
Porting numerical integration codes from CUDA
to oneAPI: a case study⋆

Ioannis Sakiotis1[0000000219880314], Kamesh Arumugam2[0000000264826237], Marc
Paterno1,3[0000000308088388], Desh Ranjan1[0000000282987093], Baľsa
Terzić1[0000000296468155], and Mohammad Zubair1[0000000254491779]

1 Old Dominion University, Norfolk, VA 23529, USA
2 NVIDIA, Santa Clara, CA 95051-0952, USA

3 Fermi National Accelerator Laboratory, Batavia, IL 60510

Abstract. We present our experience in porting optimized CUDA im-
plementations to oneAPI. We focus on the use case of numerical integra-
tion, particularly the CUDA implementations of PAGANI and m-Cubes.
We faced several challenges that caused performance degradation in the
oneAPI ports. These include differences in utilized registers per thread,
compiler optimizations, and mappings of CUDA library calls to oneAPI
equivalents. After addressing those challenges, we tested both the PA-
GANI and m-Cubes integrators on numerous integrands of various char-
acteristics. To evaluate the quality of the ports, we collected performance
metrics of the CUDA and oneAPI implementations on the Nvidia V100
GPU. We found that the oneAPI ports often achieve comparable perfor-
mance to the CUDA versions, and that they are at most 10% slower.

1 Introduction

Historically, general-purpose GPU programming has been characterized by diver-
gent architectures and programming models. A lack of widely adopted common
standards led to the development of different ecosystems comprised of compilers
and tools that were practically exclusive to specific GPU architectures. Most
importantly, the emergent architectures themselves were not compatible with
all ecosystems. Portability could only be achieved through the maintenance of
multiple code bases. Traditionally, the proprietary CUDA programming model
has been the most popular but is exclusively targeted to Nvidia GPUs.

In the absence of universally adopted standards, a viable solution for achiev-
ing general portability is to rely on platform-agnostic programming models that
target multiple architectures via a unifying interface. This enables the execution
of a single code base across various architectures. These programming mod-
els would ideally enable the utilization of platform-specific low-level features
on their native hardware. This would allow highly-optimized implementations in
such portable programming models to remain competitive with platform-specific

⋆ code available at https://github.com/marcpaterno/gpuintegration

FERMILAB-CONF-23-007-LDRD-SCD

2 Ioannis Sakiotis et al.

alternatives. Without these capabilities, use cases with extreme performance re-
quirements would disqualify the use of such portable models.

The need for performant multi-platform execution is only increasing with
the emergence of exascale supercomputers such as Frontier and Aurora that
do not carry Nvidia GPUs. Projects requiring computing cores at that scale
must develop new software solutions compatible with non-Nvidia GPUs or port
existing CUDA implementations without significant loss of performance.

Portable programming models such as RAJA, Kokkos, and oneAPI have been
in development and are already available for use. These portable alternatives
lack maturity when compared to proprietary alternatives. As such, applications
requiring portable solutions must be evaluated to quantify any necessary con-
cessions.

In this paper, we discuss the porting process of two numerical integration
implementations, PAGANI and m-Cubes, from CUDA to Data Paralllel C++
(DPC++), which is oneAPI’s SYCL implementation. The oneAPI ecosystem
provides a suite of compilers, libraries, and software tools, including Intel®

DPC++ Compatibility Tool (DPCCT), that automates the majority of the port-
ing process. Reliance on the C++ and SYCL standards as well as the capability
to quickly port large CUDA implementations, places oneAPI at the forefront of
the portability initiative.

We faced challenges during the porting process due to the lack of support
for certain libraries utilized by the CUDA implementation. For example, the
CUDA implementation of PAGANI uses the Nvidia Thrust library to perform
common parallel operations on the host side, such as inner product and min-max.
Even though there is a multitude of library options in oneAPI, we encountered
difficulties with the DPCCT mapping of Nvidia Thrust library calls, which were
not fully supported on all backends.

We also observed performance degradation for the ported oneAPI imple-
mentations. We conducted numerous experiments with integrands of various
characteristics to identify the issues. Most of these issues pertained to optimiza-
tion differences between the NVCC and Clang compilers, and time differences
when executing mathematical functions. After addressing these challenges, the
oneAPI ports were at most 10% slower than the optimized CUDA versions. We
observe that the cases with the highest performance penalties for the oneAPI
ports, require significantly more registers than the CUDA originals. This de-
creases the occupancy in the oneAPI implementation and causes performance
degradation. When the number of registers is similar to the CUDA version, we
observe penalties lower than 5%.

The remainder of this paper is structured as follows. First, we provide back-
ground information on oneAPI and other portability solutions in section 2. Then,
we discuss the two numerical integration CUDA implementations in section 3.
Section 4 details the porting process and challenges we faced using DPCCT and
the oneAPI platform. In section 5, we present a performance comparison of the
CUDA and oneAPI implementations of PAGANI and m-Cubes. We finish in
section 6 with a discussion of our conclusions regarding the oneAPI platform’s

Porting numerical integration codes from CUDA to oneAPI: a case study 3

viability and ease of use. We demonstrate that the oneAPI implementation does
not induce significant performance penalties and that it is a viable platform for
attaining performance on Nvidia GPUs.

2 Background

There are multiple programming models targeting different architectures. Among
the most prominent, are OpenCL [24], [16], OpenACC [5], OpenMP [1], RAJA,
Alpaka [30], and Kokkos [10]. The Khronos group was the first to address porta-
bility by developing the OpenCL standard to target various architectures. The
same group later followed with the SYCL standard. SYCL is a higher-level lan-
guage that retained OpenCL features but significantly improved ease of use with
the utilization of C++ and the adoption of a single-source model. There are mul-
tiple implementations of SYCL such as DPC++, ComputeCpp, HipSYCL, and
triSYCL [28]. DPC++ is conformant to the latest SYCL and C++ standards
and is integrated into the oneAPI ecosystem [2].

