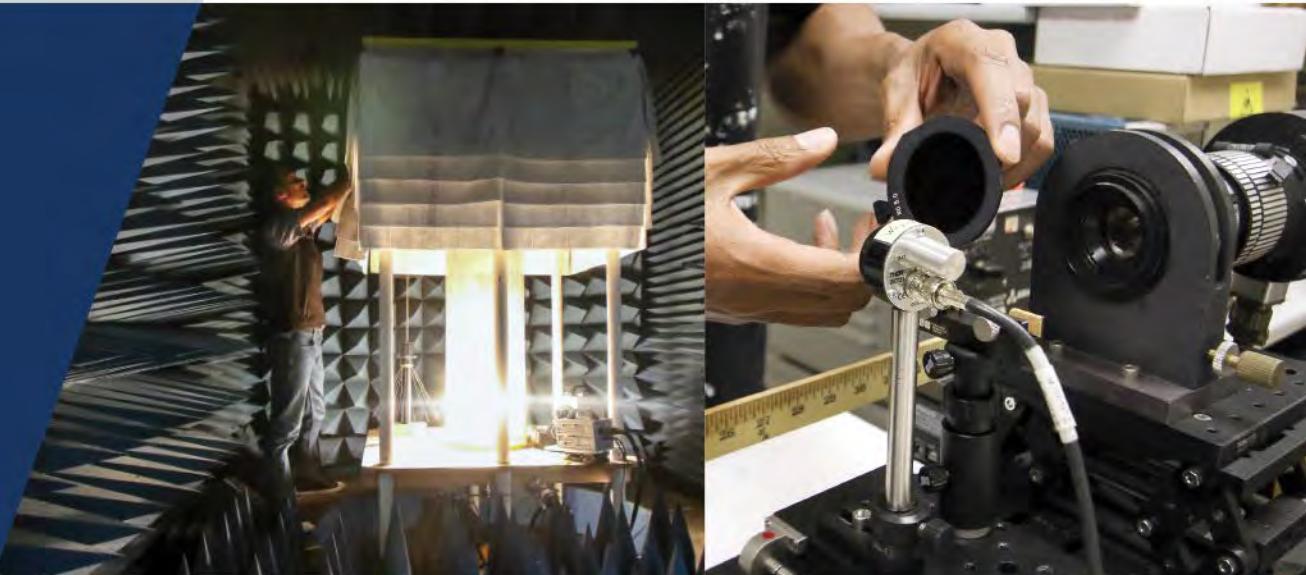


Machine Learning for Accelerator Applications

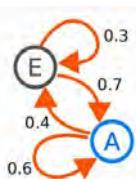


Bruce Dunham
S&T Directorate

This work was done by Mission Support and Test Services, LLC, under Contract No. DE-NA0003624 with the U.S. Department of Energy, the Office of Defense Programs, and supported by the Site-Directed Research and Development Program. DOE/NV/03624--1695

Machine Learning (ML) Timeline

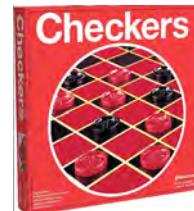
1812 – Bayes Theorem



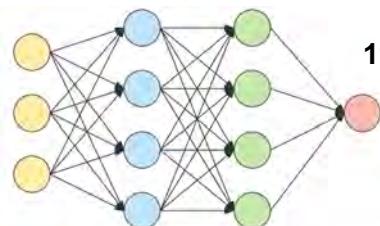
1913 – Markov Chains

1943 – Artificial Neuron

1950 – The Turing Test



1952 – Computer plays checkers



1957 – The Perceptron (Neural Networks)

1967 – The Nearest Neighbor Algorithm

1979 – The Stanford Cart (first self driving 'car')

