $\sim 9 \times 10^{10}$ keV/s/mm²¹⁸, and the high-flux capable CZT detector can be operated at
253 $\sim 10^8$ photons/s/mm² without noticeable polarization^{6,22} (see **Supplementary Table 1** for
254 comparison of CsPbBr₃ vs CdTe and CZT).

255 Sensitivity and Lower Limit of Detection (LLD) are important figures of merit of X-ray detectors⁴².
256 Different from the polychromatic X-ray sensitivity (defined as $S = J/D_{air}$, where J is the
257 photocurrent density, and D_{air} is the X-ray dose rate in air), we calculate the sensitivity of
258 monochromatic synchrotron X-rays by Equation (1), because the photon flux ϕ_p and energy E_X of
259 synchrotron X-rays are readily known. Theoretically, the highest sensitivity, S_0 , when CCE = 100%
260 can be calculated using Equation (2) (**Supplementary Info** shows the derivation of S_0). Then, the

261 LLD can be calculated according to an established dark current method⁴² using Equation (3), where
 262 A_{eff} is the effective area of current generation (i.e., the smaller area between X-ray beam and
 263 electrode), and $\sigma_{I_{dark}}$ is the standard deviation of the dark current. The sensitivity S and LLD for
 264 devices III – V at respective working bias voltage is shown in **Table 2**. The measured sensitivities
 265 approach the theoretical sensitivity of $S_0 = 3 \times 10^{-8}$ nC/keV ($\varepsilon_{pair} = 5.3$ eV for CsPbBr₃⁴⁶)
 266 indicating that ~100% of the 58.61 keV photons were absorbed by the CsPbBr₃ crystal (i.e.,
 267 negligible absorption by electrode), and CCE is ~100%. In addition, the sensitivity remains nearly
 268 constant within the linear dynamic range (The sensitivity is the slope of the linear fitting of
 269 photocurrent vs X-ray energy flux). Both sensitivity and dark current fluctuation influence the
 270 LLD, so LLD reflects the crystal and device fabrication quality. Device V has a much higher LLD
 271 due to its large dark current and fluctuation (see **Supplementary Fig.10**).

$$S \left(\frac{nC}{keV} \right) \equiv \frac{J (nA/mm^2)}{\phi_p (photons/s/mm^2) \cdot E_X (keV)}, \quad (1)$$

$$S_0 \left(\frac{nC}{keV} \right) = \frac{1.6 \times 10^{-7}}{\varepsilon_{pair}}, \quad (2)$$


$$LLD (p/s/mm^2) = \frac{3.29 \sigma_{I_{dark}} (nA)}{A_{eff} (mm^2) \cdot S \left(\frac{nC}{keV} \right) \cdot E_X (keV)}, \quad (3)$$

272 **Table 2.** Sensitivity S and LLD of devices III, IV, and V

device	V _r (V)	LLD (p/s/mm ²)	S (nC/keV)
III	1000	4×10^5	3.1×10^{-8}
IV	300	6×10^5	2.8×10^{-8}
V	1000	3×10^6	2.9×10^{-8}

273 $A_{beam} = 0.2 \times 0.2$ mm² for devices IV; $A_{beam} = 0.5 \times 0.5$ mm² for devices III and V; Because
 274 photocurrent is affected by device polarization history, S was calculated using a single point at
 275 3.4×10^9 p/s/mm² before any polarization occurred at higher fluxes.

276 **Accelerated polarization testing of CsPbBr₃ detector**

277

278 **Fig. 3. Accelerated polarization testing of CsPbBr_3 detector.** **a, b, c.** Current response of device III to
279 different ϕ_p values with different X-ray beam area ($V_r: 1000 \text{ V}$; A_{beam} unit: mm^2). **d, e.** Photocurrent density
280 J vs ϕ_p for device III ($V_r = 1000 \text{ V}$) and device IV ($V_r = 300 \text{ V}$) at different A_{beam} values. **f.** device I current
281 response under continuous irradiation for several hours. $A_{beam} = 1 \times 1 \text{ mm}^2$. **g,** dark I-V curve of all devices
282 after X-ray irradiation (voltage scan from $+200 \text{ V}$ to -200 V , voltage step 5 V , $\sim 2 \text{ s}$ per point). **h, i.**
283 comparison of ^{57}Co gamma-ray energy spectrum of CsPbBr_3 detectors before and after synchrotron
284 irradiation. Spectrum acquisition parameters: acquisition time 300 s , shaping time $10 \mu\text{s}$.

