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Overview of the project: 

 

The overall goal of the projects is to develop a framework to incorporate structure motifs and 

crystal/orbital symmetries into the data-driven materials discovery infrastructure. The PI proposed 

to develop structure-motif- and symmetry-based graph convolutional networks for effective 

learning and efficient predictions of electronic structures and related properties. Fundamental 

understanding of the roles of structure motif and symmetry will establish new hypothesis and 

design rules, which will be combined with high-throughput computations based on density 

functional theory to discover novel light absorbers, transparent conductors, as well as 2D light 

emitting materials and heterojunctions for optoelectronics.  

 

Scientific achievement: 

 

Along the proposed research directions, we have made the following scientific achievements: (1) 

the incorporation of structure motif information in graph-based machine learning architecture; (2) 

incorporation of symmetry-based constraints in machine learning by contrastive representation 

learning; (3) applications of graph neural network to other important material problems such as 

material Hamiltonian learning; (4) discovery and design of function materials and heterojunctions 

for energy applications; (5) other collaborative work in the field of magnetic materials for energy 

applications. Eight publications supported by the grant have been published in the award period (3 

years), including first-author papers published in Science Advances and Physical Review 

Materials, a first-author paper that is under review by npj Computational Materials, and 

collaborative publications with experimental groups in high-profiles journals (such as PNAS and 

ACS Nano). Following are the detailed scientific achievements of published work. 

 

1. Incorporation of structure motif in graph-based machine learning 

 

Incorporation of physical principles in a machine learning architecture is a fundamental step 

toward the continued development of artificial intelligence for inorganic materials. In the work we 

published in 2021 in Science Advances [Sci. Adv. 7, eabf1754 (2021)], as inspired by the Pauling's 

rule, we proposed that structure motifs in inorganic crystals can serve as a central input to a 
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machine learning framework. We demonstrated that the presence of structure motifs and their 

connections in a large set of crystalline compounds can be converted into unique vector 

representations using an unsupervised learning algorithm. We developed an atom-motif dual graph 

network (AMDNet) which is more accurate than atom-based graph neural network models in 

predicting the electronic structures of metal oxides such as band gaps. The work illustrates the 

route toward fundamental design of graph neural network learning architecture for complex 

materials by incorporating beyond-atom physical principles such as structure motifs. Based on this 

work, we are in the progress of constructing two different graph structures (bipartite graphs and 

hypergraphs) that incorporate motif information in materials networks and general graph-based 

machine learning for inorganic materials.  

 

2. Incorporation of symmetry-based constraints in electron density learning 

 

Another achievement we’ve made is the application of contrastive learning for the incorporation 

of symmetry-based constraints in machine learning, especially for density functional design. In a 

data-driven paradigm, machine learning is the central component for developing accurate and 

universal exchange-correlation (XC) functionals in density functional theory (DFT). In a work that 

is under review in npj Computational Materials [arXiv:2205.15071 (2022), npj Comput. Mater. 

under review (2023), DOI: 10.48550/arXiv.2205.15071], we demonstrate that contrastive learning 

is a computationally efficient and flexible method to incorporate a symmetry-based physical 

constraint in ML-based density functional design. We propose a schematic approach to incorporate 

the uniform density scaling property of electron density for exchange energies by adopting 

contrastive representation learning during the pretraining task. The results demonstrate that 

incorporating exact constraints through contrastive learning can enhance the understanding of 

density-energy mapping using neural network models. This work represents a viable pathway 

toward the machine learning design of a universal density functional via representation learning. 

Also, the contrastive learning framework can be applied to a large set of material science problems 

that are related to symmetry invariance. 

 

3. Applications of graph neural network to other important material problems 
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Representing the interactions among atomic orbitals in any material, a material Hamiltonian 

provides all the essential elements that control the structure-property correlations in inorganic 

compounds. Effective learning of material Hamiltonian by developing machine learning 

methodologies therefore offers a transformative approach to accelerate the discovery and design 

of energy materials. With this motivation, in a collaborative work with Haibin Ling from Stony 

Brook [Neural. Comput. Applic. 34, 4625 (2022)], we present and compare several different graph 

convolution networks based on Hamiltonian matrix that are able to predict the band gap for 

inorganic materials. The models are developed to incorporate two different features: the 

information of each orbital itself and the interaction between each other. The results show that our 

model can achieve a promising prediction accuracy. It is one of the first works in the field that 

directly constructs graph neural networks for material property predictions with material 

Hamiltonian matrix as input. 

 

In 2021, we published a review article in Computational Materials Science [Comput. Mater. Sci. 