2.1 oneAPI and SYCL

oneAPI provides a programming platform with portability across multiple archi-
tectures at the core of its mission. Intel’s implementation of oneAPI includes an
oneAPI Base Toolkit that includes various tools along with the DPC++ language
which was based on the SYCL and C++ standards [8]. The reliance on these
open standards that are intended to evolve over time is one of the most attractive
features of DPC++. Such evolution is facilitated by DPC++ extensions with
various features that can be later introduced to the standards after periods of
experimentation. Such examples include the use of Unified Memory and filtered
Device selectors, which were missing from SYCL 1.2.1 but were later included
in the SYCL 2020 standard. DPC++ achieves execution platform portability
through its use of SYCL and various backends (implemented as shared libraries)
that interface with particular instruction sets such as PTX for Nvidia GPUs
and SPIR-V for Intel devices. It is worth noting that there is no reliance on
OpenCL, which is instead one of several available backends. As such, DPC++
implementations can target various CPUs, GPUs, and FPGAs. This is a similar
approach to Kokkos, Alpaka, and RAJA.

2.2 CUDA-backend for SYCL

While CUDA is the native and most performant programming model for Nvidia
GPUs, Nvidia provided support to the OpenCL API [25]. As a result, non-CUDA
implementations could be executed on Nvidia GPUs. The ComputeCpp imple-
mentation of SYCL by CodePlay, provided such functionality through OpenCL,
but its performance was not comparable to native CUDA as not all functionality
was exposed [3].

4 Ioannis Sakiotis et al.

As such, CodePlay developed the CUDA backend for DPC++, which is part
of the LLVM compiler project. CUDA support is not enabled by default and is at
an experimental stage. To enable the backend, we must build the LLVM compiler
project for CUDA. This can be achieved through easy-to-follow instructions that
involve CUDA-specific flags, and the use of clang++ instead dpcpp to compile
source code. As a result, DPC++ code can generate PTX code by using CUDA
directly instead of relying on the OpenCL backend. This approach not only
enables the use of Nvidia libraries and profiling tools with DPC++ but also the
capability to theoretically achieve the same performance as CUDA.

2.3 Related Work

The oneAPI programming model may not be as mature as CUDA but the liter-
ature already includes several examples of utilizing DPC++. The authors of [12]
validated the correctness of a DPC++ tsunami simulator ported from CUDA. A
Boris Particle Pusher port from an openMP version was discussed in [27], where
a DPC++ implementation was 10% slower than the optimized original. In [14],
CUDA and DPC++ implementations of a matrix multiplication kernel were
compared on different matrix sizes; the execution time on an Nvidia GPU was
slower with DPC++ code by 7% on small problem sizes but as much as 37% on
larger ones. On the contrary, [15] and [13] included experiments where a DPC++
biological sequence alignment code showed no significant performance penalty
compared to CUDA, and even a case of 14% speedup. Spare matrix-vector mul-
tiplication kernels and Krylov solvers in [26] reached 90% of a CUDA version’s
bandwidth. There were also cases with non-favorable performance for DPC++
ports. In [17] a bioinformatics-related kernel performed twice as fast in CUDA
and HIP than in DPC++. In [11] DPC++ versions generally reported compa-
rable performance to CUDA but there were multiple cases where the penalty
ranged from 25− 190%.

There seems to be a deviation in the attainable performance. This is reason-
able due to the variety of applications and the relatively early stage of develop-
ment for the oneAPI ecosystem. We also expect that the level of optimization in
CUDA implementations is an important factor. In our experience, highly opti-
mized codes typically yield performance penalties in the range (5− 10%). There
are multiple cases displaying approximately 10% penalty compared to native
programming models. This indicates that DPC++ can achieve comparable per-
formance to CUDA, though careful tuning and additional optimizations may be
needed.

3 Numerical Integration Use Case

Numerical integration is necessary for many applications across various fields and
especially physics. Important examples include the simulation of beam dynamics
and parameter estimation in cosmological models [21] [6] [9]. Even ill-behaving
integrands (oscillatory, sharply peaked, etc.) can be efficiently integrated with

Porting numerical integration codes from CUDA to oneAPI: a case study 5

modest computational resources, as long the integration space is low dimensional
(one or two variables). On the contrary, solving medium to high-dimensional
integrands is often infeasible on standard computing platforms. In such cases,
we must execute on highly parallel architectures to achieve performance at scale.
There are a few GPU-compatible numerical integration algorithms [22] [23] [7]
[19] [29]. Unfortunately, exploration of execution-platform portability has been
limited, with CUDA being the most common choice. Since CUDA is a proprietary
language, such optimized implementations cannot be executed on non-Nvidia
GPUs. To our knowledge, the only mentions of potential portability in numerical
integration libraries are found in [22] where a Kokkos implementation of the
PAGANI integrator is briefly mentioned to be in development and in [23] which
compares the CUDA implementation of m-Cubes with an experimental Kokkos
version.

3.1 PAGANI

PAGANI is a deterministic quadrature-based algorithm designed for massively
parallel architectures. The algorithm computes an integral by evaluating the
quadrature rules, which are a series of weighted summations of the form

∑feval

i=1 wi·
f(xi). The computation involves an integrand function f which we invoke at the
d-dimensional points xi. Each point xi has a corresponding weight wi and there
are feval such points in the summation. PAGANI computes an initial integral
and error estimate, and it progressively improves its accuracy until reaching a
user-specified threshold. The accuracy improvement is achieved by applying the
quadrature rules in smaller regions of the integration space and accumulating
those values to get the integral estimate.

The most computationally intense kernel of PAGANI is the Evaluatemethod
(listed in Algorithm 2 of [22]) which consistently takes more than 90% of total
execution time. Its function is to compute an integral/error estimate for each re-
gion and select one of the dimensional axes for splitting. As such, it can be viewed
as the core of PAGANI, both from an algorithmic and performance standpoint.
For the remainder of this paper, we will refer to this method as Pagani-kernel.

In Pagani-kernel, each thread-group processes a different region and uses
all threads in the group to parallelize the integrand function evaluations. The
function evaluations are then accumulated accumulated through a reduction
operation. Since all threads in a thread-group operate on the same region, we
can store region data in shared memory. The same data, which is needed for each
function evacuation is broadcast to all threads, avoiding repeated access to the
slower global memory. There are additional read-only arrays needed for function
evaluations, which are stored in global memory due to their larger size. Finally,
thread zero of each group writes the computed integral and error estimate of the
region in the corresponding output arrays.

The CUDA implementation was optimized for the Nvidia V100 GPU. The
kernel is launched in groups of 64 threads and the functions evaluations are
performed in iterated in a strided fashion. This allows the threads to coalesce
accesses to the read-only arrays in global memory. For those reads, the kernel

6 Ioannis Sakiotis et al.

relies on the “ldg” intrinsic, suggesting to the compiler their placement in the
read-only cache.