285 So far, we have seen good linearity and reproducibility of the CsPbBr_3 detectors under a time scale
286 of several hundred seconds. We further performed accelerated polarization testing of the CsPbBr_3
287 detector by increasing the X-ray flux or the irradiation time. Compared to the previous flux range
288 of $\phi_p \sim 5.8 \times 10^6$ to $8.1 \times 10^{10} \text{ p/s/mm}^2$, the devices were tested at a higher flux range of $\phi_p \sim 3.4$
289 $\times 10^9$ to $1.9 \times 10^{12} \text{ p/s/mm}^2$ that is the flux limit of the synchrotron beamline. As shown in **Fig. 3a**

290 for device III, while current drifting is negligible at lower fluxes (e.g., $\phi_p < 1.5 \times 10^{11} \text{ p/s/mm}^2$), it
 291 decreases significantly above $1.5 \times 10^{11} \text{ p/s/mm}^2$. When the dose is further increased by increasing
 292 the X-ray beam size from $A_{\text{beam}} = 0.05 \times 0.05 \text{ mm}^2$ to $A_{\text{beam}} = 0.2 \times 0.2$ and $0.3 \times 0.3 \text{ mm}^2$ (**Fig. 3b**
 293 and **Fig. 3c**), the current drifting became more prominent, which indicates that the polarization is
 294 area dependent. Additionally, under repeated tests at the same flux of $\phi_p = 1.9 \times 10^{12} \text{ p/s/mm}^2$ (**Fig.**
 295 **3b** and **Fig. 3c**), the signal current could not recover its initial value (i.e., value before decreasing).
 296 The signal current follows the end value in the last test, indicating significant radiation-induced
 297 polarization. Once significant polarization occurred, even at the same lower flux (e.g., $\phi_p <$
 298 $1.5 \times 10^{11} \text{ p/s/mm}^2$) where polarization is negligible, the signal current after significant
 299 polarization became smaller than its original value before polarization (**Fig. 3c**). This means that
 300 polarization degrades the reproducibility of the detector current. In contrast, good current
 301 reproducibility was obtained at lower flux values where no significant polarization occurred (**Fig.**
 302 **2g**). At larger beam sizes of $A_{\text{beam}} = 0.4 \times 0.4$ and $0.5 \times 0.5 \text{ mm}^2$, reducing the highest ϕ_p from $1.9 \times$
 303 10^{12} to 1.5×10^{11} and $4.3 \times 10^{10} \text{ p/s/mm}^2$, respectively, leads to better current reproducibility than
 304 that at $\phi_p = 1.9 \times 10^{12} \text{ p/s/mm}^2$ (**Supplementary Fig. 11** shows the raw current response). Despite
 305 the previous polarization at the flux limit of the synchrotron facility $\phi_p = 1.9 \times 10^{12} \text{ p/s/mm}^2$,
 306 subsequent testing with ϕ_p in a lower range of $5.8 \times 10^6 - 4.3 \times 10^{10} \text{ p/s/mm}^2$ shows good current
 307 reproducibility and linearity (**Supplementary Fig. 11**). Since the significant polarization at flux
 308 above certain level is detrimental to detector performance, it is important to understand the higher
 309 limit of flux under which the polarization is not a concern in several hundred seconds. However,
 310 as shown in **Fig. 3a**, the degree of polarization manifested by the current drifting became
 311 progressively prominent, so it is difficult to quantify the higher limit of flux precisely. Here, we
 312 try to find out a higher limit of photon flux by examining the current drifting (see **Supplementary**
 313 **Info** for details). The current drifting is negligible under $\sim 20 \text{ s}$ irradiation of flux of 8.1×10^{10}
 314 p/s/mm^2 , $3.4 \times 10^9 \text{ p/s/mm}^2$, and $1.2 \times 10^{10} \text{ p/s/mm}^2$ at 58.61 keV , respectively, for device III, IV
 315 and V. These flux values may be taken as the higher limit of flux for respective devices.
 316 Despite the current decreasing at higher flux due to polarization, we examined the linearity of
 317 photocurrent density J vs. ϕ_p with J calculated from the peak photocurrent before decreasing. As
 318 shown in **Fig. 3d**, good linearity was obtained for device III. However, practically, the detector
 319 should not be operated at $\phi_p > 1.5 \times 10^{11} \text{ p/s/mm}^2$ where significant current decreasing occurs due