1989 – Reinforced Learning

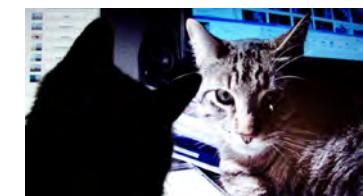
1992 – Computer plays backgammon

1997 – IBM Deep Blue beats Kasparov

2006 – The Netflix Prize

2009 – ImageNet is created

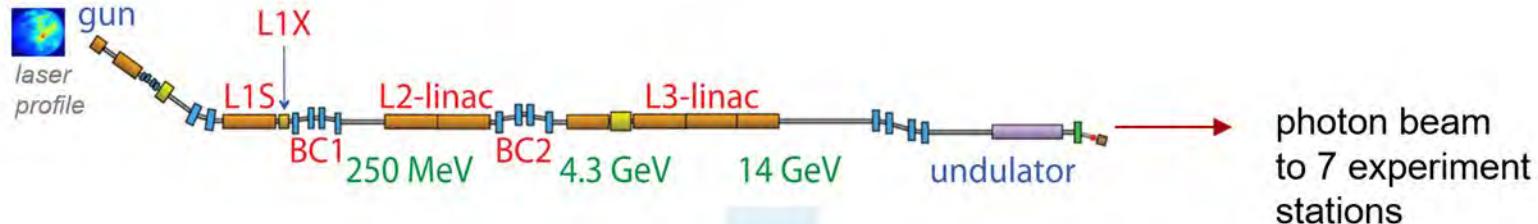
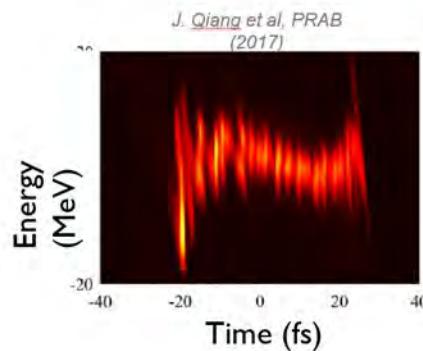
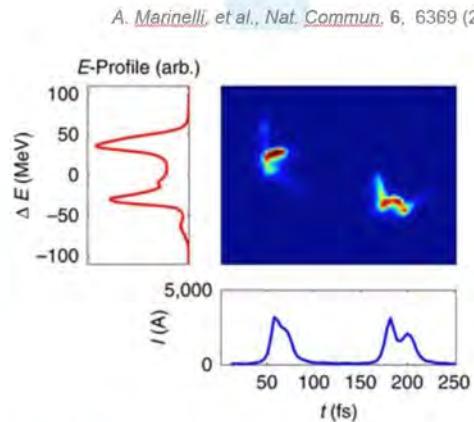
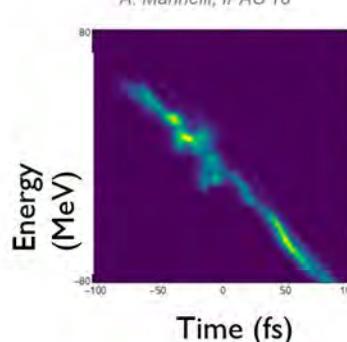
2012 – Recognizing cats on YouTube



2021 – AlphaFold-2 protein structure prediction

2023 – ChatGPT

ML for Accelerators – Who Cares?



SLAC Annual Operating Budget: \$145 million
Approximate hours of experiment delivery per year: 5000
About \$30k per experiment-hour to run

Operators spend 400 hours hand-tuning the accelerator in a year

\$12 million value
~10 additional experiments

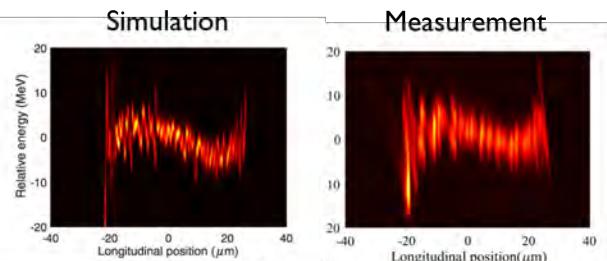
In a Perfect World...



- ▶ Use a fast, accurate model ...
- ▶ Experts find some knobs that give us the beam we want and apply those to the machine
- ▶ get info about unobserved parts of machine (online model / virtual diagnostic)
- ▶ do offline planning and control algorithm prototyping

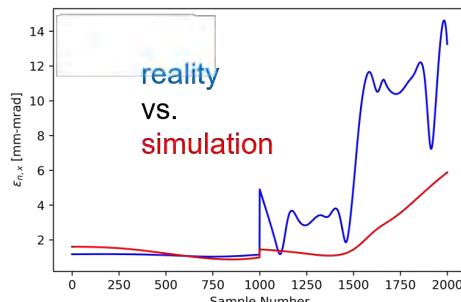
In Reality, Things are Much More Difficult...

computationally expensive simulations

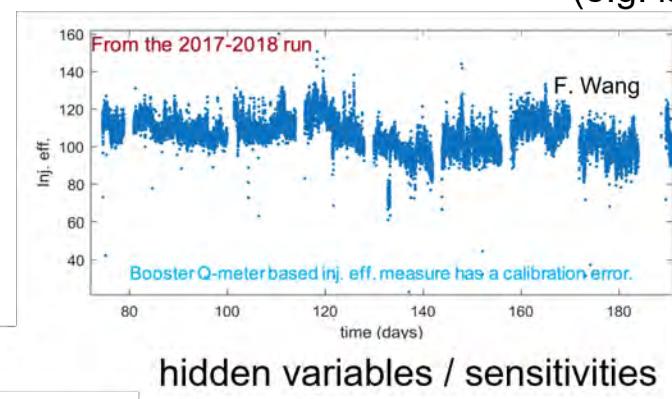


10 hours on thousands of cores at NERSC!

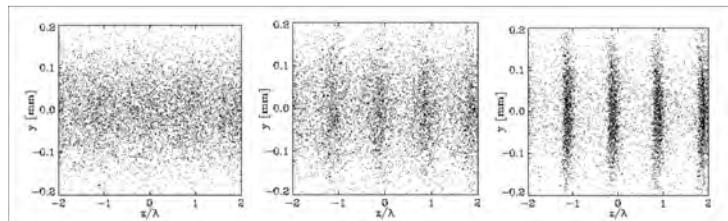
J. Qiang, et al.,
PRSTAB30, 054402,
2017