3.2 m-Cubes

m-Cubes is a probabilistic Monte Carlo algorithm based on the VEGAS integra-
tor [20]. It operates by randomizing the sample generation across the integration
space to solve integrands and relies on the standard deviation of the Monte Carlo
estimate to produce error estimates for the computation. Just like VEGAS, m-
Cubes utilizes importance and stratified sampling to accelerate the Monte Carlo
rate of convergence. The algorithm partitions the integration space into m sub-
cubes that are sampled separately. The sub-division resolution is dictated by a
user-specified number of samples per iteration.

While the main kernel of m-Cubes, which we will refer to as mcubes-kernel
is detailed in [23]), we describe some important characteristics. Each thread is
assigned a number of sub-cubes and processes them serially. During the sampling
of those cubes, the threads randomly generate a series of d-dimensional points
within certain bin boundaries and evaluate an integrand f at those points. The
magnitude of each function evaluation must be stored in d corresponding mem-
ory locations that represent the d bins used to generate the point. The kernel
uses atomic addition to perform these memory writes because there are possi-
ble collisions due to a lack of 1 − 1 mapping between bins and threads. Once
the threads in a group have evaluated all their points across all their assigned
sub-cubes, a reduction operation accumulates the function evaluations within
a thread-group. Then, the results of each all thread-groups are accumulated
through atomic addition. This provides an integral and error estimate.

The CUDA implementation was optimized for the V100 GPU. The kernel
consisted of 128 threads per block and utilized 500 bins per dimensional axis. The
reduction operates on local memory and utilizes warp-level primitives, though
limited shared memory is used to accumulate the values from the different warps.
The first warp, completes the final reduction in the thread-group through warp-
level primitives.

4 Porting Process

The maturity of the CUDA programming model along with the more widespread
utilization of highly performant Nvidia GPUs make CUDA an intuitive choice
for high-performance applications. As such, PAGANI and m-Cubes were de-
signed and optimized for CUDA on a V100 Nvidia GPU [22] [23]. This makes
DPCCT the most appropriate tool to facilitate the porting process from CUDA
to DPC++.

4.1 Intel® DPC++ Compatibility Tool

DPCCT is intended to automate the majority of CUDA code migration to
DPC++, instead of performing a total conversion [4]. In our experience as well

Porting numerical integration codes from CUDA to oneAPI: a case study 7

as those reported in [14], [18] and many others, DPCCT functions exactly as
intended. An easy-to-complete conversion process requires few manual code in-
sertions. When manual editing is needed, DPCCT displays helpful suggestions in
the form of comment blocks to guide the user. There were certain code segments
that were functional but needed simple fixes to improve performance. e.g. use
of 3D nd item instead of 1D equivalent. In our experience, those cases were few
and we expect that such effects will be less pronounced as oneAPI and DPCCT
evolve. Expert users are anticipated to produce higher-quality implementations
than automated tools, but even then DPCCT greatly facilitates the porting pro-
cess by automating the tedious and often error-prone translation of API calls
and indexing schemes.

4.2 Challenges

Errors in Automated Code Migration A source of errors for DPCCT gener-
ated code was our use of C++ structures to encapsulate input/output data that
resided in the device memory space. We used C++ to automate allocation, deal-
location, and initialization for much of the data needed by our CUDA kernels.
The constructors and destructors of these non-trivial C++ structures included
calls to the CUDA API e.g (cudaMalloc, cudaFree), while member functions
involved host-side processing and even invoked other CUDA kernels to perform
parallel operations.

DPCCT translated the API calls from CUDA to SYCL without errors for
all of our C++ structures. The problem arises when passing members of those
structures as parameters to the lambda expressions that define the parallel code.
The SYCL standard requires that all objects copied between host and device are
trivially copyable. Since the lambdas will be copied to the device, any objects
captured by the lambda must be trivially copayble as well. Our C++ structures
are not trivially-copyable because they have user-defined destructors to free their
device-allocated data. Even though we do not use the objects themselves in the
parallel code, but only to conveniently pass their members as parameters, they
are captured nonetheless and cause a static assert error.

We demonstrate this in Listing 1.1, where the SYCL wrapper-function brings
the regions object into scope as a pointer (line 8, causes the pointer to be copied
instead of the object itself. This is in contrast to the CUDA wrapper where
there is no capture and regions is passed by reference (line 1), while the leftcoord
member, which is a pointer, is passed by value (line 4) to the kernel. In SYCL,
passing the C++ object as a pointer removes the trivially-copyable related com-
pilation error, but accessing the pointer in the parallel code causes an illegal
access run-time error (line 19). To solve this issue, we must store any data that
we want to be captured by our lambda, into scope-local variables (line 10).

1 void cuda_wrapper(const Sub_regions& regions){

2 const size_t nBlocks = regions.size;

3 const size_t nThreads = 64;

4 kernel <<<nBlocks , nThreads >(regions.leftcoord);

5 cudaDeviceSynchronize ();

8 Ioannis Sakiotis et al.

6 }

7

8 void sycl_wrapper(Sub_regions* regions){

9 sycl::queue q(sycl:: gpu_selector ());

10 T* leftcoord = regions ->leftcoord;

11 const size_t nBlocks = regions ->size;

12 const size_t nThreads = 64;

13

14 q.submit ([&](sycl:: handler& cgh){

15 cgh.parallel_for(

16 sycl::nd_range <1>(sycl::range <1>(nBlocks) * sycl

::range <1>(nThreads),

17 sycl::range <1>(nThreads)),

18 [=](sycl::nd_item <1> item_ct1){

19 double x = regions ->leftcoord [0]; //run -time

error: illegal access

20 double y = leftcoord [0]; //ok, local var

leftcoord captured

21 });

22 });

23 q.wait_and_throw ();

24 }

Listing 1.1: Kernel Launch

Another issue we encountered in the DPCCT converted code was the incor-
rect conversion of atomic addition in our parallel code. DPCCT converted the
atomicAdd CUDA function call to dpct::atomic fetch add. The use of this partic-
ular function triggers an unresolved extern error for the spirv AtomicFAddEXT
function. This is an improper mapping for atomic addition from the DPCCT im-
plementation to the CUDA backend; the same command works on Intel devices.
We resolve this problem by using the correct atomic function directly from the
SYCL namespace (see Listing 1.2).