320 to polarization. In comparison, device IV had photocurrent density deviated from linearity at flux
321 $\phi_p > 1.5 \times 10^{11}$ p/s/mm² due to polarization (Fig. 3e). Increasing the bias voltage to 1000 V could
322 not improve the linearity for device IV (Supplementary Fig.12). The worse performance of device
323 IV than device III may be due to worse crystal quality (e.g., shorter τ_{ave}). Device V and VI also
324 showed a photocurrent density deviation from linearity (Supplementary Fig.12). Ideally, the
325 photocurrent density should be independent of the X-ray beam area. As shown in Fig. 3d, however,
326 the fact that photocurrent density is different for different beam areas indicates that polarization
327 occurred along the testing track, and the photocurrent density is affected by the testing sequence.
328 Given the progressive behavior of polarization, we further tested the CsPbBr₃ detector under
329 continuous irradiation for several hours at a low photon flux that polarization is not a concern in
330 several hundred seconds. As shown in Fig. 3f, the decrease in the signal current of device I is
331 negligible in several hundred seconds at a lower flux $\phi_p = 0.89 \times 10^9$ p/s/mm² (Vr = 300 V, Ex =
332 8.2 keV, A_{beam}=1 mm²). However, at a higher flux of $\phi_p = 2.7 \times 10^9$ p/s/mm² and a longer time
333 scale of several hours, the current shows significant drift, which suggests that the accumulated
334 continuous irradiation plays a role in detector polarization. CsPbBr₃ device II, III and V exhibited
335 similar current decreasing behavior in a time scale of several hours (see Supplementary Fig.13).
336 Finally, we measured the dark I-V curve and the ⁵⁷Co gamma-ray energy spectrum of the devices
337 after testing under synchrotron X-ray. Since the devices were under reverse bias for several hours,
338 the dark I-V curves remained symmetric with a small forward bias current (Fig.3g). The dark
339 currents at reverse 200 V after synchrotron X-ray testing are comparable to that before testing
340 (Table 3). The dark current change (several nA/mm² or less) is much smaller than the photocurrent
341 produced by X-rays (10¹ - 10⁵ nA/mm²), and therefore, does not harm the device performance
342 reproducibility. The energy spectrum of the detectors showed different degree of degradation due
343 to detector polarization (Fig. 3h, Fig. 3i). A polarized detector may recover after remaining under
344 dark ambient conditions for several months, as observed in our previous work³³. Active
345 depolarization techniques, such as switching the bias voltage direction¹⁸, infrared LED
346 illumination⁵⁰, and heating, may be effective in accelerating CsPbBr₃ detector recovery, which
347 needs further investigation.

348 **Table 3.** Comparison of device dark current at reverse 200 V before and after testing under
 349 synchrotron X-ray

	I	II	III	IV	V	VI
J_{dark} (nA/mm ²) - before	1.5	0.7	0.5	3.5	3.6	11.6
J_{dark} (nA/mm ²) - after	4.8	0.7	0.5	3.2	1.5	7

350

351 **Conclusions**

352 We developed efficient CsPbBr₃ crystal and device quality screening procedure with
 353 photoluminescence spectroscopy and I-V measurement and found out that the ion migration does
 354 not necessarily affect the performance of the CsPbBr₃ detectors. With the spectrometer-grade
 355 CsPbBr₃ detectors fabricated from high-quality crystals, a bias voltage of at least 1000 V (588
 356 V/mm) can be applied, which is critical to reducing the polarization and hence enable a good
 357 detector photocurrent linearity and stability. Consequently, we demonstrated that the CsPbBr₃
 358 detectors could operate at ultra-high X-ray fluxes of up to 10¹⁰ p/s/mm² with beam area 0.25 mm²
 359 at 58.61 keV with good photocurrent linearity, stability, and reproducibility over a timescale of
 360 several hundreds of seconds. The capability of the CsPbBr₃ detector operating in current mode
 361 under ultra-high flux without significant polarization could also benefit its performance in the
 362 pulse mode as photon-counting detector³³ because the underlying physics of polarization is the
 363 same for the current and pulse modes. Future work will focus on a) further improvement of crystal
 364 quality and the device fabrication process to further increase the bias voltage that can be applied
 365 and b) investigations of the dynamics and mechanisms of CsPbBr₃ polarization and its potential
 366 recovery.