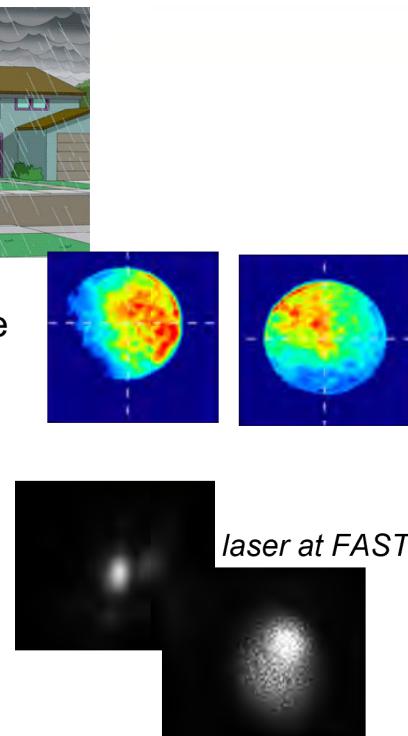
many small, compounding sources of uncertainty



hidden variables / sensitivities



nonlinear effects / instabilities

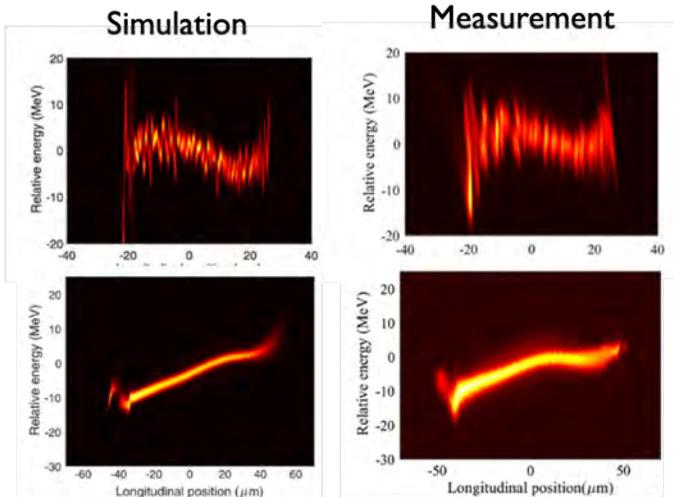


laser at FAST

drift over time

Digital Twins

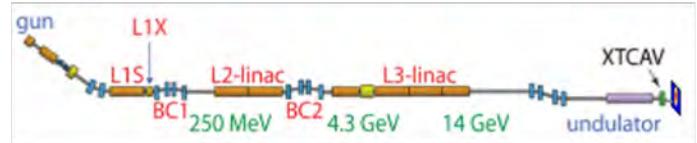
Accelerator simulations that include nonlinear and collective effects are powerful tools, but they can be computationally expensive



J. Qiang, et al., PRSTAB30, 054402, 2017

“10 hours on thousands of cores at the NERSC”

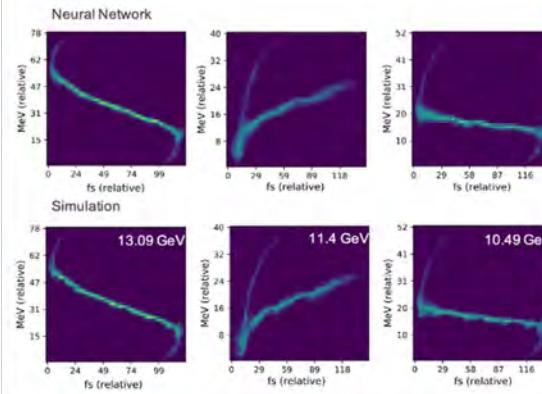
ML models can provide fast approximations to simulations



Linac sim in Bmad with collective beam effects

Scan of 6 settings in simulation

Variable	Min	Max	Nominal	Unit
L1 Phase	-40	-20	-25.1	deg
L2 Phase	-50	0	-41.4	deg
L3 Phase	-10	10	0	deg
L1 Voltage	50	110	100	percent
L2 Voltage	50	110	100	percent
L3 Voltage	50	110	100	percent



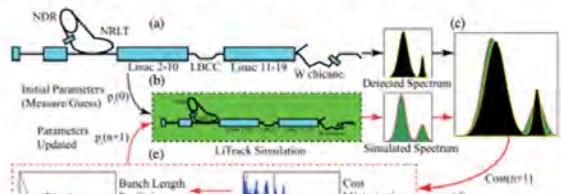
< ms
execution speed

10^6
speedup

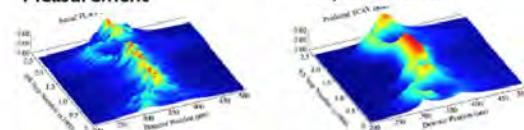
Virtual Diagnostics

Provide information about parts of the system that are typically inaccessible
(destructive, too slow, not directly measurable)

Adaptively tune a simple physics model

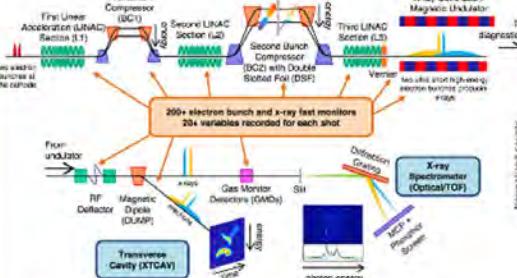


Measurement



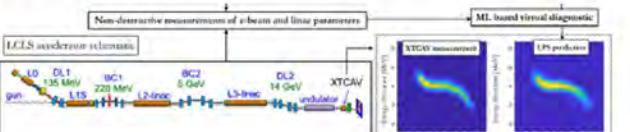
A. Scheinker, S. Gessner, PRAB 18, 102801 (2015)