1 // ptxas fatal : Unresolved extern function

2 dpct:: atomic_fetch_add <double ,

3 sycl:: access :: address_space :: generic_space >(

4 &result_dev [0], fbg);

5

6 // functional replacement

7 auto v = sycl::atomic_ref <double ,

8 sycl:: memory_order ::relaxed ,

9 sycl:: memory_scope ::device ,

10 sycl:: access :: address_space :: global_space >(result_dev [0])

;

11 v += fbg;

Listing 1.2: Atomic Addition

Porting numerical integration codes from CUDA to oneAPI: a case study 9

Porting Issues with Nvidia Thrust Library PAGANI uses Thrust to
perform common parallel operations on the host side, such as reduction, dot-
product, prefix sum, and finding the minimum/maximum value in a list. DPCCT
successfully automates the translation of these Thrust library calls to SYCL,
mainly through the use of equivalent functions in the DPCT namespace. The one
exception where DPCCT fails to provide a function call is the minmax element
function, where an appropriate warning for the unsuccessful code migration is
provided. Instead, we used the min max function from the oneMKL library’s
Summary Statistics domain. This function worked on Intel GPUs and CPUs
but had no mapping for the CUDA backend and yielded an undefined refer-
ence error. To solve this issue, we used the iamax and iamin routines from the
oneMKL library’s BLAS domain.

We faced a similar CUDA-backend mapping issue with the dpct::inner product
method, which caused a no matching function compilation error. We found the
row major::dot method as an alternative in the oneMKL library but it was not
implemented for the CUDA backend. Instead, we the equivalent routine in the
column major namespace worked for both Intel and NVIDIA devices. The only
limitation of the oneMKL routine was that the dot-product operation requires
the two input lists to be of the same type. In contrast, the Thrust routine al-
lows the user to compute the dot-product between floating point and integer
lists. In most cases, any performance impact would be negligible, but the impact
on memory can be critical for PAGANI which is a memory hungry algorithm
that uses memory-saving routines when the available memory is close to being
exhausted. Using floating-point type instead of integer-types for certain lists,
can trigger costly memory-saving routines in the oneAPI implementation sooner
than the CUDA original and slightly degrade performance.

Performance Degradation We encountered more difficulties when attempt-
ing to achieve comparable performance to the original CUDA implementations.
The parallel codes for SYCL and CUDA were near-identical, yet we found dif-
ferences in terms of register pressure and shared memory allocation size. These
factors contributed to degraded performance in the SYCL implementations, with
execution times often being more 50% larger than the CUDA originals. The crit-
ical optimization that on average minimized execution times to within 10% of
the CUDA implementation, was manual loop-unrolling but only after setting the
inline-threshold to 10, 000 during compilation. In our initial SYCL versions, the
default inline-threshold prevented code inlining and loop-unrolling even when
manually set. While the increased inline-threshold further increased register us-
age, it allowed better optimizations by the compiler and better pipeline utiliza-
tion which improved performance.

Another method to limit register usage in SYCL, though to a lesser ex-
tent than code inlining, was the use of one-dimensional nd item objects (used
for indexing and coordinating threads in a group). DPCCT defaults to using
3D nd item even when converting CUDA code that does not utilize multi-
dimensional indexing. This is the case for both PAGANI and m-Cubes which

10 Ioannis Sakiotis et al.

organize multi-dimensional data in one-dimensional lists and thus have no need
for 2D grids. Using the one-dimensional nd item in m-Cubes decreased register
usage by 10 and yielded small (1−2%) but consistent performance improvement.
The same technique did not impact performance in PAGANI.

Additionally, we found that using a custom function to perform work-group
reduction through shared memory was faster than the built-in reduce over group.
Computing a six-dimensional integral where PAGANI used the built-in reduc-
tion, increased the register count from 100 to 132 and the execution time from
757 ms to 778 ms.

Another challenge in our attempt to achieve comparable performance to
CUDA was deviations in the performance of SYCL and CUDA mathematical
functions. There is no guarantee that the mathematical functions in SYCL have
the same implementations as the functions in the CUDA Math API. In some
cases, we must use different functions (e.g. sycl::pow instead pow) which could
make small deviations unavoidable. Exponential functions displayed comparable
performance on benchmark kernels. On the contrary, we observed a slowdown of
various degrees in SYCL when using power or trigonometric functions. This is
most likely attributed to the compilers utilizing different optimizations. We did
not use any fast-math flags, since high accuracy is critical in numerical integra-
tion use cases.

Finally, the use of atomic addition in m-Cubes caused orders of magnitude
slowdown on both the mcubes-kernel and benchmark kernels. This was at-
tributed to the lack of an architecture-specific flag that must be set to enable ef-
ficient atomics when supported. After setting the Volta architecture flag, atomic
addition was as performant as in the native CUDA implementation.

Software Engineering Issues We faced non-intuitive compilation errors due
to our use of the Catch2 testing framework. Header inclusion for the oneDPL
library caused compilation errors only for testing code. We observed demo pro-
grams that did not use catch2 headers could compile and execute without issue.
On the contrary, codes such as the example in Listing 1.3 causes compilation
error. Removing the oneDPL header at line 4 eliminates the issue in this ex-
ample. The same issue occured when replacing the headers at lines 3 − 4 with
dpct/dpct.hpp and dpct/dpl utils.hpp which were the headers that DPCCT auto-
matically included to use the parallel policies of standard library functions such
as std::exclusive scan and std::reduce.

1 #define CATCH_CONFIG_MAIN

2 #include "catch2/catch.hpp"

3 #include <oneapi/dpl/execution >

4 #include <oneapi/dpl/algorithm >

5

6 // error: ranges/nanorange.hpp :3303:46: error: reference to ’

match_results ’ is ambiguous

7

8 TEST_CASE("TEST HEADER INCLUSION")

9 {

Porting numerical integration codes from CUDA to oneAPI: a case study 11

10 sycl:: queue q;

11 }

Listing 1.3: Header Inclusion Issues with Catch2 Testing Framework

1 # For Intel P60 GPU

2 find_package(MKL REQUIRED)

3 add_executable(exec_name filename.cpp)

4 target_link_libraries(exec_name PUBLIC MKL:: MKL_DPCPP)

5

6 # For CUDA backend

7 //we must store the path to oneMKL library in the CMake

variable ONEMKL_DIR

8 // store GPU architeture in CMake variable TARGET_ARCH

9 set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl -fsycl -targets

=nvptx64 -nvidia -cuda -Xsycl -target -backend --cuda -gpu -

arch=${TARGET_ARCH}")
10 add_executable(exec_name filename.cpp)

