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Highlights: 

• We used EMIS-AS model to explore various market structures and clean energy targets

• Energy-only markets can achieve same clean energy goals as capacity markets

• ORDC scarcity pricing exhibits substitutional relationship with capacity markets

• Even one well-designed market mechanism can achieve desired clean energy targets

• Capacity/reserve eligibility rules for one technology or product can impact others

Abstract 
Competitive wholesale electricity markets can help facilitate energy system decarbonization by 
incentivizing investments in clean energy technologies that meet evolving system needs. We explore 
market structure impacts on generator operations and deployment by risk-averse, heterogeneous 
investor firms using the Electricity Markets and Investment Suite – Agent-based Simulation (EMIS-AS) 
model. We apply clean energy targets (CETs) of 45%–100% by 2035 considering energy, ancillary 
services, capacity, and clean energy credit (CEC) products and pricing and eligibility rules. Results 
highlight a complexity conundrum, whereby finding the “right” market design to achieve 
decarbonization goals and avoid unintended consequences can be a highly-nuanced, non-incremental 
challenge. Carefully designed energy-only markets can achieve the same CETs as capacity market 
structures but with different revenue and profitability outcomes. Operating reserve demand curve-
based scarcity pricing can substitute capacity markets for similar deployment outcomes. Carbon pricing 
alone is most effective at achieving decarbonization levels at low CETs, and CEC markets and carbon 
pricing are substitutionary at high CETs. Restricting technology participation in capacity and operating 
reserve markets can impact deployment and operations, even for nonrestricted technologies. Adding an 
inertia product with fast frequency response yields insufficient provision at high CETs, but work is 
needed to understand frequency requirements and capabilities.  
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1. Introduction 
The growing momentum behind power system decarbonization efforts—prompted by both policy goals 

and declining costs of clean energy technologies—has led to numerous studies on the technical 

challenges of such a transformation (e.g., de Sisternes et al., 2016; Denholm et al., 2021; Jenkins et al., 

2018). In areas with competitive wholesale electricity markets, the market design structures and rules 

present additional challenges for ensuring efficient investment and operations of resources that can 

supply the necessary set of grid services across numerous timescales to support system reliability as the 

system evolves. 

In the United States, wholesale electricity markets managed by independent system operators (ISOs) or 

regional transmission operators (RTOs) serve roughly two-thirds of the load (EPRI, 2016). The market 

design varies by each ISO/RTO. While which designs and products will be most effective in supporting 

the transition to a decarbonized power system is unclear, the general consensus is market design 

modifications are needed in every existing ISO/RTO area, both for the existing system and the evolution 

to future decarbonized fleets (e.g., Ela et al., 2021). 

Work exploring market products and rules has included a focus on capacity-based products and capacity 

remuneration mechanisms, operating reserves (including scarcity pricing and eligibility rules), clean 

energy products like carbon pricing, and energy price formation rules (Frew et al., 2016, 2021a; Hytowitz 

et al., 2020; Levin et al., 2019; Levin and Botterud, 2015). All these studies have focused on static system 

buildouts, where the impact of the market design sensitivities was explored assuming a fixed set of input 

generators. Only a few studies have explored the role of capacity payments on investment decisions for 

a single future year (e.g., Kwon et al., 2020, 2018). 

The existing analyses have primarily used production cost models (PCMs) that solve for the least-cost 

unit commitment and dispatch of a predetermined system; these PCMs represent a generic wholesale 

market clearing process. Other types of models can be used to capture the interactions between 

wholesale market outcomes (prices and dispatch) and the entry and exit decisions of individual 

generators. These models generally fall into three categories: (1) traditional central-planner style 

capacity expansion models (CEMs) or generation expansion planning (GEP) models that account for a 

limited representation of the market clearing process, (2) complementarity models that co-optimize 

these components through multilevel structures to yield an equilibrium outcome, and (3) agent-based 

models (ABMs) that represent the market operations and investment/retirement decisions separately.  

CEMs and GEPs have visibility into the full set of decision variables across a predetermined optimization 

horizon but fail to account for imperfect information and investor-firm-level differences in financing and 

risk profiles, which can lead to overly optimistic outcomes that implicitly assume cost recovery is 

guaranteed. Complementarity models are considered ideal for capturing the investment-operations 

interaction, but their numerous application challenges include no guarantee of existence or uniqueness 

of equilibria, difficulties in scaling beyond very small systems, and restricted operational representation 

especially as related to convexity. ABMs are far nimbler in their ability to characterize the various 

aspects of the system with greater detail (including nonconvexity in the operations and investor firm 

heterogeneity) but have limited ability to achieve a truly co-optimized or equilibrium solution. 

We contribute to the literature by (1) explicitly modeling the feedback effect of market designs on the 

deployment of different technologies by firm type over multiple years while accounting for risk, 
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uncertainty, and imperfect information using the Electricity Markets and Investment Suite agent-based 

simulation (EMIS-AS) model, (2) exploring a more extensive set of market design and product options, 

and (3) applying these quantitative efforts over a more aggressive set of decarbonization policies of 

45%–100% clean energy by 2035. Our assessment provides value to market planners, operators, and 

other stakeholders to understand how various market products and associated pricing and eligibility 

rules can enable the evolution of the generator fleet to achieve a range of decarbonization goals. 

Section 2 briefly describes the EMIS-AS model, the test system used for the analysis, the additional 

model enhancements made to support the wide range of market design sensitivities explored, and the 

scenario design to explore those dimensions. Section 3 presents and discusses six key findings from our 

analysis, including market design considerations associated with each finding. Section 4 provides a 

summary and concluding remarks on policy implications and future work.  

2. Methodology 
We use EMIS-AS in a vetted test system to systematically explore a diverse set of market structures to 
understand the interactions between those design options on both operations and deployment under 
clean energy targets. Here we briefly summarize our methods, model features, and scenarios. See the 
Supplemental Information (SI) for details. 
 

2.1 EMIS-AS model for investment and market clearing outcomes 
This analysis uses the EMIS-AS tool (Figure 1), which is an ABM for exploring investment decisions made 
by heterogenous, profit-seeking investor agents with different financial characteristics, technology 
preferences, and risk profiles under uncertainty (Anwar et al., 2022, 2020). ABMs like EMIS-AS are 
particularly well suited to capture the complex, nonconvex, imperfect interactions between a set of 
investor firms and wholesale electricity markets over many years or decades. EMIS-AS is superior to 
other ABMs that focus on generation expansion planning (e.g., Barazza and Strachan, 2020; Botterud et 
al., 2007; Chappin et al., 2017; Chen et al., 2018; Kell et al., 2019; Kraan et al., 2018; Reeg et al., 2017; 
Tao et al., 2021) for its ability to capture investor heterogeneity, update investors’ forecast parameters 
using Kalman filters, predict future market prices through an endogenous generation expansion model, 
and accommodate a customizable representation of wholesale electricity market products.  
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Figure 1. High-level summary of EMIS-AS framework adapted from our previous work (Anwar et al., 2022, 2020). 

To enable exploration across various market products and technology characterizations for this analysis, 
we modified EMIS-AS by: 

• increasing to a set of six operating reserve products to cover a wider range of response times 
(Regulation Up and Down, Flexibility Up and Down, Synchronous, and Primary reserves);  

• adding the option for operating reserve demand curves (ORDC) as an alternate scarcity pricing 
mechanism to the default static scarcity value for Synchronous and Primary reserves; 

• adding a stylized inertia product to capture the need for maintaining stable frequency;  

• adding a new renewable energy combustion turbine (RE-CT) generator technology, which serves 
as a generic flexible combustion turbine (CT) generator that is fueled by a range of potential 
renewable fuels, but with no modeled utilization of variable renewable energy (VRE) curtailed 
energy for these fuels;  

• improving the capacity credit calculation methodology for wind, solar, and storage using an 
hourly approach;  

• adding exogenously-defined carbon pricing; and  

• implementing the restriction of some technologies from participating in the forward capacity 
market and operating reserve markets.  

See the SI for details about each of the above items, the EMIS model structure, and the full set of market 
products. 
 

2.2 Modified RTS-GMLC test system 
We apply EMIS-AS to a modified version of a realistic and well-vetted test system with zero-marginal 
cost wind, utility-scale solar photovoltaic (hereafter referred to as solar), and battery storage across 
three zones with a total initial derated (unforced) capacity of about 8.4 GW, as shown by zone in Figure 
2. Each zone has a separate load profile, load growth, and generator fleet, with transmission flows 
enforced only across zonal boundaries; fuel prices are assumed consistent across zones. The system was 
modified from the IEEE Reliability Test System (RTS-GMLC) (Barrows et al., 2019), as documented in 
(Anwar et al., 2022, 2020). We include a stylized set of four investor firms: New Entrant, Independent 
Power Producer (IPP), Commercial and Industrial (C&I) IPP, and Large Utility. These firms differ in their 
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size, expectations for the future (in this case applied to load growth), how confident they are in those 
expectations, their technology preferences, their perceived riskiness (as viewed by a lender and 
reflected in their discount rates) which impacts their financing parameters, and their risk profiles. 
Investment technology options include wind, solar, gas CC, gas CT, RE-CT, and battery storage. See the SI 
for details on all model inputs, including the test system, investor firms, cost assumptions, operating 
reserve requirements, and time series data. 
 

 

Figure 2. Initial total system-wide installed capacity in 2021 for the modified RTS-GMLC test system used in this analysis. 

 

2.3 Scenarios to explore market design structures across various clean energy targets 
We analyze a suite of stylized scenarios to explore different combinations of market products (e.g., the 
so-called “energy-only” structure versus a structure that includes a forward capacity market), as well as 
scarcity pricing and eligibility or accreditation rules for operating reserve and capacity markets. These 
market products and rules capture the generalized nature of many existing or proposed options in U.S. 
ISOs/RTOs (Sun et al., 2021) through a simplified representation. Because our scenarios apply a 
bookend-style structure to provide high-level insights into the qualitative trends of these market design 
considerations, results are not specific to any actual system, and work is needed to explore a more 
diverse set of system configurations. 
 
We implement a “pyramid” structure to organize our scenarios across different groups of market design 
combinations, as shown in the colored layers in Figure 3 and Table 1. Our Base scenario assumes energy, 
capacity, clean energy credit (CEC), and the full set of six operating reserve oroducts, without adding the 
ORDC scarcity pricing mechanism or a carbon tax. Additional sensitivities explore the application of 
ORDCs to Primary and Synchronous operating reserves, a carbon tax, higher/lower ORDC scarcity pricing 
levels, and various sensitivities to evaluate the impact of and to inverter-based resources (IBRs), which 
include wind, solar, and batteries in this study. The latter includes higher/lower capacity credit 
assignments, eligibility in capacity markets (as a proxy for price-floor offer rules, like the minimum offer 
price rule (MOPR), that can effectively preclude these resources from clearing in the capacity market), 
operating reserve eligibility rules, and the addition of an inertia product. We also include a comparison 
of the Base scenario (which assumes heterogenous financing, risk, and expectation parameters across 
the investor firms) with a scenario assuming homogenous firms in the SI.  
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We orient this analysis to decarbonization policy goals by applying our suite of market design 
sensitivities to three clean energy targets (CETs) by 2035: 45% (low), 75% (mid), and 100% (high). In each 
case, we assume a 30% CET in our starting year of 2021 and a linear increase in the annual CET to 
achieve the desired 2035 target (i.e., 1%/year to reach 45%, 3%/year to reach 75%, and 4.67%/year to 
reach 100% by 2035). The 30% CET starting point was arbitrarily chosen to be slightly larger than the 
clean energy level of the starting system. We assume clean energy includes generation from wind, solar, 
hydropower, nuclear, and RE-CTs. The resulting suite of scenarios includes 17 cases at each CET level, or 
51 total scenarios. 
 