Fill in shots: use archive data to learn correlation between fast and slow diagnostics

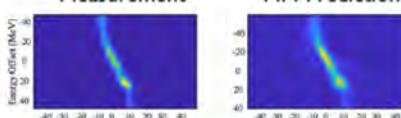


A. Sanchez-Gonzalez, et al., Nature Comms (2017)

Predict with a trained neural network

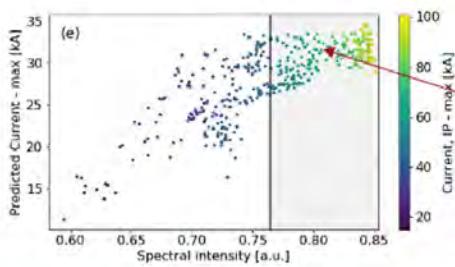


Measurement



C. Emma, A. Edelen, et al., PRAB21, 112802 (2018)

Can use spectral information as input to predict beyond typical diagnostic resolution



A. Hanuka, et al. 2009.12835 [accepted to Nature Scientific Reports]

Shots are
beyond the
TCAV resolution

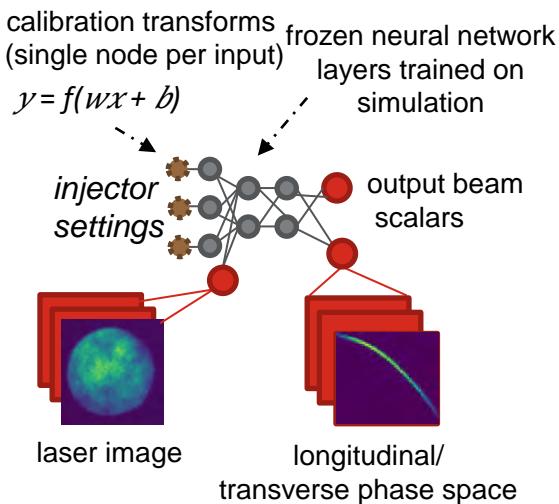
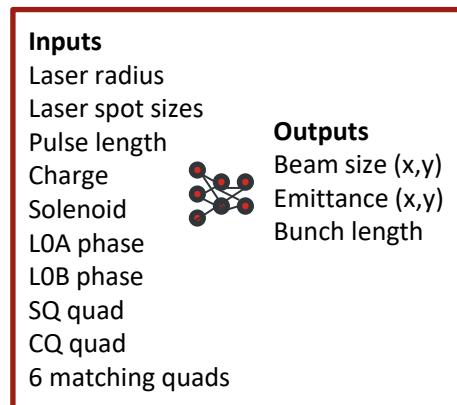
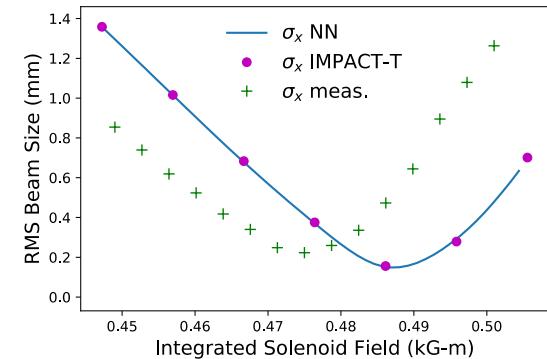
Finding Sources of Error between Simulations and Measurement (Uncertainty Quantification)

Many non-idealities not included in physics simulations:

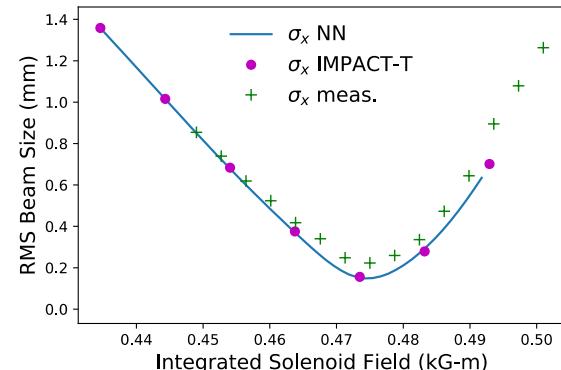
static error sources (e.g. magnetic field nonlinearities, physical offsets)

time-varying changes (e.g. temperature-induced phase calibrations)

Want to identify these to get **better understanding of machine** \rightarrow fast-executing ML model allows fast/automatic exploration of possible error sources simultaneously