11 target_link_directories(exec_name PUBLIC "${ONEMKL_DIR}")
12 target_compile_options(exec_name PRIVATE "-lonemkl")

Listing 1.4: Using CMake

Utilization of the Catch2 testing framework and CMake was largely successful
but more error-prone when building for the CUDA backend. We had to include
separate CMake commands and flags when building for Nvidia GPUs instead of
utilizing CMake packages which were viable when building for other backends.
As illustrated in Listing 1.4, we needed additional flags for the CUDA back-
end (line 9). Using the oneMKL library, required the -lonemkl flag to CMake’s
target compile options and the oneMKL location to the target link directories
command, which had to be manually set. Building for the P630 Intel GPU was
simpler. We did not need any flags to compile a target, and the oneMKL the
CMake package made the utilization of the library less verbose. Our supplement
of extra flags for the CUDA backend does not follow standard CMake practices.
As support for the CUDA-backend exits its experimental stage, we expect such
software engineering issues will be less pronounced.

5 Experimental Results

We conducted a series of experiments to evaluate the performance and correct-
ness of the oneAPI ports relative to the optimized CUDA implementations of
PAGANI and m-Cubes. We used a single node with a V100 Nvidia GPU and a
2.4 GHz Intel Xeon R Gold 6130 CPU. We also used the Devcloud environment
to verify that the DPC++ implementations were portable and could be executed
on a P630 Intel GPU. Due to the V100 GPU having significantly more comput-
ing cores than the P630, we do not make any performance comparisons between
the two GPUs. Instead, we focus on the attainable performance of DPC++ on
NVIDIA hardware.

12 Ioannis Sakiotis et al.

When executing the CUDA implementations, we used gcc 8.5 and CUDA
11.6. For the CUDA-backend execution, we used the same environment but
compiled with clang 15, an inline threshold of 10000, and the following com-
pilation flags: “-fsycl -fsycl-targets=nvptx64-nvidia-cuda -Xsycl-target-backend
–cuda-gpu-arch=sm 70”. We verified the correctness of our ports, by comparing
the results on both the Nvidia (V100) and Intel (P630) GPUs, to the results
generated by the CUDA originals on a V100 GPU.

In terms of evaluating performance, we chose the same benchmark integrands
originally used to evaluate PAGANI and m-Cubes in [22] and [23]. These func-
tions belong to separate integrand families with features that make accurate
estimation challenging. We list those integrands in equations 1 to 6. All experi-
ments use the same integration bounds (0, 1) on each dimensional axis. Similar
to [22] and [23], we perform multiple experiments per integrand.

We deviate from [22] and [23] in that we do not execute the PAGANI and m-
Cubes methods in their entirety. Instead, we execute their main kernels pagani-
kernel and mcubes-kernel, which is where more than 90% of execution is
spent. With this approach, we can evaluate the effectiveness of each programming
model in terms of offloading workloads to the device. It allows us to separate
kernel evaluation from memory management operations (allocations, copies, etc.)
and library usage. This comparison of custom kernel implementations is a better
indicator of performance implications when porting CUDA codes to DPC++.

f1,d (x) = cos

(
d∑

i=1

i xi

)
(1)

f2,d (x) =

d∏
i=1

(
1

502
+ (xi − 1/2)

2

)−1

(2)

f3,d (x) =

(
1 +

d∑
i=1

i xi

)−d−1

(3)

f4,d (x) = exp

(
−625

d∑
i=1

(xi − 1/2)
2

)
(4)

f5,d (x) = exp

(
−10

d∑
i=1

|xi − 1/2|

)
(5)

f6,d (x) =

{
exp

(∑d
i=1 (i+ 4)xi

)
if xi < (3 + i) /10

0 otherwise
(6)

5.1 Offloading Mathematical Computations to Kernels

A critical stage in pagani-kernel and m-Cubes-kernel is the invocation of
the integrand at various d-dimensional points. Integrands with trigonometric or

Porting numerical integration codes from CUDA to oneAPI: a case study 13

exponential functions and table look-ups will have larger execution times com-
pared to other simple integrands that only contain basic mathematical opera-
tions. To attain satisfactory performance, both the invocation of the integrand
functions and the remaining operations within the kernels must achieve compa-
rable performance to the CUDA implementation.

We tested the efficiency of the integrand oneAPI implementations with a sim-
ple kernel that performs a series of invocations on many d-dimensional points.
The points are randomly generated on the host and then copied to device mem-
ory. Each thread invokes the integrand serially 1 million times and writes its
accumulated results to global memory. Writing the results prevents the NVCC
and Clang compilers from disregarding the integrand computations due to opti-
mization.

We first tested simple integrands that contained only a particular function
such as sin, pow, powf, sycl::exp, sycl::pow, sycl::pown. We invoked these math-
ematical functions with d arguments that comprise each d-dimensional point.
We did not use fast-math flags as accuracy is critical in numerical integration.
We observed small but consistent penalties of at most 2% when invoking the
power and exponential functions. On the contrary, trigonometric functions are
approximately 40% slower on the CUDA backend.

We performed the same experiment on the six benchmark integrands for
dimensions 5 to 8. We summarize the results in Table 1. The timings in CUDA
and oneAPI columns are the means of 10 kernel executions per integrand. The
ratio of those timings shows that the oneAPI version is at most 4% slower.
The largest penalty is observed in the f1 integrand which makes use of the
cos function. The remaining integrands only make use of exponential and power
functions and yield small penalties.

These experiments on the execution time of the integrand invocations demon-
strate that the user-defined computations do not display significant performance
penalties. The one exception is the extended use of trigonometric functions. None
of the benchmark integrands make extended use of trigonometric functions (f1
has one call to cos per invocation). As such, we do not expect any slowdown
larger than 5% in either PAGANI or m-Cubes to be attributed to the integrand
implementations.

5.2 Benchmark Integrands Performance Comparison

Another set of experiments involved the invocation of the pagani-kernel and
mcubes-kernel on the benchmark integrands. To address different degrees of
computational intensity, we vary the number of thread-blocks used to launch the
kernels. For the mcubes-kernel, we achieve this effect by varying the required
number of samples per iteration in the range (1e8, 3e9). This leads to different
block sizes per kernel. For pagani-kernel, the number of thread blocks corre-
sponds to the number of regions being processed. We perform high-resolution
uniform splits to generate region lists of different sizes and supply them to the
pagani-kernel for evaluation.

