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Machine Learning (ML) Timeline

1812 — Bayes Theorem
1913 — Markov Chains
1943 — Artificial Neuron

1950 — The Turing Test
1999 — The GPU is invented

1952 — Computer plays checkers
1957 — The Perceptron (Neural Networks)

1967 — The Nearest Neighbor Algorithm
1979 — The Stanford Cart (first self driving ‘car’)

1989 — Reinforced Learning
1992 — Computer plays backgammon

1997 — IBM Deep Blue beats Kasparov

2006 — The Netflix Prize N ETFLIX

2009 — ImageNet is created
2012 — Recognizing cats on YouTube

2021 — AlphaFold-2 protein structure prediction

2023 — ChatGPT



ML for Accelerators — Who Cares?

Slide courtesy of Auralee Edelen



n a Perfect World...

)

» Use a fast, accurate model ...

» Experts find some knobs that give us the beam we want and apply those to
the machine

» get info about unobserved parts of machine (online model / virtual
diagnostic)

» do offline planning and control algorithm prototyping

Slide courtesy of Auralee Edelen
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In Reality, Things are Much More
Difficult...
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Digital Twins
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Virtual Diagnostics
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Finding Sources of Error between Simulations
and Measurement (Uncertainty Quantification)

Many non-idealities not included in physics simulations:
static error sources (e.g. magnetic field nonlinearities, physical offsets) 141 G NN
time-varying changes (e.g. temperature-induced phase calibrations) ®  OxIMPACT-T
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Want to identify these to get better understanding of machine = fast-
executing ML model allows fast/automatic exploration of possible error
sources simultaneously
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Calibration offset in solenoid strength found automatically with neural network model (trained in simulation,
then calibrated to machine)
Example above is simulation-to-machine, but can adapt model over time as well
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Continuous Electron Beam Accelerator
Facility

» The Continuous Electron Beam Accelerator Facility (CEBAF) is a

continuous wave (CW) recirculating linac utilizing 418 superconducting
radio frequency (SRF) cavities to accelerate electrons up to 12 GeV

through five passes

 |tis a nuclear physics user-facility capable of servicing four
experimental halls simultaneously

 The heart of the machine is the SRF cavities

Slide courtesy of Chris Tennant



Predicting Failures
Fault Classification: Defining the Problem

They record high-fidelity data Question #1

from 12 cryomodules Which of the 8 cauvities faulted Question #2
first? What kind of trip was it?

=)

Train an ML algorithm to correctly classify the cavity and type of RF fault given
waveform data. The results can be used to identify a maintenance action to take,
for example

Slide courtesy of Chris Tennant



Full Integration of AI/ML Optimization, Data-Driven
Modeling, and Physics Simulations is the Goal for
Accelerator ML

Slide courtesy of Auralee Edelen
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“Materials Discovery —
Photocathodes for Accelerators

The goal of this project was to identify new photocathode materials
for electron sources using ML and Big Data techniques.

We performed multi-objective
screening to materials that are:
1) Air-stable

1) Visible light active

lil) Low emittance

Alir stability: Look for oxide
binaries

Best candidate materials:
Na,O, K,O, Rb,0

This technique can be applied to other applications of interest,
such as searching for new scintillator materials for detectors

Antoniuk et al., Advanced Materials (2021)
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Presenter Notes
Presentation Notes
On top of finding the single brightest photocathode material, we wanted to perform an additional screening for extending the lifetime of photocathodes. One of the biggest drawbacks is that current cesium antimonide photocathodes require ultrahigh vacuum environments to prevent reactions with atmospheric oxygen and water.  Even still, their lifetime is extremely short.  To tackle this problem, we wonder if there are some low intrinsic photocathodes in our database that are also air stable and visible light active, so that they can act as an air-stable replacement to currently used alkali antimonide photocathodes.



ML Projects on Scorpius

= EXxploring use of ML to
speed optimizations on A
Scorpius
B Solid-state pulsed power
modulation for pulse
shaping
= Collaboration with
UNLYV on interfacing
ML model with controls

B Important for field

appllcatl_on of Demonstration of basic effects of an
modulation unmodulated pulse (A) and a staggered pulse
(B) using CASTLE.
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Health Assessment and Performance
Monitoring of Large Machine Diagnostics

SDRD by Jesse Adams
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Summary - Broad Set of Areas for ML
to Impact Accelerator Operations

Your accelerator goes here...
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