Without calibration



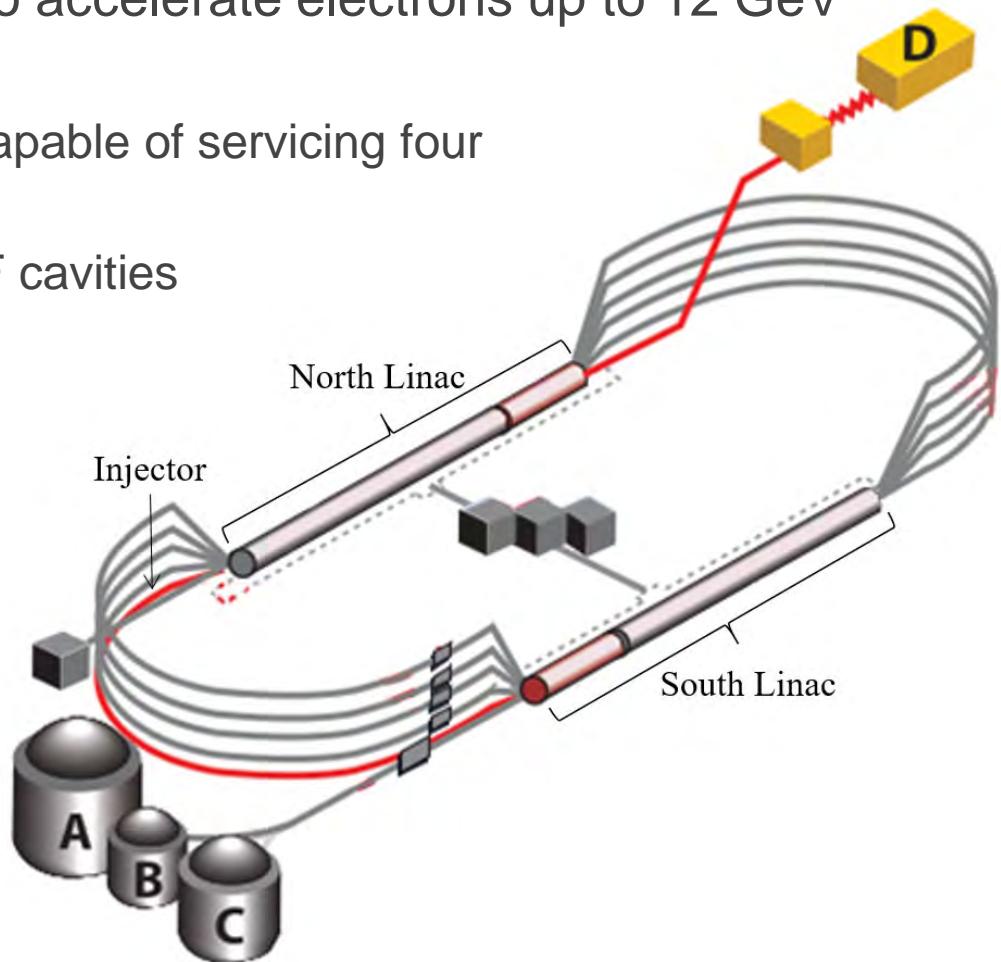
With calibration

Calibration offset in solenoid strength found automatically with neural network model (trained in simulation, then calibrated to machine)

Example above is simulation-to-machine, but can adapt model over time as well

Continuous Electron Beam Accelerator Facility

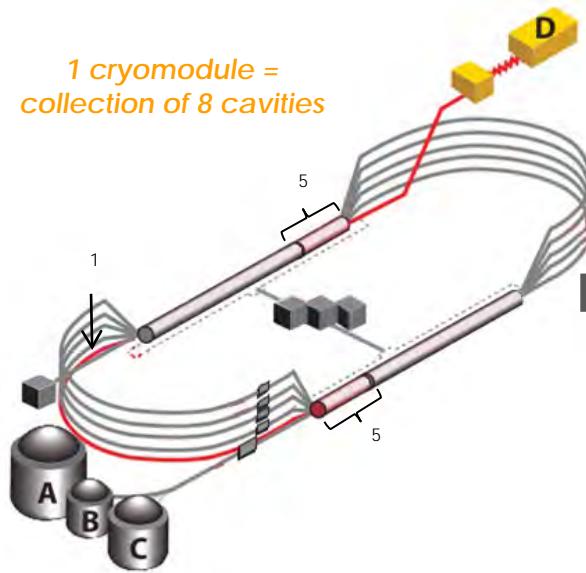
- The Continuous Electron Beam Accelerator Facility (CEBAF) is a continuous wave (CW) recirculating linac utilizing 418 superconducting radio frequency (SRF) cavities to accelerate electrons up to 12 GeV through five passes
- It is a nuclear physics user-facility capable of servicing four experimental halls simultaneously
- The heart of the machine is the SRF cavities



Predicting Failures

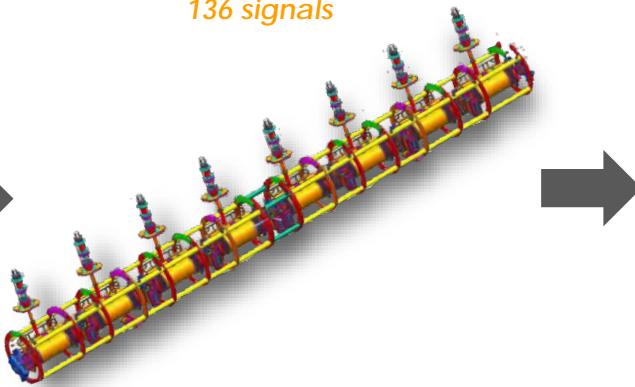
Fault Classification: Defining the Problem

They record high-fidelity data from 12 cryomodules



Question #1
 Which of the 8 cavities faulted first?