14 Ioannis Sakiotis et al.

Table 1: mean (µ) and standard deviation (σ) of execution times for invoking
5− 8D benchmark integrands

id µ CUDA (ms) µ oneAPI (ms) σ CUDA σ oneAPI µ oneAPI
µ CUDA

f1 1866.4 1952.4 13.3 21.4 1.04

f2 8413.9 8487.3 5012.5 5042.9 1.009

f3 1812.4 1828.3 18.5 27.1 1.009

f4 11416.1 11410.1 2184.9 2148.1 0.99

f5 634.3 654.4 73.5 67.3 1.03

f6 300.4 300.8 32.05 32.6 1.001

We report the penalty of using oneAPI for the benchmark integrands, in the
ratio columns of Tables 2 and 3. We used four thread-block sizes for each in-
tegrand for the kernel executions. Each kernel configuration (number of thread
groups) was repeated 100 times to provide a statistical mean and standard de-
viation for the execution times.

Across our experiments, the average execution time ratio (oneAPI
CUDA) is in the

range (0 − 10%). The f2 and f4 integrands which make repeated use of the
power function display the largest performance penalties for both PAGANI and
m-Cubes. It is worth noting that both f2 and f4 display the largest execution
times among the benchmark integrands for both integrators.

Table 2: m-Cubes: mean (µ) and standard deviation (σ) of execution times for
8D benchmark integrands

id µ CUDA (ms) µ oneAPI (ms) σ CUDA σ oneAPI µ oneAPI
µ CUDA

f1 286.7 286.7 2.1 0.9 1.0

f2 402.1 443.1 2.6 0.9 1.1

f3 284.5 285.8 1.6 1.4 1.0

f4 385.7 423.5 2.4 0.5 1.1

f5 284.3 285.9 2.1 1.7 1.0

f6 283.8 285.4 1.9 1.6 1.0

5.3 Simple Integrands Performance Comparison

In addition to the benchmark integrands, we also evaluate integrands that only
perform a summation of the arguments (

∑d
i=1 xi) where d is the number of

Porting numerical integration codes from CUDA to oneAPI: a case study 15

Table 3: PAGANI: mean (µ) and standard deviation (σ) of execution times for
8D benchmark integrands

id µ CUDA (ms) µ oneAPI (ms) σ CUDA σ oneAPI µ oneAPI
µ CUDA

f1 172.3 177.5 0.9 1.2 1.02

f2 1500.4 1651.0 0.3 2.1 1.1

f3 286.4 290.7 0.8 0.4 1.01

f4 1434.7 1524.9 0.4 1.9 1.06

f5 166.5 170.7 0.6 0.4 1.03

f6 136.8 139.4 0.4 0.2 1.02

dimensions. This avoids any bias in the comparison by avoiding mathematical
functions that could either call different implementations, cause differences in
register usage or lead to different optimizations. The ratios in Tables 4 and 5,
display timings on addition integrands for dimensions five to eight. Once more,
we observe penalties smaller than 10% and for both integrators these penalties
decrease on higher dimensionalities.

Table 4: m-Cubes: mean (µ) and standard deviation (σ) of execution times for

addition integrands (
∑d

i=1 xi)

id µ CUDA (ms) µ oneAPI (ms) σ CUDA σ oneAPI µ oneAPI
µ CUDA

5D 206.1 214.5 2.1 1.7 1.04

6D 214.1 217.2 2.2 1.0 1.01

7D 234.1 235.2 1.8 0.9 1.005

8D 284.7 285.7 1.9 1.9 1.005

5.4 Factors Limiting Performance

Both pagani-kernel and mcubes-kernel, are compute bound, performing
thousands of computations for each byte of accessed memory. The number of
registers per thread is a factor limiting the number of concurrent threads that
can be executed; the amount of shared memory and registers per thread limit
warp/work-group occupancy, which in turn degrades performance.

In most cases, the oneAPI implementations assigned more registers to each
thread compared to their CUDA equivalents. We illustrate the magnitude of this
difference in registers per thread in Figures 1 and 2. We observe the largest dif-
ference in integrands f2 and f4, which make extended use of the power function.

16 Ioannis Sakiotis et al.

Table 5: PAGANI: mean (µ) and standard deviation (σ) of execution times for

addition integrands (
∑d

i=1 xi)

id CUDA (ms) oneAPI (ms) Std. CUDA Std. oneAPI oneAPI
CUDA

5D 1.5 1.7 0.05 0.06 1.1

6D 24.8 26.7 0.3 1.4 1.1

7D 129.8 131.6 0.7 0.2 1.01

8D 137.4 137.6 1.3 1.0 1.001

It is the same functions that display the two largest execution time penalties for
the benchmark integrands in Tables 2 and 3.

We observe a similar pattern on the simple addition integrands (Table 4 and
5). In those cases, there are no mathematical functions (pow, exp, etc.) and the
integrands only perform a summation. The difference in registers decreases on
higher dimensions, leading to degraded performance on low dimensions. This
is evident in tables 4 and 5 where higher-dimensional integrands have smaller
values in the oneAPI

CUDA column. The same pattern is observed for the benchmark
integrands, where the high dimensional versions perform better than the low
dimension equivalents. It can be seen in Figure 1, that this effect is more promi-
nent in m-Cubes, since it displays a larger deviation across all dimensions. These
observations lead us to believe that register difference and its effect on occupancy
is the main reason behind the performance degradation.

mcubes pagani

3 4 5 6 7 8 3 4 5 6 7 8
−5

0

5

10

15

ndim

R
eg

is
te

r d
iff

er
en

ce

Fig. 1: Register difference on simple
addition integrands (

∑d
i=1 xi). The

y-axis displays the number of ad-
ditional registers per thread in the
DPC++ implementation.

F_4 F_5 F_6

F_1 F_2 F_3

6 7 8 6 7 8 6 7 8

0
20
40

0
20
40

ndim

R
eg

is
te

r d
iff

er
en

ce

mcubes pagani

Fig. 2: Register difference on the
benchmark integrands. The y-axis
displays the number of additional
registers per thread in the DPC++
implementation.