367 **Acknowledgments**

368 This work has proceeded in part of a U.S. Department of Energy Basic Energy Sciences supported
 369 collaboration between ANL, SLAC, BNL and Cornell University to explore hi-Z detector
 370 materials. The study utilized the resources of the Advanced Photon Source (a U.S. DOE Office of
 371 Science user facility operated for the DOE Office of Science by Argonne National Laboratory)
 372 under Contract No. DE-AC02-06CH11357. This research was also supported in part by the
 373 Defense Threat Reduction Agency (DTRA) under the Interaction of Ionizing Radiation with the
 374 Matter University Research Alliance under contract number HDTRA1-20-2-0002. We

375 acknowledge the assistance of Leighanne Gallington, Tiffany Kinnibrugh, Uta Ruett, and Olaf
376 Borkiewicz at the Advanced Photon Source at beamline 11-ID-B. We thank the entire DOE high-
377 Z team at Argonne, Brookhaven, Cornell and SLAC for useful discussions.

378 **Competing interests**

379 Mercouri G. Kanatzidis and Duck Young Chung are cofounders of Actinia Inc, a company that
380 applies perovskite materials to radiation detection.

381 **Data availability**

382 All data are available in the main text and Supplementary Information.

383 **Methods**

384 **Crystal growth and device fabrication.** The Bridgman method was employed to grow CsPbBr_3
385 single crystals. The growth process parameters and cooling schemes have been previously
386 described in detail^{31,46}. Ingots of CsPbBr_3 were cut into pieces of appropriate dimensions for
387 detector fabrication. First, the surfaces of CsPbBr_3 crystals were finely polished using sandpaper
388 and then cleaned with toluene. A gold electrode, approximately 100-nm thick, was thermally
389 evaporated onto the crystal surface. Then, a liquid GaIn electrode was brushed onto the crystal
390 surface. We note that the thickness of the GaIn electrode could be non-uniform and may be in the
391 range from several hundred nm to several hundred μm . The thick GaIn electrode could absorb a
392 significant portion of 8.2 keV and 10 keV X-rays (see **Supplementary Info** for an example
393 calculation) and results in different photocurrent magnitude for different devices due to the non-
394 uniform thickness. A copper wire connected the electrodes to the outer circuit, and crystals with a
395 finished electrode and wire connection were placed on a glass holder encapsulated in paraffin wax.

396 **Detector testing setup under synchrotron X-ray.** Detector testing under synchrotron X-rays was
397 performed at the Advanced Photon Source, Argonne National Laboratory. Measurements were
398 performed at beamlines 1-BM-B and 11-ID-B, which provide 8.2 and 10-keV, and 58.61-keV X-
399 rays, respectively. The experimental setup is illustrated in **Supplementary Fig. 14**. An ion
400 chamber that measures the X-ray intensity directly out of the shutter, a set of adjustable slits that
401 controls the beam area, and a CsPbBr_3 detector that is mounted on an X-Y-Z stage are located in
402 sequence downstream of the beam shutter. The detector was first aligned with the X-ray beam
403 using a laser-alignment tool. Then at a low X-ray flux, the detector position was fine-tuned to find

404 the position that generates a maximum current. As shown in **Supplementary Fig. 15**, because the
405 GaIn electrode could be very thick at the center region (e.g., several hundred μm), the maximum
406 current is usually produced when the X-ray beam irradiates the edge area. The X-ray flux at
407 beamline 1-BM-B was modified by detuning the second crystal monochromator of the beamline
408 facility, and the X-ray flux at beamline 11-ID-B was varied using a set of attenuators. A calibrated
409 Si PIN diode was inserted into the X-ray beam path to measure the flux received by the CsPbBr_3
410 detector (**Supplementary Table 2** summarizes the flux calibration for beamline 11-ID-B).