 

Figure 3. Scenario "pyramid" with the 17 market design scenarios explored for each CET, resulting in 51 total scenarios. 
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Table 1. Scenario names and parameters from Figure 3. 

Category Scenario Name Parameters (relative to Base) 
B

as
e

 

Base 

Co-optimize energy and operating reserves, variable renewable energy (VRE) and 
storage provide operating reserves, static and base operating reserve scarcity pricing, 
CEC product, forward capacity market with default VRE and storage capacity credit and 
full eligibility, no carbon pricing, investor firm-level heterogeneity and uncertainty, 
uncertainty only from load growth 

Fu
n

d
. M

kt
. 

St
ru

ct
u

re
 No_Cap_ORDC No capacity market, add ORDC scarcity pricing for Synchronous and Primary 

No_Cap No capacity market 

Base_Hom Homogeneous investor firms 

ORDC Add ORDC scarcity pricing for Synchronous and Primary 

P
ri

ci
n

g 
Se

n
si

ti
vi

ti
es

 No_Cap_ORDC_Low 
No capacity market, add ORDC scarcity pricing for Synchronous and Primary, apply low 
price penalty for all operating reserves (ORDC for Synchronous and Primary, static for 
others) 

No_Cap_ORDC_High 
No capacity market, add ORDC scarcity pricing for Synchronous and Primary, apply high 
price penalty for all operating reserves (ORDC for Synchronous and Primary, static for 
others) 

ORDC_Carbon Add ORDC scarcity pricing for Synchronous and Primary, add carbon pricing 

ORDC_Low 
Add ORDC scarcity pricing for Synchronous and Primary, apply low price penalty for all 
operating reserves (ORDC for Synchronous and Primary, static for others) 

ORDC_High 
Add ORDC scarcity pricing for Synchronous and Primary, apply high price penalty for all 
operating reserves (ORDC for Synchronous and Primary, static for others) 

IB
R

 S
e

n
si

ti
vi

ti
es

 

No_VRE_Reserves 
Add ORDC scarcity pricing for Synchronous and Primary, add carbon pricing, wind and 
solar not eligible to provide operating reserves 

No_VRE_Bat_Reserves 
Add ORDC scarcity pricing for Synchronous and Primary, add carbon pricing, wind, solar, 
and batteries not eligible to provide operating reserves 

Inertia 
Add ORDC scarcity pricing for Synchronous and Primary, add carbon pricing, add inertia 
product 

No_VRE_Cap_Mkt 
Add ORDC scarcity pricing for Synchronous and Primary, add carbon pricing, wind and 
solar not eligible to clear capacity market 

No_VRE_Bat_Cap_Mkt 
Add ORDC scarcity pricing for Synchronous and Primary, add carbon pricing, wind, solar, 
and storage not eligible to clear capacity market 

Half_CCredit 
Add ORDC scarcity pricing for Synchronous and Primary, add carbon pricing, apply 50% 
of calculated credit for wind, solar, and storage in capacity market eligibility 

Double_CCredit 
Add ORDC scarcity pricing for Synchronous and Primary, add carbon pricing, apply 200% 
of calculated credit for wind, solar, and storage in capacity market eligibility 

 

3. Results 
We analyzed the EMIS-AS results for each scenario for investment and retirement decisions, operational 

outcomes, total costs, market revenues, and firm-level profitability trends. Here we highlight key 

impacts and differences from the wide range of market structures explored in this analysis. We first 

provide a high-level contextualization of our findings, followed by an overview of the Base scenario 

results as a point of reference. We then discuss in detail a set of six key findings using relevant subsets 

of scenarios to illustrate each point. The full set of results across all scenarios are presented in the SI. 

The overarching theme of our results is a complexity conundrum, whereby finding the “right” market 

design to achieve decarbonization goals can be a highly-nuanced, non-incremental challenge. Layering 

numerous market products and/or rules can sometimes significantly increase complexity without 

providing additional benefit to the grid physics, economics, or policy goals. We observe possible 
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substitutionary roles between certain market products, suggesting that only one well-designed option is 

needed. Furthermore, because of the interconnected nature of markets with operations and investment 

outcomes, certain combinations of products can yield non-intuitive outcomes, indicating the need to 

thoroughly evaluate any potential new market design for unintended consequences.  

 

Figure 4. Total new capacity added during the simulation for the Base scenario for the low (45%), mid (75%), and high (100%) 
CET levels. 

As a starting point, in Figure 4 we show the total new capacity added in the system by the final solve 

year (i.e., 2035) for each CET level (45%, 75%, and 100%) in the Base scenario. These capacities are the 

new investments during the simulation and do not include the starting point capacities. In EMIS-AS, each 

firm’s decision to invest in new projects depends on the firm’s financial parameters and each project’s 

own economics, and it is unaffected by the profitability of the firm’s existing total portfolio. Figure 4 

shows progressively more deployment of wind, solar, and battery resources as the CET level increases, 

with a noticeable reduction in gas CC generators and very little change in peaking resources (i.e., gas CT 

and RE-CT). These trends are also observed in the generation outcomes (see Figure 5), with increasing 

VRE curtailment at higher CET levels. Also, the total capacity added to the system noticeably increases 

with higher CETs because of the need for more VRE and storage to meet higher CET targets and the 

diminishing capacity contribution (i.e., capacity credit) of those resources. 

We note an important caveat for our generation results, such as those shown in Figure 5: because the 

CETs in EMIS-AS are enforced only as capacity procurement standards, some of the generation 

outcomes do not meet the yearly CET values. For example, in the 100% CET scenario in Figure 5, there is 

still noticeable gas-fired generation in 2035 when the system is slated to achieve 100% clean-energy-

based generation. In this case, gas-fired units are committed—and then run mostly at their minimum 

generation levels—to meet operating reserve requirements and avoid otherwise incurring scarcity 
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pricing as part of the least-cost market operations solution. We discuss this caveat, including future 

work to remedy it and market design implications, in the SI. 

 

Figure 5. Final solve year (i.e., 2035) total annual generation and curtailment for the Base scenario at 45%, 75%, and 100% CET 
levels. The net generation output corresponds to the total system demand without battery charging. While the total annual 
generation differs between the CET levels due to battery charging and losses, the net generation is the same for each CET level. 

A comparison of the capacity outcomes for different CET cases at the same clean energy percentage 

level highlights the importance of the system starting point and policy timeline on generator portfolio 

evolution and ending point. For example, Figure 6 compares the total installed capacities for the Base 

scenario Mid and High CET cases at the 75% clean energy level, which occurs in 2035 in the Mid CET case 

and in 2030 for the High CET case. We see slightly higher installed solar capacity, yet lower battery 

capacity and higher coal capacity, in the High CET case. This is primarily because some existing coal units 

have not reached their end of lifetime by 2030 and remain economically viable, which impacts other 

investment decisions.  

 

Figure 6. Comparison of total installed capacities for the Mid and High CET cases at 75% clean energy level (which corresponds 
to years 2035 and 2030 in the Mid CET and High CET cases respectively). 

Figure 7 shows the profitability distribution across investor types in the Base scenario for different CET 

levels. Refer to Section 2.2 and the SI for details on the investor firm financing, risk, and technology 
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investment eligibility assumptions. The Large Utility sees the highest overall investment and associated 

profitability, as it has the most favorable financing parameters. Similarly, the New Entrant typically has 

the lowest profitability because of higher cost of capital and limited resources. Also, the profitability of 

firms that can invest in VRE technologies (i.e., the New Entrant, C&I IPP and the Large Utility) increases 

with higher CETs, primarily because of significantly higher CEC market revenues. Conversely, the IPP 

profitability declines with higher CETs, as it can only invest in thermal generation technologies. 

 

Figure 7. Profitability for new investments across the 15-year simulation horizon in the Base scenario for the 45%, 75%, and 
100% CET levels. 

As we move from these Base cases down the scenario pyramid, we observe six high-level findings, which 

we describe in the following subsections. Overall, we find a mixture of distinct trends from individual 

market design options and highly nuanced interactions of multiple market structures. Though we 

present high-level takeaways, we caution that these findings might not extend to all power systems 

because of the differences in underlying resource availability, existing market design, and regional policy 

factors, among other differentiators. Future work could continue to explore the impact of various 

market structures on investment and reliability across a wider set of systems and futures.  

 

3.1 Key Finding 1: A carefully designed energy-only market structure can achieve the 

same system-wide clean energy goals as a capacity market but with different investor-

level profitability outcomes and noticeably reduced peaking generation capacity. 
We find that a well-designed energy-only market (No_Cap) can achieve the same clean energy goals as 

an energy-plus-capacity market (Base) without overbuilding nameplate capacity, as shown in Figure 8 

and Figure 9. An energy-only market sees similar amounts of total clean energy generation at higher CET 

levels but with different ratios of wind and solar. The energy-only market also sees a noticeable shift 

from gas CT to less carbon-intensive gas CC capacity and generation, which is driven by the strong 

contribution of capacity payments to peaking plant revenues. This aligns with previous work that 

identified an implicit bias of capacity markets toward high operating cost resources, such as peaking 

generators (Mays et al., 2019).  

We note that these results do not necessarily guarantee sufficient firm capacity for extreme events. 

Future work could explore the impact of extreme weather or other stressful conditions, such as those 
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resulting in common-mode generator or transmission outages or fuel shortages, to assess the 

robustness of market strutures in achieving both clean energy and reliability goals. 

Additionally, battery capacity is also reduced in the energy-only scenario for Low and Mid CET scenarios, 

which then suppresses the deployment of solar capacity while increasing wind capacity to meet the CET. 

This tight coupling of solar and battery, which we observe throughout this study and has been 

documented in other work (e.g., Cole et al., 2018; Frew et al., 2021b, 2019; Haegel et al., 2017), is 

because solar’s consistent diurnal profiles make it more amenable for intraday storage charging and 

discharging. Thus, when battery capacity increases, investing in solar—rather than wind—is more 

economical. More wind deployment (with reduction of battery capacity) leads to noticeably greater 

renewable energy curtailment absent a capacity market. 

 

Figure 8. Difference in new capacity added during the simulation compared to the Base scenario (for the respective CET levels 
shown in Figure 4) for the No_Cap scenario (i.e., energy-only market) for each CET level.  