17 signals/cavity \times 8 cavities = 136 signals



Question #2
 What kind of trip was it?

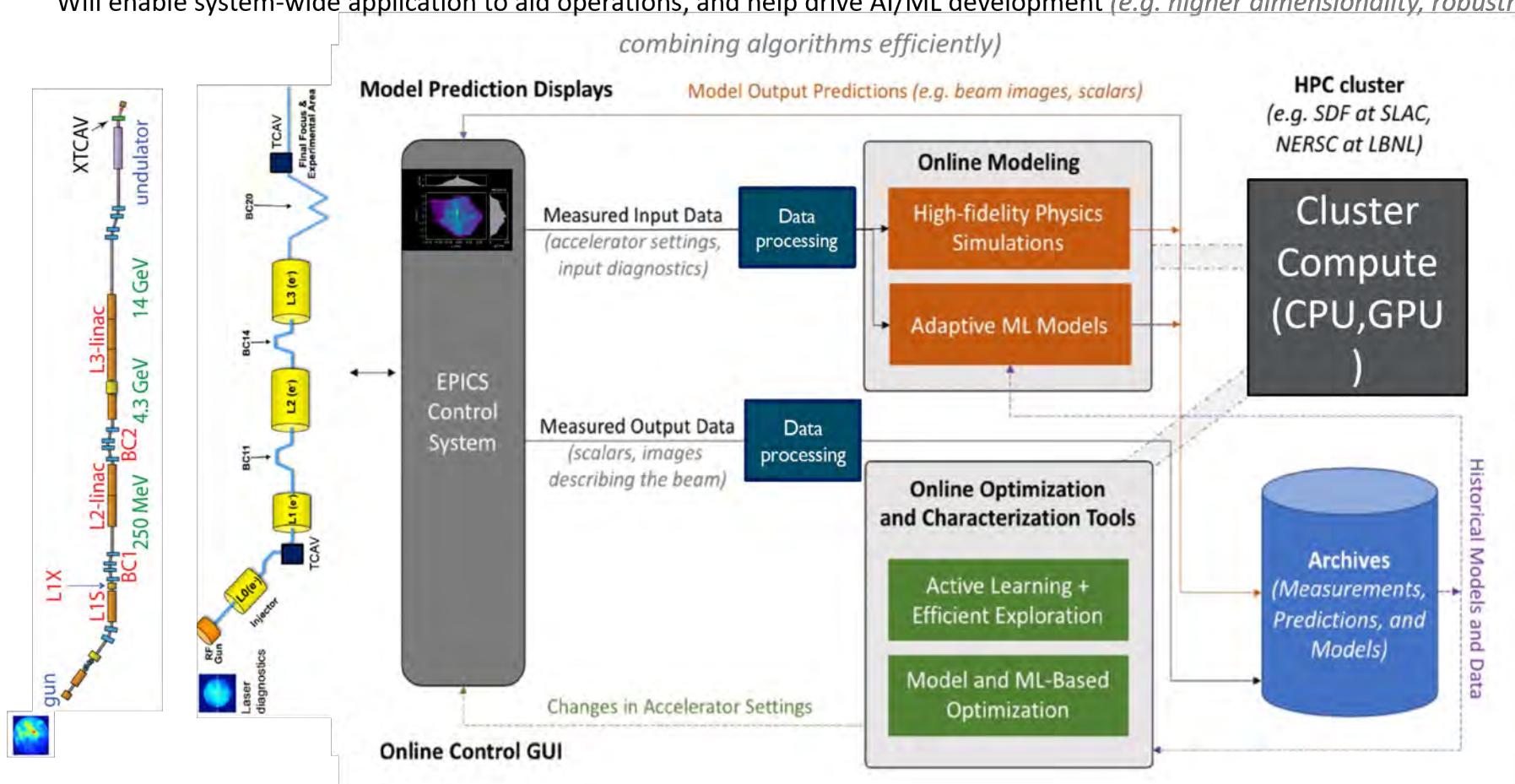
17 signals

Train an ML algorithm to correctly classify the cavity and type of RF fault given waveform data. The results can be used to identify a maintenance action to take, for example

Full Integration of AI/ML Optimization, Data-Driven Modeling, and Physics Simulations is the Goal for Accelerator ML

Want a *facility-agnostic* ecosystem for online simulation, ML modeling, and AI/ML driven characterization/optimization

Will enable system-wide application to aid operations, and help drive AI/ML development (*e.g. higher dimensionality, robustness, combining algorithms efficiently*)