195, 110332 (2021)]. The article focuses on the recent development of graph-based deep learning 

frameworks and their applications for both molecules and solid-state material systems. The history 

of the development of graph-based representations for molecules and crystals was introduced. 

Current challenges and future perspectives on this emerging field at the crossroad of material 

science, physics, chemistry, and computer science was given, with an emphasize on how multiple 

tiers of material information can be organized and combined in a graph neural network setup. 

  

4. Discovery of functional materials and heterojunctions for energy applications based on 

structure motif and symmetry 

 

Discovery and design of two-dimensional (2D) materials with suitable band gaps and high carrier 

mobility are of vital importance for the photonics, optoelectronics, and high-speed electronics. In 

a work published in 2021 [Phys. Rev. Mater. 5, 014005 (2021)], based on high-throughput 

computations using density functional theory, we introduce a family of monolayer isostructural 

semiconducting tellurides MNTe4, with M = {Ti, Zr, Hf} and N = {Si, Ge}. These compounds 

have been identified to possess direct band gaps from 1.0 to 1.31 eV, which are well suited for 

photonics and optoelectronics applications. Ultrahigh carrier mobility is predicted for this family 
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of 2D compounds, which host great promise for potential applications in high-speed electronic and 

optoelectronic devices. Detailed analysis of electronic structures reveals the origins of the 

promising properties of this unique class of 2D telluride materials.  

 

In a collaborative work with Deep Jariwala’s group at University of Pennsylvania [ACS Nano in 

press (2023), DOI:10.1021/acsnano.2c12546], using first-principle calculations, time-resolved 

and circularly polarized luminescence measurements, we studied in detail the excitonic effects in 

2D heterostructures based on transition metal dichalcogenides (TMDs) and 2D perovskites and 

demonstrated that Rashba spin-splitting induced by inversion symmetry breaking in 2D 

perovskites and strongly coupled spin-valley physics in monolayer TMDs render spin-valley-

dependent optical selection rules to the interlayer excitons. The work expands the scope for 

studying spin-valley physics in heterostructures of disparate classes of 2D semiconductors.  

 

5. Other collaborative works in the field of magnetic materials for energy applications 

 

2D magnetic layered materials have revolutionized size dependent magnetism to manipulate spin-

based devices for energy applications. However, it has been challenging to artificially create 2D 

magnetic materials from bulk crystal structures with a variety of material groups. In a collaborative 

work with Shenqiang Ren’s group at SUNY Buffalo [ACS Nano 16, 13232 (2022], we present the 

dimensionality manipulation via cation exchange of a 3D Prussian blue analogue toward a 2D 

magnetic sheet with the magnetic ordering temperature rising from 12 to 330 K. We predicted the 

pressure dependent magnetic tunability of such 2D networks using first-principles calculations and 

demonstrated it using the phase transitions of the hydrogel. This previously unobserved 

phenomenon of dimensional manipulation of a bulk crystal structure provides a rational strategy 

to expand the diversity and chemical compositions of 2D molecular magnetic material libraries. 

 

Magneto-ionics promise ultralow-field sensor technologies and the extent of real-time ion 

insertion/extraction of an electrode is the key state-of-charge (SOC) feature in batteries. In another 

collaborative work with Shenqiang Ren’s group [PNAS 119, e2122866119 (2022)], we report 

lithiating magneto-ionic material to enable the precise SOC sensor monitoring in Li-ion battery 

using a molecular magnetic electrode. The magneto-ionic-based sensor shows a more than 2,000% 



 

 6 

increase in accuracy and a more than 5,000% reduction in response time. Simulations provided a 

mechanistic understanding of its magneto-ionic control, on which the compound undergoes a large 

lattice expansion after Li insertion due to the change in charge distribution. The findings provided 

the pathway toward the real-time accurate SOC estimation using molecular magnetic electrode. 
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Personnel supported by this grant: 

Three graduate students (Huta Banjade, Jeng-Yuan Tsai, and Weiyi Gong) and one postdoc 

(Debajit Chakraborty) were fully or partially supported by this grant.  

PhDs were granted to the two students supported by this grant: Huta Banjade (full support from 

2019 to 2020) and Jeng-Yuan Tsai (partial support in 2022).  

Another student supported by this grant, Weiyi Gong (full support from 2020 to 2022), will receive 

his PhD from Northeastern University in the coming year.  

Owing to the work supported by this grant, the PI was selected as finalist for “2020 Rising Stars 

in Computational Materials Science Prize” and a review article was published in the special issue 

of Computational Materials Science in 2021. 