 

 

Figure 9. Difference in total 2035 system-wide annual generation and curtailment compared to the Base scenario (for the 
respective CET levels shown in Figure 5) for the No_Cap (i.e., energy-only market) scenario for each CET level.  

 

Total system costs summed across the 15-year simulation horizon are presented in Figure 10, where we 

see that greater investment in the capacity market (Base) scenario leads to higher investment and 

operation and maintenance costs, while fuel and other operational costs remain comparable. Larger CET 
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levels also yield higher total start-up costs, yielding about a 60% increase between the Low and High CET 

cases for the Base scenario, which is driven by the need for system flexibility, including more cycling-

induced starts and stops, introduced by the VRE resources. 

 

Figure 10. Total system-wide costs for the 15-year simulation horizon for the Base (with capacity market) and No_Cap (without 
capacity market) scenarios for each CET level. 

 

Absence of capacity markets has noticeable impacts on not only the total market revenues but also the 

distribution across market products (Figure 11). Generally, the No_Cap scenarios have lower total 

revenues because of the absence of capacity market revenues. Energy and CEC revenues are noticeably 

higher in the No_Cap case because of more frequent scarcity pricing and higher CEC market bids, 

respectively. While these higher revenues cannot entirely compensate for the loss of capacity market 

revenues, the gap between the No_Cap and Base scenario narrows with higher CET levels primarily 

because of higher CEC revenues. The average capacity market revenues (comprising about 50% of the 

total revenues) in Figure 11 are consistent with other markets modeling work (Peter Cramton et al., 

2021) but are noticeably larger than the 1%–20% historically observed in actual ISOs/RTOs (EPRI, 2016). 

This is because (1) capacity scarcity in early simulation years drives large capacity prices, (2) results 

reflect different future load and portfolio configurations with larger value for new capacity, and (3) 

lower energy and reserve revenues trigger higher capacity market bids and clearing prices. This reflects 

a broader trend seen in subsequent sections where the presence of certain pricing mechanisms shifts 

the relative prominence of capacity and energy revenues. Also, while many details are involved in retail 

rate design, the lower market revenues seen in the energy-only market (Base) scenario could result in 

lower costs passed on to electricity ratepayers, assuming each case has the same reliability level; future 

work could explore this impact.  
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Figure 11. Annual market revenues normalized by the installed capacity and averaged across the 15 simulation years for the 
Base scenario (energy plus capacity market) versus No_Cap scenario (energy-only market) for each CET level. 

 

These differences in revenue distributions translate into different profitability outcomes for investor 

firms (Figure 12). Firms that invest in thermal units (IPP and Large Utility) experience reductions in 

profitability absent a capacity market. Conversely, the New Entrant and C&I IPP experience slight 

improvements in profitability, as they can more than recover lost capacity market revenues (which 

already are limited because of low VRE capacity credits) through higher CEC and energy revenues.  

 

Figure 12. Difference in firms’ profitability for new investments (total across the 15-year simulation horizon) compared to the 
Base Scenario (for the respective CET levels shown in Figure 5) for the No_Cap scenario (energy-only market) for each CET level. 

 

Market Considerations: Carefully designed energy-only markets can achieve clean energy policies with 

lower system-wide total costs and revenues—and complexity—than similar designs that include a 

forward capacity market. However, work is needed to better understand whether and how these 

market structures could most benefit ratepayers, as well as their reliability performance across a wider 

set of timescales and conditions (e.g., resource adequacy, power flow, extreme weather) to ensure 

investment in resources to support reliable operations. Results also reveal tradeoffs in generator 
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capacity and utilization between energy-only and capacity market structures, namely with energy-only 

seeing more wind generation, less gas CT generation, and more VRE curtailment. This indicates that, 

even while energy-only and capacity market designs can both achieve similar clean energy goals, they 

must be carefully designed to maximize market efficiency and avoid unintended biases toward or 

against certain technologies. It also indicates that different investor types may need to reconsider their 

investment strategies to best position themselves for maximum profitability for the given market 

structure. 

 

3.2 Key Finding 2: Scarcity pricing mechanisms for operating reserves could strongly favor 

the deployment and profitability of flexible resources and serve a substitutionary role 

with capacity remuneration mechanisms. 
Our second key finding focuses on the impacts of ORDC scarcity pricing on generator portfolios, revenue 

distributions, and profitability outcomes. ORDCs trigger higher energy and operating reserve prices that 

incentivize for available capacity when the system fails to meet its operating reserve requirement (e.g., a 

shortage or scarcity event). This short-term pricing mechanism helps signal long-term investments that 

support reliable operations.  

Figure 13 depicts the impacts of ORDC and its assumed penalty price on the distribution of market 

revenues. Adding an ORDC scarcity pricing mechanism (instead of the default static scarcity prices for 

operating reserves – see SI) significantly reduces capacity market prices and revenues, especially with 

higher ORDC penalty prices. This is because energy and operating reserve markets are co-optimized, so 

that an increase in ORDC-induced operating reserve prices and revenues also increases energy market 

prices and revenues, as shown in Figure 13 for all ORDC scenarios relative to the Base scenario. These 

larger revenues reduce the going-forward cost for generators, thereby suppressing capacity market bids 

and associated cleared capacity market price and revenues (see SI for model details). Despite the 

smaller capacity market revenues with an ORDC, the larger energy and operating reserve revenues 

result in a net increase in revenues.  

Furthermore, we also observe a potential substitutionary relationship between ORDC and capacity 

market structures. This is based on the tradeoff between high energy and operating reserve prices and 

no/low capacity market prices. With an ORDC alone (i.e., no capacity market), energy, operating reserve, 

and CEC revenues are all larger than the case with both a capacity market and ORDC (compare 

No_Cap_ORDC to the ORDC scenario in Figure 13). However, these increased revenues are insufficient 

to completely compensate for the absence of capacity market revenues. Conversely—and perhaps most 

importantly—a capacity market alone (Base scenario) yields similar but slightly greater total revenues as 

the ORDC only case (No_Cap_ORDC scenario). Though the 75% CET case is shown here, similar 

substitutional effects were observed for other CET levels (see SI). 
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Figure 13. Annual market revenues (averaged across the 15-year simulation horizon) for the Base scenario (which has a capacity 
market but not ORDCs) versus the corresponding scenarios with ORDCs (with different penalty prices) and the No_Cap_ORDC 

scenario (which has ORDCs but not a capacity market) for the 75% CET level. 

 

These revenue distribution outcomes have noticeable impacts on the deployment of different 

technologies, as depicted in Figure 14. Relative to the Base scenario with only a capacity market, the 

scenarios with only an ORDC and with both a capacity market and ORDC see greater investments in 

flexible generation technologies, particularly gas CTs, with a notable displacement of solar that is 

countered by an increase in wind deployment to meet the CET levels. While this trend is stronger for the 

combined ORDC and capacity market scenario than the scenario with only an ORDC, it indicates that an 

ORDC pricing mechanism alone (No_Cap_ORDC scenario) is more favorable for flexible resources than a 

capacity market alone (Base scenario). Future work could explore whether the ORDC only scenario 

achieves the necessary levels of flexible generator capacity to support resource adequacy as when 

combined with capacity markets. For the Mid CET level example shown here, gas CT is most favored 

flexible resource, but at the High CET level (see SI), batteries also see greater deployment, with no 

change in RE-CT deployment.  

 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript. 
The published version of the article is available from the relevant publisher.



 

Figure 14. Difference in new capacity added during the simulation for the Base scenario (which has a capacity market but not 
ORDCs) versus the corresponding scenarios with ORDCs (with different penalty prices) and the No_Cap_ORDC scenario (which 
has ORDCs but not a capacity market) for the 75% CET level. 

 

Generation results follow a similar trend, as shown for three days from July 8–10 in the final year of the 

simulation (i.e., 2035) for the Mid CET level in Figure 15. Compared to the case with only a capacity 

market (Base scenario), the combination of a capacity market and ORDC (ORDC scenario) results in 85% 

more gas CT generation, 44% more battery generation (i.e., discharge), 5% more wind generation, 9% 

less gas CC generation, 16% less solar generation, and over 23x increase in curtailment. Over the course 

of the full year, this ORDC scenario has about 3.2x more curtailment than the Base scenario. Curtailment 

is larger with the ORDC because more resources, especially flexible generators like gas CTs, must be kept 

online to avoid scarcity pricing; this reduces the utilization of avialble VRE generation. 
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Figure 15. Example of dispatch outcomes for the Base and ORDC scenarios at Mid CET Level in the final simulation year (i.e., 
2035). 

 

The addition of ORDCs also has implications for profitability of different firms, as shown in Figure 16. 

Firms that invest in gas CT technologies (i.e., the IPP and Large Utility) see a significant improvement in 

profitability due to the addition of ORDCs and corresponding increase in penalty prices. However, the 

ORDC alone typically leads to reduced profitability for firms which only invest in thermal generation 

capacity (i.e., the IPP) but higher profitability for the firms with large capacities of variable renewables 

(i.e., the C&I IPP and Large Utility) primarily because of increased CEC and energy market revenues. 

 

Figure 16. Total investor agent-level profitability (across the 15-year simulation horizon) for the Base scenario (which has a 
capacity market but not ORDCs) versus the corresponding scenarios with ORDCs (with different penalty prices) and the 
No_Cap_ORDC scenario (which has ORDCs but not a capacity market) for the 75% CET level. 
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Market considerations: The results in this section highlight how operating reserve scarcity pricing rules 

can significantly impact both investments and the market clearing outcomes of other products. Pricing 

rules and minimum requirements of various complementary and substitutional products may require 

careful design to avoid inefficiencies, duplication of revenues, bias toward or against specific generation 

technologies, and unintended consequences, for example on renewable energy curtailment. The 

interaction of capacity markets and ORDC scarcity pricing is particularly relevant for wholesale markets. 

Our results suggest multiple market structures can yield similar overall revenues and procurement of the 

desired amount of clean energy; we do not advocate for any particular capacity remuneration 

mechanism(s), though we note a potential substitutionary interaction between ORDC scarcity pricing 

and capacity markets. Indeed, actual markets have a range of capacity remuneration designs, from 

ORDC with no capacity market (e.g., ERCOT) to capacity market without ORDC (e.g., ISONE) to both 

ORDC and capacity market (e.g., PJM and NYISO), with ongoing activity in nearly every ISO/RTO to adjust 

and improve their region’s individual design (Harvey, 2020; Sun et al., 2021). More research is needed to 

understand the nuanced, broader system-wide impacts of these designs and potential modifications 

(such as changes to the price caps) for optimal performance—and minimal complexity—in each specific 

market area.  

 

3.3 Key Finding 3: Carbon pricing and CETs can both achieve clean energy goals. 
Carbon pricing has been adopted or is being considered in jurisdictions around the world to incentivize 

clean energy technologies (World Bank, 2020). Here, we explore the impacts of carbon pricing on 

deployment, generation, and market clearing outcomes, focusing on interactions with CECs that are 

linked to CET policy targets.  