Photocathodes for Accelerators

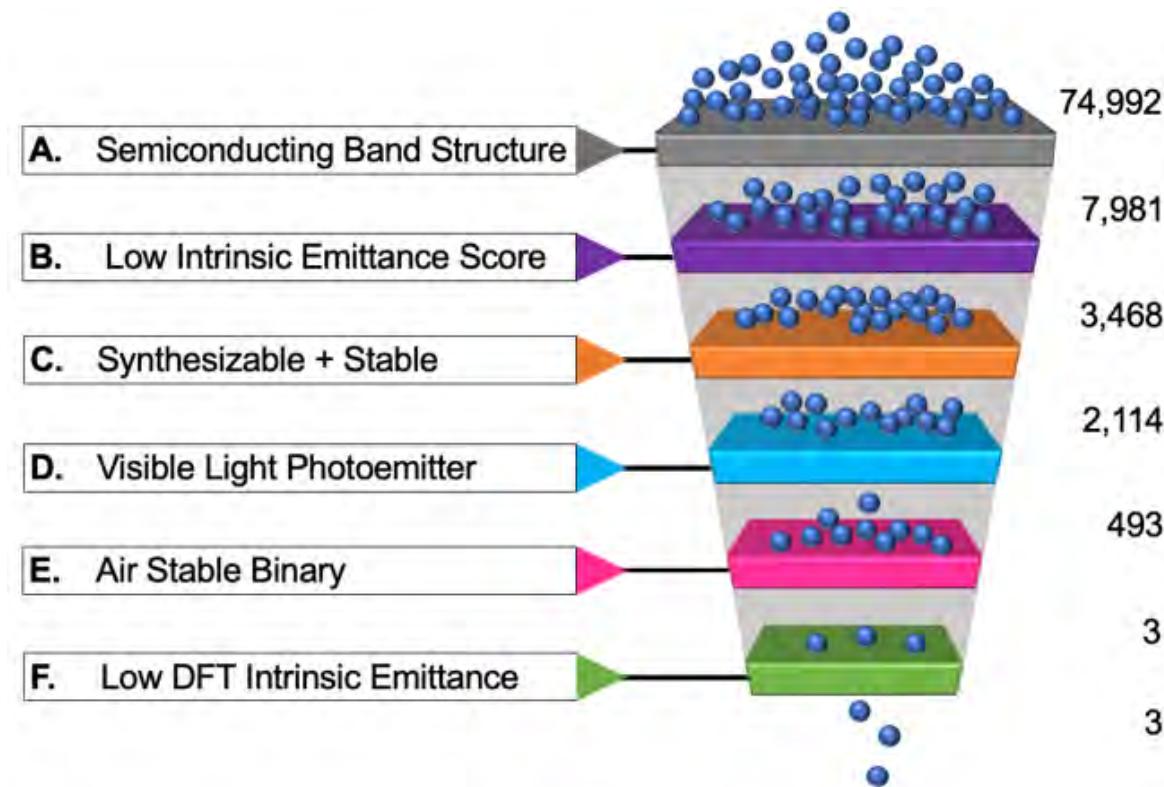
The goal of this project was to identify new photocathode materials for electron sources using ML and Big Data techniques.

We performed **multi-objective screening** to materials that are:

- i) Air-stable
- ii) Visible light active
- iii) Low emittance

Air stability: Look for **oxide binaries**

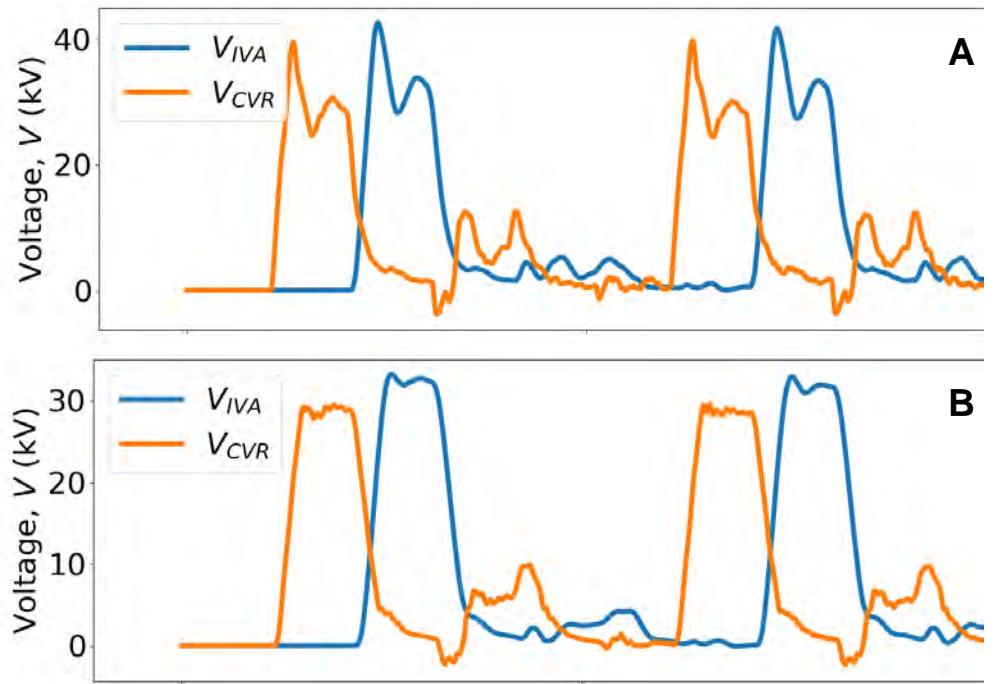
Best candidate materials:
 Na_2O , K_2O , Rb_2O



This technique can be applied to other applications of interest, such as searching for new scintillator materials for detectors

ML Projects on Scorpius

- Exploring use of ML to speed optimizations on Scorpius
 - Solid-state pulsed power modulation for pulse shaping
- Collaboration with UNLV on interfacing ML model with controls
 - Important for field application of modulation

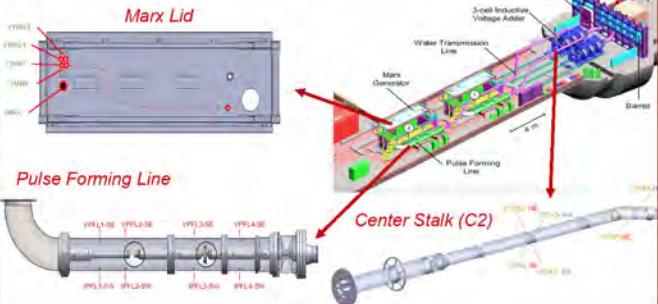


Demonstration of basic effects of an unmodulated pulse (A) and a staggered pulse (B) using CASTLE.