Porting numerical integration codes from CUDA to oneAPI: a case study 17

6 Conclusion

We presented our experience of porting two numerical integration implemen-
tations, PAGANI and m-Cubes, from CUDA to DPC++ . We utilized Intel’s
DPCCT to automate the conversion process from CUDA to SYCL and success-
fully attained the capability to execute the same implementation on both Intel
and Nvidia GPUs. We experimented with various workloads consisting of differ-
ent mathematical functions. We found that the assigned registers per thread can
deviate in oneAPI and CUDA codes. This affects occupancy which in turn can
negatively impact performance, particularly in compute-bound kernels. We faced
additional challenges with mapping library calls to oneAPI equivalents, match-
ing compiler optimizations of NVCC with Clang, and using build and testing
libraries like CMake and Catch2. We addressed those challenges and demon-
strated that the performance penalty of using oneAPI ports instead of optimized
CUDA implementations can be limited to 10% on Nvidia GPUs. Additionally,
numerous cases exhibited comparable performance to the original CUDA imple-
mentations, with execution time differences in the 1 − 2% range. We compared
oneAPI and CUDA implementations on the same Nvidia V100 GPU. We were
able to execute on an Intel P630 GPU but we did not compare these timings
with those on the V100 GPU due their significant difference in computing power.
In the future, we plan to execute on the high end Intel Ponte Vecchio GPU and
compare performance metrics with Nvidia high end GPUs such as A100.

The vast array of libraries, ease of portability, and small margin of perfor-
mance degradation, make oneAPI an appropriate software solution for the use
case of numerical integration.

7 Acknowledgements

The authors would like to thank Intel Corporation and Codeplay for providing
technical support in the code migration process. The authors are also grateful for
the support of the Intel oneAPI Academic Center of Excellence at Old Dominion
University.

Work supported by the Fermi National Accelerator Laboratory, managed
and operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-
07CH11359 with the U.S. Department of Energy. The U.S. Government retains
and the publisher, by accepting the article for publication, acknowledges that
the U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide
license to publish or reproduce the published form of this manuscript, or al-
low others to do so, for U.S. Government purposes. FERMILAB-CONF-23-007-
LDRD-SCD.

We acknowledge the support of Jefferson Lab grant to Old Dominion Uni-
versity 16-347. Authored by Jefferson Science Associates, LLC under U.S. DOE
Contract No. DE-AC05-06OR23177 and DE-AC02- 06CH11357.

18 Ioannis Sakiotis et al.

References

1. https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.
pdf

2. Argonne leadership computing facility, https://www.alcf.anl.gov/support-center/
aurora/sycl-and-dpc-aurora#:∼:text=DPC%2B%2B%20(Data%20Parallel%20C,
versions%20of%20the%20SYCL%20language

3. Computecpp™ community edition, https://developer.codeplay.com/products/
computecpp/ce/2.11.0/guides/#computecpp

4. Migrate cuda* to dpc++ code: Intel® dpc++ compatibility tool, https://www.
intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.
html#gs.lx007q

5. What is openacc?, https://www.openacc.org/

6. et al., G.: Dark energy survey year 3 results: Redshift calibration of the maglim lens
sample from the combination of sompz and clustering and its impact on cosmology
(2022)

7. Arumugam, K., Godunov, A., Ranjan, D., Terzic, B., Zubair, M.: A memory effi-
cient algorithm for adaptive multidimensional integration with multiple gpus. In:
20th Annual International Conference on High Performance Computing. pp. 169–
175. IEEE (2013)

8. Ashbaugh, B., Bader, A., Brodman, J., Hammond, J., Kinsner, M., Pennycook,
J., Schulz, R., Sewall, J.: Data parallel c++: Enhancing sycl through extensions
for productivity and performance. In: Proceedings of the International Workshop
on OpenCL. IWOCL ’20, Association for Computing Machinery, New York, NY,
USA (2020). https://doi.org/10.1145/3388333.3388653, https://doi.org/10.1145/
3388333.3388653

9. Bridle, S., Dodelson, S., Jennings, E., Kowalkowski, J., Manzotti, A., Pa-
terno, M., Rudd, D., Sehrish, S., Zuntz, J.: Cosmosis: a system for mc pa-
rameter estimation. Journal of Physics: Conference Series 664(7), 072036 (dec
2015). https://doi.org/10.1088/1742-6596/664/7/072036, https://dx.doi.org/10.
1088/1742-6596/664/7/072036

10. Carter Edwards, H., Trott, C.R., Sunderland, D.: Kokkos: Enabling manycore per-
formance portability through polymorphic memory access patterns. Journal of par-
allel and distributed computing 74(12), 3202–3216 (2014)

11. Castaño, G., Faqir-Rhazoui, Y., Garćıa, C., Prieto-Mat́ıas, M.: Eval-
uation of intel’s dpc++ compatibility tool in heterogeneous com-
puting. Journal of Parallel and Distributed Computing 165, 120–
129 (2022). https://doi.org/https://doi.org/10.1016/j.jpdc.2022.03.017,
https://www.sciencedirect.com/science/article/pii/S0743731522000727

12. Christgau, S., Steinke, T.: Porting a legacy cuda stencil code to
oneapi. In: 2020 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW). pp. 359–367 (2020).
https://doi.org/10.1109/IPDPSW50202.2020.00070

13. Costanzo, M., Rucci, E., Garćıa-Sánchez, C., Naiouf, M., Prieto-Mat́ıas, M.: Mi-
grating cuda to oneapi: A smith-waterman case study. In: Bioinformatics and
Biomedical Engineering, pp. 103–116. Lecture Notes in Computer Science, Springer
International Publishing, Cham (2022)

14. Costanzo, M., Rucci, E., Sanchez, C.G., Naiouf, M.: Early experiences migrating
cuda codes to oneapi (2021)

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.alcf.anl.gov/support-center/aurora/sycl-and-dpc-aurora#:~:text=DPC%2B%2B%20(Data%20Parallel%20C,versions%20of%20the%20SYCL%20language
https://www.alcf.anl.gov/support-center/aurora/sycl-and-dpc-aurora#:~:text=DPC%2B%2B%20(Data%20Parallel%20C,versions%20of%20the%20SYCL%20language
https://www.alcf.anl.gov/support-center/aurora/sycl-and-dpc-aurora#:~:text=DPC%2B%2B%20(Data%20Parallel%20C,versions%20of%20the%20SYCL%20language
https://developer.codeplay.com/products/computecpp/ce/2.11.0/guides/#computecpp
https://developer.codeplay.com/products/computecpp/ce/2.11.0/guides/#computecpp
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html#gs.lx007q
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html#gs.lx007q
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html#gs.lx007q
https://www.openacc.org/
https://doi.org/10.1145/3388333.3388653
https://doi.org/10.1145/3388333.3388653
https://doi.org/10.1145/3388333.3388653
https://doi.org/10.1088/1742-6596/664/7/072036
https://dx.doi.org/10.1088/1742-6596/664/7/072036
https://dx.doi.org/10.1088/1742-6596/664/7/072036
https://doi.org/https://doi.org/10.1016/j.jpdc.2022.03.017
https://www.sciencedirect.com/science/article/pii/S0743731522000727
https://doi.org/10.1109/IPDPSW50202.2020.00070