Figure 17, which depicts the impact of carbon pricing on new deployment, reveals two key insights. First, 

at a low CET level, carbon pricing achieves greater deployment of carbon-free resources than a Mid CET 

policy alone without carbon pricing (compare ORDC_Carbon Low CET to ORDC Mid CET). We also see an 

overall reduction in gas-fired generators when carbon pricing is added, with a shift to more gas CCs and 

less gas CTs because of the lower carbon emission intensity of gas CCs. This highlights the efficacy of 

carbon pricing in incentivizing higher levels of clean energy resources and batteries, paticularly absent 

an aggressive CET. These trends are based on the assumed carbon pricing inputs; future work could 

explore the role of different carbon pice assumptions, either as exogenous inputs (as used here) or 

endogenously determined. See the SI for information on our inputs and future work.  

The second key insight is that stacking multiple clean energy policies, which here consist of carbon 

pricing and CET policy that is linked to a CEC product, provides minimal decarbonization impacts at High 

CET levels; thus, only one well-designed policy is likely needed to achieve clean energy deployment for 
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such a high target. This can be seen by the smaller incremental benefit of carbon pricing at the High CET 

level (compare ORDC to ORDC_Carbon). 

 

Figure 17. Total new capacity added during the simulation for the ORDC (without carbon pricing) versus the ORDC_Carbon (with 
carbon pricing) for each CET level. 

These investment trends are also observed in the total generation outcomes (Figure 18), which show 

significantly greater clean energy utilization when carbon pricing is introduced at lower CET levels and 

much less difference at the High CET level. Interestingly, at the Low CET level, carbon pricing also leads 

to significantly larger renewable energy curtailment because of greater deployment of clean energy 

technologies. However, curtailment is not larger at High CET levels, where carbon pricing does not 

incentivize noticeably larger renewable capacities. 

 

 

Figure 18. Total 2035 system-wide annual generation and curtailment for the ORDC (without carbon tax) versus the 
ORDC_Carbon (with carbon tax) for each CET level. 
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Figure 19 shows the impacts of carbon pricing on market revenue distribution. Expectedly, carbon 

pricing significantly increases energy market prices and revenues, particularly at lower CET levels, where 

cleaner generation technologies can benefit from the increased frequency of periods with higher 

marginal prices set by thermal generators with carbon pricing. Operating reserve revenues from ORDC 

products (i.e., Primary and Synchronous) also increase from a higher frequency of scarcity-induced 

pricing events. This is driven by the reduction of gas CT capacity and an overall reduction of online 

capacity to avoid incurring carbon prices. Collectively, these trends reduce the capacity available for 

reserve provision, resulting in times of insufficient capacity that trigger higher prices from the ORDC 

curves.  

We also observe notable revenue interactions between carbon pricing and the CECs corresponding to 

each CET level. While the CEC revenues grow with increasing CET, introducing carbon pricing noticeably 

supresses CEC revenues. This is because  significant increases in energy and operating reserve revenues 

due to carbon pricing lowers the generators’ going-forward costs, thereby reducing the CEC market bids 

and clearing prices (see SI for bid formation details). These CEC revenue reductions are far outweighed 

by the larger energy and operating reserve revenues, resulting in larger overall revenues with carbon 

pricing, mostly at the Low and Mid CET levels. Though carbon pricing and CEC markets yield stark 

revenue distribution tradeoffs, they ultimately both push the system buildout in same direction. 

Therefore, as previously mentioned, carbon pricing and CEC markets as modeled here can exhibit a 

substitutional relationship whereby similar clean energy outcomes, especially for high CET levels, can be 

achieved by either mechanism. 

 

 

Figure 19. Annual market Revenues (averaged across the 15-year simulation horizon) for the ORDC (without carbon tax) versus 
the ORDC_Carbon (with carbon tax) across each CET level. 

 

Finally, the impacts of carbon pricing on the profitability of investor firms are shown in Figure 20. Firms 

that only own thermal generation assets (i.e., IPP) experience significant reduction in profitability 
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because of higher operating costs from carbon pricing. In contrast, firms with VRE resources (i.e., all 

except the IPP) have noticeably higher profits at the Low and Mid CET levels because of the significant 

increase in energy and reserve revenues, but they sometimes see reduced profits at the High CET level 

because the small increase in energy revenues due to carbon pricing at High CET levels is more than 

offset by the reduction in CEC revenues. 

 

Figure 20. Total investor agent-level profitability (across the 15-year simulation horizon) for the ORDC (without carbon tax) versus 
the ORDC_Carbon (with carbon tax) across each CET level. 

 

Market considerations: Our results demonstrate that absent an aggressive CET, carbon pricing can 

effectively drive greater deployment of clean energy technologies. We observe a potentially 

substitutional relationship between CEC markets and carbon pricing at high CET levels, indicating 

possible market redundancies—and extra complexity—by stacking both policies. Additionally, the 

smaller market revenues in the absence of a carbon price could also result in lower costs being passed 

on to ratepayers in regulated markets and potentially also in competitive market areas; however, we 

caution against a direct conclusion from this work, as retail rates were not included, and revenues do 

not necessarily capture ratepayer cost trends. Work is needed to further explore this potential impact 

and how both markets and clean energy policies could be best designed to benefit ratepayers. Though 

this analysis explored one set of stylized clean energy policies, additional designs can also be evaluated 

to account for the myriad design considerations and impacts, including cross-border treatment, the level 

of market competition, the impact of stacking policies (including cost subsidies), the cost pass-down to 

end users, the price interaction with energy markets (such as that proposed by the New York 

Independent System Operator (NYISO, 2018)), and the overall efficiency and efficacy, which depend 

greatly on the design (Bushnell et al., 2014; Caron et al., 2018; Xu and Hobbs, 2021).  
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3.4 Key Finding 4: Market rules that restrict participation of clean energy resources in 

capacity markets can result in reduced aggregate installed capacity and generation of 

those clean technologies, but with nuanced differences among individual clean energy 

technologies. 
Our fourth key finding focuses on participation rules for capacity markets, including the ability for wind, 

solar, and/or battery technologies to clear in the forward capacity market (No_VRE_Cap_Mkt and 

No_VRE_Bat_Cap_Mkt scenarios) and the capacity credit (or derating factor) that determines the 

percentage of wind, solar, and battery nameplate capacity that is eligible to participate in the forward 

capacity market (Half_CCredit and Double_CCredit scenarios). These sensitivity cases serve as stylized 

representations of ongoing discussions on capacity market rules, including minimum bid price rules 

(such as the MOPR, which can effectively prevent resources from clearing the market) and capacity 

credit calculation methods. Because each of these scenarios includes a carbon price, we use the 

ORDC_Carbon scenario as our baseline comparison case. We focus on the Mid CET level because the 

relative impact of carbon pricing (ORDC versus ORDC_Carbon) is less significant than at the Low CET 

level, thereby minimizing any carbon price bias in the discussion here. 

We find that limiting participation of wind, solar and/or batteries by reducing their capacity credit 

(Half_CCredit) or precluding them from capacity market participation (No_VRE_Cap_Mkt and 

No_VRE_Bat_Cap_Mkt) reduces their aggregate annual generation and installed capacity, and instead, 

increases that from gas CT and RE-CT generators (Figure 21 and Figure 22). Overall system-wide installed 

capacity is higher in these cases to meet both the capacity targets (as reflected in the capacity market 

demand curve) and clean energy goals, resulting in higher overall system cost (see the Mid CET results in 

the SI). Conversely, opposite trends are observed in the scenario where VRE and storage receive a larger 

capacity credit (Double_CCredit). 

We also observe distinct tradeoffs between wind and the combination of solar and batteries. As shown 

in Figure 22, when batteries are not restricted (No_VRE_Cap_Mkt), they serve as a strong enabler of 

solar deployment but not wind, as also discussed in Section 3.1.  However, when batteries are also 

restricted (No_VRE_Bat_Cap_Mkt), both battery and solar deployment is suppressed, accompanied by 

an increase in wind deployment, and consequently, higher renewable energy curtailment. These 

interactions highlight the need for careful consideration of how eligibility rules for one technology can 

impact not only that technology, but other technologies as well.  
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Figure 21. Difference in total annual generation and curtailment for the scenarios exploring capacity market participation (all 
include ORDC and a carbon tax) for the 75% CET level compared to the ORDC_Carbon scenario (shown in upper chart).  

 

 

Figure 22. Difference in new capacity added during the simulation for the scenarios exploring capacity market participation (all 
include ORDC and a carbon tax) for the 75% CET level compared to the ORDC_Carbon scenario (shown in upper chart). 

 

These generation shifts noticeably impact capacity market prices (Figure 23) and the distribution of 

revenues among products (Figure 24). With lower capacity credits and fewer eligible resources 

participating in the capacity market, capacity market prices are higher; the converse is true for the case 

with higher values of capacity credit (Double_CCredit).  
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In the scenario where wind, solar, and batteries cannot participate in the capacity market 

(No_VRE_Bat_Cap_Mkt), average capacity prices are slightly lower than the case where only wind and 

solar are excluded from capacity market participation (No_VRE_Cap_Mkt). This is because exclusion of 

batteries in the first case yields more operating reserve scarcity events, leading to higher energy and 

reserve market revenues (Figure 24), thereby suppressing capacity market bids and clearing prices 

(Figure 23).  

Furthermore, Half-CC and No_VRE_Bat_Cap_Mkt scenarios also yield noticeably larger CEC market 

revenues (Figure 24), primarily because of higher CEC prices resulting from reduced solar deployment in 

these scenarios and the associated need for more clean energy capacity. These results demonstrate that 

adjusting market rules and eligibility criteria for one product can have spillover effects on the market 

clearing outcomes of other products, underscoring the need for careful market and policy design. 

 

 

Figure 23. Distribution of annual capacity market clearing prices for scenarios exploring capacity market participation (all 
include ORDC and a carbon tax) for the 75% CET level. Asterisks show mean values; boxes include the 1st quartile, median, and 

3rd quartile; whiskers are the minimum and maximum values (excluding outliers). 
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Figure 24. Difference in annual market revenues (averaged across the 15-year simulation horizon) for the scenarios exploring 
capacity market participation (all include ORDC and a carbon tax) for the 75% CET level compared to the ORDC_Carbon scenario 

(shown in upper chart). 

 

As shown in Figure 25, these revenue distribution outcomes indicate that restricted participation of VRE 

and batteries in capacity markets can increase capacity-based revenues and overall profitability for 

investors owning eligible resources (IPP and Large Utility) but decrease profitability for firms only 

investing in VRE and batteries (New Entrant and C&I IPP). In the scenario where VRE and storage receive 

a larger capacity credit (Double_CCredit), we see the opposite trend.  