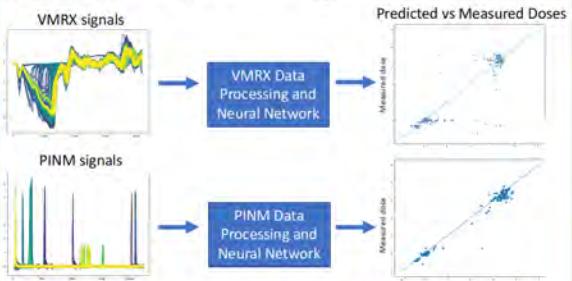
Health Assessment and Performance Monitoring of Large Machine Diagnostics

SDRD by Jesse Adams

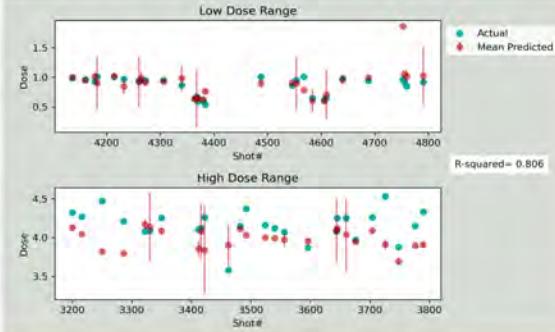
Diagnostic sensors on each Cygnus axis gather information on each experiment that can be potentially used to characterize the machine. Their locations are indicated in this figure:



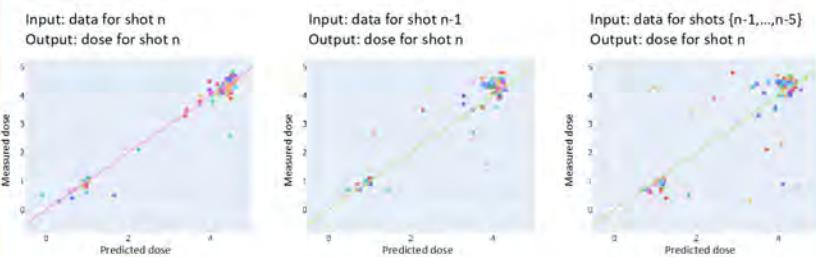
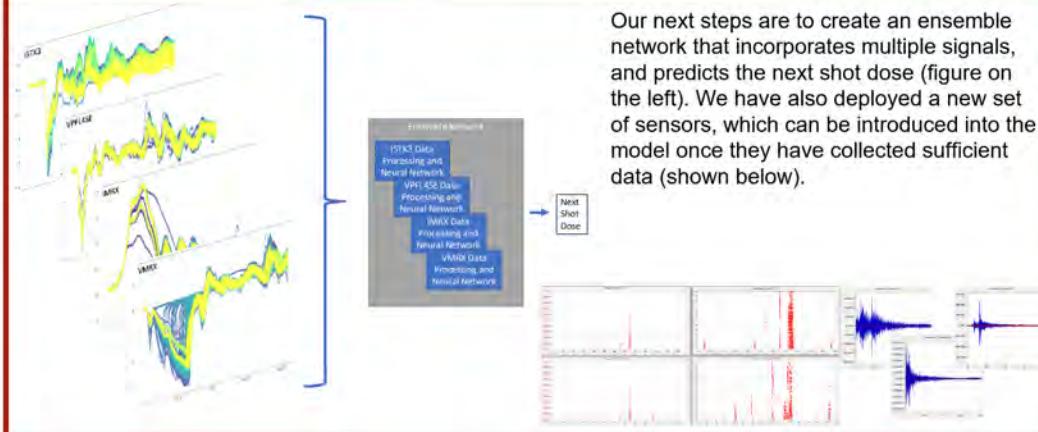
The raw trace data are processed, and used as input for a neural network. The experiment dose is the output. On the left, are two different signal inputs, and the right shows the relationship between the dose predictions and the truth (the nearer the diagonal line, the better).



Monte Carlo dropout was used to produce an ensemble of deep neural networks in order to provide uncertainty quantification in the output



The ultimate goal is to predict machine failure. Networks were trained on previous shot inputs, in order to predict the next shot dose (again, nearer the diagonal line, the better the prediction).



Our next steps are to create an ensemble network that incorporates multiple signals, and predicts the next shot dose (figure on the left). We have also deployed a new set of sensors, which can be introduced into the model once they have collected sufficient data (shown below).

Summary - Broad Set of Areas for ML to Impact Accelerator Operations

automated control + optimization