Porting numerical integration codes from CUDA to oneAPI: a case study 19

15. Costanzo, M., Rucci, E., Sánchez, C.G., Naiouf, M., Prieto-Mat́ıas, M.: Assessing
opportunities of sycl and intel oneapi for biological sequence alignment (2022)

16. Doerfert, J., Jasper, M., Huber, J., Abdelaal, K., Georgakoudis, G., Scogland,
T., Parasyris, K.: Breaking the vendor lock-performance portable programming
through openmp as target independent runtime layer. Tech. rep., Lawrence Liver-
more National Lab.(LLNL), Livermore, CA (United States) (2022)

17. Haseeb, M., Ding, N., Deslippe, J., Awan, M.: Evaluating performance and porta-
bility of a core bioinformatics kernel on multiple vendor gpus. In: 2021 Interna-
tional Workshop on Performance, Portability and Productivity in HPC (P3HPC).
pp. 68–78 (2021). https://doi.org/10.1109/P3HPC54578.2021.00010

18. Jin, Z., Vetter, J.: Evaluating cuda portability with hipcl and
dpct. In: 2021 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW). pp. 371–376 (2021).
https://doi.org/10.1109/IPDPSW52791.2021.00065

19. Kanzaki, J.: Monte carlo integration on gpu. The European physical journal. C,
Particles and fields 71(2), 1–7 (2011)

20. Peter Lepage, G.: A new algorithm for adaptive multidimensional in-
tegration. Journal of Computational Physics 27(2), 192–203 (1978).
https://doi.org/https://doi.org/10.1016/0021-9991(78)90004-9, https:
//www.sciencedirect.com/science/article/pii/0021999178900049

21. Ranjan, N., Terzić, B., Krafft, G., Petrillo, V., Drebot, I., Serafini, L.: Simulation of
inverse compton scattering and its implications on the scattered linewidth. Physical
review. Accelerators and beams 21(3), 030701 (2018)

22. Sakiotis, I., Arumugam, K., Paterno, M., Ranjan, D., Terzić, B., Zubair, M.: PA-
GANI: A Parallel Adaptive GPU Algorithm for Numerical Integration. Association
for Computing Machinery, New York, NY, USA (2021), https://doi.org/10.1145/
3458817.3476198

23. Sakiotis, I., Arumugam, K., Paterno, M., Ranjan, D., Terzić, B., Zubair, M.: m-
cubes: An efficient and portable implementation of multi-dimensional integration
for gpus. In: High Performance Computing, pp. 192–209. Lecture Notes in Com-
puter Science, Springer International Publishing, Cham (2022)

24. Stone, J.E., Gohara, D., Shi, G.: Opencl: A parallel programming standard for
heterogeneous computing systems. Computing in science & engineering 12(3), 66–
73 (2010)

25. Su, C.L., Chen, P.Y., Lan, C.C., Huang, L.S., Wu, K.H.: Overview and
comparison of opencl and cuda technology for gpgpu. In: 2012 IEEE
Asia Pacific Conference on Circuits and Systems. pp. 448–451 (2012).
https://doi.org/10.1109/APCCAS.2012.6419068

26. Tsai, Y.M., Cojean, T., Anzt, H.: Porting sparse linear algebra to intel gpus. In:
Euro-Par 2021: Parallel Processing Workshops, pp. 57–68. Lecture Notes in Com-
puter Science, Springer International Publishing, Cham (2022)

27. Volokitin, V., Bashinov, A., Efimenko, E., Gonoskov, A., Meyerov, I.: High perfor-
mance implementation of boris particle pusher on dpc++. a first look at oneapi. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), pp. 288–300. Lecture Notes in
Computer Science, Springer International Publishing, Cham (2021)

28. Wong, M., Liber, N., Bassini, S., Richards, A., Butler, M., McVeigh, J., Cook, B.,
Sugimoto, H., Cordoba, C., Fahringer, T., et al.: Sycl - c++ single-source hetero-
geneous programming for acceleration offload (Jan 2014), https://www.khronos.
org/sycl/

https://doi.org/10.1109/P3HPC54578.2021.00010
https://doi.org/10.1109/IPDPSW52791.2021.00065
https://doi.org/https://doi.org/10.1016/0021-9991(78)90004-9
https://www.sciencedirect.com/science/article/pii/0021999178900049
https://www.sciencedirect.com/science/article/pii/0021999178900049
https://doi.org/10.1145/3458817.3476198
https://doi.org/10.1145/3458817.3476198
https://doi.org/10.1109/APCCAS.2012.6419068
https://www.khronos.org/sycl/
https://www.khronos.org/sycl/

20 Ioannis Sakiotis et al.

29. Wu, H.Z., Zhang, J.J., Pang, L.G., Wang, Q.: Zmcintegral: A
package for multi-dimensional monte carlo integration on multi-
gpus. Computer Physics Communications 248, 106962 (2020).
https://doi.org/https://doi.org/10.1016/j.cpc.2019.106962, https://www.
sciencedirect.com/science/article/pii/S0010465519303121

30. Zenker, E., Worpitz, B., Widera, R., Huebl, A., Juckeland, G., Knüpfer, A., Nagel,
W.E., Bussmann, M.: Alpaka - an abstraction library for parallel kernel accelera-
tion. In: arXiv.org. Cornell University Library, arXiv.org, Ithaca (2016)

https://doi.org/https://doi.org/10.1016/j.cpc.2019.106962
https://www.sciencedirect.com/science/article/pii/S0010465519303121
https://www.sciencedirect.com/science/article/pii/S0010465519303121

	Porting numerical integration codes from CUDA to oneAPI: a case study