 

Figure 25. Difference in firm-level profitability (total across the 15-year simulation horizon) for the scenarios exploring capacity 
market participation (all include ORDC and a carbon tax) for the 75% CET level compared to the ORDC_Carbon scenario (shown 

in upper chart). 
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Market considerations: These results provide important market design implications related to eligibility 

rules for capacity markets, including the ability to participate in capacity markets and the capacity credit 

of wind, solar, and battery resources. Most notably, market rules that impact eligibility can hinder 

market efficiency and VRE utilization, as reflected by larger total system costs and higher levels of VRE 

curtailment. This suggests the need to move toward open markets with no eligibility restrictions – either 

explicit or implicit, such as through minimum bid offer rules like MOPR that effectively preclude clearing 

in the market – and with accurate accounting of the value of capacity, especially as systems and times of 

highest stress evolve. We also saw multiple instances of market outcome interdependencies. For 

example, adjusting market rules and eligibility criteria for one product can impact the market clearing 

outcomes of other products, and eligibility rules for one technology can have indirect but strong 

deployment impacts on not only that technology but other complementary technologies. This 

underscores the need for careful market and policy design that avoids unintended consequences for 

market efficiency, policy efficacy, and grid reliability.  

 

3.5 Key Finding 5: Market rules that restrict participation of clean energy resources for 

providing operating reserves can result in significant price differences that further 

disfavor deployment of those clean energy technologies. 
Our fifth key finding relates to the eligibility of wind, solar, and battery technologies to participate in 

operating reserve markets (No_VRE_Reserves and No_VRE_Bat_Reserves scenarios). Like the fourth key 

finding, we use the ORDC_Carbon scenario, but for the High CET level here, as our baseline case for 

comparison. 

In general, restricting VRE and/or batteries from providing reserves results in a large increase in thermal 

generation (Figure 26)  to meet the reserve requirements and a noticeable increase in both operation 

costs (see the SI) and curtailment (Figure 26). In cases where only wind and solar are restricted from 

providing reserves (No_VRE_Reserves), solar and battery generation increase, while wind generation 

decreases (Figure 26). However, when batteries are also restricted (No_VRE_Bat_Reserves), we see an 

increase in wind generation while solar and battery generation decrease (Figure 26). These operational 

results again highlight the strong synergistic relationship between solar and battery resources, as also 

identified in Sections 3.1 and 3.4. We see similar but more pronounced impacts on new capacity 

additions (see SI). These trends also align with previous PCM work, which found that excluding wind and 

solar from providing reserves requires committing additional thermal generators to meet those 

operating reserve requirements (Frew et al., 2021a) and that battery storage can capture most of the 

benefit of providing operating reserves from among other IBRs like wind and solar (Frew et al., 2021b).  
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Figure 26. Total 2035 system-wide annual generation and curtailment for the scenarios exploring wind and solar participation in 
operating reserve markets (all include ORDC and a carbon tax) for the 100% CET level. 

 

There are also important pricing and revenue impacts from these operating reserve eligibility 

restrictions. These are most prominent when wind, solar, and batteries are all precluded from providing 

operating reserves (No_VRE_Bat_Reserves), which sees a significantly higher frequency of ORDC 

Synchronous and Primary operating reserve scarcity pricing events that are driven by an insufficient pool 

of eligible resources. This results in larger Synchronous and Primary operating reserve prices and, in 

turn, energy prices (see Figure S4 in the SI). As shown in Figure 27, these high operating reserve prices 

yield significantly larger market revenues for operating reserves and energy, which in turn suppress 

capacity market revenues. 

 

Figure 27. Annual market revenues (averaged across the 15-year simulation horizon) for the scenarios exploring wind, solar, and 
battery participation in operating reserve markets (all include ORDC and a carbon tax) for the 100% CET level. 

 

These generation and scarcity-driven price shifts have distinct impacts on investor profitability (Figure 

28), with New Entrant and C&I IPP profitability reduced when wind, solar, and/or batteries are not 

permitted to provide operating reserves. Conversely, the IPP and Large Utility profitability increases 

because of significantly larger energy and reserve revenues for their thermal generators, which receive 

high reserve prices in the absence of VRE and battery providing operating reserves. This is particularly 

true when wind, solar, and batteries are all excluded from providing operating reserves and scarcity 

pricing is more prevalent. 
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Figure 28. Firm-level profitability (total across the 15-year simulation horizon) for the scenarios exploring wind, solar, and 
battery participation in operating reserve markets (all include ORDC and a carbon tax) for the 100% CET level. 

 

Market consideration: These results provide important market design implications related to eligibility 

rules for operating reserve markets. Most notably, market rules that preclude participation by certain 

technologies can hinder market efficiency and VRE utilization, as reflected by higher frequency of 

scarcity-induced pricing events, higher total cost, and higher levels of curtailment. Additionally, rules for 

one technology can have indirect but strong deployment impacts on complementary technologies; this 

was particularly true for batteries, whose eligibility status more strongly impacted the generation and 

deployment of solar than of that for solar itself. This highlights the important role of storage in market 

structures with high CETs and presents a caution for unintended consequences in designing operating 

rules for futures systems.  

 

3.6 Key Finding 6: At high CETs, adding an inertia product can favor technologies that 

support both the technical capability and overarching policy goal but also result in 

potentially redundant resource utilization. 
Maintaining stable frequency is a significant concern with increasing integration of IBRs. Our sixth key 

finding results from the addition of an inertia product as a possible mitigation strategy. This product 

allows substitutional provision of fast frequency response (FFR) by wind, solar, and battery IBR 

technologies based on available headroom, assuming proper software and/or control capability (see the 

SI for model details). We again use the ORDC_Carbon scenario as our baseline case, with a focus on the 

Low and High CET levels. 

Figure 29 shows that adding an inertia product noticeably increases the installed capacities of gas CTs, 

particularly at high CETs. Additionally, wind is replaced with higher capacities of RE-CTs, which can 

provide more inertia while also meeting the CET. Similar trends were observed for generation (see SI), 

especially increased RE-CT and gas CT generation that is enabled by commitment of these generators to 

help meet the inertia requirement and, in the case of the RE-CTs, also the CET target. The increased 
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utilization of these high-cost CT generators to meet the inertia constraint, while still operating wind, 

solar, and battery technologies to meet the CET, results in larger operating costs and curtailment (see 

the SI), indicating less efficient and potentially redundant operations. 

 

Figure 29. Total new capacity added during the simulation for the ORDC_Carbon (without an Inertia product) and the Inertia 
scenarios for the 45% and 100% CET levels. 

Figure 30 summarizes the impacts of including an inertia product on the distribution of market 

revenues. We see two distinct trends. At the Low CET level, adding an inertia product reduces total 

operating reserve revenues because the minimum inertia requirement forces greater thermal 

generation capacity to be online, providing greater overall operating reserve provision availability and 

consequently lower reserve prices. The reduction in reserve prices also suppresses energy prices and 

revenues. Conversely, for the High CET level, significantly larger deployment of IBRs results in more 

periods with inertia scarcities (20% of the timesteps in the final solve year, compared to 5% for the Low 

CET and 6% for the Mid CET), resulting in higher inertia prices and revenues, and in turn, higher energy 

prices and revenues.  

 

Figure 30. Annual market revenues (averaged across the 15-year simulation horizon) for the ORDC_Carbon (without an Inertia 
product) and Inertia scenarios for the 45% and 100% (Low and High respectively) CET levels. 
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Market considerations: Our results suggest that adding an inertia product to support stable frequency 

might only noticeably affect prices and system operations at very high CETs. We see larger deployment 

and utilization of gas CTs and RE-CTs to help meet these inertia requirements. Even with additional CT 

generators and the contribution of FFR from IBRs toward the inertia requirement, the system still 

experiences significant inertia scarcities at high CET levels. Therefore, absent FFR capabilities, even 

higher scarcity pricing or investments in alternative clean energy resources with traditional inertial 

response (such as RE-CTs) can be expected, both of which would result in larger total system costs. 

Additionally, inertia markets would need to be carefully designed, striking a balance among satisfying 

the system’s physical requirements, meeting CETs, and avoiding potential economic inefficiencies—and 

complexity—that are due to resource redundancies. 

 

4. Conclusions and Policy Implications 
This paper uses the EMIS-AS model to evaluate the effectiveness of a wide range of wholesale electricity 

market structures in achieving decarbonization policy goals, while considering the impact on market 

clearing outcomes and the risk and adaptive behavioral elements of firm-level investment decision-

making. 

Overall, our analysis across 51 scenarios on a test system points to the need for an appropriate balance 

of market design complexity with consideration of unintended consequences, given the interconnected 

nature of markets with system-wide operations and investment. This multi-dimensional market design 

challenge is a complexity conundrum, whereby adding multiple market products and/or rules can 

sometimes significantly increase complexity without providing additional benefit to the grid physics, 

economics, or policy goals. We observe six specific key findings on the effectiveness of different market 

structures in achieving decarbonization policy goals, the nuanced and often non-incremental 

interactions among various market products and design constructs, and the consequent impacts on 

firms’ profitability.  

First, results show that carefully designed energy-only markets can achieve similar clean energy targets 

(CETs) as those with forward capacity market structures, but with different underlying revenues 

distributions. We find that the presence of capacity markets favors investors with low investment cost 

peaking thermal units (gas CTs) and therefore, it is important to design these market structures to avoid 

biasing generation technologies and investor types. Future work could explore the impact of these 

structures on retail rates and reliability under a wider set of system conditions using extreme weather 

data sets and/or linkages with probabilistic resource adequacy models. 

Second, operating reserve demand curve (ORDC) scarcity pricing mechanisms facilitate greater 

investments in flexible generation resources (i.e., CTs and batteries) but yield noticeably greater levels 

of VRE curtailment because those CTs must be kept online more often to avoid triggering scarcity pricing 

events, thereby reducing VRE utilization. We also find that ORDC pricing can have a substitutional 

relationship with a capacity market in overall generator deployment, indicating possible market 

inefficiencies if the market rules are not carefully formulated.  

Third, if properly designed, carbon pricing can be an effecive mechanism for achieving clean energy 

goals, especially if a CET is low or not defined. Furthermore, stacking multiple carbon policies (carbon 
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pricing and CET linked to a CEC product in this analysis) provides minimal decarbonization benefits at 

high CET levels, indicating that only one well-designed policy is likely needed to achieve aggressive clean 

energy deployment goals.  

Fourth, rules that restrict participation of certain technologies in capacity markets – such as mechanisms 

that preclude clearing in the market or reduce the eligible portion of capacity that can participate – can 

result in significant deployment and operational differences, even for technologies that are not 

restricted.  Market rules and eligibility criteria for one product may have unintended and nonintuitive 

spillover effects on the market clearing outcomes of other products, underscoring the need for careful 

market and policy design that minimize these unintended consequences. 

Fifth, market rules that limit the eligibility of certain technologies from providing operating reserves can 

hinder market efficiency and VRE utilization, as reflected by higher frequency of scarcity-induced pricing 

events, higher total cost, and higher levels of curtailment. We again see strong tradeoffs between 

certain technologies, especially between wind-and-gas versus solar-and-battery technologies in both 

generation and deployment, highlighting the strong role that market eligibility rules can have on not 

only operations but also investment decisions. The particularly strong role of battery eligibility in 

impacting price and operation outcomes underscores the need to better understand the interaction of 

this more complex technology with still-evolving market rules. 