411 **Photoluminescence and electrical characterization.** An FS5 spectrofluorometer (Edinburgh
412 Instruments) was used to measure the time-resolved PL spectra and PL emission spectra at room
413 temperature. The exciting wavelength for PL measurement is 375 nm generated by a laser. A
414 Keithley 6517 B electrometer was employed to apply bias voltage to the CsPbBr_3 detector and
415 measure current.

416 **Gamma energy spectrum acquisition.** The gamma spectroscopy system used for gamma energy
417 spectrum acquisition included an eV-550 preamplifier, a 572A shaping amplifier (ORTEC), and a
418 927 multi-channel analyzer (ORTEC). The energy resolution of the photopeak was calculated as
419 the full width at half maximum divided by the peak channel number. A shaping time of 10 μs is
420 used. Given hole mobility of $\sim 52 \text{ cm}^2/\text{V}\cdot\text{s}$ and thickness $d=1.7 \text{ mm}$, at a bias voltage of 300 V, the
421 charge carrier drift time $\tau_{tr} = d^2/(\mu V)$ is estimated to be $\sim 1.85 \mu\text{s}$. Since the shaping time is
422 larger than τ_{tr} , the ballistic deficit is not a concern affecting the energy spectroscopy performance.
423 Ideally, the same bias voltage should be used for detector testing and performance comparison.
424 However, the detector noise could change after heavy irradiation. The highest bias voltage without
425 excessive noise was used for energy spectrum acquisition after irradiation.

426 **References**

- 427 1 He, Y., Hadar, I. & Kanatzidis, M. G. Detecting ionizing radiation using halide perovskite
428 semiconductors processed through solution and alternative methods. *Nature Photonics* **2021**.
- 429 2 Sedigh Rahimabadi, P., Khodaei, M. & Koswattage, K. R. Review on applications of
430 synchrotron-based X-ray techniques in materials characterization. *X-Ray Spectrometry* **49**,
431 348-373 (2020).
- 432 3 Westneat, M. W., Socha, J. J. & Lee, W.-K. Advances in biological structure, function, and
433 physiology using synchrotron X-ray imaging. *Annual Review of Physiology* **70**, 119-142
434 (2008).
- 435

436 4 Tang, F. *et al.* Synchrotron X-Ray Tomography for Rechargeable Battery Research:
437 Fundamentals, Setups and Applications. *Small Methods* **5**, 2100557 (2021).

438 5 Willmott, P. *An introduction to synchrotron radiation: techniques and applications*. (John
439 Wiley & Sons, 2019).

440 6 Prokesch, M., Soldner, S. A. & Sundaram, A. G. CdZnTe detectors for gamma spectroscopy
441 and x-ray photon counting at 250×106 photons/(mm 2 s). *J Appl Phys* **124**, 44503 (2018).

442 7 Spahn, M. X-ray detectors in medical imaging. *Nucl Instrum Meth A* **731**, 57-63 (2013).

443 8 Kasap, S. *et al.* Amorphous and polycrystalline photoconductors for direct conversion flat
444 panel X-ray image sensors. *Sensors* **11**, 5112-5157 (2011).

445 9 Hatsui, T. & Graafsma, H. X-ray imaging detectors for synchrotron and XFEL sources. *IUCrJ*
446 **2**, 371-383 (2015).

447 10 Bale, D. S. & Szeles, C. Nature of polarization in wide-bandgap semiconductor detectors
448 under high-flux irradiation: Application to semi-insulating Cd $_{1-x}$ Zn $_x$ Te. *Physical review. B, Condensed matter and materials physics* **77** (2008).

449 11 Bell, R. O., Entine, G. & Serreze, H. B. Time-dependent polarization of CdTe gamma-ray
450 detectors. *Nuclear Instruments & Methods* **117**, 267-271 (1974).

451 12 Cola, A. & Farella, I. The polarization mechanism in CdTe Schottky detectors. *Appl Phys Lett* **94** (2009).

