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Machine Learning (ML) Timeline
1812 – Bayes Theorem

1913 – Markov Chains

1943 – Artificial Neuron

1950 – The Turing Test

1952 – Computer plays checkers

1957 – The Perceptron (Neural Networks)

1967 – The Nearest Neighbor Algorithm

1979 – The Stanford Cart (first self driving ‘car’)

1989 – Reinforced Learning

1992 – Computer plays backgammon

1997 – IBM Deep Blue beats Kasparov

2006 – The Netflix Prize

2009 – ImageNet is created

2012 – Recognizing cats on YouTube

2021 – AlphaFold-2 protein structure prediction

2023 – ChatGPT

1999 – The GPU is invented
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ML for Accelerators – Who Cares?

Slide courtesy of Auralee Edelen



4

In a Perfect World…

► Use a fast, accurate model …
►

► Experts find some knobs that give us the beam we want and apply those to 
the machine

► get info about unobserved parts of machine (online model / virtual 
diagnostic)

► do offline planning and control algorithm prototyping 

d

Slide courtesy of Auralee Edelen

Presenter Notes
Presentation Notes
How
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In Reality, Things are Much More 
Difficult…

Slide courtesy of Auralee Edelen
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Digital Twins

Slide courtesy of Auralee Edelen
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Virtual Diagnostics

Slide courtesy of Auralee Edelen
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Finding Sources of Error between Simulations 
and Measurement (Uncertainty Quantification)

Many non-idealities not included in physics simulations:
static error sources (e.g. magnetic field nonlinearities, physical offsets) 
time-varying changes (e.g. temperature-induced phase calibrations)

Want to identify these to get better understanding of machine  fast-
executing ML model allows fast/automatic exploration of possible error 
sources simultaneously

injector
settings

laser image longitudinal/
transverse phase space

Without calibration

With calibration

Inputs
Laser radius
Laser spot sizes
Pulse length
Charge
Solenoid
L0A phase 
L0B phase
SQ quad
CQ quad
6 matching quads

Outputs
Beam size (x,y)
Emittance (x,y)
Bunch length

output beam
scalars

calibration transforms
(single node per input)
𝑦𝑦 = f(𝑤𝑤𝑥𝑥 + 𝑏𝑏)

frozen neural network 
layers trained on 

simulation

Calibration offset in solenoid strength found automatically with neural network model (trained in simulation, 
then calibrated to machine)

Example above is simulation-to-machine, but can adapt model over time as well 
Slide courtesy of Auralee Edelen
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Continuous Electron Beam Accelerator 
Facility
► The Continuous Electron Beam Accelerator Facility (CEBAF) is a 

continuous wave (CW) recirculating linac utilizing 418 superconducting 
radio frequency (SRF) cavities to accelerate electrons up to 12 GeV 
through five passes 

• It is a nuclear physics user-facility capable of servicing four 
experimental halls simultaneously

• The heart of the machine is the SRF cavities

Slide courtesy of Chris Tennant
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Predicting Failures

They record high-fidelity data 
from 12 cryomodules

5

5

1

Question #1
Which of the 8 cavities faulted 

first?
17 signals/cavity × 8 cavities = 

136 signals
17 signals1 cryomodule = 

collection of 8 cavities

Train an ML algorithm to correctly classify the cavity and type of RF fault given 
waveform data.  The results can be used to identify a maintenance action to take, 

for example

Fault Classification: Defining the Problem

Question #2
What kind of trip was it?

Slide courtesy of Chris Tennant
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Full Integration of AI/ML Optimization, Data-Driven 
Modeling, and Physics Simulations is the Goal for 
Accelerator ML 

Slide courtesy of Auralee Edelen
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Materials Discovery –
Photocathodes for Accelerators

We performed multi-objective 
screening to materials that are: 
i) Air-stable
ii) Visible light active  
iii) Low emittance

Antoniuk et al., Advanced Materials (2021)

The goal of this project was to identify new photocathode materials 
for electron sources using ML and Big Data techniques.

Air stability: Look for oxide 
binaries

Best candidate materials:
Na2O, K2O, Rb2O

This technique can be applied to other applications of interest, 
such as searching for new scintillator materials for detectors

Presenter Notes
Presentation Notes
On top of finding the single brightest photocathode material, we wanted to perform an additional screening for extending the lifetime of photocathodes. One of the biggest drawbacks is that current cesium antimonide photocathodes require ultrahigh vacuum environments to prevent reactions with atmospheric oxygen and water.  Even still, their lifetime is extremely short.  To tackle this problem, we wonder if there are some low intrinsic photocathodes in our database that are also air stable and visible light active, so that they can act as an air-stable replacement to currently used alkali antimonide photocathodes.
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ML Projects on Scorpius

 Exploring use of ML to 
speed optimizations on 
Scorpius
■ Solid-state pulsed power 

modulation for pulse 
shaping

 Collaboration with 
UNLV on interfacing 
ML model with controls
■ Important for field 

application of 
modulation

Demonstration of basic effects of an 
unmodulated pulse (A) and a staggered pulse 
(B) using CASTLE.

Slide from Evan Scott

A

B
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Health Assessment and Performance 
Monitoring of Large Machine Diagnostics

SDRD by Jesse Adams
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Summary - Broad Set of Areas for ML 
to Impact Accelerator Operations

Your accelerator goes here…


	Machine Learning for Accelerator Applications
	Machine Learning (ML) Timeline
	ML for Accelerators – Who Cares?
	In a Perfect World…
	In Reality, Things are Much More Difficult…
	Digital Twins
	Virtual Diagnostics
	Finding Sources of Error between Simulations and Measurement (Uncertainty Quantification)
	Continuous Electron Beam Accelerator Facility
	Predicting Failures
	Full Integration of AI/ML Optimization, Data-Driven Modeling, and Physics Simulations is the Goal for Accelerator ML 
	Materials Discovery – �Photocathodes for Accelerators
	ML Projects on Scorpius
	Health Assessment and Performance Monitoring of Large Machine Diagnostics
	Summary - Broad Set of Areas for ML to Impact Accelerator Operations