Sixth, adding an inertia product may only noticeably affect prices and system operations at very high 

CETs, where significant scarcity events occur even with additional gas CT and RE-CT resources and with 

the contribution of wind, solar, and battery headroom-based FFR. While more work is needed to 

understand the exact inertial needs and capabilities of the system – which ultimately point to the 

requirement for maintaining system frequency – any inertia markets should be carefully designed to 

satisfy the system’s physical requirements, meet CETs, and avoid potential economic inefficiencies from 

resource redundancies. 

Overall, our results reveal that interactions between various market structures are heavily nuanced and 

must be designed carefully to maximize market efficiency, avoid unintended consequences, and drive 

desired policy goals. We focus on highly decarbonized futures with hourly day-ahead and 5-min real-

time market simulations for one weather year. Future work is needed to understand the interactions of 

market designs across additional system conditions like extreme weather events, as well as with 

consideration of additional grid physics at finer timescales, such as voltage and frequency. Future work 

could also explore the tension between markets versus mandates as mechanisms for supporting the full 

set of essential grid services. We also note that our analysis provides high-level insights into the above 

qualitative trends using a stylized test system. Thus, our results are not specific to any actual system, 

and work is needed to establish trends across a more diverse set of system configurations. Additional 

future work possibilities are discussed in the SI; we highlight the particular importance of price 

responsive demand that can reflect its true value of reliability (Redefining Resource Adequacy Task 

Force, 2021). 
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Supplemental Information 
The following sections provide details on the methods, inputs, and modeling framework used in this 

study, as well as additional results. 

Detailed Methodology 
This second provides details on the modeling methodology and parameters that were used in the study. 

Agent-based modeling approach 
EMIS-AS is an agent-based simulation tool that explores the impact of various market design structures 
on investment and retirement decisions of heterogeneous, profit-seeking investor firms with imperfect 
information and bounded rationality. Market design structures could include the presence/absence of 
certain products, eligibility and pricing rules associated with those products, and the operational 
representation (e.g., sequence, resolution, lookahead). As shown in Figure S1, EMIS-AS consists of a 
series of simulation/optimization steps with a mixture of investor firm-level components and system-
wide components. We highlight six high-level steps at the core of the EMIS-AS functionality. We refer 
readers to (Anwar et al., 2022, 2020) for a detailed description of the model. 

1. After first initializing the model (loading preprocessing input data on the physical system, 
generator technologies, and market design configuration), each investor firm independently 
estimates future prices, generator portfolios, and generator capacity factors using a generation 
expansion planning (GEP) model. This GEP uses a set of representative days (based on k-
medoids clustering of wind, load, and solar data (Park and Jun, 2009)) and generator capacity 
credits (using an hourly-based method for wind, solar, and batteries). If uncertainty is included, 
the GEP is solved for each separate future expectation scenario, with a probability weight 
assigned to each of those futures such that the sum of probabilities across all scenarios is one. 

2. Each investor firm uses the outputs from Step 1 to calculate the net present value (NPV) for 
each potential, planned, and existing generator for each future scenario. EMIS-AS explicitly 
tracks projects through various life cycle phases, so that once a firm decides to invest in a 
project, it enters the planned phase by going into the interconnection queue. Once the project 
has spent the required time in the queue, and if the economics remain favorable, the project 
goes under construction. Projects must pay a fee to enter the interconnection queue, but once 
construction begins, the fixed capital costs are assumed sunk. 

3. Each investor firm makes final build/retire decisions based on the expected utility calculated 
using the NPV values from Step 2, the scenario probabilities from Step 1, and the firm’s assumed 
risk profile. 

4. After calculating the market bids based on their price and generator utilization predictions, each 
investor firm submits price/quantity bids to the market for each desired product for each 
eligible generator based on the final build/retire decisions from Step 3.  

5. The wholesale market clears for each product based on the set of bids received across the full 
set of investor firms, allowing the firms to see the impact of their own and other firm’s decisions 
on prices. If uncertainty is included, this is also when the firms realize the accuracy level of their 
individual expectation or belief about the future (in this example, applied to load growth). 
Energy and ancillary services/operating reserve are co-optimized in a two-stage (i.e., day-ahead 
and real-time) least-cost unit commitment and economic dispatch market simulation using a 
PCM. Capacity markets are cleared on an annual 3-year forward horizon. Clean energy credits 
(CECs) are cleared on an annual horizon.  
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6. Each firm updates its realized revenues and expectations(s) about the future (in this case, as 
applied to load growth) using Kalman Filters. The model moves forward one investment step 
and repeats. 

 
 

 
Figure S1. High-level summary of EMIS-AS framework with key steps highlighted 

 
In this analysis, steps 1-3 are applied to investment steps of one year (each with a 10-year rolling 
horizon for price prediction), marching forward in time until the full 15-year solve horizon is complete. 
We nominally assume Year 1 is 2021, and the 15th year is 2035. Within each individual solve year, the 
GEP modeling in Step 1 is based on the same set of 20 representative days per year for each investment 
timestep. Those outputs are combined with exogenous discount rates and technology cost projections 
to calculate each project’s cash flows across its remaining lifetime in Step 2 to determine whether to 
invest in or retire each project in Step 3. In this study, the energy-operating reserve co-optimization 
market clearing in Step 5 involves day ahead (DA) unit commitment at hourly resolution with a MIP gap 
of 0.05%, followed by real-time (RT) economic dispatch for each hour at a 5-min resolution using the 
binary unit commitment decisions fixed from the DA run. This DA-RT sequence is an improvement from 
the initial version of EMIS-AS as described in (Anwar et al., 2022). Step 5 includes clearing for a three-
year forward capacity market, which is described in (Anwar et al., 2022) and includes a dynamic 
calculation of the capacity contribution of eligible wind, solar, and battery technologies. Step 5 also 
contains a CEC market, which is an extension of the renewable energy credit market in the initial version 
of EMIS-AS (Anwar et al., 2022).  
 
Each project’s market participation bids for the forward capacity and CEC markets are based on 
principles of revenue sufficiency, such that they reflect the project's “going-forward cost” which is 
defined as the difference between the project's annualized investment (and other fixed) costs and their 
expected net revenues from other markets). The capacity market is cleared maximizing total social 
welfare, which is modeled as the difference between the welfare associated with the cleared capacity 
demand (based on a downward-sloping elastic capacity demand curve) and the cost of the capacity 
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supply (based on market bids of the participating projects). On the other hand, the CEC market assumes 
an inelastic demand curve, and therefore is cleared minimizing the total cost of CEC supply volume 
(based on CEC market bids) and the cost of violating the CEC target requirement (based on an 
exogenous alternative compliance payment). Details about the market clearing formulation of capacity 
and CEC markets equations can be referred to in (Anwar et al., 2022). 
 
We note that the stepwise nature of this agent-based model inherently incorporates the imperfect 
information and uncertainty of actual investment and retirement decisions, and thus does not reflect a 
true equilibrium or co-optimized solution. Instead, EMIS-AS allows for recourse decisions by the firms as 
feedback effects are realized between the GEP projections from one year to the next, specifically when 
those conditions result in unfavorable project economics after an initial investment decision has been 
made. While the actual market clearing outcomes in Step 5 do not directly impact the subsequent year’s 
investment decisions, they can impact retirement decisions which require a project to have a negative 
expected utility, negative expected profitability in the next year and realized losses in the previous two 
years. Key mechanisms that connect steps 1-3 with Step 5 include the forward capacity markets (by 
seeing what cleared in the previous year to inform additional decisions), retirement decisions as just 
described, and the update in expectations via Kalman Filters. Future work will further enhance this 
feedback via a performance multiplier in the utility function (Chen et al., 2018). 
 
 

Realistic test system data set 
For this analysis, we use the EMIS RTS-GMLC test system and a stylized set of four investor agents: New 
Entrant, independent power producer (IPP), commercial and industrial (C&I) IPP, and Large Utility that 
were previously explored and described in (Anwar et al., 2022). That test system has been modified 
from the IEEE Reliability Test System (RTS-GMLC) (“RTS-GMLC: Reliability Test System - Grid 
Modernization Lab Consortium,” 2018) by removing all rooftop solar photovoltaic and concentrated 
solar power, as well as removing any nodal representation (i.e., all generation and demand within a 
given zone, or region, is collapsed on a single bus) and doubling the inter-zonal transmission capacity to 
accommodate higher generation demand and capacities in future years. The financial parameters for 
generation technologies are obtained from NREL’s Annual Technology Baseline. To mitigate against 
unrealistic forecasting errors in the raw data set, we assume perfect foresight for wind and solar 
resources in the DA simulations (using an hourly average of the RT 5-min values) and an improved DA 
load forecast from the raw RTS data set (assuming a weighted blend of 2/3 DA forecast and 1/3 RT). 
 
The four investor agents vary in size, expectations about the future, how confident they are in those 
expectations, their technology preferences, their perceived riskiness which impacts their financing 
parameters, and their risk profile, as summarized in Table S1. As in (Anwar et al., 2022), we apply 
uncertainty through the load growth, whereby each firm has a set of probability-associated estimates of 
future load growth and then updates those estimates in each investment step using Kalman Filters as 
they experience the simulated reality with its actual load growth and corresponding market clearing 
outcomes. The C&I IPP has the lowest load growth forecast (1.01%/year growth in their mid-case), the 
Large Utility has a mid-growth estimate (1.24%/year), and the New Entrant and IPP have the highest 
growth expectation (1.53%/year). The use of load growth uncertainty was for simplicity purposes, but 
future work with EMIS-AS could apply other sources of uncertainty within the existing model 
framework. 
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Table S1. Stylization of investor firms' heterogeneous attributes (adapted from (Anwar et al., 2022)a) 

a Anwar, M.B., Stephen, G., Dalvi, S., Frew, B., Ericson, S., Brown, M., O’Malley, M., 2022. Modeling investment decisions from  heterogeneous 

firms under imperfect information and risk in wholesale electricity markets. Applied Energy 306, 117908. 

https://doi.org/10.1016/j.apenergy.2021.117908 

 

Market products and parameterizations 
In addition to the EMIS-AS database and parameterization from (Anwar et al., 2022), we apply a series of 
enhancements to enable greater modeling capabilities and analysis dimensionality. Broadly speaking, 
these include additional market products and technology characterizations, which we further describe 
below for each individual enhancement. 
 