452 13 Abbene, L. *et al.* X-ray response of CdZnTe detectors grown by the vertical Bridgman
453 technique: Energy, temperature and high flux effects. *Nucl Instrum Meth A* **835**, 1-12 (2016).

454 14 Veale, M. C. *et al.* Characterization of the uniformity of high-flux CdZnTe material. *Sensors*
455 **20**, 2747 (2020).

456 15 Onodera, T., Hitomi, K. & Shoji, T. Spectroscopic performance and long-term stability of
457 thallium bromide radiation detectors. *Nucl Instrum Meth A* **568**, 433-436 (2006).

458 16 Sato, G. *et al.* Study of polarization phenomena in Schottky CdTe diodes using infrared
459 light illumination. *Nucl Instrum Meth A* **652**, 149-152 (2011).

460 17 Strassburg, M., Schroeter, C. & Hackenschmied, P. CdTe/CZT under high flux irradiation.
461 *Journal of Instrumentation* **6**, C01055-C01055 (2011).

462 18 Gadkari, D. *et al.* Characterization of 128 \times 128 MM-PAD-2.1 ASIC: a fast framing hard x-
463 ray detector with high dynamic range. *Journal of Instrumentation* **17**, P03003 (2022).

464 19 Tsigaridas, S. & Ponchut, C. X-ray imaging with high-Z sensors for the ESRF-EBS Upgrade.
465 *Journal of Instrumentation* **14**, C04009 (2019).

466 20 Veale, M. C. *et al.* Cadmium zinc telluride pixel detectors for high-intensity x-ray imaging
467 at free electron lasers. *Journal of Physics D: Applied Physics* **52**, 085106 (2018).

468 21 Buttacavoli, A. *et al.* Incomplete Charge Collection at Inter-Pixel Gap in Low-and High-Flux
469 Cadmium Zinc Telluride Pixel Detectors. *Sensors* **22**, 1441 (2022).

470 22 Prokesch, M. *et al.* CdZnTe Detectors Operating at X-ray Fluxes of 100 Million photons
471 / (mm 2 sec). *IEEE Transactions on Nuclear Science* **63**, 1854-1859 (2016).

472 23 Bolotnikov, A. E. *et al.* Effects of Te Inclusions on the Performance of CdZnTe Radiation
473 Detectors. *IEEE Transactions on Nuclear Science* **55**, 2757-2764 (2008).

474 24 Schieber, M. M. *et al.* Vol. 3768 296-309 (SPIE, 1999).

475 25 Scholz, J. *et al.* Biomedical x-ray imaging with a GaAs photon-counting detector: A
476 comparative study. *APL Photonics* **5**, 106108-106108-106109 (2020).

480 26 Greiffenberg, D. *et al.* Characterization of GaAs: Cr sensors using the charge-integrating
481 JUNGFRAU readout chip. *Journal of Instrumentation* **14**, P05020 (2019).

482 27 Wei, H. & Huang, J. Halide lead perovskites for ionizing radiation detection. *Nat Commun*
483 **10**, 1066 (2019).

484 28 Cao, L. R., Pan, L., Kandlakunta, P. & Nie, W. in *Hard X-Ray, Gamma-Ray, and Neutron*
485 *Detector Physics XXIII*. 118380B (International Society for Optics and Photonics).

486 29 Tsai, H. *et al.* Quasi-2D Perovskite Crystalline Layers for Printable Direct Conversion X-Ray
487 Imaging. *Advanced Materials* **34**.13, 2106498 (2022).

488 30 Kim, Y. C. *et al.* Printable organometallic perovskite enables large-area, low-dose X-ray
489 imaging. *Nature* **550**, 87-91 (2017).

490 31 He, Y. *et al.* CsPbBr₃ perovskite detectors with 1.4% energy resolution for high-energy γ -
491 rays. *Nature Photonics* **15** (2020).

492 32 Pan, L., Feng, Y., Kandlakunta, P., Huang, J. & Cao, L. R. Performance of Perovskite CsPbBr₃
493 Single Crystal Detector for Gamma-Ray Detection. *IEEE Transactions on Nuclear Science*
494 **67**, 443-449 (2020).