The first model enhancement is increasing the set of operating reserve products to cover a wider range 
of response times. The version of EMIS-AS we used includes a set of ten possible market products: 
energy, forward capacity, CECs, inertia, and six operating reserve products. A summary of these six 
operating reserve product requirements and scarcity pricing assumptions (which reflect a typical 
operating reserve hierarchy, e.g., EPRI, 2019) are shown in Table S2. Within each product, eligible 
generators may provide operating reserves up to their operating limits (i.e., within ramping, maximum 
resource availability, and online status constraints). This study did not include operating reserve bids to 
reflect wear and tear costs (Hummon et al., 2013), operating reserves’ nested response times to allow 
capacity to potentially supply multiple products with the same capacity if the response times overlap, 
response from offline generators (e.g., RE-CTs with synchronous condensers technically can provide 
inertial response while offline, see (Denholm et al., 2021), actual reserve deployment (i.e., release of 
held capacity to meet the operating reserve requirement), or mileage payments for services such as 
automatic generation control response for regulation. In all simulations, energy and operating reserves 
(which include inertia in scenarios with the inertia product) are fully co-optimized, which means in each 
time step, energy, operating reserves, and inertia are scheduled simultaneously from among all 
available resources to yield the lowest system-wide operating cost. Because these products are 

Name 

Mid Load 
Growth 
Forecast 

(Initial state 
estimate) 

Confidence in 
Prediction 

(Initial error  
covariance) 

Confidence in  
Measurement 
(Measurement  

covariance) 

Investment 
Technology 
 Preference 

Capital 
Cost 

Multiplier 

Perceived 
Riskiness 

Risk 
Preference 

New 
Entrant 

1.53% p.a. 
Low Confidence 

 (1.0e0)                                

High 
Confidence 

 (1.0e-4)                            

Wind, PV, 
Battery 

High 
 (1.143)             

High 
 

 (2.0%) 

Very Risk 
Averse 
(1.0e-5)  

IPP 1.53% p.a 
Low Confidence 

 (1.0e0)                                

High 
Confidence 

 (1.0e-4)                            

Gas CC, 
Gas CT, RE-

CT 

Mid 
 (1.105)              

Mid 
 (1.0%) 

Very Risk 
Averse 
(1.0e-5)  

C&I IPP 1.01% p.a. 
Mid Confidence 

 (1.0e-1)                               
Mid Confidence 

 (1.0e-3)                             
Wind, PV 

Mid 
 (1.105)              

Low 
 (0.5%) 

Risk Averse 
 (1.0e-6)       

Large 
Utility 

1.24% p.a. 
High 

Confidence 
 (1.0e-3)                              

Mid Confidence 
 (1.0e-2)                             

Gas CC,  
Gas CT, RE-
CT, Wind, 

PV, Battery    

Low 
 (1.085)              

None 
 (0.0%)   

Risk Averse 
 (1.0e-6)       

IPP: Independent Power Producer; C&I: Commercial and Industrial; PV: Photovoltaic; 

CC: Combined Cycle turbine; CT: Combustion Turbine; RE-CT: Renewable Energy CT; WACC: Weighted Average Cost of 

Capital; p.a: per annum  
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coordinated with consideration of each other, the clearing price for each will also account for any lost 
opportunity costs in addition to the actual operating cost (which is assumed to be zero for all operating 
products in this analysis). The lost opportunity cost reflects times when a unit is backed down from 
otherwise providing profitable energy to instead hold that capacity for operating reserves (EPRI, 2016). 
 
In scenarios with operating reserve demand curve (ORDC) scarcity pricing mechanisms, the static 
scarcity pricing values shown in Table S2 are replaced with a probabilistic scarcity pricing curve for the 
Synchronous (i.e., spinning) and Primary (i.e., nonspinning) reserves. For each of these two operating 
reserve products, 24 ORDC scarcity pricing curves are implemented across different times of the day and 
year (4 seasons x 6 daily time blocks) to capture the changing risk levels in those time blocks. The ORDC 
curve formulations roughly follow the PJM methodology, which involves calculation of the net load 
forecast error distribution and generator unavailability distribution (based on forced outage rates) 
(Rocha-Garrido, 2018a, 2018b). These distributions are then combined to determine the probability of 
system reserves falling below the minimum reserve requirement (MRR) at different reserve levels. The 
MRR is defined as 100% and 150% of the nameplate capacity of the largest generator in the system for 
Synchronous and Primary reserves respectively (PJM, 2020), which translate to 400 MW and 600 MW 
for the test system used in this study. The probabilities are then multiplied by the maximum scarcity 
price to determine the ORDC penalty price at each reserve level. The curves are updated each solve year 
based on the previous year’s installed capacity and timeseries profiles for load, wind and solar. 
 
An example ORDC is depicted in Figure S2, which shows the decreasing ORDC penalty prices with 
increasing system reserve levels. The ORDC scarcity price is zero until the probability for not having 
sufficient capacity to meet the operating reserve requirement becomes nonzero. Then the price follows 
the curve until it plateaus at the MRR value with the corresponding maximum scarcity price (600 MW at 
$850/MWh in the EMIS-AS example in Figure S2).  
 
Because of the above assumptions, operating reserve revenues from our modeling simulations are only 
non-zero for the products with ORDCs, which are Synchronous and Primary reserves in this study. All 
other operating reserve products consistently have zero or near-zero revenues because of their less-
stringent scarcity assumptions and the assumed zero cost for providing operating reserves. 
 
 

Table S2. Summary of operating reserve products 

Operating Reserve 
Product 

Requirement Response time 
(minutes) 

Scarcity Pricing 
($/MW) 
low / base / high 

Notes 

Regulation (“Reg”) 
Up 

Method from (Ibanez 
et al., 2012)a 

5 1002 / 4002 / 
10,002 

 

Regulation (“Reg”) 
Down 

Method from (Ibanez 
et al., 2012)a 

5 1001 / 4001 / 
10,001 

 

Synchronous 100% of nameplate 
capacity of largest 
generator in system 
(PJM, 2020)b 

10 1000* / 4000* / 
10,000* 

*Scarcity pricing 
switches from 
static values shown 
here to ORDC curve 
in scenarios with 
ORDC 

Flexibility (“Flex”) Up Method from (Ibanez 
et al., 2012)a 

20 999 / 3999 / 9,999  
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Flexibility (“Flex”) 
Down 

Method from (Ibanez 
et al., 2012)a 

20 998 / 3998 / 9,998  

Primary 150% of nameplate 
capacity of largest 
generator in system 
(PJM, 2020)b 

30 997* / 3997* / 
9,997* 

*Scarcity pricing 
switches from 
static values shown 
here to ORDC curve 
in scenarios with 
ORDC 

a Ibanez, E., Brinkman, G., Hummon, M., Lew, D., 2012. Solar Reserve Methodology for Renewable Energy Integration Studies Based on Sub-
Hourly Variability Analysis: Preprint (No. NREL/CP-5500-56169). National Renewable Energy Lab. (NREL), Golden, CO (United States). 

b PJM, 2020. PJM Day Ahead Reserve Requirements. PJM. Available: https://www.pjm.com/-/media/committees-
groups/committees/oc/20191112/20191112-item-07-2020-dasr-requirement-update-reline.ashx 

 
 

 
Figure S2. Example ORDC curve for winter (23:00 – 02:00) in comparison to the PJM curves. Note that the inflection points do not 

match because system sizes are different, but the slopes align well. 

 
The second model enhancement is adding a new generator technology, RE-CT, which serves as a generic 
flexible combustion turbine (CT) generator that operates similar to a natural gas-fired CT (NGCT) but can 
be fueled by a range of potential renewable fuels, including biofuels, hydrogen, synthetic methane, 
among others (Cole et al., 2021). We assume the same operating parameters for the RE-CTs as NGCTs 
except for a fuel price of $20/MMBTU, 100% clean energy (i.e., eligible for the CEC market), and 103% 
capital cost of NGCTs. 
 
The third model enhancement is adding a stylized inertia product that accounts for the rotating mass of 
traditional thermal generators and the fast frequency response (FFR) capability of inverter-based 
resources (IBRs), which include wind, solar, and batteries in this study. IBRs can provide FFR by rapidly 
changing their generation output – much faster than conventional generators – either by extracting 
kinetic energy from the rotating blades of wind generators or maintaining headroom (relative to the 
actual resource availability) of solar and battery resources so that generation can be increased (Denholm 
et al., 2021, 2019). While FFR is not a direct replacement for inertial response, it can, if coordinated 
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properly, serve as a valuable service for maintaining system frequency.1 We make the simplifying 
assumption that FFR can tradeoff equally with traditional rotating-mass inertial response because both 
ultimately contribute to this high-level system need of maintaining frequency at very short timescales. 
We assume inertial response can be provided by the online capacity of thermal generators based on the 
H-constant response rates in the IEEE RTS-GMLC data set and by the available headroom of IBRs based 
on response rates from the literature (Asmine et al., 2018; Khazaei et al., 2020; Zavadil et al., 2009). We 
also assume that the inertia requirement for the system scales to that of ERCOT’s critical limit of 100 
GW-s based on its corresponding peak load of 73.5GW (ERCOT, 2018). We allocate a portion of that 
requirement to our system each year as the peak load grows. We also assume an inertia scarcity price of 
$4000/MW. 
 
The fourth model enhancement is updating the capacity credit methodology for wind, solar, and 
storage. Wind and solar already use an hourly load duration curve approximation method based on that 
used by NREL’s Regional Energy Deployment System (ReEDS) model (Frew et al., 2017), but we now 
enable a static multiplier of the “default” values calculated with this method to enable lower or higher 
effective values for clearing the capacity market and contributing to the planning reserve margin. We 
also now extend this approach to a simplified version of the hourly-based methodology for battery 
storage currently used in ReEDS (Frazier et al., 2020), with the option to apply a post-process scaling up 
or down the default values from the hourly method. Each of these methods capture the declining value 
of capacity with increasing contributions levels from each resource due to their coincident nature. For 
storage, we calculate an average capacity credit of the existing system based on the ability of the 
existing storage capacity to reduce the peak net load given its storage duration. In this study, all storage 
is assumed to be 4-hour duration battery storage. 
 
The fifth model enhancement is adding carbon pricing. We assume exogenously-defined carbon taxes 
that increase each year based on values from the ReEDS model (Caron et al., 2018). A summary of the 
values used are provided in Table S3. This tax is applied as an additional marginal cost for carbon-
emitting resources. 
 

Table S3. Carbon taxes for each simulation year 

Year 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 

Carbon Tax 
($/tonne) 

 
0 

 
30 

 
31.5 

 
33.1 

 
34.7 

 
36.5 

 
38.3 

 
40.2 

 
42.2 

 
44.3 

 
46.5 

 
48.9 

 
51.3 

 
53.9 

 
56.6 

 
 
The sixth, and final, key model enhancement is implementing the restriction of some technologies from 
participating in the forward capacity market and provision of operating reserves. We apply a binary all-
or-nothing eligibility of wind, solar, and battery storage for capacity market participation. When a given 
technology is excluded, we assume that this applies to both existing and new builds. This serves as a 
proxy for price floor offer rules, such as the Minimum Offer Price Rule that can effectively preclude 
these resources from clearing the capacity market, though the details of such rules are far more 

 
1 We note that FFR is typically classified as a type of primary frequency response (PFR), which helps to restore 
frequency within a few seconds and is usually provided by turbine governors (Denholm et al., 2019). As a 
generalization, PFR is a slower response than FFR, and FFR is slower than inertial response. PFR is distinctly 
different from regulation operating reserves, where the latter is provided by generators with automatic generation 
control that receive and respond to a signal from the system operator every few seconds to help maintain balance 
in system deviations between real-time market dispatch intervals (EPRI, 2019). 
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complex and nuanced than our simple approach here. Similarly, the capability of restricting operating 
reserve provision from wind, solar, and/or battery storage is also incorporated.  
 