495 33 Lei Pan, Y. H., Vladislav V. Klepov, Michael C. De Siena, and Mercouri G. Kanatzidis.
496 Perovskite CsPbBr₃ single crystal detector for high flux X-ray photon counting. *IEEE*
497 *Transactions on Medical Imaging* (2022).

498 34 Kakavelakis, G. *et al.* Metal Halide Perovskites for High-Energy Radiation Detection. *Adv*
499 *Sci (Weinh)* **7**, 2002098 (2020).

500 35 Yuan, Y. & Huang, J. Ion migration in organometal trihalide perovskite and its impact on
501 photovoltaic efficiency and stability. *Accounts of Chemical Research* **49**, 286-293 (2016).

502 36 Lin, Y. *et al.* Suppressed ion migration in low-dimensional perovskites. *ACS Energy Letters*
503 **2**, 1571-1572 (2017).

504 37 Wu, T., Ahmadi, M. & Hu, B. Giant current amplification induced by ion migration in
505 perovskite single crystal photodetectors. *Journal of Materials Chemistry C* **6**, 8042-8050
506 (2018).

507 38 Baloch, A. A. *et al.* Analysis of photocarrier dynamics at interfaces in perovskite solar cells
508 by time-resolved photoluminescence. *The Journal of Physical Chemistry C* **122**, 26805-
509 26815 (2018).

510 39 Kirchartz, T., Márquez, J. A., Stolterfoht, M. & Unold, T. Photoluminescence - based
511 characterization of halide perovskites for photovoltaics. *Advanced Energy Materials* **10**,
512 1904134 (2020).

513 40 Jia, P. *et al.* The Trapped Charges at Grain Boundaries in Perovskite Solar Cells. *Advanced*
514 *Functional Materials* **31**, 2107125 (2021).

515 41 Zeng, P., Feng, G., Cui, X. & Liu, M. Revealing the role of interfaces in photocarrier
516 dynamics of perovskite films by alternating front/back side excitation time-resolved
517 photoluminescence. *The Journal of Physical Chemistry C* **124**, 6290-6296 (2020).

518 42 Pan, L., Shrestha, S., Taylor, N., Nie, W. & Cao, L. R. Determination of X-ray detection limit
519 and applications in perovskite X-ray detectors. *Nature Commun* **12**, 5258-5258 (2021).

520 43 Pan, L., Feng, Y., Huang, J. & Cao, L. R. Comparison of Zr, Bi, Ti, and Ga as Metal Contacts
521 in Inorganic Perovskite CsPbBr₃ Gamma-Ray Detector. *IEEE Transactions on Nuclear*
522 *Science* **67**, 2255-2262 (2020).

523 44 He, Y. *et al.* Sensitivity and Detection Limit of Spectroscopic-Grade Perovskite CsPbBr₃
524 Crystal for Hard X-Ray Detection. *Advanced Functional Materials*, 2112925

525 45 He, Y. *et al.* Perovskite CsPbBr₃ single crystal detector for alpha-particle spectroscopy.
526 *Nucl Instrum Meth A* **922**, 217-221 (2019).

527 46 He, Y. *et al.* High spectral resolution of gamma-rays at room temperature by perovskite
528 CsPbBr₃ single crystals. *Nat Commun* **9**, 1609 (2018).

529 47 Toufanian, R., Swain, S., Becla, P., Datta, A. & Motakef, S. Cesium Lead Bromide
530 Semiconductor Radiation Detectors: Crystal Growth, Detector Performance and Ionic
531 Polarization. *Journal of Materials Chemistry C* (2022).

532 48 Olbinado, M. P. *et al.* MHz frame rate hard X-ray phase-contrast imaging using
533 synchrotron radiation. *Optics Express* **25**, 13857-13871 (2017).

534 49 Ahmed, M. S., AL-Tulaihi, Y. & ALRikabi, H. Bandwidth Analysis of a p-π-n Si Photodetector.
535 *International Journal of Computer Applications* **975**, 8887 (2016).

536 50 Dedic, V. *et al.* De-polarization of a CdZnTe radiation detector by pulsed infrared light.
537 *Appl Phys Lett* **107** (2015).

538

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- [SICLBsynchrotron10162022.docx](#)