 

Additional Results 
Impact of homogenous investor firms 

Figure S3 compares new installed capacity between the scenario with homogenous firm characterization 

(Base_Hom) and the Base scenario (heterogenous firms) for each CET level. We see more new capacity 

deployed in the case with homogenous firms, particularly from capital-intensive technologies (natural 

gas-fired generators, solar, and batteries), but this trend is not evident for generation outcomes (Figure 

S4). The larger capacity in the homogenous firms (Base_Hom) scenarios is because all investors make 

the same, sometimes unknowingly redundant, investment decisions. Because new builds have discrete 

capacities, those new builds further yield collectively more capacity than needed.   

 

 

Figure S3. Total new capacity added during the simulation for the Base scenario and Base_Hom (with homogenous firms) in the 
45%, 75%, and 100% CET scenarios.  
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Figure S4. Total annual generation and Curtailment in the final simulation year (i.e., 2035) for the Base scenario and Base_Hom 
(with homogenous firms) in the 45%, 75%, and 100% CET scenarios. 

 

Figure S5 shows the corresponding uniform profitability distribution across investor types in the 

Homogenous Firms scenarios, compared to the Base scenarios for different CET levels. While firms’ 

profitability is identical in the homogenous scenario, the Large Utility has the highest overall investment 

and associated profitability because when heterogeneous firm characteristics are considered in the Base 

scenario. 

The overbuilding trend observed in the Homogenous Firms scenarios and the higher profitability for 

larger firms in the Base scenarios aligns with existing literature (Anwar et al., 2022) and highlights the 

benefit of capturing the competitive interactions of heterogenous financing and risk profiles. The latter 

is a key value proposition of EMIS-AS over traditional expansion models that inherently assume a 

homogenous financing and risk parameters for the central planner.  
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Figure S5. Total profitability of investor firms (across the 15-year simulation horizon) for the Base scenario and Base_Hom (with 
homogenous firms) in the 45%, 75%, and 100% CET scenarios. 

 

Impact of operating reserve eligible rules on dispatch, reserve provision, and prices 

These resource utilization trends can be better understood through an example dispatch period. Figure 

S6 shows an example day of July 13th in the final simulation year (i.e., 2035) at the High CET level. As we 

move from the far upper left panel where wind, solar, and batteries can all provide reserves 

(ORDC_Carbon_100) to the middle upper panel where wind and solar cannot provide reserves 

(No_VRE_Reserves_100), we see a 13% increase in gas-fired generation (driven by gas CCs), 16% 

reduction in wind generation, and a 6% increase in solar generation, all of which are consistent with the 

annual generation trends in Figure 26 in the main text. Because wind and solar cannot be used to 

provide operating reserves, we also see an increase in curtailment (3%). In the middle row of Figure S6, 

we see the total upward direction operating reserve provision (i.e., Synchronous, Primary, Flex Up, and 

Reg Up). When wind and solar cannot provide operating reserves (No_VRE_Reserves_100), there is a 

33% reduction in gas-fired generator provision because the system can utilize available headroom from 

the RE-CTs, which have been built and committed to help satisfy the 100% CET. Batteries provide 45% 

more upward direction reserves in this scenario, as they have sufficient state of charge and zero 

marginal cost to provide low-cost reserves. As shown in the lower left and middle panels for these 

scenarios, energy prices generally remain below about $60/MWh, with prices falling to zero or near-zero 

in the middle of the day when solar is the marginal unit, and the weighted-average upward reserve 

provision price (using the upward direction reserve requirements as weights) remains at zero for all 

timesteps.  

When we also prohibit batteries from providing operating reserves (third column in Figure S6), we see 

even more gas-fired generation (21%) relative to the ORDC_Carbon_100 scenario for this example day 

of July 13th. We also see 35% more curtailment because more gas generators are utilized to provided 

upward direction reserves (40% increase relative to the ORDC_Carbon_100 scenario), enabling 15% 

more wind to be utilized for energy production. Battery utilization is reduced by 62% because it no 
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longer can provide operating reserves, and wind and solar can generate directly to the grid for most 

timesteps. However, the synergistic relationship between batteries and solar results in a 19% decrease 

in solar generation. We also see in the bottom right panel of Figure S6 that upward operating reserve 

prices (and in turn, energy prices) hit scarcity pricing levels in many timesteps, driven by an insufficient 

pool of eligible resources. This also results in a significantly lower upward reserve provision profile in the 

middle right panel, though we note that the total operating reserve requirements vary by scenario and 

year based on the system buildout and load profile for that year.  

 

 

 

 

Figure S6. Generation, operating reserve provision, and corresponding prices for an example day in 2035 for the scenarios 
exploring VRE (wind and solar) and battery participation in operating reserve markets (all include ORDC and a carbon tax) for 
the 100% CET level. ORDC_Carbon allows VRE and batteries to provide operating reserves, No_VRE_Reserves does not allow VRE 
to provide operating reserves, and No_VRE_Bat_Reserves does not allow VRE or batteries to provide operating reserves, all else 
equal. 

 

Additional Future Work 
We expand here on an important modeling caveat mentioned in the main text that results in generation 

outcomes not always meeting the CET values established for each year, despite sufficient clean capacity 

being procured (see main text Section 3). This discrepancy is because of the stepwise nature of the 

modeling workflow of EMIS, where investment decisions are based on results from the GEP model (Step 

1 in Figure S1), while generation outcomes are determined by the PCM (Step 5 in Figure S1). The GEP 

can ensure investment decisions technically can satisfy annual policy targets, such as the CET values 
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enforced in this study. However, the current version of the PCM used in EMIS-AS cannot ensure the 

actual market-based operational outcomes meet those CET values, as the PCM only sees a handful of 5-

minute operational timesteps at a time, rather than the full year. Furthermore, the current version of 

the GEP does not include unit commitment in its simplified operational representation, which can skew 

the expansion signals.  

Future work could add unit commitment to the GEP and an annual clean energy accounting 

methodology to the PCM, for example through a nested allocation scheme. Future work could also 

explore strengthening the relationship between the carbon pricing and CET outcomes, for example 

through an endogenous auction-based carbon pricing scheme (e.g., carbon cap and trade). This would 

apply larger carbon prices – translated as larger marginal cost bids to the wholesale energy and 

operating reserve markets – for carbon-emitting resources when the emission cap nears its maximum 

annual allowance. In contrast, the current EMIS-AS formulation assumes exogenous carbon prices for 

simplicity. Ideally, any of these annual carbon or clean energy accounting methods would likely be 

coupled with an additional iteration between the GEP and PCM steps in EMIS-AS to enhance 

convergence in the pricing, investment, and dispatch outcomes. However, challenges could still arise 

from the lag time between the point of a given investment decision and operational availability. 

This disconnect between investment and operational decisions observed at High CET levels also 

underscores the need for system planners and operators, as well as policy makers, to enforce 

mechanisms that maximize alignment between entry/exit decisions and operational outcomes that 

support both policy and technical requirements. Current clean energy standards in wholesale market 

areas generally rely on market signals through portfolio evolution (e.g., declining energy prices as more 

zero-marginal-cost renewables are deployed) and supplemental CEC prices (C2ES (Center for Climate 

and Energy Solutions), 2019). Various contractual mechanisms, such as power purchase agreements 

(PPAs) are also often used as means to track clean energy contributions. Cap and trade programs, such 

as the quarterly allowance auctions in California, also serve as a means to signal for cleaner energy 

technologies, and along with carbon pricing to prioritize dispatch of the lowest carbon electricity, have 

proven effective thus far (California Air Resources Board (CARB), 2021). 

Future work could also continue to enhance the capabilities of EMIS-AS. This could involve several 

improvements including increasing the spatial resolution for allowing placement of new builds at a nodal 

level (compared to the zonal/regional level considered in this work), applying uncertainty to other 

parameters in addition to load growth (e.g., fuel prices, renewable generation availability), incorporating 

flexible demand in both planning and operational decisions, capturing the impacts of historical 

profitability outcomes on future investment decisions, and developing more-robust market product 

representations (e.g., operating reserve cost-based bids, nested operating reserve responses, regulation 

mileage payments, and/or bilateral contracts). In addition, currently EMIS-AS does not include any 

support mechanisms to assist generators when revenues fall short. This includes out-of-market 

payments, including uplift (or make-whole) payments or policy-based subsidies such as production tax 

credits. Future work could explore the impact of these payment mechanisms. 
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Full Set of Results for All Scenarios 
Figure S7 – Figure S21 show the full set of outputs for each scenario and CET level. These include total 

new capacity built in the 15-year simulation, total 2035 annual system-wide generation, total market 

revenues normalized by the installed capacity and averaged across the 15 simulation years, total system 

costs across the 15-year simulation, and total investor firm profitability across the 15-year simulation. 

 

 

Figure S7. Total new capacity added during the simulation for all scenarios for the Low (45%) CET level. 
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Figure S8. Total new capacity added during the simulation for all scenarios for the Mid (75%) CET level. 

 

Figure S9. Total new capacity added during the simulation for all scenarios for the High (100%) CET level. 
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Figure S10. Total 2035 system-wide annual generation and curtailment for all scenarios for the Low (45%) CET level. 

 

 

Figure S11. Total 2035 system-wide annual generation and curtailment for all scenarios for the Mid (75%) CET level. 
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Figure S12. Total 2035 system-wide annual generation and curtailment for all scenarios for the High (100%) CET level. 

 

Figure S13. Annual market revenues (averaged across the 15-year simulation horizon) for all scenarios for the Low (45%) CET 
level. 

 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript. 
The published version of the article is available from the relevant publisher.



 

Figure S14. Annual market revenues (averaged across the 15-year simulation horizon) for all scenarios for the Mid (75%) CET 
level. 

 

 

Figure S15. Annual market revenues (averaged across the 15-year simulation horizon) for all scenarios for the High (100%) CET 
level. 
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Figure 16. Total system costs (summed across the 15-year simulation horizon) for the Low (45%) CET level. 

 

 

Figure S17. Total system costs (summed across the 15-year simulation horizon) for the Mid (75%) CET level. 
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Figure S18. Total system costs (summed across the 15-year simulation horizon) for the High (100%) CET level. 

 

 

Figure S19. Total investor agent-level profitability (across the 15-year simulation horizon) for the Low (45%) CET level. 
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Figure S20. Total investor agent-level profitability (across the 15-year simulation horizon) for the Mid (75%) CET level. 

 

 

Figure S21. Total investor agent-level profitability (across the 15-year simulation horizon) for the High (100%) CET level. 
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